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1. Abstract 

Saturated hydraulic conductivity (Ksat) is one of the most fundamental parameters in soil 

hydrology. It governs the rate of saturated flow through porous media and functions as a 

scaling factor for unsaturated flow. Knowledge of Ksat is key to understanding the movement 

of water in soils, transport, and recharge of groundwater, suspended and dissolved transport 

in soils, and soil-air water exchange. In hydrology and climate modelling Ksat is often 

estimated through pedotransfer functions. A large effort has been committed to the 

development of these models, using an array of differing algorithms and methods. However, 

estimating Ksat has been somewhat troublesome, since the commonly measured soil 

properties, such as soil texture, bulk density, and organic matter content, used as predictor 

variables in PTFs do not explain Ksat variation well. Instead, Ksat is largely controlled by 

pore-network characteristics especially in highly structured soils.  

 

Using an extended, methodologically homogeneous dataset of commonly measured soil 

physical properties, 3-D X-ray computed tomography imaged pore-network parameters, and 

quasi-continuous particle-size measurements using the Integral Suspension Pressure method, 

we assess the benefits of using combined soil textural and structural information on the 

estimation of Ksat. Using this dataset, we have built models that estimate Ksat using a boosted 

random forest algorithm (XGboost) and used explanatory model analysis to tune and evaluate 

the models. Three input data scenarios included (i) basic soil inputs only (ii) imaged pore 

metrics only, and (iii) their combination. Using or adding imaged pore metrics as inputs 

greatly improved the Ksat estimations that were reflected, for example, by the respective 

coefficients of determination, evaluated using a cross-validation scheme (R2 = -

0.07/0.30/0.48 for the three input scenarios respectively). 3-D imaging of soil and the 

subsequent characterization of its pore-space may serve multiple research purposes, but such 

data are still not routinely collected due to cost of measurement and general lack of access to 

equipment. Our study confirms, however, that when collecting such metrics will become 

economically feasible through e.g. better automation of image processing using tools like 

SoilJ, having those metrics will show great potential towards improving the estimation of the 

soil’s water transport properties.  
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and a draft article. First the underlying ideas needed to understand the work and the article 

are presented in the “Background” part of the text, then the draft article is presented with a 

new main title and separately numbered headings. 

.  
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Background 
4. Soil and it’s place in the world. 

The role of soils in matters of great importance; plant growth, climate, nutrient recycling, 

water supplies/purification, and as a habitat; cannot be overstated (Weil & Brady, 2017, pp. 

20–21). The qualities of soils are the principal regulator of plant ecosystems, which props up 

the rest of the terrestrial ecosystems. 99% of the calories the world consumes comes from the 

soil, the last percentage being seafood (Fig. 1) (FAOSTAT, 2023). In the modern world what 

is not mined is grown, thus understanding the dynamics of soil is a fundamental necessity for 

an evidence-based approach to interacting with the natural world.  

 

Fig. 1 Donut chart representing the ratios of calories consumed in the world for the year 2021. Inner donut represents 

aquatically or terrestrially produced, and the outer donut represents the breakdown of these categories. The data was 

retrieved from the FAOSTAT Food Balances database (FAOSTAT, 2023). 

Soils are also in crisis, just like the rest of the earth system. Mismanagement, land cover 

change and climate change have caused damage to the earth’s soils on a scale that is truly 

unfixable within our lifetimes. Each year we lose 3% of our capacity for food production to 

soil erosion, and by 2050 90% of the earths topsoil (FAO, 2022). The American Midwest has 

lost 56 700 000 000 metric tons of soils since the 1860s (Thaler et al., 2022), and some fields 

in China are losing 15 tons per hectare each year (Nearing et al., 2017). Not only are we 
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losing soils, the soils that are left are slowly degraded as their fertility wains (McLauchlan, 

2006) and pollution festers (Khan et al., 2021). Finally climate change brings with it both 

desertification and increased rainfall, exacerbating these problems even further. 

5. Soil physics and the issues at hand 

Soil physics is a scientific effort trying to describe the physical properties of soils. The field 

of soil physics encompasses a large variety of topics and 122 years of history; starting in 

1902 with Edgar Buckingham at the USDA Bureau of Soils (Nimmo & Landa, 2005). The 

topics range from:  

• physical characteristics (texture, structure, porosity, density, aggregates size 

distribution & stability), 

• behaviour of soils (compaction, consolidation, stress-strain relations),  

• volumetric and its constituents (mineral particles, water, air, solutes, organic matter, 

biota), 

• water retention characteristics, hydraulic conductivity,  

• air permeability, and air volume.  

Soil texture and the texture triangle (Fig. 

2) is the part of soil physics more people 

have seen or heard about, although it’s 

still quite niche. They describe the 

fractions of particle sizes grouped by 

sand, silt, and clay. Using this 

characterization we further group soils 

into soil texture classes (The names on 

the triangle in Fig. 2). Texture however 

only describes the most basic parameters 

of soil, the fractions of particle sizes.  

 

Soils are not simply the brown tinted 

matter under our shoes, but also the structures, pores, liquids, and biota within it. Soil often 

includes three phases of matter: solid, liquid and gas. The relationship between these is the 

often the controlling factor in physical characteristics of soils. The gas fraction found in a 

sample of soil often has a larger impact on the dry weight and bulk density of the sample than 

Fig. 2 Soil texture triangle with USDA classes and the SOILSPACE 

dataset plotted as points with the colour representing saturated 

conductivity 
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the density of the solid material. Furthermore, we believe that the importance of soil pores 

and pore system structure has been underestimated as a integral part of their functions. 

Following this the effect of erosion, compaction, and the loss of biodiversity and organic 

matter on the pore system is also overlooked. 

6.  Hydrology, water flow in porous media 

One of the most important relationships in the natural 

world is between soils and water the water within 

them. Soils are an integral part of the hydrological 

cycle, both as a transport medium, a hydrological 

pool, and a natural filter. Of the terrestrial water not 

locked away as ice or in groundwater 1/3rd is soil 

moisture (Wetzel, 2001). Soil water controls many 

biotic and abiotic processes; consequently, our ability 

to describe the mechanisms that control this 

relationship determines our ability to predict the 

outcomes of these processes. Using the language of 

physics and hydrology soil scientist try to determine 

the laws of soil hydrology. Possibly the most famous law 

of hydrology was published by Darcy in Les fontaines publiques de la ville de Dijon (1856, 

app. D). In what has later been termed Darcy’s Law he describes the elements impacting the 

flow of a fluid through a porous medium. 

𝑄 = −
𝐴 × 𝑘 × Δ𝑃

𝜇 × 𝐿
 

𝑄, the rate of flow (volume per time) is given by the area (A), conductivity of the medium (k), 

the viscosity of the liquid moving through the medium (𝜇), length of the medium (L), and 

pressure drop (Δ𝑃). 

A simplified version of Darcy’s law for slow viscous fluids (like water where 𝜇 ≈ 1) can be 

created like this: 

𝑄 = −
𝐴 × 𝑘 × Δ𝑝

𝐿
= 𝐴𝑘

 Δ𝑝

𝐿
= 𝐴𝑖𝑘 

Fig. 3 Illustration of darcy's law 
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The hydraulic gradient or “𝑖” replaces 
Δ𝑝

𝐿
. “A” and “i” are here relatively simple to calculate 

or control, however “k”, conductivity, the scalar for the “ease” with which the liquid can 

move through the medium is a bit more complicated. To measure it we usually move “k” to 

the left, resulting in this formula: 

𝑘 = −𝑄𝑖𝐴 =  −
Δ𝑉

Δ𝑡
𝑖𝐴 

In the lab we can then keep “𝑖”, and “𝐴” constant and measure 𝑄, or the amount of water that 

moves through the medium in a set period of time; this method is called the Constant-head 

method (Klute, 1986, Chapter 28.4). We mostly measure and talk about this 𝑘 in saturated 

conditions; saturated hydraulic conductivity is shortened to Ksat. Ksat can also be used as the 

scaling vector for non-saturated conductivity. The determination of this through the Constant-

head method is however relatively expensive and resource intensive, although it can be 

argued that it’s no more resource intensive than measuring soil texture qualities, especially 

when it comes to man hours.  

6.1. Vadose zone hydrology 

The vadose zone is the space above the water table, this zone is also called the unsaturated 

zone. Water still clings to this zone through adhesion and capillary action, but any surplus 

water percolates down to the water table, or out of the area, with enough time. Not only does 

the drainage impact droughts and floods, but the dynamics of the vadose zone is often a 

defining factor for the water table. Understanding the hydrological elements of the vadose 

zone is also important when talking about the movement of contaminants, and the larger topic 

of the soil water budget. The depth and thickness of this zone is very variable, it’s not 

uncommon, in dryer areas, to have a vadose zone layer is several hundreds of meters thick, 

for comparison wet areas can have one that’s only a couple of centimetres deep, and in 

wetlands, as the name sort of entails, it can be non-existent (Tindall et al., 1999, Chapter 1).  

 

However, with heavier or sustained rainfall the vadose zone can often become saturated with 

water, as long as the percolation of the water downwards is slower than the accumulation of 

water. In adverse scenarios this can cause flooding, land slides and soil erosion. It’s really 

under these saturated conditions we see Ksat, saturated conductivity, in its truest form. 
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Not only is the vadose zone a controlling factor in water movements, but it plays a big part in 

transport of chemicals, surface runoff, groundwater recharge and evapotranspiration. The 

vadose zone also includes the root zone of the vegetation above it, acting both as a growing 

medium and water source. Roots also play a big role in chemical transport. Because of this 

important connection between the root- and vadose-zone, the vadose zone often becomes a 

defining factor in plant growth. Ideally in agricultural systems we would find a very thick and 

decently moist vadose zone allowing for deep roots and good water availability (Tindall et 

al., 1999, Chapter 14).  

 

7. ‘Pedotransfer Functions’ – a necessary imperfection. 

