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Abstract

Anthropogenic activities have resulted in escalating deposition of nitrogen in many forms
that impact several aspects of ecosystem especially lying on boreal region where N is a
limiting factor for tree growth. Although N is used as forest fertilizer to some extent to
enhance growth and carbon storage, it alters the ecosystem by altering microbial commu-
nity, soil properties, aboveground species abundance and diversity and nutrient cycling
through decomposition. To better understand the effects of N addition on decomposition,
an experiment was carried out in a long-term N forest-fertilization set-up in south east
Norway. The experiment followed the Tea Bag Index (TBI) protocol, where green and
rooibos tea were used as standard litters and buried in fertilized and control plots for three
months. The tea bags were sampled afterwards, and mass loss was measured to calculate
the decomposition rate constant (k) and proportion of stabilized material (S). Mineral
soil samples were also analyzed in the lab to measure pH, concentration of condensed
tannins, and moisture. Bilberry and spruce litters were collected for a lab incubation
experiment where they were kept on mesh on petri-discs filled with soil samples. This
was done to analyze how litter quality affects the mass loss and nitrogen release during
the decomposition process.

N fertilization significantly affected k and S values. Interestingly, k was higher in
fertilized plots S was higher in control plots indicating higher decomposition under N
fertilization. However, N treatment did not show any significant impact soil pH, C, N and
CT, neither did the interaction between them significantly affected k and S. The litter
incubation experiment showed that treatment and initial N concentration significantly
affected N release from the litter, whereas no significant effect was found on mass loss
percentage. My results indicate that increased N concentration in litter as a result of
fertilization does not necessarily indicate faster decomposition.

Keywords: decomposition rate, Tea Bag Index, N fertilization, boreal forest
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1. INTRODUCTION

1 Introduction

Human activities have altered the environment in different ways and scales (Mahmood
et al., 2007). Production and use of fertilizers, burning of fossil fuels and land use in-
tensification and associated ammonia (NHj3) emissions have led to an accelerated rate of
nitrogen (N) deposition into the atmosphere (Gundale et al., 2014; Maaroufi et al., 2015).
As a result, N concentration has increased three to five folds in the past century mainly in
the forms of NHy and NO, (Reay et al., 2008; Galloway et al., 2008). In cold ecosystems,
such as boreal forests in far northern latitudes, N is a limiting factor for tree growth.
This is because of the lower rate of N fixation and slower soil mineralization process in
those ecosystems (Maaroufi et al., 2016; Gundale et al., 2014; Vitousek and Howarth,
1991). Therefore, addition of sufficient amount of human derived N has been proposed as
an effective way to enhance forest growth and productivity. In recent years, N addition
is used to some extent in forest fertilization in the Nordic countries to increase timber

production (Pukkala, 2017) and carbon sequestration.

Change in the availability of N also affects other parts of the ecosystem such as mi-
crobial community shifts (Pan et al., 2014), biomass alternation (Treseder, 2008), effect
on microbial metabolic and enzymatic activities (Ramirez et al., 2010) and alternation
of soil properties such as pH, soil porosity and proportion of organic materials (Marinari
et al., 2000). In boreal ecosystems, where nutrients are insufficient, N fertilization can
enhance soil mineralization through enhanced microbial enzymatic activity. These varied
effect of N on soil and microbes can have a considerable effect on the nutrient cycling
through decomposition and alternation of the food web structure and function (Meunier
et al., 2016). Similarly, increased N concentration results in decreased aboveground plant
species richness and a significant change in species composition (He et al., 2016) through
acidifying effects (Stevens et al., 2010). Nitrophilic plants outcompete species growing in

N limited conditions (Fang et al., 2012) especially forbs, grasses and bryophytes (Stevens
1



1. INTRODUCTION

et al., 2010).

Decomposition is the process in which complex organic compounds are broken down
into simpler forms. The process starts with detritivores breaking down the litter pieces
which is followed by chemical reduction and mineralization into basic inorganic molecules
such as ammonium, phosphate, carbon-dioxide, and water by microorganisms (bacteria
and fungi). These molecules are readily taken up by plants and micro-organisms and
released back to the atmosphere via respiration (Swift et al., 1979). The decomposition
process is affected by several factors in which litter quality, the physio-chemical environ-
ment, climate (temperature and moisture) and the composition of decomposer community
play a major role (Swift et al., 1979; van Zuijlen et al., 2020). Climate and litter chem-
istry, especially N and C:N ratio are the primary determinants of decomposition at a global
scale (Keiser et al., 2013; Aerts, 1997; Gholz et al., 2000). However, at a local scale, the
properties of the soil and soil microbial community play a greater role (Strickland et al.,
2009; Wall et al., 2008). Although, earlier decomposition studies concentrated on climate
and litter quality, recent studies have successfully demonstrated that soil with different
characteristics such as differences in microbial communities have different effects on the
decomposition process (Delgado-Baquerizo et al., 2015). Soil properties such as pH and
nutrient content are very important for the biological composition of the soil biota, mak-
ing these properties crucial aspects of decomposition studies (Delgado-Baquerizo et al.,

2015).

