

Norwegian University of Life Sciences

Master's Thesis 2020 60 ECTS Faculty of Environmental Sciences and Natural Resource Management

Trace Metal Speciation and Uptake in Atlantic Salmon (*Salmo salar*) in Coastal Water

Malene Therese Nymo Master in Chemistry

Acknowledgments

The following thesis is the final work of a two-year MSc study in Chemistry at the Norwegian University of Life Sciences (NMBU). This study was part of a larger Ph.D. study that is a part of the project Cumulative Hazard and Risk Assessment of Complex Mixtures and Multiple Stressors (MixRisk) in collaboration with Centre for Environmental Radioactivity (CERAD) and Norwegian Institute for Water Research (NIVA).

I would like to offer my gratitude to my supervisor Hans-Christian Teien, and co-supervisors Lindis Skipperud and Emil Jaroz who gave me the privilege of being a part of the MixRisk project. It was an eventful experience and I gained much knowledge on planning and executing experiments. I would also like to thank my supervisors for all their help and support on my thesis. Your feedback was greatly appreciated. I am especially grateful to Ph.D. candidate Emil Jaroz for showing me the ropes at the laboratory and spending hours helping with data treatment and answering countless questions.

I also want to acknowledge the great help of the staff at the Environmental Chemistry Section of the Faculty of Environmental Sciences and Natural Resource Management (MINA) and all at NIVA Marine Research station who helped with the exposure experiment. Also, a huge thanks to all who helped with dissection, saving us a great deal of time.

Finally, a huge thanks to all my friends, family, and loved ones for their love, support, and encouragement. A special thanks to my friends who have made these last five years at Ås an unforgettable time. Garrulous Grouses forever.

Malene T. Nymo, MSc.

Abstract

Estuarine environments have a high risk of metal pollution due to the influx from rivers. Freshwater from rivers mixed with seawater in coastal areas gives varied and complex water chemistry. In the estuarine environment of Kaldvellfjorden in Norway were the metals copper (Cu), zinc (Zn) and aluminum (Al) classified to have a high risk of impact. If these metals are bioavailable, based on their speciation, fish can accumulate the metals in tissue. To improve the knowledge of bioavailability and toxicity of metals in coastal waters are the main objectives of this thesis to identify the uptake of trace metals in fish in coastal water.

Atlantic salmon smolts (*Salmo salar*) were exposed to waterborne Cu, Zn, or Al in brackish water (20‰, pH 8) for 96-hours. The exposures were conducted with nine concentrations of Cu and Zn, and six concentrations of Al. Several of the concentrations were the same, to directly compare the uptake between the metals. To investigate the uptake in fish; gills, kidneys, and livers were sampled at the end of the exposure. Metal concentrations were quantified using Inductively Coupled Plasma Mass spectrometry (ICP-MS). Water samples of the exposure water were size- and charge- fractionated *in-situ* at 0h and 96h, and analyzed later using ICP-MS.

The results of size fractionation revealed that speciation of the Cu, Zn, and Al was relatively similar in brackish water, and was assumed to be bioavailable. Aluminum was found associated with the low molecular mass (LMM, <10kDa) fraction at >83% of the total, LMM-associated Zn at >78% of the total, while Cu had large uncertainties in this fraction. Copper was either associated with the colloidal or LMM fraction. Only a small percentage, <14%, of the metals were associated with particles. This low association is likely due to low organic content in the exposure water.

The uptake of metals on fish followed the order, Al>Cu>Zn, where gills were the tissue with the highest uptake, kidneys intermediate and the liver had no uptake within 96 hours of exposure. Significant uptake (p<0.05) was only found in the gills for Cu at high exposure concentrations, and for Al in the gills. No uptake was found for Zn. High concentrations of calcium (Ca) and other major ions in the exposure water likely acted as a competing compound and such a protective agent against the uptake of the metals. Based on the results gained from the present study there is no risk of uptake of Zn, and there is some risk associated with the uptake on gills at high concentrations of Cu and Al in estuarine waters at

20‰ salinity. Further studies are needed to look at chronic exposure to verify if the concentrations stay low in the tissue. Also, further studies with lower salinity in the exposure water are needed to investigate the effect of competing ions.

Sammendrag

Estuarine områder har en høy risiko for forurensing av metall fra elveløp i nærområdet. Når ferskvann fra elver møter sjøvann i kystområder gir dette en varierende og kompleks vannkjemi. I det estuarine området av Kaldvellfjorden i Norge ble metallene kopper (Cu), sink (Zn) og aluminium (Al) klassifisert som å ha høy risiko for påvirkning. Om disse metallene er biotilgjengelige, basert på deres tilstandsformer, kan fisk akkumulere metall i deres organer. For å forbedre kunnskapen om biotilgjengelighet og toksisitet av metall i kystvann er hovedmålene ved denne avhandlingen å identifisere opptak av spormetaller i fisk i kystvann.

Laksesmolt (*Salmo salar*) ble eksponert til vannbåren Cu, Zn eller Al i brakkvann (20‰, pH 8) i 96 timer. Eksponeringene var gjennomført med ni konsentrasjoner av Cu og Zn og seks konsentrasjoner av Al. Flere av konsentrasjonene var like for de tre metallene for å kunne sammenligne de direkte mot opptaket. For å undersøke opptaket i fisk ble gjeller, nyre og lever fra eksponert fisk prøvetatt ved endt eksponering. Metallene i fisk ble kvantifisert av Induktiv koblet plasmamasspektrometri (ICP-MS). I tillegg, ble vannprøver av eksponeringsvannet størrelse- og ladnings- fraksjonert *in-situ* ved start og slutt av eksponering, og analysert senere på ICP-MS.

Resultatene av størrelsefraksjonering avslørte at tilstandsformene av Cu, Zn og Al var relativt like i brakkvann, og ble antatt biotilgjengelige. Aluminium var assosiert med lav molekylær masse (LMM, <10kDa) fraksjonen ved >83% av totalt, LMM-assosiert Zn med >40%, mens Cu hadde høye variasjoner knyttet til denne fraksjonen. Kopper ble regnet som å være assosiert med enten kolloider eller LMM-fraksjonen. Bare en liten prosentandel av metallene var assosiert med partikler. Denne lave assosiasjonen er trolig på grunn av en lav konsentrasjon av organisk materiale i vannet.

Opptaket av metall i fisk fulgte rekkefølgen Al>Cu>Zn, hvor gjellene var organet med høyest opptak, nyrer var mellomliggende og lever hadde lavest opptak. Et signifikant opptak (p<0.05) var kun oppdaget for Cu ved høye konsentrasjoner, og for Al i gjeller. Det ble ikke oppdaget opptak av Zn. Kalsium (Ca) i vannet har trolig virket som en beskyttende agent mot opptak av metall hos fisk. Basert på resultatene fra denne avhandlingen er det noe risiko for opptak av Cu og Al i fisk ved høye konsentrasjoner i estuarine områder. Videre studier bør inkludere kronisk opptak for å redegjøre for at konsentrasjonen av metaller holder seg lavt i organer. I tillegg, vil studier utført med lavere salinitet kunne undersøke effekten av konkurrende ioner i vannet.

List of abbreviations

- Al Aluminum
- °C Degree Celsius
- Ca Calcium
- CF Concentration factor
- CRM Certified reference material
- Cu Copper
- DOC Dissolved organic carbon
- DOM Dissolved organic material
- dw Dry weight
- $\mathrm{FW}-\mathrm{Freshwater}$
- HMM High molecular mass
- HNO₃-Nitric acid
- ICP-MS Inductively coupled plasma mass spectrometry
- In-situ At site
- K-Potassium
- kDa-kilo Dalton
- LMM-Low molecular mass
- LOD Limit of detection
- LOQ Limit of quantification
- Mg Magnesium
- Na-Sodium
- NaOH Sodium Hydroxide
- NMBU Norwegian University of Life Sciences

NOK – Norwegian kroner

- OECD Organization for Economic Co-operation and Development
- pH-logarithmic scale expressing acidity of a solution (pH = -log10^{[H+]})
- RSD Relative standard deviation
- SW-Seawater
- Zn Zinc

List of figures

Figure 2.2 - Speciation diagram for the Cu. With OH-, CO3-, and SO42—complexes. The system is at
25 °C. Reprinted from Powell et al., 2007 ©IUPAC
Figure 2.3 - Speciation of zinc as a function of pH. Reprinted with permission from Bervoets & Blust, 2000
Figure 2.4 - Distribution of Al species at salinity 0‰ and salinity 35‰ as a function of pH. Reprinted from Elkins & Nelson, 2002
Figure 3.1 - Set up of experimental units. Photo: Emil Jarosz15
Figure 3.2 - Tank lined with plastic wrapping with aeration stone. Photo: Emil Jarosz15
Figure 4.3.1 - Mean distribution copper species (Particles, Colloids, and LMM) for control, and conc. 0.08-7.0 µmol Cu/l. Standard deviation is given from the difference in means between measured species at 0h and 96h
Figure 4.3.2 - Mean distribution zinc species (Particles, Colloids, and LMM) for control, and conc. 0.27-15.70 µmol Zn/l. Standard deviation is given from the difference in means between measured species at 0h and 96h
Figure 4.3.3 - Mean distribution of aluminum species (Particles, Colloids, and LMM) for control, and conc. 1.7-11.8 µmol Al/l. Standard deviation is given from the difference in means between measured species at 0h and 96h
Figure 4.3.4 - Comparison of average distribution with standard deviation of species (particles, colloids, and LMM) for Cu, Zn, and Al
Figure 4.4.2 - Average with standard deviation glucose levels in the blood of fish from exposure to Cu, Zn, and Al
Figure 4.4.3 - Concentration of copper in gills (a), kidney (b), and liver (c) at different exposure concentrations of Cu at 20 promille. Given as average \pm SD mmol/kg41
Figure 4.4.4 - Concentration of zinc in gills (a), kidney (b), and liver (c) at different exposure concentrations of Cu at 20 promille. Given as average ± SD mmol/kg43
Figure 4.4.5 - Concentration of aluminum in gills (a), kidney (b), and liver (c) at different exposure concentrations of Cu at 20 promille. Given as average \pm SD mmol/kg46
Figure 4.4.7 - Concentration factor of Cu and Al in gills for different metal exposure concentrations

Figure 4.4.8 - Concentration factors for Al in gills and kidney for different exposure
concentrations
Figure A.5 - R-squared and correlation R of expected nominal concentration and the measured
concentration of Cu, Zn, and Al in the exposure water. Screenshot from Graphpad
Prismvii
Figure A.9 - Screenshot of Normality test on Cu liver samples, using Graphpad Prismxiii
Figure A.10 - Screenshot of one-way ANOVA test, with Dunnett's multiple comparisons test using
Graphpad Prism. Test conducted on aluminum in gillsxiv

List of tables

Table 3.1 - Expected nominal concentrations for each exposure metal group
Table 4.1.1 - Limit of detection and limit of quantification for copper, zinc, and aluminum of water samples and fish tissue samples. Given in µmol/l and mmol/kg, respectively
Table 4.1.2 - Certified reference materials, ERM-BB422, DOLT-5 and 1640a. Average measured values of Cu, Zn, and Al, with standard deviation, relative standard deviation, maximum and minimum values given
Table 4.2 - Average values with standard deviation of parameters pH, temperature, salinity, ammonia,
calcium, potassium, and magnesium in exposure water of each metal group, copper, zinc, and aluminum
Table 4.3 - Comparison of expected nominal concentration, with the measured concentration of Cu, Zn and Al given in μ mol/l and μ g/l in the exposure water
Table 4.4 - Increase in mean tissue metal concentration in gill, kidney, and liver for metals Cu, Zn, and Al given in mmol metal/kg tissue. The increase is based on the average concentration of metal found for the exposure group subtracted by the average concentration found for the control group (mean conc. in grey). Comparison between different nominal concentrations
Table 4.5 - CF for Cu and Al in gills and Al in the kidney at comparable nominal concentrations51
Table A.1 - Measured blank water samples of Cu, Zn, and Al with Average, and standard deviation. LOD/LOQ given in µg/l and µmol/li
Table A.2 - Measured blank samples of fish tissue with average and standard deviation. LOD/LOQ are given in mg/kgii
Table A.3.1 - Measured samples of CRM 1640a, maximum, minimum, average, and standard deviation values are given. Error in percentage from certified values is given. All values are given in $\mu g/1$
Table A.3.2 - Measured samples of CRM ERM-BB422 and DOLT-5. Average, SD, Maximum, and minimum values are given. Error in percentage from certified values for each sample is given. All values are reported as mg/kg
Table A.4.1 - Water quality parameters; Temperature (in Celsius), salinity (in %), pH and ammonia(g/l) measured in each tank at 24h-intervalsiv

Table A.4.2 - Water quality parameters; Temperature (in Celsius), salinity (in %), pH and ammonia(g/l) measured in each tank at 24h-intervals
Table A.5.1 - Average, SD, and n of Cu measured in water samples for each exposure group, at 0hand 96h. Mean values are given in $\mu g/1$
Table A.5.2 - Average, SD, and n of Zn measured in water samples for each exposure group, at 0h and 96h. Mean values are given in μ g/lvi
Table A.5.3 - Average, SD, and n of Al measured in water samples for each exposure group, at 0h and96h. Mean values are given in $\mu g/1$
Table A.6 - Percentage of the total for species of Cu, Zn, and Al for each exposure group given in total conc. (µmol/l). Bold letters denote the results have been modified to fit a sum of 100% in total. LMM cations are caulcated as a percentage of LMM fraction
Table A.7 - Weight (grams) and length (cm) of each fishix
Table A.8.1 - Measured Cu concentration in tissues (gill, kidney, liver) for each individual fish in each exposure group. Concentration was measured in $\mu g/l$ and converted to mg/kgx
Table A.8.2 - Measured Zn concentration in tissues (gill, kidney, liver) for each individual fish in each exposure group. Concentration was measured in µg/l and converted to mg/kgxi
Table A.8.3 - Measured Al concentration in tissues (gill, kidney, liver) for each individual fish in each exposure group. Concentration was measured in µg/l and converted to mg/kgxii
Table A.11 - CF for Cu gills, and Al gills and kidney using <0.45 fraction and LMM fraction. With error% between the fractionsxv
Table A.12.1 - Gas modes, and atomic masses for corresponding metals analyzed on ICP-MS for water samples
Table A.12.2 - Gas modes, and atomic masses for corresponding metals analyzed on ICP-MS for fish tissue samplesxvi

List of appendices

APPENDIX A.1 – LOD/LOQ WATER SAMPLESi
APPENDIX A.2 – LOD/LOQ FISH TISSUEii
APPENDIX A.3 – TRACEABILITY OF ANALYSISiii
APPENDIX A.4 - WATER QUALITY PARAMETERSiv
APPENDIX A.5 – WATER SAMPLES ANALYSISvi
APPENDIX A.6 – METAL SPECIATIONviii
APPENDIX A.7 – FISH CHARACTERISTICSix
APPENDIX A.8 - FISH TISSUE METAL CONCENTRATIONx
APPENDIX A.9 - NORMALITY IN FISH TISSUExiii
APPENDIX A.10 – ONE-WAY ANOVA TESTxiv
APPENDIX A.11 – CONCENTRATION FACTORxv
APPENDIX A.12 – ICP-MS METHODxvi

Table of Contents

ACKNOWLEDGMENTS	A
ABSTRACT	В
SAMMENDRAG	D
LIST OF ABBREVIATIONS	F
LIST OF FIGURES	Н
LIST OF TABLES	J
LIST OF APPENDICES	L
1 INTRODUCTION AND BACKGROUND	
1.1 Aims of the study	2
2 THEORY	2
2.1 Metal speciation in aquatic systems	
2.1.1 Properties of natural waters2.1.2 Speciation of metals	
2.2 Copper	5
2.3 Zinc	7
2.4 Aluminum	8
2.5 Uptake in fish	
2.5.1 Main pathways	
2.5.2 Concentration factor	
2.5.3 Possible effects	
2.5.4 Bioavailability and toxicity of metals	
2.5.5 Test species, Salmo salar	
3 METHOD AND MATERIALS	
3.1 Exposure	14
3.1.1 Exposure design	
3.1.2 Water quality	
3.1.3 Holding and acclimation	
3.2 Water sampling and analysis	

3.2.1 Water quality parameters	
3.2.2 Water sampling and analysis of metal concentration	
3.3 Fish tissue samples and analysis	
3.3.1 Sampling of fish	
3.3.2 Digesting of tissues and analysis	
3.4 ICP-MS Analysis	20
3.4.1 ICP-MS method	
3.4.2 Water samples – traceability	21
3.4.3 Fish tissue – traceability	
3.5 Data processing and statistical analysis	21
3.5.1 Data treatment	
3.5.2 Treatment of outliers	
3.5.3 Limit of detection and limit of quantification	
3.5.4 Concentration factor calculation	
3.5.5 Statistical analyses	
4 RESULTS AND DISCUSSION	
4.1 Quality of analysis	24
4.1.1 Limit of detection and limit of quantification	24
4.1.2 Traceability of analysis	24
4.2 Water quality parameters	26
4.3 Metal concentration and speciation in water	
4.3.1 Copper concentration and speciation in water	
4.3.2 Zinc concentration and speciation	
4.3.3 Aluminum concentration and speciation	
4.3.4 Comparison of metal concentration and speciation in water	
4.4 Metal uptake in fish tissue	37
4.4.1 Fish characteristics	
4.4.2 Stress levels in fish	
4.4.3 Copper uptake in fish tissue	
4.4.4 Zinc uptake in fish tissue	
4.4.5 Aluminum uptake in fish tissue	
4.4.6 Comparison of metals in tissue	
4.4.7 Concentration factor	
4.4.8 Comparison of metal speciation on the uptake of metals in tissue	
5 CONCLUSION AND FURTHER WORK	54
5.1 Further work	55
REFERENCES	57
APPENDIX	I

1 Introduction and background

Metal pollution in the aquatic environment is not a new phenomenon. It has been a viable problem for centuries, both from natural and anthropogenic sources. These sources being for example mining, wastewater treatment, or natural leaching from bedrock (Wood et al., 2012a). The aquatic systems include freshwater systems such as lakes and rivers, seawater, and brackish waters such as estuaries. These systems exhibit different chemistry and speciation. Speciation is used to evaluate if the metals are bioavailable and toxic to aquatic life. Even though the oceans keep uniform chemistry, estuaries are prone to complex chemistry due to the mixing of seawater and rivers (Day et al., 1989).

The concentration of cations, pH, salinity, and organic material in estuaries vary considerably. For example, salinity in coastal brackish water can range from 0.5-17 ‰ (Fondriest Environmental Inc, 2014). Estuaries and brackish water are often exposed to varied content of organic matter and different ion concentrations (Day et al., 1989). All that makes the speciation more complex. If the metals are bioavailable then aquatic organisms, such as fish, may accumulate the metals in tissue and cause harmful effects. The effects of metals on freshwater fish have been extensively studied, while the effects of metals in coastal waters have not gained the same amount of attention. This is linked to documented results of lower toxicity of metals in seawater compared to freshwater (Wheeler et al., 2002; Wood et al., 2012a). There is a need for further studies on metal uptake on fish in coastal and estuarine environments.

Kaldvellfjorden is a fjord located between the municipalities Lillesand and Grimstad in the county Agder, south in Norway. After the road construction of the European route, 18 (E18) elevated concentrations of trace metals were found in the acidic drainage from the rock landfill, M15/M16. The drainage entered the fjord through the tributary Stordalsbekken. A water treatment plant is situated by Stordalsbekken to treat the acidic drainage with NaOH, to avoid the input of metals to the fjord (Teien et al., 2017).

Analyses of water samples demonstrated a high concentration of trace elements in downstream tributaries in the following order Al>Mn>Fe>Ce>Ni>La>Nd>U>Ge>Cu, before

dilution in the coastal water (Teien et al., 2017). The exposure data from the sites monitored was subjected to a component-based Cumulative Risk Assessment (CRA) using the NIVA Risk Assessment database to predict site-specific impacts (NIVA, 2017). The risk for acute effects of these multi-component mixtures in fish was driven by a selection of metals, where zinc (Zn), aluminum (Al), and copper (Cu) were among the five assumed to have the most impact.

1.1 Aims of the study

To improve the knowledge of bioavailability and toxicity of metals in coastal waters are the main objectives of this thesis to identify the uptake of trace metals in fish in coastal water. The following hypothesizes for the study were set;

H₀: There is a difference in the speciation of copper, zinc, and aluminum in the water

H₁: The trace metals copper, zinc, or aluminum in coastal water can be taken up in fish.

H_{2:} There is a difference in uptake of copper, zinc, and aluminum in different tissues.

2 Theory

2.1 Metal speciation in aquatic systems

2.1.1 Properties of natural waters

The different aquatic systems, freshwater, seawater, and brackish water all exhibit complex chemistry. This is due to a varying mixture of inorganic ligands and organic ligands. These systems are also in contact with soils and sediments which influence water chemistry.