Accurate measurements and parameterization of soils are necessary to inform our soil related 

decisions. However, collecting the data for this is both expensive and labor-intensive, 

additionally we often also need these data in a range of spatial and temporal dimensions. The 

longest running and most spatially diverse datasets are usually national or regional soil 

surveys. They are however often limited to a smaller set of metrics. Pushing into the future of 

big-data models we’re also experiencing an ever-increasing need for larger datasets. To 

reduce the amount of measurements we need to do we create knowledge rules called 

“Pedotransfer Functions” (PTFs); which can take a set of measured variables and estimate the 

variables we haven’t measured (Van Looy et al., 2017). This not only saves time, but also 

allows us to make more “complete” datasets from less expansive ones. It follows that the 

effectiveness, and especially the confidence intervals, of these PTFs has a large impact on, 

not only the models efficacy, but also our ability to trust any large-scale soil data. One of the 

ways soil scientists try to generate these models is through empiricism. By collecting data 

from the real world and building statistical models based on the patterns in the data we’re 

able to build relatively good estimators for our estimands and potentially arrive at new 

discoveries. The downside here is that we do not necessarily know the exact mechanisms 

behind pattern, despite this the models can often, very accurately, describe their estimands. 

 

Ksat being one of the most important measurements in soils, and one of the more laborious 

and expensive parameters to measure, make it the focus of many PTFs. The first attempt was 
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done in 1984 by Cosby et al. The paper used simple linear regression models to estimate the 

mean values for a set of hydraulic properties, one of them being the average Ksat for different 

soil texture types, in the later literature this type of PTF is referred to as a “Class PTF”. 

However, as hydraulic properties can vary immensely within the same texture class, even for 

soil samples that essentially have the exact same texture. Later models are trying to do 

something a bit more difficult; estimating the actual Ksat of a singular sample, this approach is 

referred to as a “continuous PTF”. 

 

8. Predictive modelling 

Predictive models, such as PTFs, are models that use a set of one or more predictors (input) 

to generate a set of one or more estimands (output). These kinds of models have become a 

part of everyday life. Most peoples first experience with models like this were probably 

weather forecasts, and lately with the advent of large language models (LLMs) these 

predictive models have been launched into zeitgeisty super-stardom. 

 

Predictive models usually come in two forms: classification, and regression. Classification 

models try to pick what category of the input set belongs to; “is this painting by Van Gogh or 

Mondrian?” Regression models try to estimate the “missing” value of a variable based on the 

set; “how big will this dog become?” In the environmental sciences both models are used 

frequently, making the basis of climate forecasts or land cover classification. 

 

There are many ways predictive models try to achieve their estimands like Linear 

(Regression) Models (LM / LRM), and Machine Learning (ML). ML models can further be 

split into models like Neural Networks (NN), Support Vector Machine (SVMs), and Decision 

Tree (DT) based. The reason for the considerable number of differing models is both 

historical, better models have been developed over time, and because of application fitness, 

certain models are better at specific things. The choice of model should fundamentally come 

down to the needs of the task at hand.  
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8.1. Machine learning  

There is probably no statistical topic more popular currently than Machine Learning (ML). 

Large language and image generating models are improving rapidly and their use have 

become prevalent. However, the general understanding of ML and these models is still quiet 

poor. Models like these are simply “black boxes”, their methods impenetrable to the user. 

Hidden behind their black exterior, which is easily misleading for the general public, are 

simply advanced statistical models trying to estimate the most likely answer. Today’s 

language models often beats the classic Turing test; even convincing one Google AI-engineer 

that it had consciousness (Tiku, 2022), although most experts agree that it’s not possible for a 

traditional computer to ever become conscious (Huckins, 2023). 

 

The basic structure of these more famous models are 

neural networks, which are notorious for giving 

good predictions but opaque explanations for how 

that prediction came to be. However, there are also 

“logical decision tree”-based ML models, which, 

although not truly transparent, can be much easier to 

grasp. Depending on the model size a very basic 

“decision tree”-based model might be as simple as 

one decision tree with a few layers (Fig. 4). 

 

The classic example is classifying whether a 

passenger on the titanic (probably) survived the 

shipwreck based on the characteristics of said 

passenger. Looking at characteristics like registered gender, age and number of siblings, we 

can using a decision tree estimate the likelihood of survival (Fig. 4 (Gilgoldm, 2020)). 

Starting at the uppermost node we follow the branches corresponding with the passengers 

personalia down until we end in one of the last leaf-nodes, which gives us the likelihood of 

survival. 

 

Fig. 4 Decision tree classifying the likelihood of a passenger 

surviving the sinking of the Titanic. (Gilgoldm, 2020) 
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8.2. Random Forest models 

Although traditionally these logical decision trees were made by hand, we can now use 

computers to generate them based on a training dataset. Generating an array of these trees and 

assembling them into an ensemble model is called a random forest. A random forest allows 

the rather limited structure of a singular logical decision tree to become a part of a more 

flexible whole. Taking the most common or average result from the set of trees allows us to 

do both regression and classification, and often gives us a more accurate result than a singular 

decision tree, when doing predictions for more complex topics.  

 

8.3. Exploratory modelling 

Modelling of this kind is not only useful for generating estimates, but we can also use them 

for exploratory analysis of datasets, or put more simply: we can use them to find interesting 

patterns in our data. One of the main ways we do this is generating a model and then 

analysing how the predictors interact and produce the estimate. This works especially well on 

larger datasets with non-obvious and non-linear relationships between predictors and 

estimands. This can be used to inform our hypotheses, further analysis and finally as an 

indicator of how things work in real life.   
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8.4. Common issues with ML models 

Building ML models comes with many common pitfalls, and a firm hand is necessary to 

create a model that’s without any glaring issues. Overfitting, making a model that is too well 

fitted to the training dataset, and because of this, not fit for the job it’s intended for, is a very 

common issue. Fig. 5 has examples for both regression and classification examples. A model 

like the ones on the left will have a really good performance on the training dataset but have 

worse performance than the “right fit” models when running predictions for new datasets.  

 

Fig. 5 Examples of over, under and correct fit of both a classification and regression model  

We can correct for this by always working with both a training and testing set, that both have 

similar ranges of values. This last part, often called stratifying, is done by making sure both 

datasets have a representative amount of data in the differing quantiles for one or several 

variables. This is also a small part of having unbiased data, however most of the work 

towards having unbiased data is in how the data is collected. The old adage of “garbage in, 

garbage out” is especially true for ML models, as there is often very little intervention 

possible after the data is already collected, and any modeller or team of modellers without the 

necessary knowledge and experience with the type of data can easily miss poor data and build 

models around them. There have been a few famous examples of this, like a racist sentencing 

AI (Brannon, 2024), GPT-4 being more likely to suggest the death penalty for defendants 

speaking African American English (Hsu, 2024) and other similar cases.  
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9.  The algorithms building our models 

9.1.  Boosting algorithms 

Often generating these ML algorithms 

once will not get us satisfactory 

results; so, we take these models and 

try to improve them in some sort of 

formulaic way. For random forests this 

is usually this is either done through 

bagging or boosting a model. The 

clearest difference here is the 

difference between parallel and 

sequential improvement. Bagging, the 

parallel and more traditional method 

works by training several models at 

once and then putting the models 

together to create a better version of 

these models. Boosting, the sequential method, works by first creating one model, then 

assigning weights to different parts of the training dataset, where the estimated values that 

were the furthest away from the measured values are weighted with greater importance. Then 

this is fed into the next model which is now adjusting for the weighted parameters. This self-

correcting type of model building gives better results but is also more likely to become 

overfitted to the training dataset. 

 

We are using the XGboost (or eXtreme Gradient boost) model. It’s a regression tree based 

gradient boosted model; a regression tree being a decision tree where each leaf (a ending 

node on the decision tree) has a continuous score. The score for these regression trees is then 

added together to give the estimate. The model starts out with a singular regression tree, then 

the difference between the estimated and measured values (residuals) based on this tree are 

calculated as a gradient, then a tree that corrects for this gradient is added to the ensemble. 

This process is repeated looking at the ensemble of trees, rather than the singular tree. This is 

done until the model is no longer being improved by adding more trees (Chen & Guestrin, 

Fig. 6 Drawing of a parallel and sequential model building method. 
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2016), depending on the task the final number of trees is usually in the hundreds or thousands 

for models around our size.  

 

Additionally, to make sure that we’re not overfitting the model, we’ve manually tuned the 

step size, or “learning rate” as it’s called for XGB-models, to a place where we get similar 

residuals for both the training set and the testing set. The step size is how small of a change is 

allowed in each boosting repetition, if the value is too small the model will be overfitted, but 

if it’s too large we would be leaving performance on the table. 

 

9.2. Tuning and Anova races 

When building XGboost models the hyperparameters like number of trees, min_n (minimum 

number of datapoints needed for a node be split further) and mtry (minimum number of 

predictors for each tree), can be automatically tuned for the model. For this task we can use 

something like the Anova race algorithm. “Racing” here means creating a set (often 20) of 

models in parallel and adjusting their hyperparameters for each step until some of the models 

are statistically different from the others, using an a Anova test on the RMSE of these models, 

giving the model its name. In a step where one or more of the models are different enough for 

it to be statistically significant, the worse models are eliminated and does not go on to the 

next step. This is done until one model is left or after a set number of steps, if it is the latter 

the best model is chosen although it’s not statistically different from the competitors.  

10. Model agnostic testing and dataset level 

explanations 

One issue in the ML-sphere has always been testing. Making models has become easier and 

easier, but testing them has always been more tricky, there is a pretty good reason for this: we 

have to invent the model first, and then the tests. However with the advent of model agnostic 

tests, test that that can be used independently of the model type, we are now in a world where 

different models can be tested using the same metrics and plotting. This not only makes it 

easier to make and compare different models, but it also makes it easier for others not 

involved in the making of the model to test and critique the models. Which is important if 

models are to be used in the real world. 
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There are two levels of model agnostic analysis, instance level and model level. Although 

looking at how a particular estimate was reached can be useful (instance level), especially for 

diagnostics, it does not give us the larger understanding of how and why a model works. 