Mineral elements, and especially N, plays a significant role in the decomposition of or-
ganic matter (Agren et al., 2001). N fertilization can be beneficial to the fungal dominated
micro-organisms in the soil and leads to more efficient mineralization (Austin et al., 2004).
Similarly, increased N concentration and lower C:N ratios in the microbial substrate are
the indication of higher mineralization (Schimel and Bennett, 2004). Soils with higher
microbial abundance and microbial functional diversity tend to have a greater decompo-

sition rate (Delgado-Baquerizo et al., 2015). For example, litter decompose faster in their
2



1. INTRODUCTION

home soil where local microbes are adapted to the litter than in a foreign soil (Ayres et al.,
2009a). In general, sites with higher initial N and lower C:N ratio have higher decompo-
sition rate (Cornwell et al., 2008; Zhou et al., 2018). Therefore, artificial addition of N in
a N-limited ecosystem accelerates the decomposition rate through increased soil N supply
and retarded C:N ratio (Norris et al., 2013; Hobbie, 2005). However, the case is reverse
for the nitrogen- sufficient ecosystems (Song et al., 2015). Studies have found a varied
effect of N addition on decomposition rate which can be neutral (Hobbie and Vitousek,
2000; Van Vuuren and Van der Eerden, 1992), positive (Conn and Day, 1996; Hunt et al.,
1988), or negative (Magill and Aber, 1998; Prescott, 1995).

In boreal ecosystems, where nutrient availability is a limiting factor for microbial ac-
tivity, addition of N should promote organic matter decomposition. In fact, carbon release
as a result of increased decomposition due to N fertilization have been observed in some
ecosystems (Khan et al., 2007; Mack et al., 2004). However, there is also a substantial
scientific evidence proving that in a long-term, N deposition has a negative relation with
decomposition although it starts with a positive or a neutral relation in the early stages
of fertilization (Franklin et al., 2003). This similar pattern was also observed in an exper-
iment (Hobbie, 2008) in which decomposition was negatively correlated to N fertilization
only after 5 years of fertilization reducing the decomposition rate by 20% which was pre-
viously neutral or slightly positive. Both lab and field experiments have now successfully
demonstrated that N addition often decelerates the litter decomposition rate as well as
microbial activity (Buchkowski et al., 2015; Ramirez et al., 2010). Several factors that
contribute to a decreased decomposition rate upon fertilization include an increased ratio
of microbial biomass and assimilation, and retarded growth of the underlying decomposer
community (Olsson et al., 2005). A meta-analysis found that the addition of N in temper-
ate forests reduced microbial respiration by nearly 15% (Janssens et al., 2010). Similarly,
another meta-analysis showed a 6%-15% decrease in microbial biomass under fertilization

(Treseder, 2008).
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Soil N can move to litter through processes such as diffusion, leaching and fungal
mycelia network (Frey et al., 2000; Lummer et al., 2012). Several studies have demon-
strated such N transfer from soil to the nitrogen poor organic substrate (Manzoni et al.,
2008) or from nitrogen-rich to nitrogen-deficient litter during decomposition processes
(Bonanomi et al., 2010; Schimel and Héttenschwiler, 2007). According to Zheng et al.
(2021), N lost during the decomposition of the litter was recovered in soils in both lab-
oratory and field studies. The study further concludes that litters with a lower decom-
posability rate can contribute to a significantly higher efficiency of C and N transfer into
the soil. Through this transfer, microbes can take an advantage to balance their nitro-
gen requirement and increase the decay rate (Berglund and Agren, 2012). Based on this
fact, the stoichiometric decomposition theory predicts that the phenomenon of N transfer
occurring in N rich soil, enhances the decay rate for high C:N ratio plant residues in a

significant manner (Bonanomi et al., 2017).