Freshwater chemistry is connected to the geology and climate of the area and therefore vary not only with geographic areas but also seasons (Ellwood, 2004). Among the properties influencing is pH. In surface waters, such as rivers and lakes can pH range from 5-9 (Nikanorov & Brazhnikova, 2009). Cation concentrations are also influenced by the geology and climate found for the aquatic systems. Freshwater systems, in general, have lower concentrations of cations than seawater (Day et al., 1989; Gibbs, 1970). The level of cations and anions influence the salinity of the systems. The salinity of freshwater is low (<5 ‰) as freshwater also has low concentrations of salts (Fondriest Environmental Inc, 2014). Another property influenced by the surrounding area of the aquatic systems is the level of organic material or organic carbon. Organic material consists of humic macromolecules that are acidic and complexes with metals (NORDTEST, 2003).

In comparison to freshwater, the general properties; pH, cations, salinity, and organic material are stable in seawater. The pH of seawater is reported at approximately 8 (Marion et al., 2011). The concentrations of cations and anions; chloride (Cl), sodium (Na), magnesium (Mg), calcium (Ca) and potassium (K), are high in comparison to the freshwater systems (Day et al., 1989; Duxbury et al., 2018; Gibbs, 1970). Due to these high concentrations of salt is the salinity of seawater high. The average salinity for the ocean is 35 ‰ (Duxbury et al., 2018; Fondriest Environmental Inc, 2014). Lastly, the level of dissolved organic carbon in the ocean is only a quarter of the input from the rivers, which is likely due to dilution or processes that destroy the organic carbon (Hedges, 1987). The content of organic material in seawater is only relevant for the uppermost part of the ocean and is generally not a concern for the lowermost parts (Duxbury et al., 2018).

The mixing of freshwater and seawater leads to different chemistry with different speciation for metals. The properties that influence estuarine or brackish water are high concentration of organic matter, major ion concentration, alkalinity, salinity, and pH (Wood et al., 2012a). With the input of freshwater to seawater can this reduce surface salinity from >20 to >10‰ (Bjerknes et al., 2003). Additionally, the mixing of freshwater and seawater is the influx from rivers important for coastal speciation.

Rivers input silt, clay, or colloidal humic acids to coastal systems. These components are negatively charged, making them attractive for most cations and metals (Day et al., 1989). When freshwater meets seawater will the different components, such as metals, cations, anions, and organic matter, be diluted or undergo physical, chemical, or biotic processes (Day et al., 1989). These processes include adsorption or desorption on particles, the components may coagulate, flocculate or precipitate, or undergo biotic assimilation (Day et al., 1989). The input from rivers also differs with season and climate. For example, after periods of heavy

3

snow melting in Norway was the input of aluminum to the river so severe that it resulted in fish kill of Atlantic salmons (Driscoll, 1985). The varying and unpredictable chemistry of estuarine/brackish water makes studies of this system important when there is a high risk of metal pollution. The speciation of the element is based on the chemistry of the environment.

2.1.2 Speciation of metals

Speciation is defined by the physico-chemical properties of the element of interest. These properties include density, size, electrical charge, oxidation state, and morphology (Lead et al., 1997; Salbu & Skipperud, 2009). The species or the fraction of the element, that resides in the system are based on the size of the species. These being: ions, molecules, complexes, colloids, and particles. The fractions are sorted into two groups; low molecular mass (LMM) and high molecular mass (HMM). The smallest species reside in the LMM fraction which consists of ions, molecules, and complexes. All smaller than 1nm. Due to the size of this fraction is it considered to be bioavailable to aquatic life through waterborne uptake (Salbu & Skipperud, 2009). The HMM fraction includes bigger complexes, colloids, and particles. Where colloids are defined in the size $1nm - 1 \mu m$, while particles are bigger than >1 μm (Lead et al., 1997). Another definition of colloids is constituents that do not settle and remains suspended (Gardner & Apul, 2009). The physical and chemical properties of metal-species are therefore crucial to determine the bioavailability of the element.

Freshwater is characterized by having pH in the range of 5-9, having low salinity, and varying levels of organic matter and major ions present depending on the area (Day et al., 1989; Fondriest Environmental Inc, 2014; Gibbs, 1970; Nikanorov & Brazhnikova, 2009; NORDTEST, 2003). Seawater, on the other hand, has high pH (pH around 8), high salinity, low levels of organic matter and high concentrations of major ions (Day et al., 1989; Duxbury et al., 2018; Fondriest Environmental Inc, 2014; Gibbs, 1970; Hedges, 1987). The aquatic systems exhibit different properties such as pH, cations, salinity, and content of organic material. All of which is crucial for determining the speciation of metals (Wood et al., 2012a).

Three main processes influence the mobility and bioavailability of metals in natural waters, these are complexation, precipitation, and adsorption (Flemming & Trevors, 1989). Metals in the aquatic systems may complex with two of the major complexing ligands present, OH⁻ and

 CO_3^{2-} . Other ligands include the inorganic (Cl⁻, SO₄²⁻, PO₄²⁻) and organic ligands (urea, organic acids, humic and fulvic acids) (Scoullos & Pavlidou, 2000). The chemical nature of the metals as well as the binding energy of the ligand's functional group determines how stable the complexes are (Flemming & Trevors, 1989). Metal ions can also precipitate, which removes soluble metals from surface waters. Sediments often retain and accumulate metals, working as a sink (Hu et al., 2018). Lastly, metals can be adsorbed to suspended matter, minerals, and living and dead cells. The adsorption can range between weak forces of van der Waals or strong covalent binding (Flemming & Trevors, 1989).

2.2 Copper

Copper occurs naturally in the aquatic systems, due to leaching of bedrock and rocks (USEPA, 2007). In addition to natural sources are anthropogenic sources; mining, metal production, electric equipment, wastewater, and fertilizers (Wood et al., 2012a). Copper is an essential micronutrient for organisms (USEPA, 2007). For example, is the element used as a cofactor for several enzyme processes (Blanchard & Grosell, 2005; Grosell et al., 2004).

Copper species found in the water are dependent on the water chemistry. This includes pH, hardness, major ions, dissolved organic matter, and suspended solids (Erickson et al., 1996). The species of copper found in water are usually carbonate-complexes; CuCO₃, Cu(CO₃)₂²⁻, hydroxy-complexes; CuOH⁻, Cu(OH)₂, or ionic copper; Cu²⁺ (Wood et al., 2012a). Complexes with dissolved organic matter, in the form of humic acid, are also likely (Mantoura et al., 1978; Moffett & Dupont, 2007). The distribution of these species varies with the different aquatic systems; freshwater, seawater, and brackish water.

In freshwater is the copper speciation dependent on pH, alkalinity, and dissolved organic matter (DOM). With high alkalinity and high pH dominates carbonate complexes, with only a small fraction of ionic copper and the hydroxy-complexes present (Blanchard & Grosell, 2005; Wood et al., 2012a). While the hydrolyzed copper species dominate systems with low alkalinity and high pH (Chakoumakos et al., 1979; Erickson et al., 1996). Systems with intermediate or low alkalinity and low pH have a higher concentration of ionic copper

(Chakoumakos et al., 1979). The free ionic copper concentration increases as pH decreases, figure 2.2 (Wood et al., 2012a). In addition to the inorganic species of copper is this element also largely complexed to natural dissolved organic matter (DOM) (Mantoura et al., 1978).

The speciation of copper in seawater is similar to freshwater, but the distribution is different. Seawater has high salinity and high pH, influencing the speciation. The carbonate complexes and organic matter complexes dominate in seawater (Moffett & Dupont, 2007). While a small portion occurs as ionic and hydrolyzed copper (Wood et al., 2012a). However, with the addition of freshwater to a coastal system changes the speciation of copper.

Brackish water is found in estuaries. Species in these systems are influenced by the mixing of seawater and freshwater. This influences the salinity, pH, and DOM of the water. Brackish water exhibits much of the same dominant copper species as seawater, that being the carbonate complexes (Blanchard & Grosell, 2005). However, with decreasing salinity increases the concentration of ionic copper and hydroxy- complexes. In addition to the inorganic species, is the input of organic matter from rivers and land to estuaries abundant. Humic acid in organic matter complexes easily with copper, which influences the speciation (Muller & Batchelli, 2013).

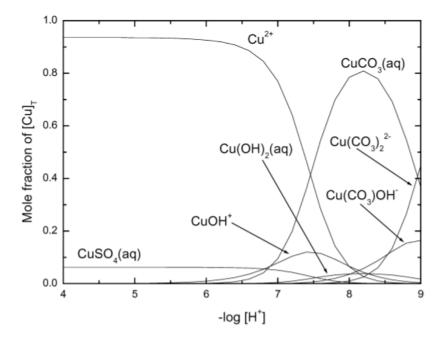


Figure 2.2: Speciation diagram for the Cu. With OH-, CO_3 -, and SO_4^{2-} complexes. The system is at 25 °C. Printed from Powell et al., 2007. ©IUPAC

2.3 Zinc

Zinc occurs in abundance in the earth's crust and therefore exists naturally in aquatic systems (Wood et al., 2012a). However, high concentrations of zinc are always connected with human activities. Zinc is used for virtually all products. For example, in alloys, paper, paints, healthcare products, and galvanized tools and ships (Naito et al., 2010). Zinc is an essential element for organisms, due to its use in many biological processes (Wood et al., 2012a).

Speciation of zinc is crucial to determine the fraction it resides in, and therefore, determine its bioavailability. The most common inorganic species of zinc in aquatic systems are; the free ionic form Zn^{2+} , complexed with carbonates, sulfate or phosphate as $ZnCO_3$, $ZnSO_4$ or $ZnHPO_4$, hydroxy complexes $ZnOH^+$ and $Zn(OH)_2$, and chloro-complexes $ZnCI^+$, $Zn(Cl)_2$, $Zn(Cl)_3^-$ or $Zn(Cl)_4^2$ (Bervoets & Blust, 2000; Evans, 2000; Rainbow et al., 1993; Vega et al., 1995). Zinc may also complex weakly with organic matter and occur as organic species (Van Den Berg et al., 1986; Vega et al., 1995). The most dominant species present in the systems depends on the chemistry of the water. That being pH, salinity, and major ions present. This varies with the aquatic system in question.

The speciation of zinc in FW depends on pH, major ions present, and organic matter content. In general, the aquo complex of the free ion Zn^{2+} dominated the speciation of zinc in most waters, figure 2.3. Especially with the absence of dissolved organic matter and pH<8 (Bervoets & Blust, 2000). The concentration of carbonate and hydroxy- species increases with increasing pH and dominates the waters when reaching pH>8 (Bervoets & Blust, 2000; Evans, 2000). In oxygenated waters can the sulfate species be prevalent, depending on the concentration of sulfate (Evans, 2000).

Seawater speciation of zinc is similar to freshwater. The ionic form of zinc dominates the speciation in seawater (Wood et al., 2012a). However, the high content of salinity promotes the formation of chloro-complexes (Rainbow et al., 1993). In addition to the ionic form, the species ZnOH⁺, ZnCO₃, Zn-organic, ZnCl_n²⁻ⁿ can occur in seawater (Eisler, 1993). The mixing of seawater and freshwater, however, makes for more complex chemistry in brackish

water.

In brackish waters varies salinity, pH, major ions, and organic matter content with the seasons (Ellwood, 2004). The ionic form of zinc is again the most dominant species for brackish water. In brackish water with low salinity occurs ZnSO₄ species as well (Eisler, 1993). With increased salinity increases the concentration of chloro-complexes of zinc (Eisler, 1993). For zinc, in general, the ionic form dominates for all water systems, some variation in other species are seen with different pH and different salinity in the system.

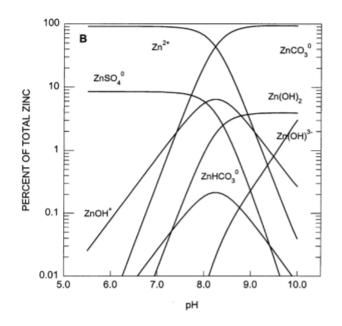


Figure 2.3: Speciation of zinc as a function of pH. Reprinted with permission from Bervoets & Blust, 2000.

2.4 Aluminum

Aluminum, as opposed to copper and zinc, is not an essential metal for organisms, as it has no known biological function (Gensemer & Playle, 1999). The metal is however abundant in the earth's crust (WHO, 2003). Aluminum is used in transport industries, for alloys, electric industry, cooking utensils, and food packaging (WHO, 2003). The main source of aluminum to aquatic systems is from natural processes, such as leaching from Al-rich rocks due to acidification (Driscoll et al., 2001). The species of aluminum present in the water, therefore, depends on the chemistry of the water and the geology of the environment.

The speciation of aluminum is in general dependent on the pH and inorganic and organic ligands present in the aquatic system. Aluminum may occur as; hydroxy- complexes, Al(OH)₂⁺, AlOH²⁺, Al(OH)₃, or Al(OH)₄⁻, as ionic aquo complex, Al³⁺, or complexed with inorganic ligands of F⁻, SO₄²⁻, PO₄³⁻ or Si(OH)₄. Aluminum can also complex with organic compounds such as humic or fulvic acid. The distribution of these species depends on the chemistry of the system and their properties.

Aluminum-species in freshwater differ with pH, temperature, and ligands present. In general, aluminum is insoluble at pH 6-8. As it occurs as Al(OH)₃, also known as gibbsite (Wood et al., 2012b). In more acidic environments increases the solubility, and aluminum-species present are dominated by Al³⁺, AlOH^{2+,} and Al(OH)₂⁺. While in alkaline conditions dominates Al(OH)₄⁻, figure 2.4. Aluminum can also complex with fluoride, sulfate, and phosphate, depending on pH, temperature, and ionic strength (Gensemer & Playle, 1999; Wood et al., 2012a). Aluminum also forms both weak and strong complexes with humic and fulvic acid in organic matter (Gensemer & Playle, 1999; Wood et al., 2012a).

The aluminum speciation in seawater and brackish water is derived from the pH and salinity of the water, figure 2.4. The source of aluminum to seawater and estuaries stem from freshwater rivers (Bjerknes et al., 2003; Wood et al., 2012a). The aluminum-influx from rivers quickly sediments to clay particles, but can at a later time be remobilized in estuaries (Hydes & Liss, 1977). Bjerknes et al. (2003) found that an increase in salinity transformed particulate/colloidal aluminum to reactive species. The speciation of aluminum in seawater is dominated by Al(OH)4⁻, Al(OH)3, and Al(OH)2⁺ (Brown et al., 2010; Millero et al., 2009). A rapid change in chemistry occurs when freshwater and seawater mix, making the chemistry more complex (Bjerknes et al., 2003; Teien et al., 2006b). In contrast to freshwater, there are no analytical methods to measure the ionic and neutral dissolved forms of aluminum in seawater at present (Gillmore et al., 2016). Which is why size fractionation is used to obtain information on the fraction aluminum resides in.

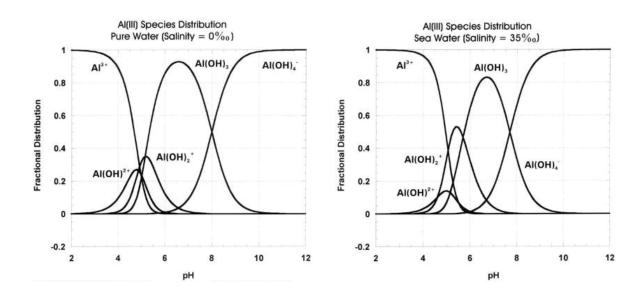


Figure 2.4: Distribution of Al species at salinity 0‰ and salinity 35‰ as a function of pH. Reprinted from Elkins & Nelson, 2002.

2.5 Uptake in fish

2.5.1 Main pathways

Uptake of metals in fish can occur through three pathways: gills, ingestion, and dermal contact. The main pathway is diffusion across the gills. This is due to a large surface area and the gills being sensitive to nutrients in the water (Wood et al., 2012a). The gills have three main uptake routes. These being a metal-specific carrier, mimicry uptake, and diffusion across the membrane. Metal-specific carriers are used for many essential metals. These are designed for the active transport of essentials metals from the water. Mimicry uptake occurs when metals are mistaken as an essential element and go through the active transport pathways. For example, Zn^{2+} can be mistaken as Ca^{2+} . The last uptake route is diffusion across the gill membrane. Due to the electrochemical gradient may metals simply be diffused from water to blood (Wood et al., 2012a).

Another pathway of uptake in fish is through ingestion. This affects the gastrointestinal system, that being the gut. This is dependent on the diet of the fish, but fish living in seawater drink water to keep themselves hypotonic (Grosell, 2006). As they drink the metals present in the water may end up in the gut. The same three uptake-mechanisms for gills; metal-specific

carrier, mimicry, and diffusion, are also applicable for the gut. The metals can also bind to amino acids and be transported through amino acid transporters (Wood et al., 2012a).

The last uptake pathway is through dermal contact, that being direct uptake through the skin. This is an unlikely uptake route, possibly due to the mucous acting as a protective layer (Dallinger et al., 1987). Though unlikely have some studies indicated that some calcium analogs, for example, Zn or cadmium (Cd), have some uptake through the skin (Wood et al., 2012a).

All three metals, copper, zinc, and aluminum have diffusion across the gills as their main uptake pathway. This is due to the size of the bioavailable species. Copper is taken up mainly through the gills, however, through diet or drinking may also the gut be at risk. The LMM species are generally thought to be bioavailable for uptake. That being the smallest of species. For copper are the bioavailable species Cu^{2+} , $CuOH^-$ and $Cu(OH)_2$ (Chakoumakos et al., 1979; Erickson et al., 1996; Wood et al., 2012a). Zinc uptake is proven to be primarily gills, though the intestine is not unlikely (Zhang & Wang, 2007). Zinc has been found in tissues such as gill and liver (Heier et al., 2009). The bioavailable species of zinc are the free ionic Zn^{2+} (Bervoets & Blust, 2000). The main uptake pathway of aluminum is through the gills (Wood et al., 2012b). The bioavailable species of aluminum are free ionic Al^{3+} , hydroxy-, fluoride-, and sulfate-complexes (Driscoll, 1985; Gensemer & Playle, 1999). Even though only the LMM species are available for uptake, are the bigger HMM species of aluminum more gill reactive, and can ultimately be more detrimental to the gills (Teien et al., 2006).

2.5.2 Concentration factor

The concentration factor is a useful tool to use when comparing the accumulation of different chemicals in aquatic organisms. Concentration factors are used to explain the extent to which the concentration of a chemical in an aquatic organism exceeds the concentration of the chemical in the aquatic environment. A few assumptions are made when using this factor, one being that exposure is long enough to obtain equilibrium, and the second being uptake is only waterborne (McGeer et al., 2003; Wood et al., 2012a). The relation between the toxicity of metals and CF is hard to determine. Due to aquatic organisms regulating metals internally.

2.5.3 Possible effects

The metal present in the water enters the fish and accumulates in the different tissues, which can cause harmful effects. The three metals of concern are copper, zinc, and aluminum. Copper is among the essential elements that are due to their redox properties important for many processes in the body. However, this property may also be a reason for its toxic effects. Copper inhibits of Na^+/K^+ - ATPase in freshwater aquatic organisms, which reduces sodium in the body (Wood et al., 2012a). Copper can also increase plasma ammonia and disrupt nitrogen metabolism (Blanchard & Grosell, 2006). For seawater, effects are not well known or proven. Some studies indicate that copper in seawater disturbs osmoregulation and alters nitrogenous waste excretion (Grosell et al., 2004).

High zinc concentration may lead to harmful effects on the gills of fish. For example, uptake of zinc can lead to inflammation of the gills leading to impaired gas exchange. This ultimately leads to insufficient oxygen, hypoxia. High concentrations of zinc can also inhibit branchial calcium uptake, leading to a lack of calcium, hypocalcemia. These effects have been proven in freshwater, while the effect mechanism in seawater is thought to be the same as freshwater (Wood et al., 2012a).

Aluminum is not an essential element, as opposed to the two other metals. Likewise, are the effects of aluminum been found mainly to affect the gills. Aluminum impairs gill ion regulation and leads to respiratory dysfunction. This metal also clogs the gills of the fish, leading to lowered plasma oxygen (Gensemer & Playle, 1999). Both, which ultimately have a high risk of mortality. Aluminum has been found to accumulate slowly in tissue and no internal toxic effects have been reported (Wood et al., 2012b).

2.5.4 Bioavailability and toxicity of metals

To predict if a metal is bioavailable for uptake, must the speciation of the metals be considered. The present study is investigating the speciation of metals in coastal waters. Copper is expected to be complexed with organic ligands in coastal waters, therefore, decreasing the bioavailability of the metal (Donat et al., 1994; Oldham et al., 2014). The toxicity of copper increased if the concentration of copper exceeds the concentrations of organic ligands. Zinc is also predicted to be complexed with inorganic or organic complexes in coastal water, this decreases the bioavailability of zinc (Neff, 2002; Wood et al., 2012). For example, zinc can complex with chlorine in seawater. This complex has a lower affinity to gills than ionic zinc, therefore decreasing the toxicity of the metal (Bielmyer et al., 2012). In addition, the uptake of zinc is influenced by the concentration of cations present, as these compete for binding-sites on the gills of the fish. Aluminum is predicted to exist as complexes of hydroxides in coastal waters (Zhou et al., 2018). Marine organisms show high tolerance against aluminum in coastal waters as opposed to freshwater organisms (Zhou et al., 2018). However, increased concentrations of LMM-aluminum have been documented in estuarine areas with an influx from rivers (Kroglund et al., 2007; Kroglund et al., 2011). Based on the literature of metal speciation copper, zinc, and aluminum is predicted to have different speciation which influences if the metals are bioavailable.