Dataset level analysis lets us look at things like performance metrics, what variables have the 

largest impacts, and how variables affect the model. 

10.1. Model performance metrics 

Previously we’ve talked about training datasets, the data that the model is trained on, in 

addition we usually have a testing dataset. They are usually parts of a larger dataset, that has 

been split into two. This allows us to evaluate the performance of the model after creating it. 

The most common metrics are error and performance measurements. In the former category 

we are looking at both MAE, MAD, and MSE and RMSE.  

MAE is the mean absolute error and is calculated as: 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛
 

We take the sum of each absolute value of the difference between the prediction 𝑦𝑖 and the 

measured value 𝑥𝑖 and divide this by the number of values 𝑛.  

 MAD is the median absolute deviation and is calculated as:  

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑋̃|) 

where 𝑋 = {𝑥1, 𝑥2 … 𝑥𝑛} and 𝑋̃ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋). MAD is then the median value of the 

difference between a measurement and the median true value and is a measurement of 

statistical dispersion. 

MSE is the mean square error and is calculated as:  

𝑀𝑆𝐸 =
∑ (𝑌𝑖 − 𝑌̂𝑖)

 2𝑛
𝑖=1

𝑛
 

 It is quiet similar to MAE however we square the values instead of taking the absolute value, 

because of this MSE is more sensitive to large errors, which is often useful. RMSE is the 

square root of MSE, which shows the MSE value in the value range of the original dataset, 

which makes it easier to interpret. 
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Our main performance metric R2 or the coefficient of determination. It shows how much of 

the variability in the dataset can be explained by the model as a fraction of 1, put more simply 

if we get an R2 of 0.8 the model can explain 80% of the variability of the dataset. We’re using 

a version where R2 can go into the negative values. The formula is as:  

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 −

∑ (𝑦𝑖 − 𝑓𝑖)
2 𝑖

∑ (𝑦𝑖 − 𝑦̅)2 𝑖
 

𝑆𝑆𝑟𝑒𝑠 being the sum of the squares of the residuals, or difference between the measured value 

and the estimated value, and 𝑆𝑆𝑡𝑜𝑡 is the sum of squares for the observed data. Models that on 

average gives residuals bigger than the difference between the measured value and the mean 

measured value, also sometimes called a baseline model, will have a R2 less than 0. 

(‘Coefficient of Determination’, 2024) 

 

10.2. Residual diagnostics 

10.2.1. Reverse cumulative absolute residual distribution 

Residuals can be used for 

more than just giving us a 

simple numeric measure of 

performance, we can also 

plot them in a few ways to 

gain insight into our 

model’s performance. One 

way to do this is to look at 

the reverse cumulative 

distribution of the absolute 

residuals. In Fig. 7 we can 

see such a graph. The residuals are sorted in order of lowest to largest and mapped out in a 

reverse cumulative step diagram. The X-axis shows the proportion of the residuals and the Y-

Axis show absolute value of the residual. The resulting line tells us a lot about how the 

residuals are distributed between the samples. The head (blue) and tail (red) of the plot is of 

special interest. A sharp fall in the head, like in Fig. 7 tells us that a large part of the residuals 

is small (here below 0.5). The shape and extent of the tail tells us about the estimates with the 

largest residuals, how large these are, and the number estimates that have a large residual.  

Fig. 7 Reverse cumulative distribution of absolute residuals. 
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When testing differing models against each other comparing these lines is a quick way to 

look deeper into their results. Models might have similar R2 values but differing curves, 

where one model might have a very steep head and a long tail another model might have a 

much shorter tail, but a more gradual head. Depending on the task at hand either might be a 

better fit. Specifically, the former would be better, for most cases except for outliers and the 

latter would be a better allrounder. As the difficulty of prediction increases so does the 

likelihood of a tail, especially when trying to predict values with a range over orders of 

magnitude. 

 

10.3. Variable importance measures 

Variable importance measures are an important step in optimizing and understanding models. 

Variable importance measures can be used early in development to simplify the model by 

removing low impact variables, it can also be used to tune models during development, and it 

might be used at the end of modelling to figure out what’s the most impactful on the model 

and potentially what impacts the estimand in real life (Burzykowski & Biecek, 2020).  

 

10.3.1. Variable importance  

There are many ways to estimate the impact of a variable in a machine learning model, but 

RMSE loss, is for our purposes the most interesting, as it’s model agnostic, allowing us to run 

the same a wide range of different models for testing purposes, and because it’s commonly 

used, reliable and easily understandable (Burzykowski & Biecek, 2020). RMSE loss is the 

increase in RMSE when a variable is removed, an important variable will have a higher 

RMSE loss. We calculate this for a single estimate at a time and take the average of these. We 

can also use graphing options like boxplots to show the range of RMSE loss from each 

estimate and for each variable.  
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Fig. 8 Example of variable importance plot for a Ksat PTF using percolating porosity, critical pore diameter and bulk density 

10.3.2. Shapley- & SHAP-values 

Shapley-values is an idea borrowed from cooperative game theory, where L.S. Shapley 

described a way to determine the effects of each player in a game with a coalition of players 

(Shapley Lloyd Stowell, 1953), translated into the language of machine learning: what is the 

effect of each singular predictor on final estimate of the model. This idea has been 

implemented many times with slight differences (Sundararajan & Najmi, 2020), since the 

first implementation for machine learning by Lindeman et al. in 1980, which introduced the 

concept as a way to break down the effects of differing variables on R2. In 2010 Strumbelj & 

Kononenko reintroduced the idea, but now to explain the effects of the variables for 

individual estimates, as a solution to the “attribution problem” or the issue of how to describe 

local variable importance. Strumbelj & Kononenko coined conditional expectations Shapley 

as the name for their idea. However, it was only with the 2017 paper by Lundberg & Lee and 

the 2018 release of Lundbergs accompanying python package (Shap/Shap, 2016/2024) that it 

was more widely adopted in machine learning spaces. The Lundberg & Lee paper introduces 

the term SHAP, or Shapley Additive Explanations, for conditional expectations Shapley, and 

with the proliferation of the Shap package and its derivatives “SHAP” has become the term 

most commonly used. 
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We can use a simple classification case as an 

example. We can make a model that tries to 

classify1 whether a painting is by Mondrian or 

Van Gogh based, and as parameters we use:  

• the country the artist was born in, 

• what century the painting was made, 

• what the main color of the painting is,  

• the genre of painting. 

 

Both Mondrian and van Gogh are dutch artists, 

mostly working in different centuries (1800s and 

1900s), with very different styles and choices 

when it came to what and how they chose to 

paint. Here (Fig. 9) we can use one of each 

artists most famous paintings as an example. 

Mondrian’s Composition with Red, Blue, and 

Yellow (1930 (A)) is famous for it’s striking 

color composition, especially the large red 

square in the top right corner. The parameters for 

this painting would be “The Netherlands, 1900s, 

Red, Abstract”. Van Gogh’s self-portrait (1887 

(B)) would be parameterized as “The 

Netherlands, 1800s, Green/Blue, Self-Portrait”. 

 

To look at the total effect of each parameter we 

can look at whether the likelihood of each 

answer changes if the parameter was changed or 

stayed the same, for each possible combination 

 

 

 

1 Note that this model would need to be a probability-based classification model, as SHAP values can only be 

calculated for numerical estimates. 

Fig. 9  

A) Piet Mondrians “Composition II in Red, Blue, & Yellow”, 1930 

B) A self-portrait by Vincent van Gogh, 1887 
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of the other parameters in the model. If we do this for the artist country of origin, the impact 

should be 0, as both artists are Dutch. The impact of what century the painting comes from 

should however be much larger as Mondrian has only active for a few years in the 1890s, in 

what is otherwise van Gogh’s century. The main color will have a lesser effect as both are 

known to have used strong colors in their paintings, however (with the exception of the few 

snowy landscapes van Gogh’s painted) Mondrian’s use pure white would probably make an 

impact. Lastly the genre would also probably have a large effect on the model, Mondrian is 

mostly famous for his work with abstract paintings, a genre that didn’t exists during van 

Gogh’s time, which in turn would be a dead giveaway to who had painted the painting.  

However, as the complexity of a model increases calculating the effect of each parameter 

becomes more and more resource intensive, especially when we take continuous variables 

into account. The SHAP method therefore uses the Monte Carlo method, also known as 

repeated random sampling, estimating the values by using a large set of random values 

instead of every possible value.  

Let us estimate the SHAP value “𝜙̂” for variable 𝑗 out of 𝑝 variables in model 𝑓(𝑥) for a 

number of Monte Carlo iterations (𝑚, … , 𝑀) as: 

𝜙 ̂
𝑥,𝑗 =

1

𝑀
∑ (𝑓̂(𝑥+𝑗

𝑚 )

𝑀

𝑚=1

− 𝑓(𝑥−𝑗
𝑚 ))  

where, working from the right-side in, we add some random values, designated by “𝑧”, 

replacing the original input value for a variable “𝑥”, to a random number of variables in two 

slightly different sets of the variables: 

𝑥+𝑗
𝑚 = (𝑥(1), … , 𝑥(𝑗−1), 𝑥(𝑗), 𝑧(𝑗+1), … , 𝑧(𝑝)) 

and 

𝑥−𝑗
𝑚 = (𝑥(1), … , 𝑥(𝑗−1), 𝑧(𝑗), 𝑧(𝑗+1), … , 𝑧(𝑝)) 

The only difference between the two is that variable the value for 𝑗 is also random in 𝑥−𝑗
𝑚 . 

The subtraction gives us Δ𝑓𝑥𝑗
𝑚, sometimes written as 𝜙𝑗

𝑚 in the literature (Molnar, 2022). It’s 

important to note here that the order of the variables, the number of randomized variables and 

the position of variable J is random for each repetition (𝑚), this is done to reduce the 

likelihood of another variable having an impact on the estimate. Δ𝑓𝑥𝑚 is then the difference 

between the estimations by 𝑓 for the variable sets where variable 𝑗 is the original value or a 
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random value. The summation of the 𝑀 (Monte Carlo) iterations and it’s divis ‘ion on M 

(again number of iterations) gives us the estimated ϕ ̂
x,j for variable 𝑗 and model 𝑥. 