Physical and chemical properties of the litter are also major controlling factors in
decomposition (Melillo et al., 1982; Keiser et al., 2013). Litter properties varies according
to the plant species and so does the decay rates. For example, the decay rate of deciduous
leaves in general is higher than the conifers (Gosz et al., 1973; Mikola, 1960). Broad
leaves with larger Specific Leaf Area (SLA) have a higher concentration of potassium
and phosphorus while less lignin. The decay rate of leaves is also higher in comparison to
twigs and branches (Krishna and Mohan, 2017). A review on decomposition rate constant
(k) values of different litter types from varied ecosystems globally concluded that total
nutrient concentration and C:N ratio comprises of 70.2% variation in litter decomposition
rate making the litter quality a crucial element in litter decomposition (Zhang et al., 2008).
High and low quality litters show different decomposition rates within the forest, and the
rate differ greatly in boreal forest ecosystems (Gholz et al., 2000). After fertilization, low
quality litters with high lignin and C:N ratio can show a retarded decomposition rate,

whereas high quality litter with low lignin concentration and low C:N ratio show increased
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decomposition rate (Knorr et al., 2005). In boreal ecosystems, fertilization with N can
cause increased N concentrations in the litter (Maaroufi et al., 2016) (Maaroufi et al.,
2016b) through N uptake and thereby alter litter quality (Maaroufi et al., 2017), eventually
affecting litter C:N ratio; another most important determinant of litter decomposition
(Aerts, 1997). There is evidence that N concentration in Scots pine needle litter and
Norway spruce increased as a N fertilization effect (Berg, 2000). This results to lower
C:N ratio in litter (Xu et al., 2020) and thus promoting the decomposition of senescent
plant tissue (Xu et al., 2020). The margin of the C:N ratio for N to be mobilized is 20:1
(Swangjang et al., 2015). When litters have C:N ratio less than 20, the microbes can
actively mineralize the N and make it readily available for plants (Brust, 2019). However,
C:N ratio more than 35 indicates microbial immobilization (Brust, 2019; Swangjang et al.,
2015). The C:N ratio in soil microbes is approximately 8, and they require C and N from
the soil to keep the ratio in balanced condition. The microbes perform best when they
are successful to compensate the required C:N, which is supported when litter or their

diet has a C:N ratio of 24 (Brust, 2019).

Plant Secondary Metabolites (PSMs) such as lignin, tannin, and other polyphenols,
which are essential as defensive compounds against herbivores, are themselves resistant
to decomposition. They can also limit the decomposition process through various mecha-
nisms such as forming protein-tannin complexes, altering N availability to the soil organ-
ism, causing direct toxicity to the microbial species, and inhibiting the microbial enzy-
matic activities (Kraus et al., 2003). Previous studies suggest that a high concentration of
Condensed Tannins (CT) in litters is associated with slower decomposition rates (Zhang
et al., 2013) and fertilization has a negative relation with litter CT concentration (Kraus
et al., 2004). The protein complexes formed by the tannins inhibit the microbes from
mobilizing N and converting it into the forms that plants can take up quickly, resulting

in the reduced microbial ability to decompose plant litter (Gundale et al., 2010).

Scientific knowledge on litter decomposition and how external fertilization affects the
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1. INTRODUCTION

process has extensively increased after the development of litter bag technique in 1960s
which made it possible to measure the mass loss and decomposition rate. Later dur-
ing 1980s and 1990s, the recognition of its importance as a critical ecological process
for nutrient cycling, carbon storage and mitigation of climate change further increased
the scientific concern into the topic and has remained high since then (Prescott, 2010).
In 2013, an easy, convenient and cost-effective approach was introduced to measure de-
composition which uses green and rooibos tea as representation of dead plant materials
(Keuskamp et al., 2013). This method creates a global database with participants all over
the world and compute a Tea Bag Index (TBI) that provides information on soil functions
at a local, regional, and global scale. This involves a simple process of burial of rooibos
and green tea and measuring their mass loss after a period of time.

Despite extensive research and results, the effect of N fertilization on soil decomposition
ability is still unclear. There have been several studies on N effect on litter quality and
soil decomposition rate on boreal forest. However, to my knowledge, this is the first study
to use tea bag approach under natural conditions. Similarly, no other studies before this
have addressed soil CT concentration with respect to N addition.

This experiment was carried out in a spruce (Picea abies) forest in Southeast Norway
which is being fertilized annually by Nitrogen since 2003. I carried out tea bag experiment
as per the Tea Bag Index (TBI) protocol given by (Keuskamp et al., 2013) where mass
loss is measured to calculate decomposition rate using Lipton red and Lipton rooibos
tea. Similarly, litter incubation experiment was performed to understand the effect of

fertilization on litter quality and how litters with different quality decompose.
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1.1 Aim of the study

The broad objective of this study was to increase the understanding of how nitrogen
addition effects the decomposition rate of boreal forest soil. This study adds knowledge
on understanding of effect of human-added nitrogen on decomposition and also the litter

quality as a determinant of decomposition. The following hypothesis were tested:

1. The decomposition rate constant (k) will decrease upon fertilization and proportion

of Stabilized material (S) for the tea material will be higher in fertilized plots.
2. The concentration of soil CT will decrease under fertilized condition.