2.5.5 Test species, Salmo salar

Salmo salar is a ray-finned teleost fish in the family Salmonidae. The Atlantic salmon is native to the north Atlantic Ocean but has been found in other oceans as well. The wild salmon spends most of its juvenile years in freshwaters before migrating to sea. The salmon are spawned in rivers and grow to the "parr" stage which they stay in for 1-4 years (Hansen & Quinn, 1998; Siriwardena, 2019). During these years they go through a transformation to survive the marine environment, called "smoltification". The wild salmon stay in freshwater for 2-3 years before they migrate to the sea, as "smolts" (Hansen & Quinn, 1998; McCormick et al., 1998; Siriwardena, 2019).

The salmon has huge economic importance in Norway. Especially regarding the farmed salmon. For instance, Norway exported salmon worth 72,5 billion NOK in 2019 (Norwegian Seafood Council, 2020). Possible release of metals to the marine or estuarine environment is likely for both for the native population and farmed salmon in fisheries and can have a negative impact on export. The smolting stage is in many cases the most sensitive life-stage for salmons. During this period the salmons need to travel through coastal waters before reaching the sea (McCormick et al., 1998). It is worth noting that the farmed salmon in cages cannot escape the water they reside in if metal pollution or changes in water chemistry occurs. The literature is extensive on the effects of metal uptake on freshwater fish. While the

13

literature on seawater and brackish water are further studies needed. The complex water chemistry of the brackish and estuarine environment is of high interest. More knowledge is needed regarding the metal uptake of salmons living in brackish or coastal waters.

3 Method and materials

3.1 Exposure

3.1.1 Exposure design

This study is a part of a larger Ph.D. study that is a part of the project Cumulative Hazard and Risk Assessment of Complex Mixtures and Multiple Stressors (MixRisk). The exposure experiment was designed to investigate the uptake and distribution of metals in fish. The fish exposure experiment was conducted during the period; October 2019 – December 2019 at NIVA Marine research station Solbergstrand at Drøbak. The exposure experiment followed the OECD Guideline 203 for acute toxicity testing on fish (OECD, 1992). The experiment was approved in advance by the National Food Safety Authority (NARA), FOTS ID 21058.

Tanks were lined with plastic wrap to limit contamination, figure 3.1, and figure 3.2. To the tanks were natural seawater pumped from 60-meter depth, collected at Solbergstrand from the Oslofjord. Additional freshwater was added to ensure a salinity of 20‰. The tanks contained 500 L of water in total. This follows the OECD guidelines (1992) of 1L/gram of biomass in each tank. The tanks were equipped with an air stone connected to an aquarium pump to ensure a constant high oxygen concentration. The tanks were kept at approximately 10-12°C with weak artificial light during the exposure. The exposure was conducted with nine different concentrations of the metals, Cu, and Zn. While Al had six different exposure groups, table 3.1. This is as recommended by OECD guidelines (1992) The control group consisted of the same type of water without any additional metal added.

Seven fish were randomly assigned to each of the exposure tanks and exposed to brackish water with metals for 96 hours. The exposure was conducted under a static procedure, meaning no water replacement and no feeding during the test period. The tanks were checked for adverse effects, like mortality, daily during the 96-hour exposure. The exposures were

conducted after each other in October, November, and in December, due to practical limitations.

Figure 3.1: Set up of experimental units. Photo: Emil Jarosz. Figure 3.2 Tank lined with plastic wrapping with aeration stone. Photo: Emil Jarosz.

3.1.2 Water quality

Brackish water made from natural seawater from the Oslofjord with additional freshwater was used as reference water. Natural seawater was chosen to obtain a realistic exposure experiment. Additional freshwater from the NIVA facility was added to obtain a salinity of 20‰. The stock metal solutions were made by dissolving salts of anhydrous CuCl₂, ZnCl₂, and AlCl₂ (Sigma-Aldrich, USA) in deionized water in plastic containers. The concentration of copper, zinc, and aluminum in the stock solutions was 4.5 mg/l, 18.4 mg/l, and 20 mg/l for each metal respectively. The stock solutions were added to the tanks 48 hours before exposure, to ensure stable metal speciation before the transfer of fish. The stock solutions

were added to obtain the concentrations of Cu in the range 0.09-7.78 µmol, of Zn in the range 0.4-15.6 µmol, and for Al in the range 1.37-11.86 µmol, table 3.1.

Final concentrations were recalculated from μ mol/l to μ g/l by eq. 1.

Eq. 1 concentration
$$\left(\frac{\mu mol}{l}\right) \times molar mass\left(\frac{g}{mol}\right) = concentration \left(\frac{\mu g}{l}\right)$$

Cu Zn Al Molar mass g/mol 63.546 65.38 26.98 μMol μMol μMol 0.09 N.A N.A 0.18 N.A N.A 0.38 0.4 N.A 0.55 0.6 N.A 0.76 0.8 N.A 1.4 N.A 1.37 2.4 2.37 2.37

4.26

7.78

N.A

4.3

7.8

15.6

4.36

7.78

11.86

Table 3.1 Expected nominal concentrations for each exposure metal group

N.A Not analyzed

3.1.3 Holding and acclimation

Atlantic salmon smolts of both sexes were obtained from the Fish laboratory at NMBU (Ås, Norway). The fish were transferred to the NIVA research facility to holding tanks at least one week before exposure start, according to the standard method. Following the OECD Guideline, 203 (1992) were the fish held for at least nine days (2 days settling and 7 days acclimation) in brackish water with a salinity of 20‰. The acclimation is to ensure no further stress to the fish when transferred to exposure tanks. Any effects on stress is therefore a result of uptake of metals, and not holding. This also ensures the same optimized conditions for all the fish. The salmon smolts were fed daily up to 48 hours before exposure. This ensures that the fish has lower metabolism and therefore a lower need for oxygen when moved from holding tanks to exposure tanks. This also minimizes the amount of feces, which can affect

the experiment by metals adsorbing to particles.

3.2 Water sampling and analysis

3.2.1 Water quality parameters

Quality parameters; pH, temperature, salinity, ammonia, calcium (Ca), potassium (K), and magnesium (Mg) were recorded or measured during or after the exposure. The temperature was recorded continuously with data loggers during 96-hours exposure. The light of the environment around the tanks was measured to ensure that fish was not stressed due to light. For measurements of temperature and light were HOBO loggers used. Salinity and pH were measured once each day of the exposure. While ammonia, calcium, potassium, and magnesium were measured at the end of the exposure. Ammonia was not measured for tanks containing aluminum as exposure metal.

3.2.2 Water sampling and analysis of metal concentration

Water samples were collected at the start of (0h) and after the exposure period (96h). The samples were fractionated on site. The fractionation was performed by different operators at 0- and 96-hours. Water from the tanks was collected with a plastic jug and transferred to 2 L plastic containers. From the plastic container containing sampled water was unfiltered water transferred to a 50ml tube (Saarsted AG & Co, Germany) for the total fraction. Water from the plastic container was filtered with a syringe with a 0.45 μ m filter, Acrodisc® 32 mm Syringe Filter with 0.45 Supor® Membrane (Pall Corporation, USA) and transferred to 50 ml tubes. This ensures that colloids and ions are the only species present in the sample, as filtration by the 0.45 μ m Millipore or Nucleopore membranes retain particles.

The remaining water from the container was filtrated with a hollow fiber filter with a 10kDa Microza Hollow Fiber Ultrafiltration Modules (Pall Corporation, USA) and obtained in 50 ml tubes. The ultrafiltrated water was filtrated with a Chelex® 100 Resin (Bio-Rad Laboratories inc., USA) and collected in 50 ml tubes. Hollow fiber ultrafiltration interfaced with ion chromatography is used to fractionate species in a colloidal 1-10 kDa range based on their charge. The Chelex® cation resin retains cations and any neutral or anionic species pass

through.

Water fractionation was utilized to obtain information regarding the trace element speciation. The fractionation technique used a 0.45µm syringe membrane filter. This filter excludes particulates, while colloids and ions are included in the filtered fraction. A 10kDa ultrafilter was utilized to separate colloidal and LMM fractions. Ion-chromatography was used with Chelex® 100 Resin to obtain information regarding the charge.

From the fractionation analysis can these species be determined:

M_{total}: Total metal concentration in unfiltered water

 $M_{\text{particulate}}$: Derived from subtracting metal concentration in 0.45 μ m filtration from the concentration in unfiltered water, eq. 2.

Eq. 2
$$M_{particulate} = M_{total} - M_{0.45}$$

 $M_{colloids}$: Derived from subtracting metal concentration in ultrafiltrated water from concentration in 0.45 μ m filtration, eq.3.

Eq. 3
$$M_{colloids} = M_{0.45} - M_{LMM}$$

M_{LMM} : Metal concentration in ultrafiltrated water (cutoff 10kDa)

M_{cations} : Metal retained in Chelex® 100 Resin, from ultrafiltrated (cutoff 10kDa) water. Derived from subtracting the metal concentration in ion-exchanged water from the concentration in ultrafiltrated water, eq. 4.

Eq. 4 $M_{cations} = M_{LMM} - M_{chelex}$

After sampling were all tubes transferred to the Isotope laboratory (Ås, Norway). From the 50 ml tubes were 1ml of each water sample mixed with 1ml sub-boiled ultrapure 69% (w/w) EMSURE® HNO₃ (Merck, Germany) and 200µl of internal standard (100ugl⁻¹ Rh/In) in one 15 ml tube (Saarsted AG & Co, Germany) and diluted to 10 ml with Milli-Q® (18 M Ω cm) water. Each sample had three replicates. The samples were measured on ICP-MS.

The results of water samples include the average total concentration of metal present in each

exposure group, given at the start of the exposure (0h) and the end of the exposure (96h). The values are given as mean concentration \pm standard deviation μ mol/l. All values are recorded in appendix A.5. The speciation of metals is given as a percentage of the total concentration.

3.3 Fish tissue samples and analysis

3.3.1 Sampling of fish

Fish were collected and euthanized after the exposure. The size and weight of the fish were recorded before dissection. The dissection was performed by several people to ensure higher efficiency and save time.

Blood samples were collected with a 1 ml syringe by the caudal vein. The blood samples were analyzed using I-STAT cassette EC8+ on an I-STAT analyzer on-site. The tissues were collected into 5 ml vials (Saarsted AG & Co, Germany). To ensure no contamination between fish in the same exposure group, and between the different exposure groups were all dissection equipment cleaned with Ethanol absolute \geq 99.8%, AnalaR NORMAPUR® (VWR Chemicals, France) and scalpel blades were changed between each fish. To avoid contamination from tissues to the cutting board were the fish placed on a plastic bag. All tissues were collected into their respective vials immediately after dissection and the lids on the vials were closed after each dissection to avoid any contamination. The tissues were stored at -20° before freeze-drying for 48 hours. After the samples were

freeze-dried they were stored at room temperature. To restrict the work of the master thesis were only the results of the gill, kidney, and liver chosen for further discussion.

3.3.2 Digesting of tissues and analysis

The freeze-dried tissues were weighed into Teflon tubes used for digesting. To the tissue weighing less than 1.0 gram were 1ml HNO₃ and 200 µl internal standard (100ugl⁻¹ Rh/In) added before digesting. For tissue weighing more than 1.0 gram were 5ml HNO₃ and 1 ml internal standard (100ugL⁻¹ Rh/In) added. After digesting were the samples weighing less than 1.0 gram transferred to 15 ml tubes (Saarsted AG & Co., Germany) and diluted to 10 ml with deionized water. Samples weighing more than 1.0 gram were transferred to 50 ml tubes (Saarsted AG & Co., Germany) and diluted to 50 ml with deionized water. The fish tissue samples were measured using Agilent 8800 ICP-MS Triple Quad and Agilent 8900 ICP-MS

Triple Quad (Agilent Technologies, USA).

To ensure a homogenous and liquid sample before analysis was the fish tissue samples digested through microwave-assisted acid digestion. The fish tissue samples were digested using UltraClave® (Milestone Srl, Italy) or UltraWave® (Milestone Srl, Italy) at the Isotope laboratory at NMBU. Microwave-assisted acid digestion is based on the principle that microwaves cause friction and therefore generate enough heat to dissolve organic material. To the load is HNO₃, Sub-boiled ultrapure EMSURE, 69% (w/w) (Merck, Germany) added to absorb the microwaves. However, as this causes the formation of NO_x-gases is H₂O₂, Technical Quality (VWR International, USA) also added to the load to prevent this. In the chamber is the starting pressure 50 bar with the temperature at room temperature. The temperature increases to 260°C and stays at maximum temperature for 25 minutes.

3.4 ICP-MS Analysis

3.4.1 ICP-MS method

The water samples were measured on ICP-MS, Agilent 8900 ICP-MS Triple Quad (Agilent Technologies, USA). For this method was reaction modes ammonia and helium used for two masses of Cu and Zn, and one mass for Al, appendix A.12. One reaction mode and masses for each element were chosen, based on the accuracy of reference material and limit of detection, appendix A.1. The reaction mode, ammonia, were chosen for all three elements. An internal standard is used to control dilution and drift during the analysis. Using the internal standard can one correct for incorrect dilution or loss of sample.

The digested tissue samples were measured on the ICP-MS, Agilent 8800 ICP-MS Triple Quad (Agilent Technologies, USA). For this method were gas modes; oxygen and ammonia, used for Al. While gas modes; ammonia and helium were used for different masses of Cu and Zn, Appendix A.12. One reaction mode and mass for each element were chosen, based on the accuracy of reference material and limit of detection, appendix A.2. These being helium or ammonia Cu-63, ammonia or helium Zn-64, and oxygen Al-27.

3.4.2 Water samples – traceability

Certified reference material SRM 1640a was used to ensure the method's traceability for water samples. 1640a contains trace elements in natural water. The CRM undergoes the same sample preparation as the water samples, with the same amount of internal standard and dilution added. The reference material is produced and certified by the National Institute of Standards and Technology. The trace elements copper, zinc, and aluminum are certified for this CRM (NIST, 2010).

3.4.3 Fish tissue – traceability

To ensure the traceability of the method and ensure the samples were properly digested were certified reference materials (CRM) used. The CRM's undergo the same digesting with the same type and amount of acid and internal standard added as the fish tissue samples. For fish organ samples were ERM-BB422 and DOLT-5 used. Appendix A.3 summarizes the results of CRM.

The ERM-BB422 reference material is fish muscle from the species Saithe (*Pollachius virens*). It is produced and certified by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material includes certified reference values for copper and zinc (IRMM, 2012). The DOLT-5 reference material is Dogfish liver (*Squalus acanthias*) is produces and certified by the National Research Council Canada. The material includes certified reference values for copper, zinc, and aluminum (National Research Council Canada, 2014).

3.5 Data processing and statistical analysis

3.5.1 Data treatment

All values were obtained as $\mu g/l$ or mg/l before further treatment was calculated from $\mu g/l$ or mg/l to mg/kg for fish tissue, eq. 5. Furthermore, were all values calculated from $\mu g/l$ (water samples) to μ mol/l, or mg/kg (fish tissue samples) to mmol/kg by equation 6. This is performed to compare the results to other studies, as well as compare the different metals on

a mole basis.

Eq. 5
$$\frac{mg}{kg} = \frac{Concentration(\frac{\mu g}{l}) \times Volume l}{Weight kg \times 1000 \mu g}$$

Eq. 6
$$\frac{mmol}{kg} = concentration \left(\frac{mg}{kg}\right) \div molar mass \left(\frac{g}{mol}\right)$$

3.5.2 Treatment of outliers

Some values measured in this experiment did not fall into the range of expected values. These have been identified as outliers by three criteria; reviewing the standard deviations, plotting values in a scatterplot, and using GraphPad Prism function of "identify outlier". This function uses the ROUT method which detects outliers by fitting the values to a curve with nonlinear regression. Setting a false discovery rate at Q = 1%, meaning that no more than 1% of identified outliers to be false (Motulsky & Brown, 2006).

These values have been marked as outliers, with red in appendix A.8.

3.5.3 Limit of detection and limit of quantification

The limit of detection (LOD) and limit of quantification (LOQ) were calculated using five blank samples for fish tissue and five blank samples for water samples measured on the ICP-MS. The fish tissue samples were measured in three batches. The highest LOD/LOQ was chosen for each metal, Cu, Zn, and Al, these are summarized in Appendix A.1 and A.2. The standard deviation obtained from the samples is used to calculate the limit of detection and limit of quantification, equations 7 and 8. The limit of detection is defined as the lowest concentration of an analyte which can be detected. While the limit of quantification is defined as the lowest concentration of analyte which can be quantified (Shrivastava & Gupta, 2011). Appendix A.1 and A.2. All values which are below LOD or LOQ will be reported as <LOD or <LOQ.

Eq. 7 Limit of Detection: 3 × Standard Devation (of blank samples)

Eq. 8 Limit of Quantification: 10 × Standard Deviation (of blank samples)

3.5.4 Concentration factor calculation

The concentration factor is calculated using the relation between the difference in concentration of metal present in the fish tissue group and control group, divided by the difference dissolved metal concentration ($<0.45\mu$ m) in the exposure water and water in the control group, by equation 9.

Eq. 9 $CF = Diff.Conc.metal in tissue \left(\frac{mmol}{kg}\right) \times 1000 \mu mol \div$ Diff.Conc.metal water $\left(\frac{\mu mol}{l}\right)$

3.5.5 Statistical analyses

Two statistical programs were used for the treatment of data, GraphPad Prism 8 (GraphPad Software Inc., La Jolla, CA, USA) and Microsoft Office Excel 2016 (Microsoft Corporation Redmond, WA, USA).

All fish tissue data for each exposure group have been checked for normality, appendix A.9. Using the Shapiro-Wilk test will any p-value less than α -value indicates that the exposure group did not pass the normality test. Therefore, rejecting the hypothesis that there is a normal distribution in the population.

A one-way ANOVA test was used to determine if there was a significant difference between the mean of the control group and the mean of the exposure group. To determine which groups are different from the control group was Dunnett's or Tukey's *post hoc* test for multiple comparisons used, with α =0.05. Any p-value less than α -value determine that the hypothesis can be rejected, and therefore there is a significant difference between means, appendix A.10.

4 Results and discussion

4.1 Quality of analysis

4.1.1 Limit of detection and limit of quantification

The limit of detection for water samples was $2.4*10^{-4} \mu mol/l$ for Cu, $5.2*10^{-5} \mu mol/l$ for Zn, and $1.1*10^{-5} \mu mol/l$ for Al. While the limit of quantification for water samples was measured to $7.8*10^{-4} \mu mol/l$ for Cu, $1.7 \mu g/l$ for Zn and $3.7*10^{-5}$ for Al, table 4.1.1

The limit of detection of fish tissue samples was 0.0015 mmol/kg for Cu, $4.5*10^{-3}$ mmol/kg for Zn, and $7.3*10^{-8}$ mmol/kg for Al. While the LOQ was measured to $5.0*10^{-3}$ mmol/kg for Cu, $1.5*10^{-2}$ mmol/kg for Zn, and $2.4*10^{-7}$ mmol/kg for Al, table 4.1.1

Table 4.1.1 Limit of detection and limit of quantification for copper, zinc, and aluminum of water samples and fish tissue samples. Given in μ mol/l and mmol/kg, respectively.

	Wa	iter	Fish tissue			
	LOD (µmol/l)	LOQ (µmol/l)	LOD (mmol/kg)	LOQ (mmol/kg)		
Cu	2.4E-04	7.8E-04	1.5E-03	5.0E-03		
Zn	5.2E-05	1.7E-04	4.5E-03	1.5E-02		
Al	1.1E-05	3.7E-05	7.3E-08	2.4E-07		

4.1.2 Traceability of analysis

Certified reference material, CRM 1640a was used to obtain information on traceability of the method. Copper was measured in the range 82-97 μ g/l. The results exhibited some variation, with an error in the range of 2-12%, Appendix A.3. The measured samples passed the normality test and no outliers were discovered. Zinc was measured in the range 52-58 μ g/l, with an error not exceeding 6%. The lowest sample measured at 52 μ g/l was marked as an outlier. Removing this sample lowers the error to 4%. The measured values of Cu and Zn is therefore within the error accepted for the certified reference material. While Al was measured in the range 56-70 μ g/l, with an error of 33% at most, table 4.1.2. Two of the measured 1640a samples had an error at 6%, while the rest all exceeded at least 11%. The

measured values of Al have a large variation and all values do not fall within the accepted range for the CRM. A high error and high variation indicate that there is uncertainty in the method, which must be taken into consideration when evaluating the results.

Using the certified reference material of tissues, e.g. ERM-BB422, results show that this CRM did not exceed an error from certified value by more than 11%, however, the same sample of both Cu and Zn exhibit higher error (10% and 11% respectively), when compared to other samples measured. It is possible that this sample was weighed in faulty or was contaminated before analysis. Removing this sample gives errors in the range 1-2% for Cu, and 1-6% for Zn, Appendix A.3. The measured values of Cu were found in a range of 1.63-1.86 mg/kg, while Zn was measured in the range 16.1-17.7 mg/kg, table 4.1.2.