(Burzykowski & Biecek, 2020, Chapter 8; Molnar, 2022, Chapter 9; Štrumbelj & 

Kononenko, 2014)  

Doing this for each variable gives us a numerical break-down of the effect of each variable in 

the same numerical scale as the estimand.  

 

Fig. 10 Force plot of shap values for a estimate of Ksat using 3 variables, percolating porosity, critical pore diameter and 

bulk density. f(x) is the estimate, E[f(x)] is the baseline value. Values next to the name is the measured value for each 

variable 

10.3.3. Graphing SHAP values 

Graphing SHAP values are a reliable way 

to look at the effects of variables and their 

interactions at both the instance and 

dataset level.  

On the instance level we often use the 

force plot (Fig. 10), or the waterfall 

equivalent (Fig. 11) for models with a 

larger number of variables. These graphs 

take the estimated SHAP value (ϕ ̂ ) for 

each variable used in the estimate and plot 

them together showing how they in total 

combine to be the estimate, or at least 

very close to the estimate, due to the 

slight inaccuracy of the Monte-Carlo method.  

These instance level measures of importance 

can also be generalized to the whole dataset. One way to do this is taking the average of the 

Fig. 11 Waterfall break down of SHAP scores for a XGB model 

estimating Ksat using a large number of variables. f(x) is the 

estimate, E[f(x)] is the baseline value for the SHAP values. Values 

next to the name is the measured value for each variable. 
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absolute SHAP-value. We need to take the absolute, as this shows what variables have the 

largest effect on the result, the same variable can have both a large positive and negative 

SHAP value dependent its value. This average absolute SHAP-value is another way to 

estimate the dataset level variable importance. 

 

A beeswarm plot (Fig. 12) is 

often shown together with the 

absolute average SHAP value 

(orange bars). What has been a 

until recently a somewhat 

esoteric plot-type, has found 

popularity in plotting SHAP-

values, as it can show both the 

original values, and SHAP-

values succinctly. It also allows 

the reader to see groupings, the 

range of SHAP-values for each 

variable and conceptualize the 

effects of differing variables on 

the model. 

 The force plot (Fig. 10) can 

also be extended to a whole 

dataset, into a dataset force plot. Following the principles of the original instance level force 

plot (Fig. 10), each instance is mapped out along the X-axis with SHAP-effects mapped 

around the Y-axis. These can be grouped by statistical similarity of the SHAP values like in 

Fig. 13, which can be an indicator of overfitting or similarity between samples.

Fig. 12 A SHAP value "Beeswarm" plot of the same XGB model as Fig. 11. 

Showing the dataset level distribution of SHAP scores and feature/variable 

value. The orange bars show the average absolute SHAP-value for each 

variable. 
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1 Fig. 13 Dataset level force SHAP plot of the same XGB model as Fig. 11. Orange lines deliniate between different groupings. Groupings are sorted by similarity. The black lines represent the final estimate 

for each prediction. 
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Lastly differing ‘SHAP-interaction’ plots are 

often used when looking at the effects of 

differing variables. There are many ways to do 

this however we’ll just look at 2 different 

examples. The simplest is just plotting the 

SHAP value for a variable as a function of the 

variable value (Fig. 14). This can be used to 

look at how a parameter impacts the estimated 

value, which can lead to insights into how a 

variable might impact the estimand in real life. 

Further we can use the same principles 

to look at how the interaction of two 

differing variables interact with the 

result. A simple way to do this is by 

plotting a simple scatterplot with the 

colour as the sum of the corresponding 

SHAP-values (Fig. 15). This allows us to 

look at the interactions between the two 

different variables. As an example we 

can see that the estimated Ksat values in 

the simple model in Fig. 15, which only 

uses the variables present in the figure, is ver y low for values with a low percolating porosity 

& critical pore diameter. 

 

10.4. Variable dependence 

In a similar vein as SHAP-values ‘partial dependence’-profiles show the effect a variable has 

on a model as a function of its value. It’s often used for comparisons between models, similar 

Fig. 14 SHAP-interaction plot for critical pore diameter. The SHAP 

values from critical pore diameter is plotted agains the measured 

critical pore diameter value. This is from a model only using critical 

pore diameter and percolating porosity.  

Fig. 15 SHAP-interaction plot from the same model as Fig. 14. Plotting 

critical pore diameter and percolating porosity against each other and 

using the sum of the SHAP values (corresponding to each instance) as 

point colour. 

Critical pore diameter 
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‘partial dependence’-profiles between several models are a reassuring sign that the models 

are stable and well fitted to the task at hand. Obvious differences call into question the 

legitimacy of one of the models, as an example a seeing a non-linear relationship in certain 

models could make it obvious that simplifying the model to a linear one would not be a good 

idea. Furthermore, with empirical models it’s often a good idea to look at the ‘partial 

dependence’-profiles on the fringes of the datasets, where a flexible model is more likely to 

over fit to the few available values (Burzykowski & Biecek, 2020, Chapters 17–18).  

 

Fig. 16 Comparison of Ceteris-paribus profiles, Partial-dependence profiles, Local-dependence profiles, and Accumulated 

local. Borrowed from Burzykowski & Bieceks, 2020 (Figure 18.4). The purple points in are the sampled points that profiles 

are based on. 

There are however a few different ways to calculate and show ‘partial dependence’-profiles. 

Looking at Fig. 16 we see Ceteris-paribus profiles and the 3 main ways to show ‘partial 

dependence’-profiles, traditional partial-dependence, local-dependence, and accumulated-

local-dependence. The basis for all of these ‘partial dependence’-profiles is calculating the 

Ceteris-paribus profiles, which is done by selecting a parameter and seeing how the 

estimation of the model changes as this parameter changes, which leaves us with a series of 

curves or lines (aka profiles) like in Fig. 16 A). ‘Partial dependence’-profiles then becomes 3 

separate ways to simplify these profiles into one singular profile. Traditional partial 

dependence, the most common and oldest of these, has been used since at least the late 1970s 

(Harrison & Rubinfeld, 1978). However, it has it’s issues, especially when working with 
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models that have correlated explanatory variables (Burzykowski & Biecek, 2020), which is 

usually the case when working with data from the real world. A simple example could be 

taken from limnology. Usually, when measuring fish, we take both length and weight 

measurements, as long and thin fish can indicate something like a change in the food 

availability, however it’s impossible to get a fish that weighs 2 kg but is only 5 cm long, 

although both are values that aren’t unlikely to be found within the same dataset. The ceteris-

paribus-profile that would be made by this discrepancy is misleading, and it’s impact on the 

partial dependence profile would again make this metric misleading. This is where local-

dependence and accumulated-local profiles come in, they only take the parts of the ceteris-

paribus-profiles that are around the measured values, as shown in part C) & D) in Fig. 16. 

The difference between these two is that the accumulated plot considers the previous point 

into account during calculations. We can see all 3 ‘Partial dependence’-profiles for the same 

model as in Fig. 17. Where the density of values is high can we see that the shape of the 

profiles are quite similar.  

 

 

  

Fig. 17 Example of all 3 Partial-dependence profiles, here for the same model as Fig. 14. (N points = 160) 
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10.5. The impacts of testing 

Integrating these different analyses allows us to 

gain a lot of insight into “black box” models and 

extends their explanatory properties. These 

analytics are also important during model 

development, as in Burzykowskis & Bieceks 

(2020) circular lifecycle of model development 

(Fig. 18). It’s based on these analytics that we 

build our models, validate them, and break them 

down to gain insights into what improvements 

we might gain from the new datatypes presented 

in the this text. 

Fig. 18  (Tomasz Burzykowski & Przemyslaw Biecek, 2020) 
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11. Our model selection criteria  1 

Formalizing our model selection criteria is an good way to ensure the strength and efficacy of the model. We’ve put together a ranking 2 

of both softer and harder criterxia and applied them to different models as a way to choose the right model for the job.  3 

                                                                                      

Model  

Criteria Linear Models Support Vector Machines Random Forest 

Xtreme Gradient 

Boosting  Neural Networks 

Shareability* xxx x xx x x 

    Interactiveness xxx xx x x x 

    Low model input requirements xx x xx x x 

    Ease of running the model xxx x x x x 

Transparency* xxx xx xx xx   

    Human understandable structure xxx xx xx x  
    Interpretability of variable effects xxx x x xx  
Ease of production* xxx xx xx xx xx 

    Computer power needed for production xxx x x   
    Simplicity in building the model xxx xx xx xx xx 

    DALEX compatibility xx xx xx xx xx 

Model strength & flexibility* x xxx xx xxx xx 

    Prediction strength x xx xx xxx xxx 

    Handling of mixed data x xx xx xx  
    Nonlinearity   xxx xxx xxx xxx 

     Variable selection   xx xx xxx xx 

 4 
Rows with * are the main categories and are informed by the subcategories underneath them. These metric are based in (Burzykowski & Biecek, 5 
2020; Saloranta et al., 2003; Van Looy et al., 2017). The criteria are intended to inform the choice of model, however certain criteria have more 6 
weight than others. Additionally, we’ve highlighted in pink some of the criteria that are below the cutoff point for being useful in our case. Note 7 
that there a few different models that were considered for the task but were cut as they would not work with the dataset or had implementations 8 
that were strenuous to work with. 9 
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As seen in the table above we’ve narrowed our criteria down into categories to make it more 

easily understandable.  

11.1. Shareability 

For any model to have an impact, and even just to be scientifically valid, it must be able 

shareable, otherwise it cannot be cross validated, nor will it ever be used by others. Because of 

this, shareability is an important metric for any model. We’ve divided this category into: 

“interactiveness”, low model input requirements, and ease of running the model. 