3. Mass loss percentage and N release during decomposition will be higher in litter

samples from fertilized plots.
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2 Materials and Methods

2.1 Study Area and Experimental Set-up

The study forest is an old boreal forest dominated by Norway Spruce (Picea abies) in
Kittilbu in South East Norway at an altitude of 800 meters above sea level and latitude
61° 10" N, 09° 09" E. The forest is situated only 100 meters below the tree line and has
a great variation in tree age and size. The tree composition varied from mature plants
that stand 20 meters tall and 220 years old (Gauslaa et al., 2008), with smaller trees
and seedlings in gaps. Vaccinium myrtillus and bryophytes such as Pleurozium schrebert,
Hylocomium splendens, Polytrichum commune and Sphagnum girgensohni dominate the
ground vegetation in the experiment site together with herbs such as Vaccinum vitis-idaea
and Avenella flexuosa (Gauslaa et al., 2008). There is no record of intensive logging
carried out in the forest since past 50 years, however, some slight selective logging was
observed. The mean annual temperature and annual precipitation of the site are -0.1°C
and 810 mm (Gauslaa et al., 2008) respectively.

Twenty experimental plots with an area 225 m? (15m x 15m) were set up in 2003.
Ten of these are untreated control plots, while ten have been supplemented with Nitrogen
granules at a rate of 150 kg per hectare per year containing 24.6% N, 2% P and 6% K
(YaraMilaTM Fullgjedsel, by Yara, Norway) (Davey et al., 2017). The fertilization has
been done manually every year in spring with an exception in 2018. The plots are 50 to

350 meters apart from each other and have five assigned sub-plots.



2. MATERIALS AND METHODS

Figure 2.1: Map of the study area: K refers control plots and B refers fertilized plots

2.2 Tea Bag Experiment

I sat up a tea bag decomposition experiment following the Tea Bag Index (TBI) protocol
(Keuskamp et al., 2013). The Tea Bag Index (TBI) approach uses tea bags as standard-
ized plant litter to estimate the decomposition rate and stabilization through burial of
green and rooibos tea bags followed by measurement of mass loss over a period of time
(Keuskamp et al., 2013).

I used Lipton green tea and Lipton rooibos tea of tetrahedron shape (fig. 2). The
mesh size of 0.25 mm was large enough for the microorganism and mesofauna to enter the
bags and enhance the decomposition, however, the macrofauna were excluded (Keuskamp
et al., 2013; Setéla et al., 1996).

The Tea Bag Index primarily consists of two major components, explaining the de-
9



2. MATERIALS AND METHODS

composition rate (k) and stabilization factor (S). The decomposition rate is higher in the
initial phase leaving the recalcitrant fractions to decompose slower. The rooibos tea has
a relatively slow decomposition rate and will be in its initial phase of decomposition even
after three months. This gives the estimation of decomposition rate constant (k). On
the other hand, green tea decomposes faster. All the easily decomposable materials are
gone by the end of the experiment period, leaving only the resistant material that gives
the value for stabilization factor (S). The use of two different types of organic litter for
the decomposition experiment also allows understanding the decomposition on the initial
and final stages of the experiment. This further eliminates the requirement of doing a
time series experiment for k and S calculation (Keuskamp et al., 2013). After measuring
the actual tea content inside the bag after three months, the Stabilization factor S and

decomposition rate k were calculated.

2.3 Preparation and Field Work

100 tea bags of each Lipton green and Lipton red tea were numbered from 1 to 200 with
a permanent marker on the white side of the label prior to going in the field. One marked
tea bag of each type was deployed in the forest soil in all five sub plots of all 20 plots on
June 16, 2020. The tea bags were buried below eight cm in forest soil using a shovel and
were separated about 20 cm apart. The labels were kept above the soil and every sub-plot
were marked by red sticks which were also labeled with the plot ID. Each tea bag was
also marked by white sticks to make it easier to identify their location (fig 3). After three
months, on September 16, the tea bags were collected, soil particles attached to the bags
were removed, and dried the tea bags in an oven at 70°C for 48 hours, before the dry
weight was measured. Soil samples were also collected using a soil sampler in each plot.
The mineral and organic layers were separated and put in separate paper bags. Spreuce
and bilberry litters were also collected from the same fertilized and control plots for the

lab incubation experiment to measure mass loss and N release.