Results from the analysis of certified reference material DOLT-5 shows that Cu and Zn did not exceed a difference of 15% from the certified value. The same sample for Cu and Zn has a high error. Removing this sample gives a maximum error of 6% for Cu, and 3% for Zn. Copper was measured in the range of 33-39.5 mg/kg and Zn was measured in the range 102-121 mg/kg, table 4.1.2. Aluminum on the other hand had overall only one of five CRM samples within acceptable error. This exceeded no more than 10% error, while the other samples had a maximum error of 40%. This indicate that the method is uncertain when analyzing for aluminum in the fish tissue samples.

The analysis of certified reference material shows that the method is uncertain for Al, for analysis of water samples. While for analyzing fish tissue samples are the method within reasonable error for the metals Cu and Zn. Analysis of Al in fish tissue samples is however uncertain with this method. Acid added to the samples was likely contaminated with Al, which increases the concentration of Al measured in the samples. This must be considered when evaluating the results from both water samples and fish tissue. All results are recorded in Appendix A.3.

Reference material		Certified value	Average	SD	RSD%	Minimum	Maxium		
ERM-BB422									
Cu	mg/kg	1.67 ± 0.16 mg/kg	1.70	0.075	4 %	1.64	1.83		
Zn	mg/kg	16 ± 1.1 mg/kg	16.9	0.57	3 %	16.1	17.7		
DOLT-5									
Cu	mg/kg	35.0 ± 2.4 mg/kg	35	2.6	7 %	33	40		
Zn	mg/kg	105.3 ± 5.4 mg/kg	108	7.4	7 %	102	121		
Al	mg/kg	31.7 ± 4.2 mg/kg	22	7.7	36 %	17	35		
1640a									
Cu	μg/l	85.75 ± 0.51 μg/L	89	5.8	7 %	82	97		
Zn	μg/l	55.64 ± 0.35 μg/L	56	2.0	4 %	52	58		
Al	µg/l	53.0 ± 1.8 μg/L	62	5.1	8 %	56	70		

Table 4.1.2. Certified reference materials, ERM-BB422, DOLT-5 and 1640a. Average measured values of Cu, Zn, and Al, with standard deviation, relative standard deviation, maximum and minimum values given.

4.2 Water quality parameters

To obtain information on water quality and stability over time, were several parameters measured. Over the 96-hour exposure varied the pH of the water in the range 8.1-8.2. The water temperature varied in the tanks in the range 8.5-12.3 ° C. The salinity of the water varied from 19.9-20.3 ‰. While the ammonia measured after 96h exposure varied in the range 0.16-0.3, all values are reported in appendix A.4. No significant difference in pH, temperature, and salinity was found in the tanks between the different exposure metals, table 4.2.

The concentration of calcium, potassium, and magnesium in the water was measured to obtain information of salts present in the water. The concentration of Ca varied in all the tanks between 0.32-0.45 g/L. The concentration of K in all tanks varied between 0.14-0.35 g/L. While the concentration of Mg in all tanks varied between 0.70-1.06 g/L, appendix A.4. The high variation found of measured salts disagrees with the low variation found for measured salinity. A possible explanation behind the disagreement is uncertainty when measured by ICP-MS.

The concentration of Ca and Mg are found to be as significantly higher (p<0.05) for tanks containing exposure of aluminum. While the concentration of K was not found to be different for each exposure metal, table 4.2. The measured values of Ca, Mg, and K follow the relation

2:7:1. The concentrations found in natural seawater follow the relation 1:5:1 for Ca, Mg, and K, respectively (Besson et al., 2014). This indicates that the relation between Ca, Mg, and K is higher than expected. Calcium-rich groundwater used for mixing with seawater likely increased the Ca-concentrations in the exposure water.

The results suggest that no major difference between water quality parameters was found in the tanks for the different exposure metals. The variation for pH, temperature, and salinity is low, indicating that the conditions were kept stable over 96h.

	Cu	Zn	Al	
	Average ± SD	Average ± SD	Average ± SD	
рН	8.17 ± 0.03	8.17 ± 0.02	8.16 ± 0.03	
Temp (C°)	10.3 ± 0.7	10.0 ± 0.7	10.8 ± 0.3	
Salinity (‰)	20.1 ± 0.1	20.1 ± 0.1	20.1 ± 0.1	
Ammonia (mg/L)	0.22 ± 0.06	0.23 ± 0.05	N.A	
Calcium (g/L)	0.36 ± 0.02	0.36 ± 0.02	0.39 ± 0.01	
Potassium (g/L)	0.20 ± 0.01	0.20 ± 0.01	0.20 ± 0.02	
Magnesium (g/L)	0.88 ± 0.04	0.88 ± 0.06	0.92 ± 0.03	

Table. 4.2. Average values with a standard deviation of parameters pH, temperature, salinity, ammonia, calcium, potassium, and magnesium in exposure water of each metal group, copper, zinc, and aluminum.

N.A - Not analyzed

4.3 Metal concentration and speciation in water

4.3.1 Copper concentration and speciation in water

The average total concentration of Cu in the control group was measured to 0.04 ± 0.01 µmol/l. The expected concentrations of Cu in the different exposure groups were 0.09, 0.18, 0.38, 0.55, 0.76, 2.37, 4.26 and 7.78 µmol/l. The results show that the measured concentrations are all lower than expected, with 0.08, 0.14, 0.25, 0.42, 0.56, 2.08, 3.4 and 7.0 µmol/l, respectively, table 4.3. The concentration over time increased for some of the

exposure groups, these being for the three highest concentrations. It is, however, unlikely that the concentration increased over time and is most likely due to different sampling conditions.

Copper concentrations found in natural waters range from $3.15*10^{-3}$ -0.47 µmol in FW systems to $1.57*10^{-3}$ -1.57 nmol in SW (USEPA, 2007; Wood et al., 2012a). While in coastal waters have Cu been reported at $7.87*10^{-4}$ -0.27 µmol (Kozelka & Bruland, 1998; van Geen & Luoma, 1993). This is natural systems void of metal pollution. In cases that metal pollution is a viable problem, for example in Kaldvellfjorden is the concentration much larger. In the tributary, "Stordalsbekken", was the concentration of copper reported in the range 0.14-0.83 µmol/l (Hindar & Nordstrom, 2015; Teien et al., 2017; Todt et al., 2015). While in the fjord, "Kaldvellfjorden", was Cu reported between 0.06-0.80 µmol/l (Todt et al., 2015). The Norwegian Environment Agency has set the limits of concentration, regarding the acute effects of Cu in coastal water to 0.08 µmol/l (5.2 µg/l) (Miljødirektoratet, 2016). This means that the Cu-concentrations measured in this exposure experiment and the tributary and the fjord, all exceeds the limit set by the Norwegian Environment Agency. The concentrations used for this experiment are within the range of what is naturally found in coastal systems but also exceeds the maximum measured concentrations found in both the tributary and the fjord.

The distribution of Cu-species varied considerably between the different exposure concentrations. The standard deviation for these results is based on the deviation between results measured at 0h and 96h. The speciation of Cu in the control group showed that Cu was found in the dissolved fraction; colloids and LMM, as 24% and 76% respectively. Of the LMM fraction was 22% found as cationic. In the exposure groups was more than 85% of Cu found in the dissolved fraction and less than 16% were found in the particulate fraction, figure 4.3.1. The colloidal fraction dominates overall the speciation of Cu for the intermediate concentrations, while the LMM fraction dominates the two highest concentrations. The LMM fraction is largely found as cationic for all exposure groups. The results of Cu in the colloidal fraction of copper but can also indicate that the results of LMM Cu are measured too low when compared to earlier studies. A pilot study conducted before the exposure experiment indicated that Cu filtered through hollow-fiber ultrafiltration decreased over time. This indicate that some of the copper was being retained by the filter. The actual

28

speciation of Cu in the exposure water is uncertain. It is therefore likely that there is a higher content of Cu associated with LMM.

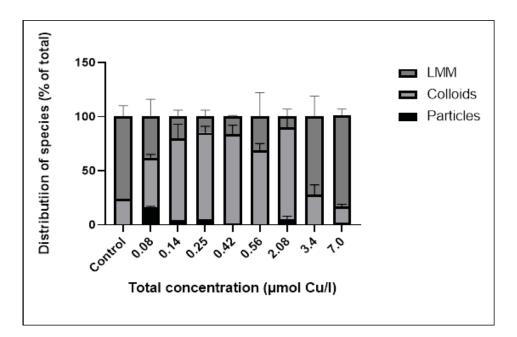


Figure 4.3.1. Mean distribution copper species (Particles, Colloids, and LMM) for control, and conc. 0.08-7.0 μmol Cu/l. Standard deviation is given from the difference in means between measured species at 0h and 96h.

Earlier studies give conflicting results on the speciation of Cu in coastal systems. The conflicting results are likely due to the low content of organic material present in the freshwater used in the experiment. This gives the system a lower content of particles which usually are found in natural systems. Wells et al. (2000) found that Cu occurred mainly (>70%) in the size range 1-8kDa at Narrangaset Bay, Rhode Island. The same study also found that particulate Cu was low, which agrees with this thesis results. Another study reports that Cu occurred as much as 47% in the LMM size class (1kDa – 10kDa), and only 8% at colloidal (10kDa – 0.45 μ m) at Galveston bay (Wen et al., 1999). In contrast, Shafer et al. (2004) found Cu greatly associated with the colloidal fraction (in the size range 1kDa – 0.4 μ m) in several marine estuaries. It is worth noting that these studies were working with environments with fluctuating salinity compared to this thesis.

Despite the conflicting results are this thesis results on the speciation of Cu in line with the reported findings conducted on freshwater systems. Masresha et al. (2011) found that in three

different Ethiopian lakes was Cu associated with the HMM fraction, that being both colloids and particles. These were also found to mainly be associated with the non-cationic Cu, which conflicts with the results from this thesis. Other studies have reported Cu associated mostly to the colloidal fraction and some with the LMM fraction (Allan et al., 2007; Heier et al., 2009). The speciation of copper in freshwater agrees some with the results of this thesis. Studies on coastal systems are however conflicting, such that some agree with the thesis' results while others do not. This can indicate that Cu speciation is not stable and is easily influenced by the environment. This also reflects on the varying results found for the distribution of Cu species in this thesis experiment.

4.3.2 Zinc concentration and speciation in water

The average total concentration of Zn in the control group was measured at 0.10 ± 0.03 µmol/l. The expected concentrations of Zn in the exposure groups were 0.4, 0.6, 0.8, 1.4, 2.4, 4.3, 7.8, and 15.6 µmol/l. The measured concentrations of zinc were measured lower for all, except for the three highest concentrations. The measured values being 0.27, 0.45, 0.64, 1.02, 1.72, 4.4, 8.2 and 15.7 µmol/l, respectively, table 4.3. Some concentrations increased significantly (p<0.05) over time, these being concentrations 4.4 and 8.2 µmol/l. This difference can be due to uncertainties in the measurement or mixing of the water at sampling.

Zinc concentrations in natural water without pollution are reported much lower. In FW systems are Zn concentrations reported in the range $3.05*10^{-4}$ -0.76 µmol/l and the range 0.02-0.92 nmol/l in SW systems (Eisler, 1993; Ellwood, 2004; Naito et al., 2010). However, in the case of Kaldvellfjorden was Zn reported at much higher concentrations. In the tributary, Stordalsbekken were zinc reported between 1.61-16.12 µmol/l (Hindar & Nordstrom, 2015; Teien et al., 2017; Todt et al., 2015). While in Kaldvellfjorden was the reported concentration in the range <0.03-0.15 µmol/l (Todt et al., 2015). The Norwegian Environmental Agency has set the concentration limit of zinc to 0.92 µmol/l (60 µg/l) (Miljødirektoratet, 2016). The reported concentration of zinc in the tributary and some concentrations used for this exposure study exceeds this limit.

The speciation of Zn is largely dominated by the dissolved fraction. In the control group were the species distributed almost equally between colloids and LMM fraction, with 56% and 44%, respectively. Where the LMM fraction consists of 17% cationic species. The LMM fraction dominates the speciation of zinc overall (>78%), except for the lowest concentration group (40%), figure 4.3.2. The LMM fraction consists of mostly cationic species, with >85% of LMM off all concentration groups found as cationic. The highest concentration has a high standard deviation, this is due to a great difference in results gained at 0h and 96h. This is most likely due to either contamination, different sampling, or difference in fractionation.

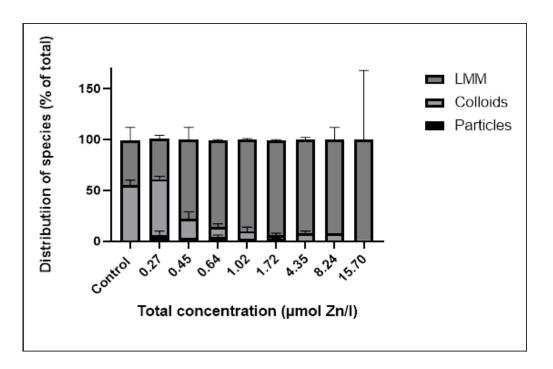


Figure 4.3.2. Mean distribution zinc species (Particles, Colloids, and LMM) for control, and conc. 0.27-15.70 μmol Zn/l. Standard deviation is given from the difference in means between measured species at 0h and 96h.

Previous studies exhibit some conflicting results. One study concluded that Zn had a low association with colloids in the dissolved phase ($<0.2 \mu$ m) and high association to the soluble fraction (<1kDa) at Narranganset bay (Wells et al., 2000). At Galveston Bay was 40% of Zn found in the colloidal fraction ($10kDa - 0.45 \mu$ m) (Wen et al., 1999). Shafer et al. (2004) reported the colloidal Zn association low to intermediate (5-30%) at three different estuaries.

The same study supports the low amount of Zn found in the particulate fraction, and a high amount of Zn found in the <1kDa fraction. Studies conducted on freshwater systems report conflicting results on Zn speciation. One study found Zn highly associated with particles in three different lakes (Masresha et al., 2011). While Heier et al. (2009) found Zn in a freshwater stream to be associated with the different fractions in the order LMM>colloidal>particles. Both studies concluded that Zn was cationic. Allan et al. (2007) support the latter study, where Zn was found associated with the LMM fraction. The conflicting results are probably due to the chemical compositions of the aquatic systems. Different pH, salinity, and inorganic and organic complexes can change the speciation of Zn. The results from this thesis agree with the studies that concluded that Zn had a low association with colloidal fraction and high association to cationic LMM fraction. These studies were conducted on both coastal/marine waters and freshwater studies.

4.3.3 Aluminum concentration and speciation in water

The average concentration of Al in the control group was measured to $0.8 \pm 0.1 \mu mol/l$, that being $22 \pm 2 \mu g/l$. This is a higher concentration than expected in control water. Screening tests of both seawater and freshwater used in the exposure did not exhibit high concentrations of Al. The acid added to the samples may contain elevated concentrations of Al, which pollutes the samples. The analysis of traceability revealed that the certified reference material was measured higher for Al than expected for the CRM. This can indicate that Al was measured higher due to pollution or faulty analysis.

The expected concentrations of Al for the different exposure groups were 1.37, 2.37, 4.26, 7.78, and 11.86 µmol/l. The measured concentrations were close to the expected concentrations. The measured average values were 1.7, 2.7, 4.3, 7.6, and 11.8 µmol/l, table 4.3. The concentration of Al was stable over time and decreased only slightly for the three lowest concentrations.

Aluminum found in natural waters is usually only high in FW systems. The concentrations are reported in the range 0.04-1.85 μ mol/l, while SW systems are reported around 3.71*10⁻³

 μ g/l, with coastal Al found with <2 μ g/l (Bjerknes et al., 2003; WHO, 2003). However, with a change of pH can Al concentrations increase rapidly. Elevated concentrations of Al was found in Stordalsbekken in the range of 0.04-0.19 mmol/l (Hindar & Nordstrom, 2015; Teien et al., 2017; Todt et al., 2015). These results are almost a hundred times higher than measured in non-contaminated waters. Aluminum concentrations in Kaldvellfjorden were reported in the range of 0.15-8.90 µmol. Which is within the range of Al-concentrations used in this exposure. In comparison was dissolved Al concentration in four different estuaries in China reported in the range 0.25-2.0 µmol (at 15 ‰) (Zhang et al., 1999).

The distribution of aluminum species in the exposure water was largely found in the dissolved fraction. In the control waters were aluminum species found in the dissolved fraction, as colloidal at 10%, LMM as 83%, while particulates were found as 7%. The LMM fractions exhibit some high standard deviations due to high variation between measured samples at 0h and 96h. The aluminum species were mainly found in the LMM fraction (>83%), with most found as cationic LMM (>68%). The colloidal and particulate fraction varied between the different concentration groups. With colloidal being almost non-existent for all concentrations, except the lowest concentration of 1.7 μ mol Al/l, where 33% of Al species were found in the colloidal fraction.

A low amount of Al was found in the particulate fraction, except for the highest concentration of 11.8 μ mol Al/l, where 14% of the Al species were found as particulates, figure 4.3.3. A higher association with particles at water concentration 11.8 μ mol Al/l can be due to Al reaching its solubility limit. Edzwald and Haarhoff (2011) calculated that the most common Al form in seawater, amorphous aluminum hydroxide (AlOH₃) had a solubility of 10 μ mol/l at 10°C and pH 8.1.

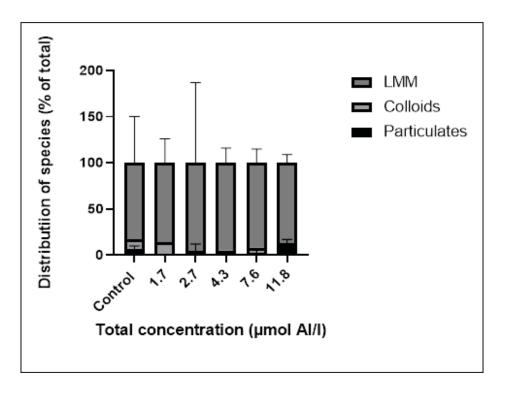


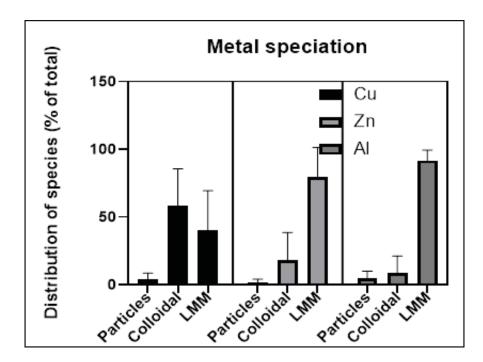
Figure 4.3.3. Mean distribution of aluminum species (Particles, Colloids, and LMM) for control, and conc. 1.7-11.8 μmol Al/l. Standard deviation is given from the difference in means between measured species at 0h and 96h.

Defining Al-speciation in aquatic systems has been and still is difficult. This is due to several factors, including the low concentration of aluminum in natural waters and complex matrixes. Especially is the analysis of seawater samples a major concern due to possible matrix effects from interfering ions (Tria et al., 2007). There are only a few studies on Al-speciation in estuaries, coastal or brackish waters. Studies on Al-speciation in seawater show that colloidal aluminum in the Pacific Ocean ranged between <1-11% (Reitmeyer et al., 1996). This is supported by Dammshauser and Croot (2012) who found that the dissolved fraction had a low colloidal association, while the soluble phase (LMM) dominated. Aluminum associated with particles was found to be low in marine surface waters (Brown et al., 2010). These studies agree with the findings of this thesis, concerning the speciation of Al in brackish waters. One study conducted on brackish water agrees with these findings, Teien et al. (2017) reported that Al was associated largely with the LMM fraction. The distribution of aluminum species in freshwater systems is heavily influenced by the pH and the complexes present in the system. In acidic freshwater with low organic content is Al associated with the LMM fraction, as pH increases will Al polymerize and hydrolyze to larger fractions (HMM) (Teien et al., 2004). The results of the present study are therefore in agreement with earlier studies conducted on SW systems.

4.3.4 Comparison of metal concentration and speciation in water

The measured total concentration of metals present in the control water followed the order Al>Zn>Cu, table 4.3. The concentrations of Cu and Zn does not exceed the concentration limit set by the Norwegian Environmental Agency (2016). All three metals had a good correlation between expected nominal concentration and measured concentration (r^2 >0.98).

In general, are the concentrations for Zn higher than for Cu at the comparable nominal concentrations, except for the nominal concentration of 2.4 μ mol. Copper and Zn exhibit similar measured concentrations due to their molar mass being similar (63.55 and 65.38 g/mol respectively). The measured nominal concentrations of Al are higher than both Cu and Zn at comparable nominal concentrations, except for at 4.3 μ mol and 7.8 μ mol, table 4.3. It is worth noting that the highest concentration of Al was expected to be 11.8 μ mol but is included in this table at 15.6 μ mol for practical reasons.


The distribution of species varies for the different metals. Both Zn- and Al-species are mainly associated with the LMM fraction. While Cu species are either found as colloidal or as LMM-species, figure 4.3.4. The metals found in the LMM fraction followed the decreasing order Al>Zn>Cu. Aluminum associated to the LMM fraction was >83% of the total fraction, with Zn associated with LMM were found in the range 40-100% of the total. Copper associated with LMM ranged greatly between 10-85% of the total. However, Cu is likely more associated with LMM than the results suggest, due to sorption to the filter. The speciation of metals is different. A one-way ANOVA test shows that there was a significant difference (p<0.05) between the means LMM-fractions for the metals Cu, Zn, and Al. A *post hoc* Tukey multiple comparison tests revealed that were no difference between LMM Zn and Al, but there was a difference between Cu and the other two metals. However, if Cu is more associated with LMM than the results suggest is the speciation between the metals not significantly different.