 

“Interactiveness”, or how easy it is for a user to use the model, inspect the model and interact 

with it as they’d like, is a very soft metric. However, it’s one of the fastest ways to get someone 

to believe the model. Black-box models, as most of these are, have a big problem in their 

interactions with the end user. They ask for a lot of trust, without really assuring the user of why 

they should, trying to mitigate this will be an overarching concern in many of these criteria. A 

model that we can take apart and play with is more trustworthy, as it allows the user to 

understand it’s internal mechanics. An example of a model with very little interactiveness, could 

be a neural network trained on the MNIST database (‘MNIST Database’, 2024). It’s an common 

exercise to create ML model that can recognize letters based on this database, but the end 

product only ever really allows the user to input these very constrained images, and a neural 

network model based on this would have neither a structure that can be picked apart, nor would it 

give a understandable reasoning for it’s result, creating very little “interactiveness”. A simple 

linear model or a simple logistical tree model are examples of the opposite. Not only can we 

often throw a lot of varying fake data at it, but we can also piece together an understanding of 

how the model works by looking at it’s structures, or at least a graphical version of them. 

 

When it comes to ease of use, how easy it is for the user to input the data is an important metric. 

If the model needs specialized tools for inputting the data, user-performed transformations, 

unusual file types or data structures, it becomes a lot more difficult to work with the model. Most 

of the options we’ve shown only really let the user input the data as simple data frames, which 

can be imported as CSVs, which is a very simple and common format. However a linear model 
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can be even easier than this, as a person, with some time on their hands and a ruler, could print 

out a graphical representation of the model and give a pretty good estimate with some simple 

arithmetic. Our model works with quite advanced data, parameterized Xray CT images from 

SoilJ (Koestel, 2018), so we can expect the end users to be a bit more data-savvy, however the 

users ease of use should not leave our mind when deciding the type of model and how we choose 

to set it up.  

 

In this vain, the ease of running a model is also important. In our case with R-object models, 

we’re only really looking at two things, (1) how easy is it to get the model onto a computer, and 

(2) do we need any special packages to do so? As we’ve chosen to make all of our more complex 

models with tidymodels (Kuhn & Wickham, 2020) (and with analysis trough the DALEX 

package (Biecek, 2018) in mind), any of the models produced here can be run using the standard 

“predict” function from the base R package “stats”. Getting the model is also as easy as 

retrieving the model-object and loading it into an environment. 

 

11.2. Transparency 

Transparency of the model goes hand in hand with shareability, and they do share a bit of an 

overlap, however both are important metrics with differing driving forces behind them. It’s 

important to note here that, as we’ve chosen to focus on a model agnostic approach for our 

model analysis, we have some leeway to use less structurally transparent models and still retain a 

lot of explainability from the models. With this in mind have we broken this category into human 

understandable structure and interpretability of results.  

 

A common issue with ML models is that the more advanced models have a less and less 

transparency as their sizes increase and as their structures become more difficult to understand. 

The current prime example is the deep-learning neural networks which is the basis of the large 

language models like the GPTs. Some of these LLMs can have more than 100 billion parameters, 

although their size might not improve performance (Leffer, 2023). Luckily we are working with 

much smaller models, which allows us to use more human understandable structures, with 



30 

 

slightly lower performance. SVMs and ‘Random Forest’-based models, only sacrifice some of 

their understandability for performance, as long as we’re looking at the lower ranges of 

parameters and sizes.  

 

Interpretability of the results, or how we ended up with a specific result, is also important to look 

at. For most ML models, apart from neural networks, this can relatively easily be understood for 

smaller models, but it’s becomes more and more difficult as the size of the models increase. 

We’ve again chosen a model agnostic method to simplify the task of “explaining” each estimate 

(10.3.2 Shapley- & SHAP-values), again allowing us to be more flexible, as we can “simplify” 

the larger and more complex structures into more interpretable metrics, without losing too much 

information, or at least making it obvious when we’re losing detail. 

 

We cast aside neural networks because of their general lack of transparency. Our model agnostic 

approach to analysis allows us to compare the results of such a model with our other models. 

Ultimately the structure of neural networks does not lend themselves to explanatory modelling 

the way SVMs and ‘Random Forest’-based models do.  

 

11.3. Ease of production 

Not only did we keep in mind the end user when it came to model choice, but also us, the model 

makers, and the process of creating the model. As model choice often comes down to whatever 

has previously been used by the user or close colleagues (Melsen, 2024), the ease of production 

or adaptation is often a very biased metric. However, we’ve tried to keep this to a minimum here, 

and use 3 modeller centric metrics: computer power needed for production, simplicity of 

building the model, and DALEX compatibility.  

 

Although non of the models named here are extremely taxing to create, on our higher end 

modern computer, it’s still an important metric. The same model is probably created with slight 

variations hundreds of times. And consequently, a model that takes 1-2 minutes to make, can, 
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accumulatively, take up to several hours to fine tune. This needs to be seen in context with model 

performance, as this trade off might still be worth it in the end (like here).  

 

Simplicity of building the models is also an important metric when thinking about how much 

work it takes to build the final model. Some models like linear models, are very simple to put 

together, often fitting into a singular line of code, while a more complex model with more 

hyperparameters, like the Xtreme Gradient Boosting model, take comparatively a lot more time 

to code and tune. However, the Tidymodels package (Kuhn & Wickham, 2020) does streamline a 

lot of this work. 

 

Knowing that we wanted to use the DALEX package to compare different models in the 

experimental phase of the project and use the same metrics to investigate the final model, made 

the compatibility with the package important. A few models were considered early on, but 

disregarded as they did not work with the framework, which would make it harder to argue for 

them if we picked them over other models, as their metrics would not be easily comparable. 

 

11.4. Model strength & flexibility 

Finally model strength and flexibility quickly became important metrics for our models, as early 

linear models showed big weaknesses in predictive power. We’ve broken these down into, 

prediction strength (10.1 Model performance metrics), ability to handle mixed data, ability to 

deal with nonlinear relationships, and it’s strength in variable selection. 

 

Prediction strength quickly became one of the main issues when comparing the models, as an 

early linear model had an R2 for the testing data of -0.5, meaning the estimates the model created 

was a lot worse than just guessing the average value of the dataset. This also informed the next 

thing, the need for nonlinearity in the models, which any of the other models discussed allows 

for. 
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We also wanted to focus on models that were well-suited for variable selection, as what variable 

was going to be the most impactful was a previously undetermined factor. Thus, Models that 

more easily will let more impactful predictors shine, like LLMs, Boosted Random Forests and 

SVMs, were preferred.  

12. 3D-Xray computed tomography in soil science 

12.1. CT-scanning in soil science 

The presence of paramagnetic elements in soil has made X-rays the preferred method over MRI 

and NMR (Macedo et al., 1998). These tomographies, coming from the Greek tómos = ‘slice’ or 

‘section’ and the French graphie = ‘to write’ (‘Tomography’, 2023), are ways to image an object 

by sections, and then piece them together into a singular object, allowing us to see not only the 

exterior of an object but crucially the interior. These methods are more commonly known for 

their use in the medical sciences, but X-ray imaging has been used in soil science since the 1982 

when Petrovic et al. used it to quantify the change in bulk density using a medical CT system. 

It’s an non-invasive & non-destructive way to image the geometry and topology of the pore 

networks in samples, which is entirely necessary if we want to investigate them (Helliwell et al., 

2013; Koestel et al., 2018). It’s also been used to estimate a large array of differing soil variables 

ex: bulk density, layer detection, porosity, pore network structures, volumetric water content 

(Helliwell et al., 2013). However, their accuracy is fundamentally halted by their penetrating 

power, which makes the fidelity of the images a function of the sample size. But, with the ever-

present onset of new technology, we’ve seen large improvements in X-ray technology (Mooney 

et al., 2012).  
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12.2. Soil-J: Quantitative descriptions of soil images 

John Koestels SoilJ (2018), a 3-D Xray image 

processing tool, is our way to parametrize these 

3D-images so we can use them in our ML-

models. It allows the user to automate the 

processing of cylindrical soil volumes, by 

including modules for different image 

segmentation & correction, morphological 

metrics, and most importantly for us, analytics for 

percolation. This automation allows for expedited 

analysis of these X-ray images, which had 

previously had to be done by trained 

professionals.  

This increases the accessibility of X-ray 

tomography for the soil sciences. Fig. 19 is 

from the paper publishing SoilJ (Koestel, 

2018), and shows off the automatic sample 

detection. Fig. 20 shows off some of the 

pore parameterization that can be done 

with the package (Koestel et al., 2018).   

Fig. 19 X-ray cross section of a soil sample showing pores (black) 

soil and some gravel. This image is from the SOILSPACE project and 

has been borrowed from (Koestel, 2018) 

Fig. 20 An image showing percolating porosity (yellow + white) and 

the largest pore (white) which is used to calculate critical pore 

diameter. Purple shows non-percolating pores. The image is 

borrowed from (Koestel et al., 2018) 
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13. Hypothesis 

Looking at previous Ksat PTFs we might’ve hit a wall basing our parameters on commonly 

measured soil parameters like soil texture, bulk density, and organic matter content; following 

this pattern no large advances have been achieved over the last 20 years. A common critique is 

that these techniques do not consider the pores of the soil. There is a particularly good reason for 

this, as trying to measure the pore-structure within a soil sample has been basically impossible; 

however, 3D-xray tomography provides an attractive, previously not fully available technique. 

The soil space project lead by NIBIO2 had as an aim to “Quantify the complex 3D soil pore 

system”, this thesis is a continued exploration of the data built by this project. Using their very 

robust dataset we attempt to build a new type of PTFs which are based on imaged parameters. 

We hypothesize that: 

1. A model based on imaging parameters & traditional parameters will outcompete a 

traditional model. 

2. The imaged parameters will have a significant impact on the resulting models based on 

variable importance measures. 

3. A model based purely on imaged parameters will show merit in Ksat estimation. 

14. Our aim – the why 

Our aim is to improve our understanding of soil properties and extend the toolkit available to the 

people working with soils. We will attempt this by building a set of 3d-xray image based 

pedotransfer-functions for Ksat estimation and test them against a traditional model. In this we 

hope to also shed light on the importance of soil pores and their structure for Ksat in soils.   