10
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Figure 2.2: a) Tetrahedron teabags (image: Keuskamp et al. (2013)) used in the experiment:
Rooibos tea (left) and green tea (right), b) Burial of teabags in the forest soil, Kittilbu

2.4 Decomposition Experiment

Standard procedures for the decomposition experiment was in accordance with (Wardle
et al., 1998). Fresh soil was collected from the spruce forest near NMBU, As to fulfil the
substrate requirement. 40 Petri dishes were filled with the soil up to 2/3rd portion and
covered on the top by Imm nylon mesh cut in a circular shape. 1 gram of each litter type
(bilberry and spruce) from fertilized and control plots was kept on the top of the mesh
and tightly sealed using a isolation tape to avoid water loss. The samples were stored in
room temperature under dark condition (inside a box) for three months. Afterwards, the
litters were taken out very carefully in paper bags and oven-dried in 47°C for 48 hours
before weighing. Decomposition was represented as a percentage mass loss during the 3
months incubation time. Nitrogen release during the decomposition time was calculated
as proportion between total biomass * N concentration before incubation minus biomass N

concentration after decomposition and total biomass *N concentration before incubation
11
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(Asplund and Wardle, 2013).

2.5 Lab Work and Chemical Analysis

2.5.1 Preparation of Soil Samples

The fresh soil samples were weighed before they were dried in 70°C for 48 hours. The
mineral soil was then sieved through a 2 mm sieve, grinded into powder using a Retsch
MM400 (RETSCH, Germany) ball mill with a frequency 20-25 revolutions per second for
25-40 seconds. These powdered soil samples were later used to estimate the concentration

of condensed tannins, total C and N, as well as pH of the soil.

2.5.2 Analysis of Concentration of Condensed Tannins

I followed the acid butanol assay protocol as instructed by The Tannin Handbook (Hager-
man, 2002). 0.2 gram of each soil sample was mixed with 4 ml 70% acetone and shaked
on a planar shaker (KS 501 digital, IKA-WERKE, Germany) at frequency 200 rpm for
one hour.

This was followed by vortexing and centrifuging (c. 16,400 rpm, 10 minutes), before
the supernatant was collected in a 15 ml tube. This process was replicated three times,
and all the accumulated extractions were evaporated on Eppendorf Concentrator Plus
5301 (Eppendorf, Hamburg, Germany). I followed the acid butanol-HCL-iron assay for
the analysis of condensed tannins (CT) as given by (Hagerman, 2002). After evaporation,
dried extractions were mixed with 0.5 ml MeOH and shaked in a vortex. 3 ml acid
butanol (95% butanol, 5% HCL) and 0.1 ml iron reagent (2% ferric ammonium sulphate
in 2N HCL) were added and the samples were kept in boiling for one hour and cooled.
Absorbance (550 nm) of the samples was determined by a UV spectrometer (Shimadzu,
Kyoto, Japan). Soil CT was converted into mg cm™ by using volumetric mass sample of

each sample (20 ml) and CT/C ratios was determined.

12
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2.5.3 Analysis of pH

For pH measurement, a 5 ml soil sample was mixed with 12.5 ml deionized water, well
shaken and left overnight. The next day, the samples were well-shaked, and pH values were

measured using an intoLab 720 precision pH meter (WTW GmbH, Weilheim, Germany).

2.5.4 Analysis of Carbon and Nitrogen

For estimation of C and N content, 10 milligram of oven-dried soil samples were packed in
a tin foil and then run into a vario MICRO cube elemental analyzer (Elementaar, Hanau,
Germany) to determine C:N ratios. Concentration of C and N were converted into mg
cm-3 by using volumetric mass of each sample (20 ml).

Similar method was followed for the C and N analysis of the bilberry and spruce litter
samples. C and N concentration (%) and C:N ratio of both litters from fertilized and
control plots were measured before and after the incubation experiment to measure the

N release during the decomposition process.

Table 1: Mean initial values of C and N concentration (%) and C:N ratio in bilberry and spruce litter.

Litter type | Treatment %C %N C: N
Bilberry Control 47.3 £0.34 | 1.07 £0.36 | 44.8 +1.54
Fertilized 47.3 £0.42 | 1.74 £0.05 | 27.44+0.7
Spruce Control 48.8 +0.73 | 0.54 £0.01 | 90.3 +2.15
Fertilized 48.6 +0.19 | 0.95 £0.07 | 53.4 +3.56

2.5.5 Statistical Analysis

All data processing and primarily calculation was performed in Excel (Office 365), whereas
all statistical analysis was done using RStudio, R version 4.0.3 (R Studio Team 2020). Two

treatments were taken into consideration (fertilized and control) to analyze the relation-

13
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ship between these treatments and responses i.e. degradation constant (k) and proportion
of stabilizing material (S).