The metals found in the colloidal fraction followed the order Cu>Zn>Al. Due to possible sorption of LMM associated Cu is the actual colloidal fraction lower than the results suggest. A one-way ANOVA test revealed that there was a significant difference between the means

of colloidal Cu and the other two metals. Colloidal Cu was found in the range 15-85%, colloidal Zn in the range 1-55%, and colloidal Al was found <33%. The distribution of dissolved Cu- and Zn- species (colloidal and LMM) have a greater variation than Al-species, which indicates that the actual distribution of the metals is more uncertain. The particle fraction is overall low for all three metals, figure 4.3.4. No significant difference between means of metals was found for the particulate fraction. This indicate that the metals are associated with the dissolved fraction and therefore are bioavailable.

Nominal water	Measured concentration								
concentration	Cu		Z	'n	Al				
µmol/l	µmol/l	μg/l	µmol/l	μg/l	µmol/l	μg/l			
Control	0.04 ± 0.01	3 ± 1	0.10 ± 0.03	6 ± 2	0.8 ± 0.1	22 ± 2			
0.4	0.30 ± 0.03	16 ± 2	0.30 ± 0.01	18 ± 1	N.A	N.A			
0.6	0.40 ± 0.03	27 ± 2	0.50 ± 0.01	29 ± 1	N.A	N.A			
1.4	N.A	N.A	1.0 ± 0.04	66 ± 2	1.7 ± 0.1	45 ± 4			
2.4	2.1 ± 0.1	132 ± 3	1.7 ± 0.1	112 ± 4	2.7 ± 0.4	72 ± 10			
4.3	3.4 ± 0.4	219 ± 27	4.4 ± 0.2	285 ± 12	4.3 ± 0.2	116 ± 4			
7.8	7.0 ± 0.3	444 ± 20	8.2 ± 0.2	539 ± 12	7.6 ± 0.4	204 ± 9			
15.6	N.A	N.A	15.7 ± 0.2	1027 ± 12	11.8 ± 0.2	318 ± 6			

Table 4.3. Comparison of expected nominal concentration, with the measured concentration of Cu, Zn and Al given in μ mol/l and μ g/l in the exposure water.

Figure 4.3.4. Comparison of average distribution with a standard deviation of species (particles, colloids, and LMM) for Cu, Zn, and Al.

4.4 Metal uptake in fish tissue

4.4.1 Fish characteristics

The fish (n=168) used for the exposure experiments had an average weight of 76 ± 12 gram, in the range 53-103 gram, and an average length of 20 ± 1.1 cm in the range 17-22 cm. The weight and length did not vary considerably between the different metal exposures, appendix A.7.

4.4.2 Stress levels in fish

To obtain information about stress in fish was an iSTAT analyzer with cassette EC8+ used. Results show that the glucose levels found in the fish exposed to Cu, Zn, or Al did not exceed normal levels, figure 4.4.2. Stress increases the plasma glucose in fish and is a good indication of stress levels (Gatica et al., 2010). For salmon, is the average value for unstressed fish at 5.5 mmol/l, while a stressed fish has glucose levels at 10-12 mmol/l (Evensen et. al 2008, as referenced in Olsen, 2013). When fish is stressed, they breathe more and therefore have a higher chance of uptake of metals. No significant difference was found between the control group for Cu and Zn and the exposure groups. A significant difference (p<0.05) was found for the control group for Al and the exposure groups, figure 4.4.2. Further tests revealed that three exposure groups; 2.67, 4.31, and 11.79 µmol Al/l had a significant difference from the control group. However, these groups also exhibit higher standard deviations, indicating that there might be a few fish in these groups that have elevated glucose levels while the rest do not. No outliers were discovered. Comparing the glucose levels found for fish exposed to Al against glucose levels exposed to Cu and Zn reveals that they are similar. Glucose levels are influenced by the diet of the fish. Therefore, the elevated levels of glucose could be due to the fish being fed later up to transfer. This makes it more likely that the control group for Al had lower glucose levels due to their diet. However, it cannot be excluded that Al might have impacted the fish negatively as Al is a known stressor for fish (Rosseland et al., 1990)

Figure 4.4.2 Average with standard deviation glucose levels in the blood of fish from exposure to Cu, Zn, and Al * denotes a significant difference (p<0.05) between means.

4.4.3 Copper uptake in fish tissue

The uptake of copper in fish varied with the tissue and the copper concentration in the water. The uptake of gill increased considerably as the concentration of copper increased. The control group of gills had an average measured value of copper at 0.028 ± 0.0083 mmol/kg gills dw, figure 4.4.3a. One value in the control group was marked as an outlier but was included in the calculation. This outlier increases the average and the standard deviation slightly. All exposure groups passed the normality test.

A significant increase was found for the four highest concentrations (p < 0.05), figure 4.4.3a. The average measured values were found to be 0.06 ± 0.02 , 0.08 ± 0.01 , 0.10 ± 0.08 mmol Cu/kg gills dw, with increased concentration of 2.04, 3.41 and 6.69 µmol/l respectively. Significant uptake of copper in the gills agrees with the findings of Grosell et al. (2003) with 7-days Cu exposure conducted on clear nosed skates and sculpins at comparable Cu exposure levels as this thesis. The accumulation of copper was reported higher than this thesis's findings, despite both studies having similar copper concentrations in the water. The magnitude of uptake on clear nosed skate and sculpins was also much higher than for salmon. The difference in uptake can be due to fish species' sensitivity.

The uptake of copper in kidneys was overall not significant and no trend was discovered. The control group for kidneys was measured to an average value of 0.10 ± 0.01 mmol Cu/kg kidney dw, figure 4.4.3b. All groups, except for concentration 0.14 and 0.25 µmol/L, passed the normality test. Two values were marked as outliers, one for concentration 0.14 and one for concentration 0.25. Both have been included in the calculations. These outliers increased the average and standard deviation of their groups and hinder these groups from passing the normality test. The average values of Cu were not significantly higher for exposure groups compared to control groups, figure 4.4.3b. Average values were found in the range 0.09-0.12 mmol Cu/kg kidney dw, figure 4.4.3b. There have been reported uptake of copper in kidneys of sculpins at comparable Cu concentrations in the exposure water to this thesis (Grosell et al., 2003). As the study with sculpins was conducted over seven days it is possible that the salmon of this thesis could accumulate copper in the kidneys had the exposure prolonged longer than 96-hours.

The uptake of copper in the liver was not significant and did not follow any trend. The control group for the liver gave an average value of $4 \pm 2 \text{ mmol Cu/kg}$ liver dw, figure 4.4.3c. All groups passed the normality test. The average values varied between 3-5 mmol Cu/kg liver dw. The results on the lack of uptake of copper in the liver are supported by Blanchard and Grosell (2005). This study found that killifish exposed to copper at comparable salinity and Cu concentrations in the water also found the highest concentration of copper in the liver.

39

However, there was not a significant uptake of copper in the liver, which agrees with the results of this thesis. No internal elevated copper concentrations were found in the bodies of clear nosed skates and sculpins either (Grosell et al., 2003).

The concentration of copper found in the tissues naturally in control fish followed the order liver>kidney>gills. However, the uptake compared to the control groups were found to be the highest for gills, while the uptake in kidneys or liver were non-existent compared to the control groups. The results indicate that there is a naturally high concentration of copper in the liver of the salmons which is not influenced by the copper present in the water. Shukla et al. (2007) support the results of the degree of accumulation of copper in spotted snakeheads. However, this study was conducted in a freshwater system with much higher concentrations of copper in the exposure water. The significantly higher exposure groups, with nominal water concentrations 0.56-7.0 μ mol Cu/l, increased the metal concentration. No significant uptake was found for the kidney and liver.

The Norwegian Environment Agency (2016) has set the limit of Cu concentration in coastal water for acute exposure at 0.08 μ mol/l. The results from the present study indicate that there is no uptake at this concentration limit. A significant uptake in the gills is only found at concentrations at least seven times higher than the limit. This indicates that there is a low risk of uptake of Cu in the fish at low concentrations of Cu in coastal waters. However, higher concentrations of Cu in coastal waters do impose a risk of uptake in fish.

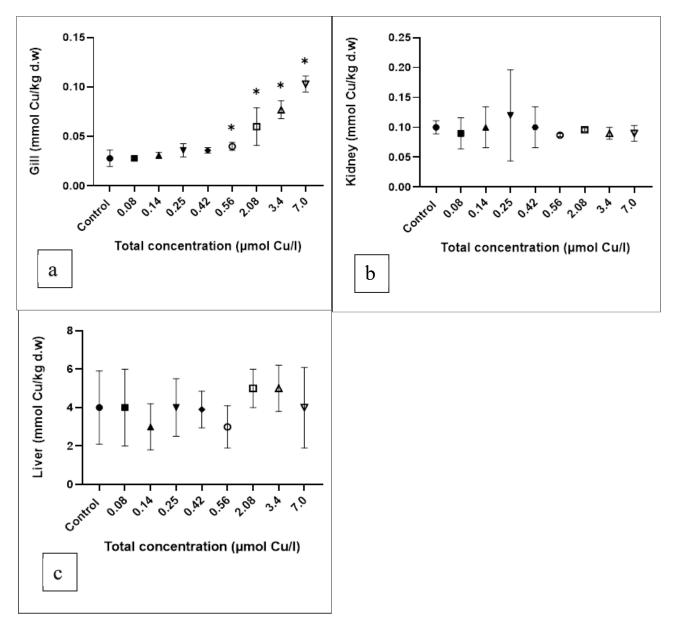


Figure 4.4.3. Concentration of copper in gills (a), kidney (b) and liver (c) at different exposure concentrations of Cu at 20 promille. Given as average ± SD mmol/kg. * denotes a significant difference (p<0.05) from control group

4.4.4 Zinc uptake in fish tissue

The uptake of zinc did not vary much with tissue or zinc content in the water. Some significant difference from control groups was found for gills and liver, figure 4.4.4. The control group of gills gave an average measured value of 10 ± 2 mmol Zn/kg gills dw. All groups passed the normality test. The average values for all concentrations ranged between 7-10 mmol Zn/kg gills dw, figure 4.4.4a. A significant difference was found for two

concentrations, though both are significantly lower than the control (p<0.05). The observed results of gill Zn concentration are higher than reported for other fish species. A study conducted on *Fundulus heteroclitus* in SW with comparable Zn concentrations to this thesis reported lower Zn accumulation in the gills after seven days of exposure. However, no significant uptake on the gills was found in the study, in agreement with the results of this thesis (Shyn et al., 2012).

The concentration of zinc in kidneys increased slightly with an increase of zinc in the water. However, no significant difference from the control group was found. The control group for zinc in kidneys had an average measured value to 4.0 ± 1.8 mmol Zn/l kidney dw. All groups, except for the control group and concentration 0.64 µmol/L, passed the normality test. Two values were marked as outliers, one for the control group and one for concentration 0.64, which hinders the passing of normality tests. Average values were found between 3.0-6.0 mmol Zn/kg kidney dw, figure 4.4.4b. With the highest concentration found for concentration of 4.35 µmol/L at 6.0 ± 2.2 mmol Zn/kg kidney dw.

The control group for zinc in the liver had an average measured value at 1.0 ± 0.3 mmol Zn/kg liver dw. All groups passed the normality test. Average values were found between 1-2 mmol Zn/kg liver dw, figure 4.4.4c. A significant difference was found between the control group and concentration 1.0 µmol Zn/l and 1.7 µmol Zn/l (p<0.05), the former with a large standard deviation. This is consistent with other studies with the same Zn concentrations in the exposure water (Shyn et al., 2012). However, the same study also reported a significant increase at even higher concentration also used for this experiment (15.7 µmol Zn/l), in conflict with the results of this thesis.

The concentration of Zn found in the different tissue followed the order gills>kidney>liver. These results agree with other studies conducted with seawater and with similar Zn concentrations in the seawater (Shyn et al., 2012). However, the uptake of zinc did not increase significantly with an increase of zinc content in the water, despite high concentrations. For the two significantly higher exposure groups, 1.0 and 1.7 µmol Zn/l increased the metal concentration in the liver by 1 mmol/kg. It is uncertain why these two groups were significantly higher when no significant difference was found for higher water

concentrations. It is worth noting that there is a significant difference (p<0.05) between means at a molar level, μ mol/l, but not when the test is performed with weight, mg/kg.

The Norwegian Environment Agency has set the concentration limit of Zn in coastal water for acute effects to 0.92 μ mol/l. This limit is exceeded by the five highest concentration of Zn, from 1.0 to 15.7 μ mol/l. There was no significant uptake of Zn in the fish in brackish water. Despite the concentrations of Zn exceeding the limit by a magnitude of 17 at most. This indicates that there is a low risk of uptake of Zn in fish in coastal waters.

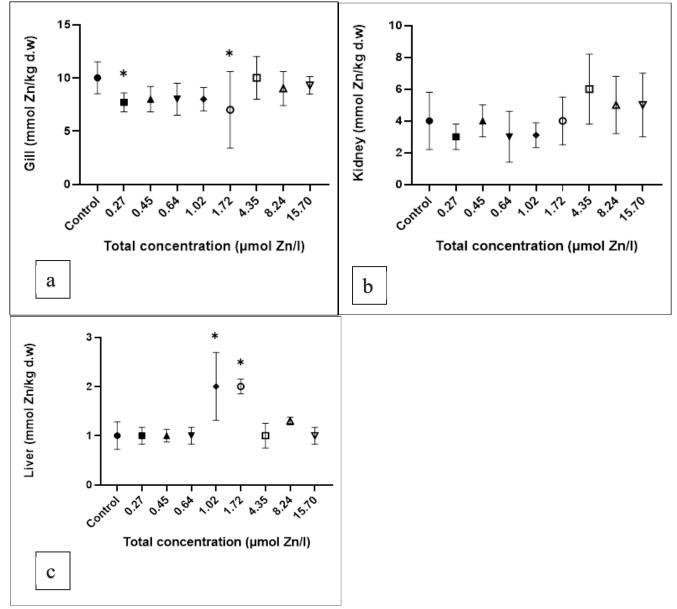


Figure 4.4.4. Concentration of zinc in gills (a), kidney (b) and liver (c) at different exposure concentrations of Zn in seawater at 20 promille. Given as average \pm SD mmol/kg.

* denotes a significant difference (p<0.05) from control group

4.4.5 Aluminum uptake in fish tissue

Uptake of aluminum in the different tissue varied with the tissue and concentration of metal present in the water. For the control group of gills were the average value given at 0.25 ± 0.04 mmol Al/kg gill dw. The average measured values of aluminum did increase with a higher concentration of Al in the water. With the highest three concentrations giving an average measured value; 0.5 ± 0.2 mmol Al/kg, 0.6 ± 0.2 mmol Al/kg, and 0.8 ± 0.2 mmol Al/kg dw, respectively with higher concentration, figure 4.4.5a. These three concentrations were significantly higher than control (p<0.05), figure 4.4.5a. All five exposure groups, including the control group, passed the normality test. Gills are proven to be the main organ of concern regarding the uptake of aluminum. Studies conducted on fish in freshwater systems report higher aluminum accumulation than the observed results found for this experiment. Even with lower concentrations of aluminum present in the exposure water (Monette et al., 2010; Nussey et al., 1999). These results indicate that there is an effect on speciation, as higher pH and higher salinity decrease the uptake of Al in fish.

Uptake of Al in the kidneys increased some at higher water concentrations. For the control group of kidneys were the average measured value given at 0.057 ± 0.010 mmol Al/kg kidney dw, figure 4.4.5b. One value was marked as an outlier for concentration 1.66 µmol/L. All groups passed the normality test, except for concentration 1.66 µmol/L. The average values for Al concentration in kidneys were found in the range of 0.08-0.12 mmol Al/kg kidney dw, figure 4.4.5b. Two concentrations, 1.66 and 1.56 µmol Al/l were found to have a significant difference from the control group (p<0.05). There is a lack of studies reporting Al concentrations in kidneys. However, studies indicate that the uptake of Al in the kidneys is low (Gensemer & Playle, 1999).

Uptake in the liver did not increase considerably with a higher concentration of Al in the exposure water. For the control group of liver were the average measured value given at 0.08 \pm 0.02 mmol Al/kg liver dw Al, figure 4.4.5c. One value, for concentration 4.31, was marked as an outlier. All groups, except for concentration 4.31, passed the normality test. This group passes the normality test when removing the outlier. The concentrations of Al for the five groups varied between 0.10-0.11 mmol Al/kg liver dw. Studies on Al uptake in liver on freshwater fish (*Labeo umbratus*) reports higher Al concentrations than this study (Nussey et

al., 1999).

The accumulation of aluminum in the fish followed the order gill>kidney>liver. The results of the uptake of aluminum indicate that there was a significant uptake in the gills for all concentrations, except for the lowest, $1.7 \mu mol$. The increase in natural Al concentration in the control group in the gills was in the range 0.11-0.52 mmol Al/kg. The measured value of aluminum of gills at the highest concentrations can be due to the speciation in the water. Particles can be stuck to the gills, and not transferred into the body of the fish. However, the speciation analysis indicates that Al associated with particles is low. The uptake in gills is therefore likely due to Al associated with the LMM fraction. Two groups of Al in the kidney had a significant increase in uptake, that being 1.7 and 7.6 μ mol/l. These increased by 0.061 and 0.041 mmol Al/kg, respectively. No uptake of Al in the liver was discovered.

At present, there exists no proposed concentration limit for Al in coastal or marine waters. Golding et al. (2015) proposed a water quality guideline of 0.9 μ Mol total Al/l (24 μ g/l) for marine waters for 95% species protection. The same study noted that the exposed juvenile fish did not exhibit adverse effects, even at the highest concentrations. This agrees with the present study. The concentration of Al in the control water was close to the proposed limit, and all exposure concentrations exceeded this limit as well. Despite this was significant uptake only registered in the gills from concentrations 2.7 to 11.8 μ mol Al/l. There is a risk of uptake of Al on the gills of fish living in coastal waters at elevated concentrations of Al.

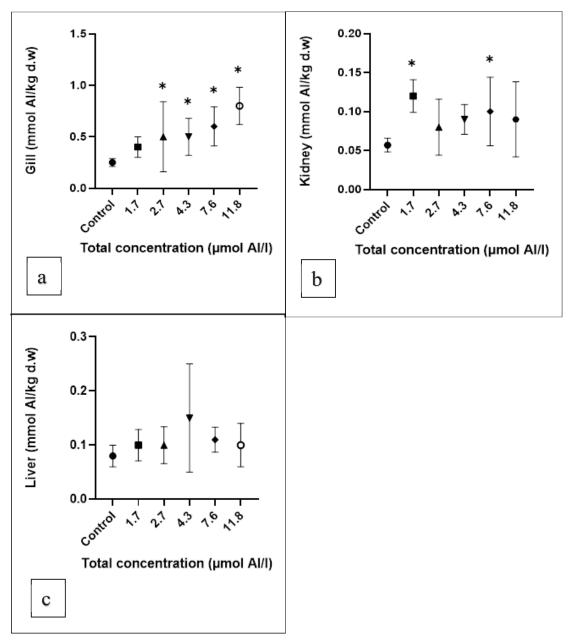


Figure 4.4.5. Concentration of aluminum in gills (a), kidney (b) and liver (c) at different exposure concentrations of Al. Given as average ± SD mmol/kg

* denotes a significant difference (p<0.05) from control group.

4.4.6 Comparison of metals in tissue

The natural concentrations for the three tissues were found in the order Zn>Cu>Al. This is in agreement with other studies were zinc was most abundant out of several metals for some freshwater fish species (Gilbert & Avenant-Oldewage, 2014; Orata & Birgen, 2016). With the liver being the tissue with the highest concentration of Cu, while Zn and Al-concentrations found highest in the gills.

Table 4.4 summarized the increase (in mmol/kg) from the control group tissue of metal concentration measured in the tissues for the different exposure groups. It is worth noting that the table does not consider the standard deviation in the groups. In the gills was Zn found to have the highest concentrations in the control group, however, the results indicate that there was no increase. In comparison increases Cu and Al at comparable nominal concentrations in the water. Aluminum increases most of the three metals at the comparable nominal water concentrations 2.4-7.8 μ mol/l. At nominal water concentration 7.8 μ mol/l increased the metal concentration in gills by 0.30 mmol Al/kg from the control group. Where in comparison Cu increased by 0.075 mmol/kg.

In the kidneys was Zn once again found the be the most abundant metal. There was no increase of Cu in the kidneys or of Zn at the lower nominal water concentrations. At nominal water concentration 4.3μ mol/l increased the metal concentration in the kidneys of Zn by 2 mmol Zn/kg. However, this value was not proven significantly higher (p<0.05). At the same nominal water concentrations increased the metal concentration by 0.032 mmol Al/kg. Comparing the increase to the concentrations found in the control group tissue shows that the concentration of Zn increased by a magnitude of 0.9, where concentration of Al increased by a magnitude of 1.6.