 

 

 

2 The partners in the project was: NIBIO (The Norwegian Institute of Bioeconomy Research, Ås), Rutgers 

University (The State University of New Jersey, New Brunswick), SLU (Swedish University of Agricultural 

Sciences, Uppsala) and NMBU (Norwegian University of Life Sciences, Ås) 
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Improving the estimation of 
saturated conductivity through 
3D-xray tomography 
1. Abstract 

Pedotransfer functions (PTFs) for continuous Ksat estimation have only seen small improvements 

over the last years despite of improvements in the machine learning space. This suggests that we 

need novel approaches to improve Ksat PTFs. One such approach is using parameterized 3D-xray 

tomography of soil samples. Here we use an extended methodologically homogeneous set of 

with both imaged parameters and traditional soil parameters such as texture, bulk density, 

organic carbon content and sampling depth to create a set of 3 models, (i) basic soil inputs only 

(ii) imaged pore metrics only, and (iii) their combination. These 3 XGboost-models are then 

compared to investigate the efficacy of these models. The traditional model had an R2 of 0.07, 

the pure imaging model had one of 0.30 and the combined model got 0.483. This shows that 

imaged parameters heavily improve Ksat estimation, and can even be used alone, suggesting that 

they are a good basis for new PTFs. 

2. Introduction 

Saturated hydraulic conductivity, Ksat, is one of the most important soil metrics, being a critical 

metrics for hydrological models. However, estimating Ksat is still a difficult task after 40 years of 

research into the issue (Cosby et al., 1984; Van Looy et al., 2017; Zhang & Schaap, 2019). 

Despite the ever increasing strength of machine learning models we’ve not seen any big strides 

forwards in the last 20 or so years (Zhang & Schaap, 2019). It’s suggested, by some of the 

leading voices in the ‘pedo-transfer function’-sphere, that better parameterization of the pore 

space can be a critical part in improving the performance of pedo-transfer functions (PTFs) 

(Koestel et al., 2018; Van Looy et al., 2017; Zhang & Schaap, 2019), as it might be indirect 

nature of the parameters currently in use that is holding back progress. 3D-Xray tomography has 

been used on soil samples since 1982 (Petrovic et al.), and Koestel et al. showed in 2018 that it 

parameters based on images of ring samples have a good correlation with Ksat. Additionally 
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taking a 3D-Xray image can be done in less than half an hour, and with very little human 

intervention, comparatively it often takes days of work to measure the common soil metrics used 

in current PTFs. With this in mind we attempt to find out if these imaged parameters benefit 

PTFs and if a X-ray based PTF could be made with the data available to us. We do this by 

creating a set of 3 types of PTFs, a “traditional” PTF, using texture fractions, bulk density and 

carbon content, a model only using a imaged parameters, and a model using imaged parameters, 

the traditional parameters and depth data. We then investigate the effects of adding the imaged 

parameters, what imaged parameters have the biggest impact, and how well a PTF based on 

images performs.  
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3. Method 

The data used is from the SOILSPACE project. Over a few 

years (2015-2019) 178 samples were collected in aluminium 

rings, with the internal dimensions of Ø6.5 cm*6 cm. The 

samples were collected from places ranging from close to the 

southern most tip of Norway, all the way up to north of Narvik, 

additionally a larger set of samples were collected from the 

Skuterud site. These samples where then sent to SLU to be 

scanned with their GE Phoenix v|tome|x 240 X-ray scanner, 

before being ran through a series of traditional measurements. 

This gives us a internally consistent set of data where each 

variable has been measured on each sample. The X-ray scans 

was sent through SoilJ, which parameterized the data giving us 

our imaged parameters. The dataset was further filtered to 

remove any samples with issues making them non-compatible 

with our ML-models, leaving us with 160 samples. After 

filtering out any imaged variables that had a 𝑝-coefficient 

∓0.75 against any of the traditional or other imaged variables, 

after this filtration we were left with: 

• Anisotropy: How directional the pore volumes are in the scale of 0-1. 0 is isotropic 

(without directionality) and 1 is anisotropic (with directionality) (Doube, 2020) 

• Average pore diameter: The average diameter of the pores in the sample in mm. (Koestel, 

2018) 

• Critical pore diameter: The bottleneck in the largest pore in mm. This can be 

conceptualized as the smallest sphere that could pass through the sample. (Koestel, 2018) 

• Fractal dimensionality: A measure of geometrical complexity. The higher the fractal 

dimensionality the ‘rougher’ the object is. Fractal dimensionality stems from 

Mandelbrot’s seminal work “How Long Is the Coast of Britain? Statistical Self-Similarity 

and Fractional Dimension” (1967), where he discusses the issue of the Coastline paradox 

(‘Coastline Paradox’, 2024). The paradox states that the exact length of a coastline can 

Fig. 21 Map of Norway showing approximate position of 

sampeling sites 
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only be approximated as it is functionally a fractal, and its length will thereby be 

determined by the length of the measuring stick. Taking coastlines as an example South 

Africa’s coastline (very smooth) gets a fractal dimensionality like 1.02, Great Britan 

which has a very rough coast gets 1.25 (Mandelbrot, 1967), maybe the most extreme 

would be Norway with 1.52 (Feder, 2013, p. 8). Here it is a measure of the roughness of 

the pore space. 

• Percolating porosity. The total volume of pores that is connected with both the top and 

the bottom, in mm3. (Koestel, 2018) 

• Pore metrics: We also have fractional data of pore size, with fraction of pores between 

0.25-0.5 and 0.5-1.0.  

• Γ-connectivity: The probability of a random pore voxel being connected to the rest of the 

pores given as a value between 0 and 1, where 1 would indicate all pore voxels being 

connected (Jarvis et al., 2017). This is also sometimes referred to as “connection 

probability” in the literature. 

 

The models were created in R using the Tidymodels (Kuhn & Wickham, 2020) and DALEX 

(Biecek, 2018) frameworks. A series of XGboost models were created using the ‘finetune’ 

package, from the Tidymodels package, to automatically adjust all parameters, except for 

learning rate, using the ‘Anova race’ method. A set of learning rates was then tested, and the best 

performing learning rate, based on R2, was used for each of the three models. When creating the 

pure image model a series of models with differing constellations of the imaged parameters were 

made, with the best performing model being one which used only ‘critical pore diameter’ and 

‘percolating porosity’.  
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The final 3 models included these metrics: 

• Traditional model includes: texture (USDA sand, silt and clay fractions), bulk density, 

and soil carbon content (%).  

• Image enhanced model includes: texture, bulk density, soil carbon content (%), depth, 

average pore diameter, percolating porosity, critical pore diameter, anisotropy, fractal 

dimensionality, pore metrics, and Γ-connectivity. 

• Pure imaging model: percolating porosity, and critical pore diameter.  

We used the ‘DALEX’ model-agnostic framework when analysing our models. ‘Explainer’-

objects were made for each model and these were used to get model performance metrics, 

SHAP-values and other variable importance metrics. This is also the basis for our visuals. 
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4. Result 

4.1. Performance metrics: 

The image enhanced model is the highest performing model achieving an average R2-value of 

0.483, this is followed by the Pure Imaging model achieving an average R2-value of 0.3, and the 

traditional model performed poorly, only achieving an average R2-value of 0.07. For comparison 

the R2-values for the models on the dataset they were trained on is also showed. The value of 

0.996 for the Image Enhanced model suggest overfitting to the training set, despite the model 

being tuned to reduce the difference between the different R2-values. The differences (Traditional 

model = +0.34, Image Enhanced = +0.513, Pure Imaging = +0.364) suggest, together with the 

relatively good performance, that the Pure Imaging model is the least overfitted.  

Model: Traditional model Image enhanced  Pure imaging  

Hyperparameters       

Learning rate** 0.01 0.005 0.01 

Number of predictive features 6  (4***) 15 (13***) 2 

Model performance metrics*       

Testing set       

RMSE 2.736 2.064 2.407 

MAE 2.118 1.545 1.761 

MAD 1.756 1.227 1.469 

R2 0.070 0.483 0.300 

Training set       

RMSE 1.068 0.204 1.828 

MAE 0.792 0.140 1.337 

MAD 1.336 0.102 1.035 

R2 0.410 0.996 0.664 

   

* all performance metrics are the mean for 10 models with the same hyper 

parameters but models and test/training sets are seeded differently 

** tuned to reduce difference in performance between training and testing sets  

*** number of predictive features when the 3 texture variables are counted as one 
Fig. 22 Model performance metrics for the traditional, image enhanced and pure imaging models. 
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Fig. 23 Reverse cumulative distribution of residuals from the from the best performer from each of the 3 models.  

In Fig. 23 we show the different distributions of residuals for the 3 models. The tail of the 

traditional model is especially large and long. The heads of both image models are pretty good 

with minor discrepancies, but they diverge especially in the last tertile, where the pure imaging 

model is less performant. The long tail at the end of both is probably caused by some kind of 

outlier data. It should be noted that these are the best performing models, and might be so 

because the testing data for each of them lacks diversity, this is especially true for the traditional 

model as it’s performance is a lot higher than the average performance for this model type.  
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4.2. Average SHAP-values for the image enhanced model  

The average SHAP-value for all the parameters in the image enhanced model was calculated for 

a set of 20 identical models trained on differently seeded training and test sets and models. 

Percolating porosity and critical pore diameter are the only parameters significantly different 

from the rest of the variables (Fig. 24, right upset plot), with the adjusted P-value between 

percolating porosity and critical pore diameter being ~0.002. Percolating porosity and critical 

pore diameter achieve average SHAP-values of 0.905 and 0.807 each, which is 4 times higher for 

all other variables except for bulk density.  