Linear Mixed Effect analysis between each of the response variable and the fixed and
random effects was performed using R package Ime4 in library [mer. The response vari-
ables entered were decomposition rate constant (k) and proportion of stabilizing material
(S). The mixed effect was tested by modelling k and S as a function of treatment and
interaction between treatment and other predictive variables such as C, N, C:N ratio,
CT, Moisture and pH. The residual variation i.e. unexplained variation of the response
variable associated with the experimental plots were also modelled through variance. F
and P values were obtained from the ANOVA table obtained from the same test. Only

analysis with P values less than 0.05 were regarded as significant.

14



3. RESULTS

3 Results

3.1 Soil Properties

None of the measured soil parameters varied significantly between treatments (Table.2.

3.2 Tea bag experiment: Decomposition rate constant (k) and

proportion of Stabilized material (S)

The rate of decomposition was significantly higher in fertilized plots (Table 2, Fig. 3.1 and
the proportion of stabilization material was significantly higher in control plots (Table
2, Fig. 3.1). Other predictor variables and their interactions with treatment have no
significant impact on k and S. The average decomposition rate was 9.0% higher in fertilized
plots (Fig. 3.1) whereas the stabilization factor was 7.2% higher in control plots (Fig.
3.1)

Table 2: Summary of ANOVA from basic linear mixed model of different response variables. Significant

P-values at 95% confidence interval obtained from Satterthwaite’s test are presented in bold letters.

Response F P

Decomposition rate constant (k) 6.01 0.027

Stabalization constant (S) 5.1 0.038
Condensed Tannin (CT) 0.03  0.869
Carbon (C) 0.03  0.868
Nitrogen (N) 0.29  0.598
C:N ratio 263 0.124
pH 0.28  0.601

15
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Figure 3.1: (a) Mean (+SF) decomposition rate constant (k) and (b) Mean (+SFE) proportion

of stabilized material (S) in control and fertilized plots.
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Table 3: ANOVA output, F and (P) values for mass loss and N release for bilberry and
spruce litter, treatment, initial Nitrogen, and interaction effects. The bold values are

significant represented by *p<0.05, **p<0.01.

Bilberry Spruce
T N1 T*N1 T N1 T*N1
Mass loss 3.26 (0.088) | 3.43 (0.081) | 0.11 (0.752) | 0.46 (0.505) | 0.02 (0.883) | 0.29 (0.597)
Nitrogen release | 6.58 (0.0197) | 8.45 (0.009) | 1.35 (0.270) | 4.66 (0.005) | 9.44 (0.007) | 0.059 (0.081)

3.3 Incubation Experiment

3.3.1 Litter Mass Loss

There was no significant effect of fertilization or initial N on mass loss of any of the two
studied species (Table 3, Fig. 3.2). Bilberry lost 40% in fertilized and 35% in control

plots while spruce lost 28% in fertilized and 26% in control plots.

3.3.2 Nitrogen Release

The treatment and concentration of initial N had significant effect on N release during
decomposition (Table 3). However, no interaction effect was found. Positive and negative
values indicate that both bilberry and spruce litter released N under fertilized condition
while the N remained immobilized under control conditions respectively (Fig. 3.2). Re-
leased N was higher in the bilberry litter while spruce litter have a significantly higher

proportion of immobilized N.
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Figure 3.2: Mean (+SFE) percentage mass loss (a) and N release (b) of the bilberry and
spruce litter during the 3 months incubation period for decomposition experiment. The

colors (orange and blue) indicate the type of treatment (control and fertilized).
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4 Discussion

4.1 Degradation rate constant (k)

The decomposition rate constant (k) in the tea bag experiment was higher in N fertil-
ized plots than in the control plots, which contradicted my hypothesis. This might have
occurred as a result of difference of fungal dominance in different treatment sites. Al-
though, fungal biomass study was beyond the scope of this research, there are studies
which support my results. Less fertile soils (high C:N) are more likely to be dominated
by saprotrophic fungi than the mycorrhizal fungi which leads to higher nutrient immobi-
lization or slower decomposition in nutrient poor soils (Fernandez and Kennedy, 2016).
This stands in accordance with my result that decomposition rate is higher in fertilized
plots than on control plots. Another study on fertilization effect on soil carbon and ecto-
mycorrhizal (EM) fungi also showed a suppressed EM biomass and increased total fungal
biomass indicating faster decomposition (Hauken, 2020) under fertilized condition. An
experiment on effect of N fertilization on decomposition using the TBI method (Koceja,
2019) showed a greater decomposition rate (k) of rooibos tea litter (high C:N) in fertil-
ized plots than in control plots while similar values of k were observed for green tea litter
(low C:N) in both treatments. This indicates the decomposition of low-quality litter is
enhanced under fertilization through increased microbial activity. This is also supported
by several other researches that microbial community shift as a result of N enrichment

can result to a higher decomposition rates (Khan et al., 2007; Mack et al., 2004).