In the liver was Cu found to have the highest concentrations of the three. Some increase, by 1 mmol/kg, in metal concentrations in the liver was found for Cu but was proven to not be significantly higher. The nominal water concentration 1.7 μ mol/l for Zn and 4.3 μ mol/l for Al was proven to have a significant increase. Zinc concentration in the liver increased by 1 mmol Zn/kg, this was significantly higher (p<0.05). Aluminum concentration in the liver increased by 1 increased by 0.07 mmol Al/kg at 4.3 μ mol/l nominal water concentration.

47

The results indicate that there is a naturally high concentration of Cu in the liver, and Zn in all three tissues. This could be due to the Cu- and Zn-rich diet of the salmon smolt before exposure. In addition, Cu and Zn are essential metals for organisms, while Al is not. One reason behind an observed lower uptake could be due to the high concentration of major ions, such as Ca in the exposure water. As Ca competes for metal-binding sites on the gills, high concentration of calcium could hinder the metal uptake (Pagenkopf, 1983).

The results indicate that there is a difference in the uptake of metals. Using a one-way ANOVA test with Tukey's *post hoc* test was a significant difference (p<0.05) between means discovered for the uptake of metals in fish. For gills was a significant difference found between Zn vs Cu/Al. The difference between the metals and Zn is due to the lack of uptake of Zn on the gills. The uptake of Cu and Al, however, is not significantly different. A significant difference between means was found between Al vs Cu/Zn on the uptake in kidneys. Again, no actual uptake was discovered in the kidneys of Cu or Zn, and only some uptake was found for Al for two groups. No uptake or significant difference in means of metals in the liver was discovered.

The results indicated that an acute 96 hours test, with the water parameters set for this exposure in 20 ppt seawater, is the internal uptake of Al, Cu, and Zn not an issue. There is an uptake on the gills of Al and Cu. This could be due to the sorption of particles to gills that does not travel further into the body of the fish. However, since the particle fraction associated with Cu and Al is low is this unlikely.

	Increase in tissue metal concentration (mmol/kg)								
	Gill			Kidney			Liver		
µmol metal/l water	Cu	Zn	Al	Cu	Zn	AI	Cu	Zn	AI
Control	0.028	10	0.25	0.10	4	0.057	4	1	0.08
0.4	0.008	-1	N.A	0.01	0	N.A	0	0	N.A
0.6	0.012	-1	N.A	-0.01	-1	N.A	-1	0	N.A
1.4	N.A	-2	0.11	N.A	-1	0.061	N.A	1	0.01
2.4	0.036	-3	0.24	0.00	0	0.026	1	0	0.02
4.3	0.049	0	0.29	0.00	2	0.032	1	0	0.07
7.8	0.075	0	0.30	0.00	1	0.041	0	0	0.03
15.6	N.A	0	0.52	N.A	0	0.034	N.A	0	0.01

Table 4.4: Increase in mean tissue metal concentration in gill, kidney, and liver for metals Cu, Zn, and Al given in mmol metal/kg tissue. The increase is based on the average concentration of metal found for the exposure group subtracted by the average concentration found for control group (mean conc. in grey). Comparison between different nominal concentrations.

4.4.7 Concentration factor

To obtain information on the accumulation of metals in fish tissue was a concentration factor calculated. The concentration factor is the relation between the difference in uptake of metal in the fish between the exposure group and the control group and the concentration of metals present in the water. From earlier observations was uptake only found for Cu and Al in the gills and Al in the kidneys.

The CF values found for Cu in gills exhibit a decreasing trend as water concentration of Cu increases, figure 4.4.7. The highest CF value, 22, is found at the lowest water concentration, 0.4 μ mol Cu/l and lowest, 11, found for 7.8 μ mol Cu/l, table 4.5. In comparison are the CF values of Al in gills not following a clear trend, figure 4.4.7. The highest CF value is found at the second-lowest concentration, 1.4 μ mol Al/l at CF value 94. While the lowest CF value, 45, is found at the second-highest water concentration at 7.8 μ mol/l, table 4.5.

The CF values found for Al in the kidney do not follow a decreasing trend, figure 4.4.8. The highest concentration is found for 1.7 μ mol Al/l with a CF of 50, and lowest for 11.8 μ mol with CF-value of 4, table 4.5. The low CF values for Al in kidneys are due to the low concentration measured in this tissue, compared to the concentration of Al in the water. Based on the results of CF is Al in the gills of the highest risk, and Cu in the gills of some risk for accumulation of in the tissues.

In general, biota regulates bioaccumulation of metals by bioaccumulation-controlling processes. This either by elimination, detoxification, or storage. They adapt to the environment based on the nutrients which are available to them (McGeer et al., 2003). The CF values are not solely based on exposure to the pollutant. Fish regulate the accumulation of metals based on the deficiency of an essential metal, or by eliminating or detoxifying the metal. A certain degree of accumulation is therefore normal and could be unrelated to the potential pollution.

It is worth noting that the CF is calculated using the <0.45 concentration of the metals present in the water. This is due to the uncertainty in the measured samples of LMM Cu. The results obtained from the 0.45 μ m filter exhibit different trends in CF than for LMM for Cu. Among these results are overall higher CF found much lower at 0.45 than LMM for Cu. The error between the LMM fraction and 0.45 fraction was found in the range 15-91%, Appendix A.11. The CF for Al was found slightly lower at <0.45 μ m-fraction compared to the LMM fraction. The error between the fractions was found between 3-38% for both gills and liver, Appendix A.11.

The difference between LMM and <0.45 μ m fraction for Cu is large. The <0.45 μ m fraction was measured higher for Cu than the LMM fraction. This influences the CF as a higher concentration of Cu in the water decreases CF. However, it was earlier discussed that Cu may have been absorbed when ultrafiltrated, so the actual concentration of LMM Cu is uncertain. The CF results found for Cu would not be reported correctly if the LMM fraction were used. The <0.45 μ m fraction was measured similar to the measured LMM fraction for Al in the exposure water. The fraction 0.45 and LMM for Al in gills and kidney follows the same trend, with some exceptions. The error between 0.45 and LMM is the same for each group of gill and kidney. As the trend for Al does not vary considerably with a change fractions, and the CF only changes slightly is it highly likely that Al is found in the LMM fraction. Using the LMM fraction for calculating Al-CF does not change the results considerably.

Table 4.5. CF for Cu and Al in gills and Al in the kidney at comparable nominal concentrations.

Nominal water	CF					
concentration	Gi	Kidney				
µmol/l	Cu	Al				
0.4	22	N.A	N.A			
0.6	21	N.A	N.A			
1.4	N.A	94	50			
2.4	18	132	14			
4.3	14	83	9			
7.8	11	45	6			
15.6	N.A	56	4			

N.A – Not analyzed

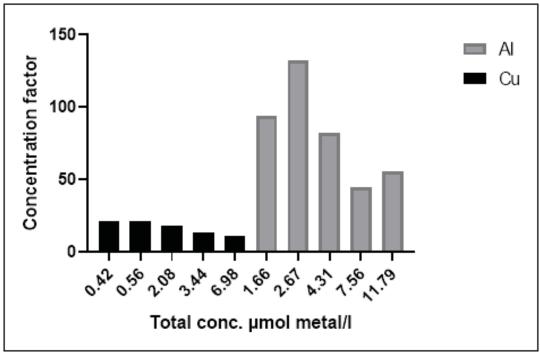


Figure 4.4.7: Concentration factor of Cu and Al in gills for different metal exposure concentrations

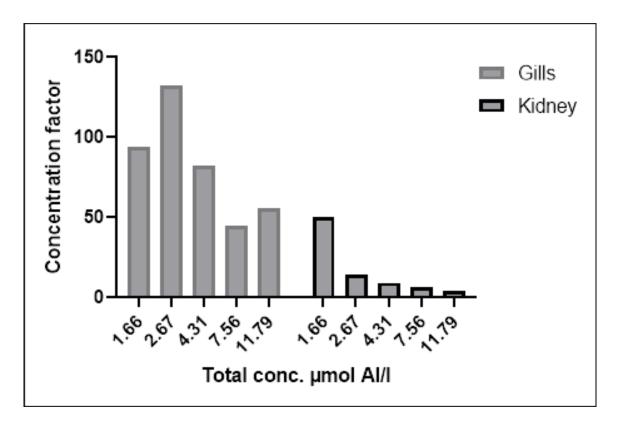


Figure 4.4.8. Concentration factors for Al in gills and kidney for different exposure concentrations.

4.4.8 Comparison of metal speciation on the uptake of metals in tissue

The speciation of Cu was earlier concluded to be uncertain. Comparing the uptake of Cu in tissue against the speciation may further prove this point. A significant difference from the control group was found for the four highest concentrations of copper; 0.56, 2.1, 3.4, and 7.0 μ mol, figure 4.4.3a. The magnitude of which they increased from the control group was 1, 2, 3, and 4-times, respectively. The speciation of Cu indicated that of the four concentrations in question was copper associated with the colloidal fraction for the two lowest and the LMM fraction for the two greater concentrations. Either is the colloidal fraction more bioavailable than assumed, or the fractionation of copper species is faulty. If the former is true, a greater concentration of copper is assumed in the kidney and liver , and not just in the gills.

The distribution of Zn-species was largely found in the LMM fraction. Except for the lowest concentration, which had an almost even split of Zn associated with colloidal and LMM

fraction. This indicated that Zn was bioavailable. A significant difference from the control group was found in the liver for concentrations 1.02 and 1.72 μ mol. However, the increase of which these increased from the control group was low. The uptake of Zn in the fish was therefore concluded to be non-existent, despite the speciation indicating that Zn was bioavailable. The lack of uptake of Zn could be due to the competition with salts in the water. It is highly likely that Ca present in the water essentially protected the fish against the uptake of the metal.

The speciation of Al, on the other hand, was overall found to be in LMM fraction for all exposure concentrations. This also reflects on the uptake of Al in the fish. A significant difference from the control group was found for several concentrations in both the gills and the two exposure concentrations in the kidneys. A clear trend can be seen for the gills, in which the increase of Al in the water gave a significant increase in Al concentration in the tissue as well. However, the same clear trend was not found for kidneys. It is not clear as of why the two concentrations; 1.7 and 7.6 μ mol Al/l had such a significant increase from the control group for gills and kidneys was of a magnitude of 2 or 3 times for all concentrations, except for kidneys concentration 2.7 μ mol Al/l.

The metals, Cu, Zn, and Al are bioavailable based on the results on speciation. However, due to the low content of organic material is this conclusion only applicable to coastal waters with low organic content. Despite the metals being bioavailable was internal uptake not an issue. In general, there was no uptake of Zn at acute exposure in brackish waters. High concentrations of Ca likely competed with binding-sites, therefore, mitigating the uptake. There was some uptake of Cu on the gills at high acute exposure concentrations and based on the trend of the results the uptake increases with Cu concentrations in the environment. There was uptake of Al at acute exposures in the gills, and some in the kidneys. Based on the results of this thesis can the following be concluded; the metals are bioavailable and uptake at acute exposure are plausible. The internal uptake at acute exposures are negligible, but longer exposure could accumulate metals in internal tissues. Coastal waters contaminated with high concentrations of Cu or Al, therefore, pose some risk for fish at acute exposure.

53

5 Conclusion and further work

This study set out to identify the speciation of trace metals in coastal systems and uptake of these metals in fish.

 H_0 : There is a difference in the speciation of copper, zinc, and aluminum in the water. Based on the literature the study predicted that there is a difference in metal speciation in coastal water. The results showed that the speciation of zinc and aluminum was mostly associated with the low molecular mass-species in brackish water, >78%, and >83% of the total, respectively. While the speciation of copper varied greatly with different copper concentrations. In general, was Cu associated with the colloidal or LMM-fraction in brackish water. A low association with particles was found for all three metals, <14% of the total. Based on these results are the metals predicted to be bioavailable. A difference in speciation was found between the LMM fraction for Cu and the LMM fraction for the two other metals. However, due to possible sorption of Cu associated with LMM this fraction could be much higher than measured for this thesis. The results, therefore, reveal that all three metals had relative similar speciation and were assumed bioavailable for uptake.

H₁: The trace metals copper, zinc, or aluminum in coastal water can be taken up in fish. The results demonstrated that copper and aluminum can be taken up in Atlantic Salmon smolts in brackish waters. While the uptake of Zn was not considered significant. The overall internal uptake was negligible for the water parameters set for this experiment (e.g. seawater, 20ppt, pH 8). One reason behind a low internal uptake could be due to salts (Ca and Mg) present in the water, which competes for binding sites. The uptake of metals on fish followed the order, Al>Cu>Zn, where gills were the tissue with the highest uptake, kidneys intermediate and the liver had no uptake. The uptake of Cu was only significantly higher for the four highest concentrations in the exposure water. The results indicate that the trace metals copper and aluminum can be taken up in fish at high water concentrations.

H₂: There is a difference in uptake of copper, zinc, and aluminum in different tissues. A difference in uptake in the tissues was found between the different metals. Uptake of Cu and Al in gills was significantly higher than Zn. No uptake of Zn was determined in the gills. The uptake of Cu on gills increased by 0.036-0.075 mmol/kg from the control group for the three highest concentrations. At comparable molar concentrations increased the uptake of Al on gills by 0.24-0.30 mmol/kg from the control group. No uptake of Cu and Zn in kidneys was found. Uptake of Al increased by 0.026-0.061 mmol/kg from the control group in the kidneys. However, due to the large variation in these groups the results are uncertain. No metal uptake was discovered for the liver.

To conclude; the metals Cu, Al, and Zn were determined to be bioavailable for uptake in brackish waters. The results indicated that the internal uptake of these metals was not an issue at acute 96 hours exposure. There was significant uptake of Cu and Al on the gills at the highest exposure concentrations. At high concentrations of Cu and Al there is a risk of uptake in fish in coastal waters. The study successfully determined the distribution of metal species in water and successfully measured and quantified the concentration and uptake of metals in tissues of Atlantic salmons smolts. The results of this study provide further insight and knowledge of trace metal speciation in brackish water. This study also adds to the literature on the uptake of trace metals in fish in brackish waters.

5.1 Further work

The work of the thesis was limited both due to practical limitations and lack of time. Future work includes deeper analysis and some new proposals.

1. The speciation of copper in the exposure water was concluded to be uncertain, as the LMM fraction was measured lower than expected. This can be due to the adsorption of copper to the filter used for ultrafiltration. To verify if there was adsorption of Cu in the filter could an additional analysis of ultrafiltrated exposure water with wash water samples reveal if this was the case. This supports or undermine the results used for the speciation of copper in this thesis.

2. There seldom are only one pollutant in natural systems. Interaction effects are therefore highly likely to occur. These effects include synergistic, antagonistic, or additive interactions. Further work could develop further on this study to include exposure with mixtures of metals. Based on the work of this thesis, Cu and Al are viable options at similar molar concentrations for further experiments. 3. This study was conducted with a salinity of 20‰. Salinity in estuarine environments varies considerably. There is a possible protective effect of salts on the uptake of metals in fish. Further work could develop further on this study to investigate the uptake of metals in brackish water with lower salinity. This investigates the protective effect of salinity on the uptake.

References

- Allan, I. J., Knutsson, J., Guigues, N., Mills, G. A., Fouillac, A. M. & Greenwood, R. (2007). Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. *Journal of Environmental Monitoring*, 9 (7): 672-681. doi: 10.1039/b701616f.
- Bervoets, L. & Blust, R. (2000). Effects of pH on cadmium and zinc uptake by the midge larvae Chironomus riparius. *Aquatic Toxicology*, 49 (1-2): 145-157. doi: 10.1016/S0166-445x(99)00066-1.
- Besson, P., Degboe, J., Berge, B., Chavagnac, V., Fabre, S. & Berger, G. (2014). Calcium, Na, K and Mg Concentrations in Seawater by Inductively Coupled Plasma-Atomic Emission Spectrometry: Applications to IAPSO Seawater Reference Material, Hydrothermal Fluids and Synthetic Seawater Solutions. *Geostandards and Geoanalytical Research*, 38 (3): 355-362. doi: 10.1111/j.1751-908X.2013.00269.x.
- Bielmyer, G. K., Bullington, J. B., Decarlo, C. A., Chalk, S. J. & Smith, K. (2012). The effects of salinity on acute toxicity of zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus. *Integrative and Comparative Biology*, 52 (6): 753-760. doi: 10.1093/icb/ics045.
- Bjerknes, V., Fyllingen, I., Holtet, L., Teien, H. C., Rosseland, B. O. & Kroglund, F. (2003). Aluminium in acidic river water causes mortality of farmed Atlantic Salmon (Salmo salar L.) in Norwegian fjords. *Marine Chemistry*, 83 (3-4): 169-174. doi: 10.1016/S0304-4203(03)00110-5.
- Blanchard, J. & Grosell, M. (2005). Effects of salinity on copper accumulation in the common killifish (Fundulus heteroclitus). *Environmental Toxicology and Chemistry*, 24 (6): 1403-1413. doi: Doi 10.1897/04-373r.1.
- Blanchard, J. & Grosell, M. (2006). Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: Is copper an ionoregulatory toxicant in high salinities? *Aquatic Toxicology*, 80 (2): 131-139. doi: 10.1016/j.aquatox.2006.08.001.
- Brown, M. T., Lippiatt, S. M. & Bruland, K. W. (2010). Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: Glacial/riverine inputs and extreme reactivity. *Marine Chemistry*, 122 (1-4): 160-175. doi: 10.1016/j.marchem.2010.04.002.
- Chakoumakos, C., Russo, R. C. & Thurston, R. V. (1979). Toxicity of Copper to Cutthroat Trout (Salmo-Clarki) under Different Conditions of Alkalinity, Ph, and Hardness. *Environmental Science & Technology*, 13 (2): 213-219. doi: DOI 10.1021/es60150a013.
- Dallinger, R., Prosi, F., Segner, H. & Back, H. (1987). Contaminated Food and Uptake of Heavy-Metals by Fish - a Review and a Proposal for Further Research. *Oecologia*, 73 (1): 91-98. doi: Doi 10.1007/Bf00376982.
- Dammshäuser, A. & Croot, P. L. (2012). Low colloidal associations of aluminium and titanium in surface waters of the tropical Atlantic. *Geochimica Et Cosmochimica Acta*, 96: 304-318. doi: 10.1016/j.gca.2012.07.032.
- Day, J. W., Hall, C. A. S., Kemp, M., & Yañez-Arancibia, A. (1989). *Estuarine ecology*. p. 576. New York: John Wiley & Sons.
- Donat, J. R., Lao, K. A. & Bruland, K. W. (1994). Speciation of Dissolved Copper and Nickel in South San-Francisco Bay - a Multimethod Approach. *Analytica Chimica Acta*, 284 (3): 547-571. doi: Doi 10.1016/0003-2670(94)85061-5.
- Driscoll, C. T. (1985). Aluminum in Acidic Surface Waters Chemistry, Transport, and Effects. *Environmental Health Perspectives*, 63 (Nov): 93-104. doi: Doi 10.2307/3430034.
- Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L. & Weathers, K. C. (2001). Acidic deposition in the northeastern

United States: Sources and inputs, ecosystem effects, and management strategies. *Bioscience*, 51 (3): 180-198. doi: Doi 10.1641/0006-3568(2001)051[0180:Aditnu]2.0.Co;2.

- Duxbury, A. C., Byrne, R. H. & Mackenzie, F. T. (2018). *Seawater*. Encyclopædia Britannica Encyclopædia Britannica, inc. Available at: <u>https://www.britannica.com/science/seawater</u> (accessed: 26.03.2020).
- Edzwald, J. K. & Haarhoff, J. (2011). Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation. *Water Res*, 45 (17): 5428-5440. doi: 10.1016/j.watres.2011.08.014.
- Eisler, R. (1993). Zinc hazards to fish, wildlife, and invertebrates : a synoptic review. Organization Series; Report 26; Biological Report 10. U.S. Dept. of the Interior, Fish and Wildlife Service. Laurel, MD. Available at: http://pubs.er.usgs.gov/publication/5200116.
- Elkins, K. M. & Nelson, D. J. (2002). Spectroscopic approaches to the study of the interaction of aluminum with humic substances. *Coordination Chemistry Reviews*, 228 (2): 205-225. doi: 10.1016/S0010-8545(02)00040-1.
- Ellwood, M. J. (2004). Zinc and cadmium speciation in subantarctic waters east of New Zealand. *Marine Chemistry*, 87 (1-2): 37-58. doi: 10.1016/j.marchem.2004.01.005.
- Erickson, R. J., Benoit, D. A., Mattson, V. R., Leonard, E. N. & Nelson, H. P. (1996). The effects of water chemistry on the toxicity of copper to fathead minnows. *Environmental Toxicology and Chemistry*, 15 (2): 181-193. doi: 10.1002/etc.5620150217.
- European Commission Joint Research Center IRMM. (2012). *Certificate of Analysis ERM-BB422 Fish Muscle*. Geel, Belgium. p. 3
- Evans, L. J. (2000). Fractionation and aqueous speciation of zinc in a lake polluted by mining activities, Flin Flong, Canada. *Water Air and Soil Pollution*, 122 (3-4): 299-316. doi: Doi 10.1023/A:1005234831526.
- Flemming, C. A. & Trevors, J. T. (1989). Copper Toxicity and Chemistry in the Environment a Review. *Water Air and Soil Pollution*, 44 (1-2): 143-158. doi: Doi 10.1007/Bf00228784.
- Fondriest Environmental Inc. (2014). Conductivity, Salinity and Total Dissolved Solids. Fundamentals of Environmental Measurements. Available at: <u>https://www.fondriest.com/environmentalmeasurements/parameters/water-quality/conductivity-salinity-tds/</u> (accessed: 26.03.2020).
- Gardner, K. H. & Apul, D. S. (2009). *Influence of Colloids and Sediments on Water Quality* Environmental and Ecological Chemistry. p. 264-277. Oxford, United Kingdom: EOLSS Publishers Co, Ltd.
- Gatica, M. C., Monti, G. E., Knowles, T. G. & Gallo, C. B. (2010). Muscle pH, rigor mortis and blood variables in Atlantic salmon transported in two types of well-boat. *Veterinary Record*, 166 (2): 45-50. doi: 10.1136/vr.c71.
- Gensemer, R. W. & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. *Critical Reviews in Environmental Science and Technology*, 29 (4): 315-450. doi: Doi 10.1080/10643389991259245.
- Gibbs, R. J. (1970). Mechanisms Controlling World Water Chemistry. *Science*, 170 (3962): 1088-1090. doi: DOI 10.1126/science.170.3962.1088.
- Gilbert, B. M. & Avenant-Oldewage, A. (2014). Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks. *Water Sa*, 40 (4): 739-747. doi: 10.4314/wsa.v40i4.19.
- Gillmore, M. L., Golding, L. A., Angel, B. M., Adams, M. S. & Jolley, D. F. (2016). Toxicity of dissolved and precipitated aluminium to marine diatoms. *Aquat Toxicol*, 174: 82-91. doi: 10.1016/j.aquatox.2016.02.004.
- Golding, L. A., Angel, B. M., Batley, G. E., Apte, S. C., Krassoi, R. & Doyle, C. J. (2015). Derivation of a water quality guideline for aluminium in marine waters. *Environ Toxicology and Chemistry*, 34 (1): 141-151. doi: 10.1002/etc.2771.