  

Percolating porosity (mm^3) 

Critical pore diameter (mm) 

Bulk density (g/cm3) 

Sand fraction (USDA) 

Depth (cm) 

Silt fraction (USDA) 

Anisotropy 

Average pore diameter (mm) 

Clay fraction (USDA) 

Fractal dimensions 

 Carbon content (%) 

Fraction of pores between 0.25-0.5 mm 

Fraction of pores between 0.5-1.0 mm 

Connectivity 

Fig. 24 Plot of SHAP score distribution – showing variable importance, model stability and average, max, and min rank for 

each variable. Furthest to the right is an upset table showing significance through Tukey letters. N = 20. All SHAP values can 

be found in Appx. 4 
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4.3. The Pure Imaging Model 

The pure imaging model achieves an average R2 0.30 and a max R2 of 0.47 against the testing 

set. The model only has 2 predictive parameters allowing us to plot the results (and in that the 

limits model) as a raster. Fig. 25 is such a raster for the best performing pure imaging model.  

 

Fig. 25 (A larger version of this image can be found in Appx. 6.) A 2D representation of the ‘Pure imaging model’ shown with the 

measured Ksat (a & c) and the residual for each prediction (b & c) plotted as points. Additionally, each point has a diamond or a 

8 pointed star showing what set in the dataset (testing or training) each point is part of. The raster plot in the background of each 

image is the model predictions for an imputed dataset with evenly distributed values (503*503 values) around the limits of the 

original dataset, in turn this shows close to every possible prediction for the model in that space. The lower two graphs (c & d) 

are log transformed to better represent the large number of values with low values for the two predictive parameters. R2 for the 

model is 0.47 against the testing set and 0.72 against the training set.  
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Fig. 26 log10(Ksat) mapped as a colour onto a scatter plot with percolating porosity and critical pore diameter as the axes.  
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Fig. 27 Showing the SHAP values across the whole dataset (N = 160) for both parameters in the pure imaging 

model, log10 transformed. A gam model has been fitted to the points to show the trends in the data. A line at 0 

has also been added to delineate between values that reduce or increase the final estimate. 
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5. Discussion 

The differences in performance show that imaged parameters can be a great addition to, or the 

basis for new PTFs. Especially when we take into account that the SOILSPACE dataset (here n = 

160) is much smaller than what is often used to train pedo-transfer models like ROSETTA (n = 

1306) or the EU-HYDI (up to n = 3206) (Zhang & Schaap, 2019). Hopefully, if X-ray 

tomography of soil samples becomes more common, we’ll see an increase in the efficacy of X-

ray based PTFs. Based on this an argument for using metrics more closely related to the soil 

pores when building PTFs can easily be made. The average SHAP-values for the Image 

enhanced model (Fig. 12, Fig. 13, and Fig. 24) also support this, with the really high values for 

critical pore diameter and percolating porosity. Fig. 13 also shows how these parameters are 

almost always the most impactful.  

 

There is also a notable pattern in the data here. The divergence of critical pore diameter and 

percolating porosity, which is likely to be part of the reason that the pure imaging model, which 

only uses these two parameters is as performant as it is. When these are both low we see very a 

very low Ksat and as either or both increase so does the Ksat, this is true both for the model and 

when plotting Ksat against the parameters (Fig. 26). It follows some intuitive sense that both 

metrics have an impact on soils conductivity. A sample with a large hole straight through the 

middle will let water fall through, as the size increases the capillary action also decreases 

allowing the water too more easily flow through the hole, increasing Ksat. The percolating 

volume also has this intuitive sense, the larger the volume becomes the more space is there for 

the water to percolate through. This relationship shows merits as a predictor for Ksat, both as a 

the main predictors of a larger set of predictors (Fig. 24), when they’re the only predictors (Fig. 

25). This suggests an exciting and real relationship between Ksat, and percolating porosity and 

critical pore diameter. Additionally looking at Fig. 27 we can see that there are trends in the data 

that when that at times seem almost linear. 
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It’s important to note that our images have a resolution of 0.04 mm, any pores smaller than this 

will go unrepresented in the data. This might not be too much of a problem as with decreasing 

pore size, the small volume and increasing capillary action decreases the amount of water that 

can travel through them. 

 

As with any large project that has a decent number of samples we can expect some errors to 

creep in. The samples all had to travel longer distances, like the ones between NMBU and SLU, 

as well as the transportation of the samples from the sampling locations to the labs. Depending 

on their treatment during said transportation there might be some unnatural outliers in the 

dataset, especially since the X-ray tomography was done in Uppsala, Sweden, and the other 

measurements were done in Ås, Norway.  

 

We also concede that there is currently no uncorrelated data that can be used as a testing set for 

our models, however it’s the hope of the authors that this text inspires others to create similar 

datasets so that this superior level of verification can be achieved.  

6. Conclusion 

We believe that these data show that parameterized CT-Xray tomography can be a powerful tool 

in estimating Ksat as soon as now. The models show the efficacy of the percolating porosity and 

critical pore diameter parameters as predictors for Ksat. Further research and especially larger 

datasets will hopefully improve these methods. X-ray tomography seems to have a lot of 

promising value in Ksat estimation, both in terms of efficacy and speed, as doing X-ray 

tomography on a sample is something that can be done in the background during a 30-minute 

lunch break, rather than being a arduous process taking several days like the measurements of 

common soil parameters or Ksat itself. The improvement, in both speed, accuracy, and non-

invasiveness, of this kind of Ksat estimation of samples would hopefully also make the larger 

tasks of generalizing these metrics for larger spatial scales easier; in turn improving earth system 

models.  
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Appendix 
model 

num 

RMSE 

test 

MAE 

test 

MAD 

test 

R2 

test 

RMSE 

train 

MAE 

train 

MAD 

train 

R2 

train 

1 2.666 2.152 2.141 0.030 0.348 0.259 2.141 0.030 

2 3.293 2.481 2.125 -0.342 0.336 0.247 2.125 -0.342 

3 2.550 1.912 1.231 0.290 0.371 0.259 1.231 0.290 

4 2.254 1.707 1.364 0.353 0.298 0.219 1.364 0.353 

5 2.774 2.297 1.964 0.063 1.429 0.999 1.964 0.063 

6 3.029 2.167 1.631 0.262 1.321 0.993 0.779 0.800 

7 2.851 2.139 1.618 -0.340 1.461 1.125 0.861 0.803 

8 2.751 2.245 1.993 0.152 2.144 1.591 1.244 0.536 

9 2.479 1.920 1.782 -0.061 1.506 1.154 0.884 0.792 

10 2.714 2.160 1.707 0.290 1.461 1.073 0.769 0.774 

Mean 2.736 2.118 1.756 0.070 1.068 0.792 1.336 0.410 
Appx. 1 Model performance metrics for the "traditional" model which only used the traditional parameters: texture measures, 

bulk density, & soil carbon content (%). “Test” indicates that the metric is against the testing against and vice-versa for testing. 

model 

num 

RMSE 

test 

MAE 

test 

MAD 

test 

R2 

test 

RMSE 

train 

MAE 

train 

MAD 

train 

R2 

train 

1 1.737 1.423 1.260 0.588 0.249 0.157 0.106 0.994 

2 1.989 1.650 1.472 0.510 0.159 0.115 0.075 0.998 

3 2.509 1.694 1.013 0.312 0.238 0.160 0.111 0.994 

4 2.113 1.542 1.300 0.432 0.238 0.160 0.115 0.994 

5 2.306 1.689 1.201 0.352 0.182 0.123 0.090 0.997 

6 2.544 1.813 1.362 0.479 0.143 0.107 0.083 0.998 

7 1.952 1.514 1.252 0.372 0.158 0.119 0.092 0.998 

8 1.955 1.315 0.888 0.572 0.248 0.161 0.120 0.994 

9 1.499 1.192 1.029 0.612 0.282 0.193 0.150 0.993 

10 2.035 1.623 1.492 0.601 0.142 0.108 0.081 0.998 

Mean 2.064 1.545 1.227 0.483 0.204 0.140 0.102 0.996 
Appx. 2 Model performance metrics for the "Image enhanced" model which used traditional parameters, and all other 

parameters with a Pearson coefficient less than 0.7, culminating in: texture, bulk density, depth, average pore diameter, 

percolating porosity, critical pore diameter, anisotropy, fractal dimensionality, pore metrics, soil carbon content (%), & Γ-

connectivity. “Test” indicates that the metric is against the testing against and vice-versa for testing. 
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model 

num 

RMSE 

test 

MAE 

test 

MAD 

test 

R2 

test 

RMSE 

train 

MAE 

train 

MAD 

train 

R2 

train 

1 2.370 1.875 1.781 0.234 1.979 1.393 1.125 0.623 

2 2.333 1.906 1.754 0.326 2.070 1.506 1.176 0.578 

3 2.692 1.841 1.601 0.208 1.754 1.305 0.974 0.688 

4 2.430 1.680 1.511 0.248 1.904 1.427 1.187 0.647 

5 2.912 2.028 1.672 -0.033 1.484 1.078 0.805 0.783 

6 2.946 1.954 1.362 0.301 1.425 1.055 0.773 0.767 

7 1.799 1.410 1.083 0.467 1.742 1.227 0.794 0.720 

8 2.342 1.567 1.294 0.386 1.996 1.583 1.333 0.598 

9 1.815 1.488 1.099 0.431 1.932 1.355 1.059 0.657 

10 2.432 1.861 1.538 0.430 1.999 1.440 1.122 0.577 

Mean 2.407 1.761 1.469 0.300 1.828 1.337 1.035 0.664 

Appx. 3 Model performance metrics for the "Pure Image" model which only used the imaged parameters: Critical Pore Diameter 

and Percolating Porosity. “Test” indicates that the metric is against the testing against and vice-versa for testing 
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feature \ model number 1 2 3 4 5 6 7 8 9 10 

Percolating Porosity 0.962  Rank:1 0.931  Rank:1 0.781  Rank:1 1.007  Rank:1 0.713  Rank:2 1.031  Rank:1 0.835  Rank:1 1.066  Rank:1 0.888  Rank:1 0.952  Rank:1 

Critical Pore Diameter 0.817  Rank:2 0.786  Rank:2 0.676  Rank:2 0.818  Rank:2 1.078  Rank:1 0.761  Rank:2 0.722  Rank:2 0.679  Rank:2 0.808  Rank:2 0.852  Rank:2 