A similar result was found in a meta-analysis (Knorr et al., 2005) where data from 900
incubation and field fertilization experiment concluded that decomposition is inhibited if
the fertilization rate is 2-20 times than anthropogenic N deposition but decomposition is
enhanced if fertilization is higher than 20 times in an ambient N deposition of 5-10kgNha-

1kg-1. Therefore, excess N deposition over an extended period leading to exceed the
19



4. DISCUSSION

ambient N concentration of the site can be an explanation for the increased decomposition
rate in N fertilized plots. However, significant amount of researches showed a decelerated
decomposition of litter (Chen et al., 2013) resulting to an increased C storage capacity of
fertilized soils (Maaroufi et al., 2015; de Vries et al., 2009) through suppressed microbial
biomass (Li et al., 2015) and respiration (Yan et al., 2016). Increased decomposition rate
in fertilized plots as obtained in the result may have occurred as a result of a very strong

N fertilization over so many years.

Another explanation for this can be an increased microbial functioning under fertilized
condition. Scientific evidence supports that soil moisture content also plays a role in
decomposition capacity of soil. Generally, a higher moisture content in soil is a promotor
of decomposition. Mass loss for both high and low quality litters were declined in the
order wet > moist>dry soil conditions with a more pronounced effect in high quality litter
(Petraglia et al., 2019). My results showed a higher moisture content in the unfertilized
soils than the fertilized ones. However, the difference was not statistically significant to

explain the result.

N addition is expected to have a negative effect on decomposition of recalcitrant mate-
rial through supression of oxidative enzyme production that degrade recalcitrant materials
(Fog, 1998). However, the result showed a lower proportion of stabalized (recalcitrant)

material in fertilized plots thus suggesting a lower carbon storage.

N fertilization did not show any significant effect on soil CT concentration which
is contradicting to my second hypothesis. To my knowledge, no scientific studies have
investigated the concentration of the phenolics like tannins in N fertilized soil directly.
However, there are several studies investigating their concentration in leaf litter under
fertilized condition (De Long et al., 2016; Sundqvist et al., 2012; Nybakken et al., 2018).
The concentrations of several phenolics were lower in young spruce needles taken from N
fertilized plots than in control plots where CT in fertilized needles was half as much as in

the control plot’s needles (Nybakken et al., 2018).
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The source of phenolics like tannins, into the soil is primarily the litter deposition from
aboveground. After the leaf senescence or plant death, tannin reaches the soil surface as a
component in the litter for decomposition. Since, litter deposition is a major pathway for
CT to enter the soil, decrease concentration in foliage due to N fertilization was the basis
to assume soil CT concentration will decrease under fertilization. However, the result in
this study was not significant to support the assumption. One reason for this might be the
analysis of the mineral layer of the soil instead of organic layer where the concentration
is relatively low. Another study on organic layer, as a part of this project (unpublished),
done in the same site at the same time following the same method showed a significant
decrease in organic layer CT concentration in fertilized condition. CT studies in soil
is still in initial phase and therefore further research on how soil phenolics on organic
and mineral layer of soil are affected by long term N fertilization are required to draw a

stronger conclusion.

4.2 Litter Mass Loss and Nitrogen release during incubation

experiment

Results from the litter incubation experiment partly supports my hypothesis that mass
loss and N release will be higher in fertilized litters. Mass loss of bilberry and spruce litter
in the incubation experiment did not differ between treatments which was unexpected.
However, I still found fertilization effect on N release. More interestingly, bilberry with
twice as much as initial N decomposed faster than spruce. Mass loss percentage for
bilberry and spruce litter in the incubation experiment did not have a significant difference
in two treatments which implies that the litter mass loss was not affected by the treatment
which was unexpected. The reason for this might be the use of foreign soil in incubation
experiment. There are indications that litter decomposition is accelerated in home soil

than in foreign soil due to specialized soil biotic community and adapted microclimate