- Grosell, M., Wood, C. M. & Walsh, P. J. (2003). Copper homeostasis and toxicity in the elasmobranch *Raja erinacea* and the teleost *Myoxocephalus octodecemspinosus* during exposure to elevated water-borne copper. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 135 (2): 179-190. doi: 10.1016/S1532-0456(03)00089-9.
- Grosell, M., McDonald, M. D., Wood, C. M. & Walsh, P. J. (2004). Effects of prolonged copper exposure in the marine gulf toadfish (Opsanus beta). I. Hydromineral balance and plasma nitrogenous waste products. *Aquatic Toxicology*, 68 (3): 249-262. doi: 10.1016/j.aquatox.2004.03.006.
- Grosell, M. (2006). Intestinal anion exchange in marine fish osmoregulation. *Journal of Experimental Biology*, 209 (15): 2813-2827. doi: 10.1242/jeb.02345.
- Hansen, L. P. & Quinn, T. R. (1998). The marine phase of the Atlantic salmon (Salmo salar) life cycle, with comparisons to Pacific salmon. *Canadian Journal of Fisheries and Aquatic Sciences*, 55 (S1): 104-118. doi: https://doi.org/10.1139/d98-010
- Hedges, J. I. (1987). Organic Matter in Sea Water. Nature, 330: 205-206. doi: DOI 10.1038/330205a0.
- Heier, L. S., Lien, I. B., Strømseng, A. E., Ljønes, M., Rosseland, B. O., Tollefsen, K. E. & Salbu, B. (2009). Speciation of lead, copper, zinc and antimony in water draining a shooting range-Time dependant metal accumulation and biomarker responses in brown trout (Salmo trutta L.). *Science of the Total Environment*, 407 (13): 4047-4055. doi: 10.1016/j.scitotenv.2009.03.002.
- Hindar, A. & Nordstrom, D. K. (2015). Effects and quantification of acid runoff from sulfide-bearing rock deposited during construction of Highway E18, Norway. *Applied Geochemistry*, 62: 150-163. doi: 10.1016/j.apgeochem.2014.06.016.
- Hu, C., Yang, X., Dong, J. & Zhang, X. (2018). Heavy metal concentrations and chemical fractions in sediment from Swan Lagoon, China: Their relation to the physiochemical properties of sediment. *Chemosphere*, 209: 848-856. doi: 10.1016/j.chemosphere.2018.06.113.
- Hydes, D. J. & Liss, P. S. (1977). The behavior of dissolved aluminum in estuarine and coastal waters. *Estuarine and Coastal Marine Science*, 5 (6): 755-769. doi: Doi 10.1016/0302-3524(77)90047-0.
- Kozelka, P. B. & Bruland, K. W. (1998). Chemical speciation of dissolved Cu, Zn, Cd, Pb in Narragansett Bay, Rhode Island. *Marine Chemistry*, 60 (3-4): 267-282. doi: Doi 10.1016/S0304-4203(97)00107-2.
- Kroglund, F., Guttrup, J., Kleiven, E., Stefansson, S., Barlaup, B. & Teien, H. C. (2007). Aluminium, et miljøproblem for laks i Sandnesfjorden, Aust-Agder?. NIVA-rapport; 6149. p. 47. Available at: <u>http://hdl.handle.net/11250/213520</u> (accessed 13.05.2020)
- Kroglund, F., Høgberget, R., Haraldstad, T., Økland, F., Thorstad, E., Teien, H. C., Rosseland, B. O., Salbu, B., Nilsen, T. O., Stefansson, S., et al. (2011). Påvirkes lakesmolt av aluminium i brakkvann? Telemetriundersøkelser i Storelva i Holt, Aust-Agder, 2007. NIVA-rapport 6245.
 p. 81. Available at http://hdl.handle.net/11250/2378727 (accessed 13.05.2020)
- Lead, J. R., Davison, W., Hamilton-Taylor, J. & Buffle, J. (1997). Characterizing Colloidal Material in Natural Waters. *Aquatic Geochemistry*, 3 (3): 213-232. doi: Doi 10.1023/A:1009695928585.
- Mantoura, R. F. C., Dickson, A. & Riley, J. P. (1978). Complexation of Metals with Humic Materials in Natural-Waters. *Estuarine and Coastal Marine Science*, 6 (4): 387-408. doi: Doi 10.1016/0302-3524(78)90130-5.
- Marion, G. M., Millero, F. J., Camoes, M. F., Spitzer, P., Feistel, R. & Chen, C. T. A. (2011). pH of seawater. *Marine Chemistry*, 126 (1-4): 89-96. doi: 10.1016/j.marchem.2011.04.002.
- Masresha, A. E., Skipperud, L., Rosseland, B. O., Zinabu, G. M., Meland, S., Teien, H. C. & Salbu, B. (2011). Speciation of selected trace elements in three Ethiopian Rift Valley Lakes (Koka, Ziway, and Awassa) and their major inflows. *Science of the Total Environment*, 409 (19): 3955-3970. doi: 10.1016/j.scitotenv.2011.06.051.

- McCormick, S. D., Hansen, L. P., Quinn, T. P. & Saunders, R. L. (1998). Movement, migration, and smolting of Atlantic salmon (Salmo salar). *Canadian Journal of Fisheries and Aquatic Sciences*, 55 (S1): 77-92. doi: DOI 10.1139/d98-011.
- McGeer, J. C., Brix, K. V., Skeaff, J. M., DeForest, D. K., Brigham, S. I., Adams, W. J. & Green, A. (2003). Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. *Environmental Toxicology and Chemistry*, 22 (5): 1017-1037. doi: 10.1002/etc.5620220509.
- Miljødirektoratet. (2016). Grenseverdier for klassifisering av vann, sediment og biota Quality standards for water, sediment and biota. M-608. p. 24.
- Millero, F. J., Woosley, R., Ditrolio, B. & Waters, J. (2009). Effect of Ocean Acidification on the Speciation of Metals in Seawater *Oceanography*, 22 (4): 72-85. doi: 10.5670/oceanog.2009.98
- Moffett, J. W. & Dupont, C. (2007). Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. *Deep-Sea Research Part I-Oceanographic Research Papers*, 54 (4): 586-595. doi: 10.1016/j.dsr.2006.12.013.
- Monette, M. Y., Yada, T., Matey, V. & McCormick, S. D. (2010). Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum. *Aquatic Toxicology*, 99 (1): 17-32. doi: 10.1016/j.aquatox.2010.03.016.
- Motulsky, H. J. & Brown, R. E. (2006). Detecting outliers when fitting data with nonlinear regression a new method based on robust nonlinear regression and the false discovery rate. *BMC Bioinformatics*, 7 (123): doi: Artn 12310.1186/1471-2105-7-123.
- Muller, F. L. L. & Batchelli, S. (2013). Copper binding by terrestrial versus marine organic ligands in the coastal plume of River Thurso, North Scotland. *Estuarine Coastal and Shelf Science*, 133 (20): 137-146. doi: 10.1016/j.ecss.2013.08.024.
- Naito, W., Kamo, M., Tsushima, K. & Iwasaki, Y. (2010). Exposure and risk assessment of zinc in Japanese surface waters. *Science of the Total Environment*, 408 (20): 4271-4284. doi: 10.1016/j.scitotenv.2010.06.018.
- National Institute of Standards & Technology (NIST). (2010). *Certificate of Analysis Standard Reference Material 1640a Trace elements in Natural water*. Gaithersburg, MD, USA p. 6.
- National Research Council Canada. (2014). DOLT-5 Dogfish Liver Certified Reference Material for Trace Metals and other Constituents Ottawa, Ontario, Canada. p. 5.
- Neff, J. M. (2002). *Bioaccumulation in marine organisms : effect of contaminants from oil well produced water*. p. 452. Amsterdam, Boston: Elsevier.
- Nikanorov, A. M. & Brazhnikova, L. V. (2009). *Water Chemical Composition of Rivers, Lakes and Wetlands.* Types and Properties of Water Volume 2. Oxford, United Kingdom: EOLSS Publishers Co. Ltd.
- NORDTEST. (2003). *Increase in colour and amount of organic matter in surface waters*. Position Paper 009. p. 11. Espoo, Finland.
- NIVA, Norwegian Institute for Water Research. (2017). *NIVA Risk Assessment Database (NIVA RAdb)*. Available at: <u>https://www.niva.no/en/projectweb/radb</u> (accessed: 28.03.2020).
- Norwegian Seafood Council. (2020). *Sjømateksport for 107,3 milliarder kroner i 2019*: Norwegian Seafood Council Available at: <u>https://seafood.no/aktuelt/nyheter/sjomateksport-for-1073-milliarder-kroner-i-2019/</u>.
- Nussey, G., van Vuren, J. H. J. & du Preez, H. H. (1999). Bioaccumulation of aluminium, copper, iron and zinc in the tissues of the moggel from Witbank Dam, Upper Olifants River Catchment (Mpumalanga). South African Journal of Wildlife Research, 29 (4): 130-144. Available at: <u>https://hdl.handle.net/10520/EJC117079</u>.
- OECD. (1992). Test No. 203: Fish, Acute Toxicity Test. *OECD Guidelines for the Testing of Chemicals. p. 9.*

- Oldham, V. E., Swenson, M. M. & Buck, K. N. (2014). Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda. *Marine Pollution Bulletin*, 79 (1-2): 314-20: doi: 10.1016/j.marpolbul.2013.12.016.
- Olsen, M. L. (2013). Vannkvalitet ved Slakting. Master thesis, Ås.: Universitet for Miljø og Biovitenskap. Available at http://hdl.handle.net/11250/189154. (accessed 31.05.2020)
- Orata, F. & Birgen, F. (2016). Fish Tissue Bio-concentration and Interspecies Uptake of Heavy Metals from Waste Water Lagoons. *Journal of Pollution Effects & Control*, 4 (2): doi: 10.4172/2375-4397.100015.
- Pagenkopf, G. K. (1983). Gill Surface Interaction-Model for Trace-Metal Toxicity to Fishes Role of Complexation, Ph, and Water Hardness. *Environmental Science & Technology*, 17 (6): 342-347. doi: DOI 10.1021/es00112a007.
- Powell, K. J., Brown, P. L., Byrne, R. H., Gajda, T., Hefter, G., Sjoberg, S. & Wanner, H. (2007). Chemical speciation of environmentally significant metals with inorganic ligands - Part 2: The Cu2+-OH-, Cl-, CO32-, SO42-, and PO43- systems - (IUPAC technical report). *Pure and Applied Chemistry*, 79 (5): 895-950. doi: DOI 10.1351/pac200779050895.
- Rainbow, P. S., Malik, I. & O'Brien, P. (1993). Physicochemical and Physiological-Effects on the Uptake of Dissolved Zinc and Cadmium by the Amphipod Crustacean Orchestia-Gammarellus. Aquatic Toxicology, 25 (1-2): 15-30. doi: Doi 10.1016/0166-445x(93)90017-U.
- Reitmeyer, R., Powell, R. T., Landing, W. M. & Measures, C. I. (1996). Colloidal aluminum and iron in seawater: An intercomparison between various cross-flow ultrafiltration systems. *Marine Chemistry*, 55 (1-2): 75-91. doi: Doi 10.1016/S0304-4203(96)00049-7.
- Rosseland, B. O., Eldhuset, T. D. & Staurnes, M. (1990). Environmental effects of aluminium. *Environmental Geochemistry and Health*, 12 (1-2): 17-27. doi: 10.1007/BF01734045.
- Salbu, B. & Skipperud, L. (2009). Speciation of radionuclides in the environment. *Journal of Environmental Radioactivity*, 100 (4): 281-282. doi: 10.1016/j.jenvrad.2008.12.008.
- Scoullos, M. J. & Pavlidou, A. S. (2000). Metal Speciation Studies in a Brackish/Marine Interface System. *Global Nest: the Int. J.*, 2(3): 255-264. Available at https://journal.gnest.org/sites/default/files/Journal%20Papers/sculos.pdf.
- Shafer, M. M., Hoffmann, S. R., Overdier, J. T. & Armstrong, D. E. (2004). Physical and kinetic speciation of copper and zinc in three geochemcally contrasting marine estuaries. *Environmental Science & Technology*, 38 (14): 3810-3819. doi: 10.1021/es0306765.
- Shrivastava, A. & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantification of the analytical methods. *Chronicles of Young Scientist*, 2 (1): 21-25. doi: 10.4103/2229-5186.79345.
- Shukla, V., Dhankhar, M., Prakash, J. & Sastry, K. V. (2007). Bioaccumulation of Zn, Cu and Cd in Channa punctatus. *Journal of Environmental Biology*, 28 (2): 395-397. Available at https://pubmed.ncbi.nlm.nih.gov/17929755/.
- Shyn, A., Chalk, S. J., Smith, K., Charnock, N. L. & Bielmyer, G. K. (2012). Zinc Distribution in the Organs of Adult Fundulus heteroclitus After Waterborne Zinc Exposure in Freshwater and Saltwater. Archives of Environmental Contamination and Toxicology, 63 (4): 544-553. doi: 10.1007/s00244-012-9805-0.
- Siriwardena, S. (2019). *Salmo salar (Atlantic salmon)*. Datasheet. In CABI (ed.). Invasive Species Compendium. Available at: <u>https://www.cabi.org/isc/datasheet/65307</u> (accessed 27.04.2020)
- Teien, H. C., Salbu, B., Kroglund, F. & Rosseland, B. O. (2004). Transformation of positively charged aluminium-species in unstable mixing zones following liming. *Science of the Total Environment*, 330 (1-3): 217-232. doi: 10.1016/j.scitotenv.2004.03.040.
- Teien, H. C., Kroglund, F., Atland, A., Rosseland, B. O. & Salbu, B. (2006a). Sodium silicate as alternative to liming-reduced aluminium toxicity for Atlantic salmon (Salmo salar L.) in unstable mixing zones. *Science of the Total Environment*, 358 (1-3): 151-163. doi: 10.1016/j.scitotenv.2005.09.052.

- Teien, H. C., Standring, W. J. F. & Salbu, B. (2006b). Mobilization of river transported colloidal aluminium upon mixing with seawater and subsequent deposition in fish gills. *Science of the Total Environment*, 364 (1-3): 149-164. doi: 10.1016/j.scitotenv.2006.01.005.
- Teien, H. C., Pettersen, M. N., Kassaye, Y. A., Hindar, A., Lind, O. C. & Håvardstun, J. (2017). *Aluminium og spormetaller i Kaldvellfjorden - tilstandsformer og opptak i fisk.* MINA Fagrapport 47. ISSN: 2535-2806. p. 61. Ås: MINA NMBU
- Todt, C., Brekke, E. & Tveranger, B. (2015). *Resipientundersøkelse av Kaldvellfjorden, Lillesand kommune, august 2015. p. 42.* Rådgivende Biologer AS.
- Tria, J., Butler, E. C. V., Haddad, P. R. & Bowie, A. R. (2007). Determination of aluminium in natural water samples. *Analytica Chimica Acta*, 588 (2): 153-165. doi: 10.1016/j.aca.2007.02.048.
- USEPA. (2007). *Aquatic Life Ambient Freshwater Quality Criteria Copper* US Environmental Protection Agency. p. 204. Washington DC.
- Van Den Berg, C. M. G., Buckley, P. J. M., Huang, Z. Q. & Nimmo, M. (1986). An Electrochemical Study of the Speciation of Copper, Zinc and Iron in two Estuaries in England. *Estuarine Coastal and Shelf Science*, 22 (4): 479-486. doi: Doi 10.1016/0272-7714(86)90069-7.
- van Geen, A. & Luoma, S. N. (1993). Trace-Metals (Cd, Cu, Ni, and Zn) and Nutrients in Coastal Waters Adjacent to San-Francisco Bay, California. *Estuaries*, 16 (3a): 559-566. doi: Doi 10.2307/1352603.
- Vega, M., Pardo, R., Herguedas, M. M., Barrado, E. & Castrillejo, Y. (1995). Pseudopolarographic Determination of Stability-Constants of Labile Zinc-Complexes in Fresh-Water. *Analytica Chimica Acta*, 310 (1): 131-138. doi: Doi 10.1016/0003-2670(95)00116-H.
- Wells, M. L., Smith, G. J. & Bruland, K. W. (2000). The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI. *Marine Chemistry*, 71 (1-2): 143-163. doi: Doi 10.1016/S0304-4203(00)00046-3.
- Wen, L. S., Santschi, P., Gill, G. & Paternostro, C. (1999). Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. *Marine Chemistry*, 63 (3-4): 185-212. doi: Doi 10.1016/S0304-4203(98)00062-0.
- Wheeler, J. R., Leung, K. M. Y., Morritt, D., Sorokin, N., Rogers, H., Toy, R., Holt, M., Whitehouse, P. & Crane, M. (2002). Freshwater to saltwater toxicity extrapolation using species sensitivity distributions. *Environmental Toxicology and Chemistry*, 21 (11): 2459-2467. doi: 10.1897/1551-5028(2002)021<2459:Ftsteu>2.0.Co;2.
- Wood, C. M., Farrell, A. P. & Brauner, C. J. (2012a). *Homeostasis and toxicology of essential metals*. 1st ed. Fish physiology. p 497. Amsterdam, New York: Academic Press.
- Wood, C. M., Farrell, A. P. & Brauner, C. J. (2012b). *Homeostasis and toxicology of non-essential metals*. 1st ed. Fish physiology. p 505. Amsterdam, New York: Academic Press.
- WHO, World Health Organisation. (2003). *Aluminium in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality*. p. 9. Available at https://apps.who.int/iris/handle/10665/75362 (accessed 12.03.2020).
- Zhang, J., Xu, H., G., Yu. Z. G., Wu, Y. & Li, J. F. (1999). Dissolved Aluminum in Four Chinese Estuaries: Evidence of Biogeochemical Uncoupling of Al with Nutrients. *Journal of Asian Earth Sciences*, 17 (3): 333-342. https://doi.org/10.1016/S0743-9547(98)00068-3.
- Zhang, L. & Wang, W. (2007). Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities. *Aquatic Toxicology*, 84 (2): 173-181. doi: 10.1016/j.aquatox.2007.03.027.
- Zhou, L., Tan, Y., Huang, L., Fortin, C. & Campbell, P. G. C. (2018). Aluminum effects on marine phytoplankton: implications for a revised Iron Hypothesis (Iron–Aluminum Hypothesis). *Biogeochemistry*, 139 (2): 123-137. doi: 10.1007/s10533-018-0458-6.

Appendix

Appendix A.1 – LOD/LOQ Water samples

Five blank samples were used to estimate for calculation of the limit of quantification (LOQ) and limit of detection (LOD). An example is given in eq. 7 for LOD, and eq. 8 for LOQ. The data used to calculate to LOD and LOQ are presented in Table A.1.

Eq. 7 $LOD = 3 \times Standard deviation of Blanks$

 $LOD = 3 \times 0.0050 = 0.01 \ \mu g/l$

Eq. 8 LOQ = 10 * STD Blanks

 $LOQ = 10 \times 0.0050 = 0.050$

Table A.1: Measured blank water samples of Cu, Zn, and Al with Average, and standard deviation. LOD/LOQ given in µg/l and µmol/l.