Anisotropy 0.216  Rank:3 0.143  Rank:7 0.377  Rank:3 0.210  Rank:6 0.189  Rank:5 0.027  Rank:14 0.306  Rank:3 0.161  Rank:7 0.268  Rank:3 0.176  Rank:5 

Bulk Density 0.201  Rank:4 0.240  Rank:3 0.179  Rank:6 0.251  Rank:4 0.314  Rank:3 0.137  Rank:5 0.187  Rank:6 0.193  Rank:4 0.175  Rank:6 0.353  Rank:3 

Average Pore Diameter 0.185  Rank:5 0.081  Rank:12 0.149  Rank:9 0.151  Rank:9 0.113  Rank:10 0.122  Rank:7 0.105  Rank:10 0.176  Rank:5 0.166  Rank:8 0.164  Rank:7 

Depth (top) 0.177  Rank:6 0.118  Rank:10 0.192  Rank:5 0.386  Rank:3 0.100  Rank:12 0.135  Rank:6 0.091  Rank:12 0.250  Rank:3 0.176  Rank:5 0.260  Rank:4 

Fractal dimensionality 0.170  Rank:7 0.119  Rank:9 0.125  Rank:11 0.030  Rank:14 0.163  Rank:6 0.078  Rank:12 0.173  Rank:7 0.160  Rank:8 0.195  Rank:4 0.109  Rank:11 

Silt fraction (USDA) 0.156  Rank:8 0.196  Rank:4 0.156  Rank:8 0.220  Rank:5 0.208  Rank:4 0.149  Rank:4 0.117  Rank:8 0.140  Rank:9 0.173  Rank:7 0.172  Rank:6 

Clay fraction (USDA) 0.121  Rank:9 0.104  Rank:11 0.203  Rank:4 0.192  Rank:7 0.146  Rank:8 0.097  Rank:9 0.212  Rank:5 0.127  Rank:11 0.147  Rank:9 0.152  Rank:8 

Fraction of pores  

between 0.5-1 mm 0.120  Rank:10 0.119  Rank:8 0.134  Rank:10 0.149  Rank:10 0.094  Rank:13 0.080  Rank:11 0.052  Rank:13 0.104  Rank:12 0.074  Rank:14 0.112  Rank:10 

Fraction of pores 

between 0.25-0.5 mm 0.105  Rank:11 0.065  Rank:14 0.069  Rank:13 0.081  Rank:13 0.105  Rank:11 0.086  Rank:10 0.093  Rank:11 0.133  Rank:10 0.135  Rank:10 0.097  Rank:13 

Sand Fraction (USDA) 0.100  Rank:12 0.192  Rank:5 0.176  Rank:7 0.186  Rank:8 0.151  Rank:7 0.198  Rank:3 0.220  Rank:4 0.169  Rank:6 0.112  Rank:11 0.131  Rank:9 

𝚪-Connectivity 0.080  Rank:13 0.067  Rank:13 0.059  Rank:14 0.097  Rank:12 0.042  Rank:14 0.120  Rank:8 0.047  Rank:14 0.064  Rank:14 0.103  Rank:12 0.094  Rank:14 

Soil Carbon Content (%) 0.078  Rank:14 0.155  Rank:6 0.106  Rank:12 0.108  Rank:11 0.128  Rank:9 0.073  Rank:13 0.112  Rank:9 0.090  Rank:13 0.077  Rank:13 0.099  Rank:12 

feature \ model number 11 12 13 14 15 16 17 18 19 20 

Percolating Porosity 0.736  Rank:2 0.930  Rank:1 1.120  Rank:1 0.742  Rank:2 1.071  Rank:1 0.799  Rank:1 0.572  Rank:2 1.087  Rank:1 0.961  Rank:1 0.912  Rank:2 

Critical Pore Diameter 0.850  Rank:1 0.739  Rank:2 0.714  Rank:2 0.910  Rank:1 0.787  Rank:2 0.684  Rank:2 1.097  Rank:1 0.617  Rank:2 0.797  Rank:2 0.940  Rank:1 

Anisotropy 0.116  Rank:10 0.156  Rank:6 0.057  Rank:13 0.154  Rank:8 0.066  Rank:12 0.057  Rank:14 0.160  Rank:6 0.065  Rank:14 0.121  Rank:7 0.097  Rank:12 

Bulk Density 0.215  Rank:5 0.249  Rank:4 0.189  Rank:4 0.307  Rank:3 0.184  Rank:9 0.198  Rank:4 0.227  Rank:4 0.317  Rank:4 0.150  Rank:6 0.144  Rank:4 

Average Pore Diameter 0.117  Rank:9 0.117  Rank:10 0.154  Rank:5 0.202  Rank:5 0.219  Rank:4 0.117  Rank:10 0.159  Rank:7 0.136  Rank:9 0.173  Rank:4 0.162  Rank:3 

Depth (top) 0.257  Rank:3 0.107  Rank:12 0.123  Rank:7 0.150  Rank:9 0.245  Rank:3 0.264  Rank:3 0.092  Rank:11 0.406  Rank:3 0.089  Rank:10 0.104  Rank:9 

Fractal dimensionality 0.113  Rank:11 0.221  Rank:5 0.097  Rank:11 0.076  Rank:13 0.195  Rank:8 0.136  Rank:8 0.047  Rank:14 0.173  Rank:8 0.075  Rank:11 0.138  Rank:5 

Silt fraction (USDA) 0.174  Rank:7 0.121  Rank:9 0.113  Rank:9 0.067  Rank:14 0.209  Rank:5 0.097  Rank:11 0.165  Rank:5 0.200  Rank:6 0.157  Rank:5 0.121  Rank:6 

Clay fraction (USDA) 0.180  Rank:6 0.135  Rank:8 0.117  Rank:8 0.281  Rank:4 0.197  Rank:7 0.128  Rank:9 0.068  Rank:13 0.182  Rank:7 0.064  Rank:13 0.108  Rank:8 

Fraction of pores  

between 0.5-1 mm 0.120  Rank:8 0.075  Rank:14 0.052  Rank:14 0.080  Rank:12 0.051  Rank:13 0.080  Rank:12 0.100  Rank:10 0.076  Rank:12 0.092  Rank:9 0.075  Rank:13 

Fraction of pores 

between 0.25-0.5 mm 0.081  Rank:13 0.139  Rank:7 0.076  Rank:12 0.170  Rank:6 0.160  Rank:10 0.072  Rank:13 0.077  Rank:12 0.085  Rank:11 0.073  Rank:12 0.103  Rank:10 

Sand Fraction (USDA) 0.238  Rank:4 0.252  Rank:3 0.190  Rank:3 0.157  Rank:7 0.202  Rank:6 0.176  Rank:5 0.252  Rank:3 0.313  Rank:5 0.242  Rank:3 0.071  Rank:14 

𝚪-Connectivity 0.068  Rank:14 0.090  Rank:13 0.148  Rank:6 0.086  Rank:11 0.047  Rank:14 0.156  Rank:6 0.101  Rank:9 0.065  Rank:13 0.050  Rank:14 0.102  Rank:11 

Soil Carbon Content (%) 0.089  Rank:12 0.115  Rank:11 0.105  Rank:10 0.116  Rank:10 0.126  Rank:11 0.150  Rank:7 0.116  Rank:8 0.115  Rank:10 0.106  Rank:8 0.116  Rank:7 

Appx. 4 SHAP-values and rank within model. 



55 

 

  

Variables D
ep

th
 

U
S

D
A

 S
a

n
d

 

U
S

D
A

 S
il

t 

U
S

D
A

 C
la

y
 

B
D

 

Soil 

Carbon 

Content 

(%) K
sa

t 

V
o

lu
m

e
 

A
v

er
a

g
e 

P
o

re
 

D
ia

m
et

er
 

F
ra

ct
a

l 

D
im

en
si

o
n

a
li

ty
  

A
n

is
o

tr
o

p
y

 

𝚪
-C

o
n

n
ec

ti
v

it
y

 

C
ri

ti
ca

l 
P

o
re

 

D
ia

m
et

er
 

P
er

co
la

ti
n

g
 

p
o

ro
si

ty
 

Fraction 

of pores 

between 

0.25-0.5 

mm  

Fraction of pores 

between 0.5-1 

mm -0.189 -0.344 0.234 0.383 -0.160 0.258 0.050 0.073 0.266 -0.414 0.052 0.346 0.149 0.237 -0.283 

Fraction of pores 

between 0.25-0.5 

mm 0.074 0.003 0.114 -0.235 -0.077 0.069 -0.305 0.071 -0.668 0.203 0.197 -0.235 -0.367 -0.172  
Percolating 

porosity -0.414 0.149 -0.138 -0.093 -0.446 0.315 0.445 0.075 0.205 0.449 -0.309 0.731 0.169   
Critical Pore 

Diameter -0.029 -0.023 -0.037 0.130 -0.026 0.024 0.281 -0.028 0.443 -0.155 -0.113 0.227    

Connectivity -0.543 0.097 -0.140 0.041 -0.400 0.449 0.440 0.123 0.317 0.231 -0.192     

Anisotropy 0.347 -0.345 0.415 0.023 0.216 -0.284 -0.409 0.092 -0.013 -0.356      
Fractal 

dimensionality -0.373 0.679 -0.541 -0.599 -0.295 0.133 0.192 -0.157 -0.388       
Average Pore 

Diameter -0.016 -0.278 0.180 0.328 0.093 -0.024 0.107 0.071        

Volume 0.123 -0.238 0.249 0.092 0.006 0.077 0.025         

Ksat -0.238 0.256 -0.295 -0.044 -0.259 0.171          

Carbon -0.425 0.007 -0.124 0.232 -0.624           

BD 0.400 0.070 -0.080 -0.015            
USDA Clay 

fraction 0.096 -0.631 0.282             
USDA Silt 

fraction 0.178 -0.922              
USDA Sand 

fraction -0.183               
Appx. 5 Pearson coefficients for the SOILSPACE database variables used. 
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Appx. 6 Larger format version of  Fig. 25 

 



  