Ayres et al. (2009b).
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Several scientific works on decomposition showed a strong association between decom-
position rate and litter N concentration and C:N ratio (Krishna and Mohan, 2017). A
large proportion of literature supports the fact that high quality (nutrient-enriched) lit-
ters show an accelerated decomposition rate than low quality (nutrient-deficient) litters
(Pichon et al., 2020; Liu and Sun, 2013). N concentration in boreal forest litter increases
as a result of N fertilization which reduces the C:N ratio in them (Maaroufi et al., 2017).
This increased N and decreased C:N has increased decomposition of litter under fertilized
conditions (Knorr et al., 2005). Similarly, increased decomposition rate as a result of high
N concentration under fertilized condition was observed in Scots pine and Norway spruce
needles (Xu et al., 2020). However, results from my study showed no effect of added
N on the decomposition of the litter. Although, N fertilization was able to change the
litter quality in terms of decreased C:N ratio (Table 1), the difference was not significant
enough to affect the decomposition of the litter indicating that higher N content in the

litter does not necessarily mean a rapid decomposition rate of those litters.

In a study with herbaceous species, to test whether species growing in nutrient rich
soils produced fast decomposing litters, it was found that N fertilization changed some
leaf and litter traits, but those changes were not significant to alter the decomposition
(Kazakou et al., 2009) which was exactly the similar result as in this study. Another
study on effect of litter quality and climate on decomposition showed that litters from
fertilized plots with five times higher N content decomposed at the same rate as litters
from control plots. This decomposition was more derived by lignin content than initial
nitrogen suggesting that litter decomposition is more dependent on carbon substrates

(Murphy et al., 1998).

Both spruce and bilberry litters taken from fertilized plots released nitrogen whereas
litters from control plots gained N (Fig. 3.2) by the end of the 3 months incubation
experiment. This can be explained by higher initial N concentration in both litter types

from fertilized plots than in control plots (Table 1). Treatment and initial litter N content
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showed a significant effect on N release (Table 3) for both litter types. Increase in N during
the early stages of decomposition process was first described by (Tenney and Waksman,
1929) and have been reported repeatedly (Melillo et al., 1982). When organic material
with a lower N concentration enter the soil, the decomposers in the soil need to overcome
the lacking N from the surrounding. This occurs through either one or more of these
mechanisms: immobilization, fixation, absorption of atmospheric ammonia, insect frass,
green litter, fungal translocation through fall and/or dust (Melillo et al., 1982).

My results showed increased N concentration in fertilized litters (Table 1) which is
consistent with several other studies (van Diepen et al., 2015; Nybakken et al., 2018;
Sjoberg et al., 2004) and therefore, release N during decomposition. Significant effect of
fertilization on N release despite of unresponsive mass loss is an indication of increased N

mineralization which in turn could accelerate fertilization effect.

4.3 Factors that might have influenced my results

A substantial amount of literature support that climatic factors play a determining role
when it comes to litter decomposition rate on a larger spatial scale. However, on a smaller
spatial scale or a similar site, like the one in this study for tea bag decomposition, the
climatic conditions are similar and therefore do not significantly influence litter decompo-
sition rate. Also, the soil for the incubation experiment was collected for another spruce
forest so that the sol fauna do not vary significantly.

Another important factor in decomposition experiment is the mesh size of the litter
bags. Tea bags with mesh size 0.25 mm do not allow the macrofauna to access the litter.
Soil organisms can control the litter decomposition rate to a large extent and smaller mesh
size allows only microfauna, fungi and microbes to decompose the litter. A larger mesh
size will allow other decomposing organisms, but also can cause loss of litter resulting to
an overestimation of the degraded material. However, exclusion of soil meso and macro

fauna does not have a significant effect on decomposition when it comes to high altitude
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systems Wall et al. (2008) and therefore may not have affected my results.
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5 Conclusion

Since boreal forest is a large sink for global carbon sequestration, small changes in decom-
position rate could have a significant impact on global carbon budget. The purpose of
this study was to investigate the effect of long-term N deposition on litter decomposition
on boreal forest soil. Based on the results, N fertilization increased litter decomposition
which can release more carbon in the atmosphere. Moreover, litters with different quali-
ties did not show any variation in decomposition rate. My results, although contrasting to
majority of the existing literature, is an indication that decomposition study is a complex
phenomenon and therefore several factors should be embedded in a study to draw a clear
conclusion. Since many studies are concentrated to C:N ratio as a major determinant for
litter decomposition, future research may want to focus on other factors in litter qual-
ity. Furthermore, none of the studies accounted for the changes in PSMs such as tannin
concentrations on soil especially mineral layer, which can affect decomposition process

through effect on soil microorganisms.
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