	Cu	n	Zn	L L	A	
	// 2011	1/100011	ا/م	1/100011	1/211	1/100011
Sample Name	Hg/I	ו /וטוווש	hg/I	וטווומ	hg/I	hilloi/i
blank 1	0.1		0.1342352		N.A	
blank 2	0.01274009		0.0033364		0.0625	
blank 3	0.01102237		0.0036854		0.0625	
blank 4	0.00225489		0.0012031		0.0623	
blank 5	0.01254992		0.0021162		0.0625	
Average	0.010	0.00015	0.003	0.00004	0.06245	0.002315
Standard Deviation	0.0050	0.000078	0.0011	0.000017	1E-04	1E-04 0.0000037
Limit of detection, LOD (w/V) (mol/V)	0.01	0.00024	0.003	0.00012	0.0003	0.000011
Limit of quantification, LOQ (w/V) (mol/V)	0.050	0.00078	0.011	0.00017	0.001	0.000037

Appendix A.2 – LOD/LOQ Fish tissue

Five blank samples were used to estimate for calculation of the limit of quantification (LOQ) and limit of detection (LOD). An example is given measured in three batches therefore measuring blank samples three times. From the three batches was one LOD/LOQ chosen for each metal in eq. 7 for LOD, and eq. 8 for LOQ. The data used to calculate to LOD and LOQ are presented in Table A.2. Fish tissue samples were based on the highest LOD/LOQ.

Eq. 7
$$LOD = 3 \times Standard deviation of Blanks$$

$$LOD = 3 \times 0.0075 = 0.022$$

Eq. 8 LOQ = 10 * STD Blanks

 $LOQ = 10 \times 0.0075 = 0.075$

- - - - -	Cu	Zn	A		Cu	Zn		Cu	Zn
AI + CUZN CONTROI	-	-	-	SU-LU CUC	-			-	-
Sample Name	mg/kg	mg/kg	mg/kg	Sample Name	mg/kg	mg/kg	Sample Name	mg/kg	mg/kg
Blank 1	2.37E-07	3.15E-07	1.22E-07	Blank 1	0.02413	0.02877	Blank 1	0.07457	-0.234
Blank 2	1.36E-07	3.93E-07	1.61E-07	Blank 2	0.03590	0.05540	Blank 2	0.01429	-0.099
Blank 3	9.35E-08	1.13E-07	7.79E-08	Blank 3	0.02055	0.07890	Blank 3	0.03453	-0.082
Blank 4	1.19E-07	2.29E-07	2.41E-07	Blank 4	0.01711	0.02109	Blank 4	0.01509	-0.317
Blank 5	1.43E-07	2.63E-07	1.61E-06	Blank 5	0.02996	0.01603	Blank 5	-0.01183	-0.186
Average	1E-07	3E-07	4E-07	Average	0.026	0.04	Average	0.03	0.03 - 0.18
SD	5.5E-08	1.0E-07	6.6E-07	SD	0.0075	0.026	SD	0.032	0.097
imit of detection, LOD (w/w)	1.6E-07	3.1E-07	2.0E-06	2.0E-06 Limit of detection, LOD (w/w)	0.022	0.079	0.079 Limit of detection, LOD (w/w)	0.096	0.29
Limit of quantification, LOQ (w/w)	5.5E-07	1.0E-06	6.6E-06	6.6E-06 Limit of quantification, LOQ (w/w)	0.075	0.265	0.265 Limit of quantification, LOQ (w/w)	0.32	0.97

Table A.2: Measured blank samples of fish tissue with average and standard deviation. LOD/LOQ are given in mg/kg.

Appendix A.3 – Traceability of analysis

The traceability of the analysis was checked using CRM's 1640a for water samples and ERM-BB422 and DOLT-5 for fish tissue samples. All measured samples with average, standard deviation, maximum and minimum values are given in table A.3.1 and A.3.2

Table A.3.1: Measured samples of CRM 1640a, maximum, minimum, average, and standard deviation values are given. Error in percentage from certified values is given. All values are given in μ g/l.

CRM 1640a	Cu	Error	Zn	Error	Al	Error
CRIVI 1640a	μg/L	%	μg/L	%	μg/L	%
Sample 1	96.6	12 %	58.0	4 %	65	19 %
Sample 2	92.7	7 %	57.6	3 %	61	11 %
Sample 3	91.7	6 %	57.2	2 %	62	13 %
Sample 4	82.1	-4 %	52.1	-6 %	56	2 %
Sample 5	82.4	-3 %	56.8	1 %	70	28 %
Sample 6	83.9	-2 %	56.6	1 %	56	2 %
Sample 7	92.1	7 %	57.0	2 %	61	11 %
Minimum	82		52		56	
Maxium	97		58		70	
Average	89		56		62	
SD	5.8		2.0		5.1	

Table A.3.2: Measured samples of CRM ERM-BB422 and DOLT-5. Average, SD, Maximum and minimum values are given. Error in percentage from certified values for each sample is given. All values are reported as mg/kg.

ERM-BB422	Cu	Error	Zn	Error	DOLT-5	Cu	Error	Zn	Error	Al	Error
ENIVI-DD422	mg/kg	%	mg/kg	%	DOL1-5	mg/kg	%	mg/kg	%	mg/kg	%
Sample 1	1.64	-2 %	16.8	5 %	Sample 1	34.1	-3 %	105	0 %	16.5	-40 %
Sample 2	1.66	-1 %	16.1	1%	Sample 2	33	-6 %	102	-3 %	22.2	-19 %
Sample 3	1.83	10 %	17.7	11 %	Sample 3	39.5	13 %	121	15 %	34.8	10 %
Sample 4	1.71	2 %	16.8	5 %	Sample 4	33.8	-3 %	106	1%	16.7	-39 %
Sample 5	1.68	1%	16.9	6 %	Sample 5	34.4	-2 %	106	1%	17.9	-35 %
Average	1.70		16.9		Average	35		108		22	
SD	0.075		0.57		SD	2.6		7.4		7.7	
Min	1.64		16.1		Min	33		102		16.5	
Max	1.83		17.7		Max	39.5		121		34.8	

Appendix A.4 Water Quality Parameters

after exposure in unfiltered water samples for the total concentration of each metal. Due to the number of samples measured (three replicates of Salinity and pH were measured once daily, and ammonia was measured at the end of the exposure, table A.4.1. Ca, K, and Mg was measured The temperature of the water in the tanks was logged each hour of the exposure, each 24h-interval of temperature is recorded in table A.4.1. each sample) are the average of each given in table A.4.2.

	58. JU. 2UIS	29.10.2019	30. JU. 2015	STU2.01.15	GTU2.LLLU	20.1U.2U13	6T07.0T.67	0103.01.00	CTOPOTIC	CT07.TT.TO	CT07.0T.07	CT07.0T.07	01010100	CT07.0T.TC		CT01:TT:TO
	0h 2	24h	48h 7	72h		h	24h 4	48h	72h	96h (6h	96h
Exposure group	T 'C 1	T 'C	T'C T	T 'C	T 'C	salinity	salinity	salinity	salinity	salinity	pH Hq	pH PH	pH Hq	pH Hq	рН	ammonia
Al control	11139	10944	10553	10553	10553	20.0	20.0	20.1	20.1	20.2	8.16	8.08	8.16	8.19	8.14	8.14 not meassured
AI C1	10944	10944	10651	10553	10455						8.16	8.1	8.15	8.19	8.17	not meassured
AI C2	11236	11041	10748	10651	10553	20.1	20.0	20.0	20.3	20.2	8.18	8.15	8.2	8.19	8.17	not meassured
AI C3	11236	11041	10651	10651	10553	19.9	20.0	20.1	20.1	20.1	8.14	8.14	8.15	8.17	8.16	8.16 not meassured
AI C4	11139	10944	10553	10553	10553	19.9	19.9	20.0	20.0	20.1	8.16	8.09	8.17	8.19	8.18	8.18 not meassured
AI C5	11236	11041	10651	10651	10553	19.9	20.0	20.0	20.1	20.1	8.12	8.11	8.13	8.19	8.21	not meassured
	04.11.2019	05.11.2019	06.11.2019	07.11.2019	08.11.2019	04.11.2019	05.11.2019	06.11.2019	07.11.2019	08.11.2019	04.11.2019	05.11.2019	06.11.2019	07.11.2019	08.11.2019	08.11.2019
	0h	24h	48h 7	72h	96h	oh	24h	48h	72h						6h	96h
xposure group	T C	T'C	T 'C	T'C		salinity	salinity	salinity	salinity	salinity		d Hd	pH Hq	pH	Н	ammonia
Zn/Cu control	10846	10846	10651	10259	10161	20	20	20.1	20.1	20.3	8.13	8.18	8.17	8.2	8.17	0.21
Zn C1	10748	10748	10553	10161	9965						8.15	8.16	8.15	8.18	8.18	0.16
Zn C2	10846	10846	10651	10259	10063	20.2	20.2	20.1	20.2	20.2	8.15	8.17	8.19	8.17	8.2	0.19
Zn C3	10846	10846	10651	10259	10063	20	20.1	20.1	20.2	20.2	8.12	8.18	8.19	8.17	8.18	0.23
Zn C4						20	20	20	20.1	20.1	8.16	8.17	8.17	8.18	8.2	0.22
Zn C5	10846	10846	10748	10357	10063	20		20.1	20.1	20.3	8.17	8.14	8.17	8.2	8.17	0.19
Cu C1		10846	10748	10553	10063		20.1	20	20.1	20.2	8.17	8.18	8.2	8.18	8.2	0.2
Cu C2	10846	10846	10651	10259	10063	20.1	20.1	20.2	20.1	20.2	8.16	8.16	8.18	8.16	8.21	0.17
cu C3	10944	10944	10748	10357	10063	20	20	20.1	20.2	20.1	8.17	8.18	8.18	8.22	8.2	0.17
cu C4	11139	11041	10944	10553	10259	19.9	20	20.1	20.2	20.3	8.15	8.14	8.19	8.17	8.19	0.18
cu C5	11139	11139	10944	10455	10259	19.9	19.9	19.9	20	20.1	8.16	8.18	8.17	8.16	8.18	0.19
	12.12.2019	13.12.2020	14.12.2020	15.12.2020	16.12.2020	12.12.2020	13.12.2020	14.12.2020	15.12.2020	16.12.2020	12.12.2020	13.12.2020	14.12.2020	15.12.2020	16.12.2020	16.12.2020
	0h	24h	48h 7	72h	96h	oh	24h 4		72h	6h					6h	96h
Exposure group	T 'C	T'C	T 'C	T 'C	T 'C	salinity	salinity	ity	ity	alinity	Н	d Hq	pH Hq	PH Hq	ЬН	ammonia
Cu/Zn control	8779	9077	9373	9571	9669	20	19.9	20		20.1	8.17	8.18	8.16	8.21	8.17	0.27
cu C6	8680	8978	9275	9472	9571	20	20	20		20.1	8.17	8.18	8.11	8.17	8.1	0.28
Cu C7	8481	8779	9077	9275	9275	20		20.1	20.2	20.3	8.17	8.19	8.17	8.1	8.17	0.29
Cu C8	8.7	8879	9176	9373	9472	20.1	20	20	20.1	20.2	8.18	8.17	8.16	8.19	8.18	0.29
Zn C6	8.581	8.879	9.176	9.373	9.472	19.9		20.2	20.1	20.2	8.16	8.18	8.16	8.17	8.19	0.29
Zn C7	8.581	8.879	9.176	9.373	9.472	19.9	20	20.1	20.1	20.1	8.18	8.18	8.17	8.18	8.17	0.32
70.08	0 2 0	0 0 70	120.0	0.11	0 E71	007										

Table A.4.1: Water quality parameters; Temperature (in Celsius), salinity (in %), pH, and ammonia (g/l) measured in each tank at 24h-intervals.

	Zn	×	Ca	Mg		AI	×	Ca	Mg		Cu	×	Са	Mg
Time	Sample Name	Conc. [mg/l]	Conc. [mg/l]	Conc. [mg/l]	Time	Sample Name Conc. [mg/l]		Conc. [mg/l]	Conc. [mg/l]	Time	Sample Name	Conc. [mg/l]	Conc. [mg/l]	Conc. [mg/l]
start 0h	Cu/Zn control	202.264	378.499	889.529 start 0h	start Oh	Al ccontrol	201.054	386.061	883.128 start 0h	start Oh	Cu C1	203.144	369.285	902.035
start 0h	Zn C1	202.252	383.892	883.912	3.912 start 0h	AI C1	199.067	390.570	881.836 start 0h	start Oh	Cu C2	202.317	367.834	903.490
start Oh	Zn C2	199.006	372.414	877.794	7.794 start 0h	AI C2	199.175	398.484	871.935 start 0h	start Oh	Cu C3	203.736	369.826	903.702
start 0h	Zn C3	200.908	360.900	895.590	5.590 start 0h	AI C3	196.271	377.726	895.205	895.205 start 0h	Cu C4	202.785	376.333	903.933
start 0h	Zn C4	200.180	365.429	893.541 start 0h	start Oh	AI C4	193.956	371.556	864.552	864.552 start 0h	Cu C5	202.200	366.577	909.603
start 0h	Zn C5	199.376	358.111	874.472 start 0h	start Oh	AI C5	194.496	385.638		861.341 exp. 24h	Cu C1	198.011	357.481	923.746
exp. 24h	Cu/Zn control	180.509	352.160	892.420	2.420 exp. 24h	Al ccontrol	197.536	411.864	924.621	924.621 exp. 24h	Cu C2	194.668	358.786	907.059
exp. 24h	Zn C1	195.516	363.118	893.898 exp. 24h	exp. 24h	AI C1	195.040	400.028	921.581	921.581 exp. 24h	Cu C3	194.292	359.199	895.926
exp. 24h	Zn C2	195.019	352.466	900.963 exp. 24h	exp. 24h	AI C2	194.956	385.766	919.631	919.631 exp. 24h	Cu C4	191.447	354.239	904.198
exp. 24h	Zn C3	194.665		900.928 exp. 24h	exp. 24h	AI C3	196.574	400.076	924.350	924.350 exp. 24h	Cu C5	193.315	350.960	896.140
exp. 24h	Zn C4	193.974	356.829	897	.953 exp. 24h	AI C4	192.996	390.701	914.827	914.827 exp. 48h	Cu C1	209.346	412.387	964.085
exp. 24h	Zn C5	195.862	354.538	908.778 exp. 24h	exp. 24h	AI C5	199.082	383.609	939.408	939.408 exp. 48h	Cu C2	197.207	387.771	907.373
exp. 48h	Cu/Zn control	209.167	396.607	970.739 exp. 48h	exp. 48h	Al ccontrol	199.720	409.066	953.717	953.717 exp. 48h	Cu C3	193.362	374.604	882.478
exp. 48h	Zn C1	204.132	376.671	936.254 exp. 48h	exp. 48h	AI C1	202.487	419.201	970.098	970.098 exp. 48h	Cu C4	190.532	381.539	870.601
exp. 48h	Zn C2	212.188	401.373	973.153 exp. 48h	exp. 48h	AI C2	196.288	384.500		922.073 exp. 48h	Cu C5	197.396	379.898	892.153
exp. 48h	Zn C3	205.931	395.819	942.930	2.930 exp. 48h	AI C3	197.859	395.302		940.286 exp. 72h	Cu C1	190.826	344.840	861.675
exp. 48h	Zn C4	205.913	382.496	935.187	exp. 48h	AI C4	199.786	395.079	945.220	945.220 exp. 72h	Cu C2	189.770	347.024	865.426
exp. 48h	Zn C5	210.684	399.874	977.646 exp. 48h	exp. 48h	AI C5	199.895	391.954	951.245	951.245 exp. 72h	Cu C3	190.366	341.834	853.535
exp. 72h	Cu/Zn control	188.572	333.924	844.606 exp. 72h	exp. 72h	Al ccontrol	198.360	397.461	954.983	954.983 exp. 72h	Cu C4	191.090	357.525	864.690
exp. 72h	Zn C1	192.394	337.649	855.123 exp. 72h	exp. 72h	AI C1	200.309	397.162	961.127	961.127 exp. 72h	Cu C5	192.427	354.104	878.053
exp. 72h	Zn C2	188.791	339.403	844.742 exp. 72h	exp. 72h	AI C2	246.357	395.215	935.564	935.564 end 96h	Cu C1	192.910	353.751	859.123
exp. 72h	Zn C3	189.263	346.490	857.093	.093 exp. 72h	AI C3	197.868	388.444	947.095	947.095 end 96h	Cu C2	185.789	335.105	814.015
exp. 72h	Zn C4	187.517	336.527	850.215).215 exp. 72h	AI C4	197.443	393.372	933.306	933.306 end 96h	Cu C3	188.148	339.081	838.540
exp. 72h	Zn C5	189.752	344.947	855.342 exp. 72h	exp. 72h	AI C5	195.987	374.765	930.122	930.122 end 96h	Cu C4	188.835	347.177	857.156
end 96h	Cu/Zn control	192.681	354.034	870.038	end 96h	Al ccontrol	193.815	385.867	921.286	end 96h	Cu C5	190.094	344.197	847.504
end 96h	Zn C1	190.590	349.688	856.985 end 96h	end 96h	AI C1	196.910	394.176	954.148					
end 96h	Zn C2	189.684	351.300	851.071	L.071 end 96h	AI C2	196.787	396.160	935.039					
end 96h	Zn C3	190.225	349.540	850.833	.833 end 96h	AI C3	197.722	393.388	945.333					
end 96h	Zn C4	187.027	339.579	833.327	.327 end 96h	AI C4	193.077	374.717	922.768					
end 96h	Zn C5	185.162	335.671	819.750 end 96h	end 96h	AI C5	192.899	382.338	915.027					
	Zn C6	180.732	333.722											_
end 96h	Zn C8	193.285	358.402	777.429										

Table A.4.2: Average measured values (n=3) of K, Ca, and Mg in water samples collected at 0-96h for different metal exposure.

>

Appendix A.5 – Water samples analysis

Each water sample had three replicates. The mean and standard deviation of each sample unfiltered, 0.45 μ m filtered, hollow-fiber ultrafiltration (HF), and chelex filtration, at 0h and 96h, are given in table A.5.1 (Cu), table A.5.2 (Zn), and table A.5.3 (Al).

Table A.5.1: Average, SD, and n of Cu measured in water samples for each exposure group, at 0h and 96h. Mean values are given in $\mu g/l$.

	Unfilt	ered (µg	;/I)	0.4	5µm (µg/	(1)		HF (µg/l)		Ch	elex (µg	/I)
0 h	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Control	2.3	0.64	6	2.9	0.58	6	1.60	0.984	5	1.06	0.185	6
Cu C1	5.8	0.96	3	4.9	0.42	3	2.4	0.44	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C2	9.1	0.49	3	9.1	0.12	3	1.4	0.20	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C3	17.0	0.31	3	16.3	0.17	3	1.9	0.071	2	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C4	28	1.7	3	29.2	0.36	3	4.3	0.15	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C5	39.0	0.21	2	45.4	11	3	18.2	0.91	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C6	130	1.5	3	121	1.5	3	20.3	0.15	3	3.6	0.21	3
Cu C7	194.3	0.58	3	217	1.0	3	168	1.5	3	1.63	0.035	3
Cu C8	425	2.0	3	427	9.3	3	372	1.2	3	0.10	0.031	3
	Unfilt	ered (µg	;/I)	0.4	5µm (µg/	′ I)		HF (µg/l)		Ch	elex (µg	/I)
96h	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Control	2.9	0.52	6	2.6	0.56	6	2.2	0.76	6	1.96	1.461	6
Cu C1	4.4	0.044	3	3.6	0.23	3	1.5	0.02	3	0.73	0.034	2
Cu C2	8.3	0.38	3	7.6	0.12	3	2.0	0.09	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C3	14.2	0.52	3	13.5	0.10	3	2.7	0.02	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C4	25.1	0.21	3	23.4	0.32	3	4.0	0.07	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C5	33.2	0.40	3	31.2	0.49	3	5.3	0.40	3	<lod< td=""><td></td><td>0</td></lod<>		0
Cu C6	135	1.2	3	130.67	0.577	3	7.28	0.059	3	2.80	0.049	3
Cu C7	243	1.2	3	239.00	4.6	3	146	1.0	3	4.0	0.45	3
Cu C8	462	3.6	3	443.67	3.5	3	370.7	0.58	3	4.18	0.079	3

Table A.5.2: Average, SD, and n of Zn measured in water samples for each exposure group, at 0h and 96h. Mean values are given in μ g/l.

	U	nfiltered			0.45			HF			Chelex	
0h	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Control 1	5.6	0.94	6	5.8	0.72	6	3.1	0.89	6	2.96	2.138	6
Zn C1	18.4	0.78	2	17.6	0.12	3	8	2.5	3	1.0	0.000	1
Zn C2	29.6	0.60	3	30	2.8	3	26	6.3	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C3	43.7	0.40	3	42	1.4	3	37	1.0	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C4	68.5	0.67	3	68.5	0.76	3	61	2.5	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C5	116	1.0	3	114	5.2	3	107	6.1	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C6	274	6.0	3	275	1.5	3	249	1.0	3	28.3	0.25	3
Zn C7	527.3	0.58	3	536	1.5	3	528	1.0	3	5	4.1	3
Zn C8	1030	10	3	1067	5.8	3	1060	10	3	1.4	0.11	3
	U	nfiltered			0.45			HF			Chelex	
96h	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Control 1	7.0	2.96	6	6.29	1.670	5	2.40	1.13	4	1.02	0.066	3
Zn C1	17.0	0.46	3	15.40	0.62	3	5.80	0.43	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C2	28.8	0.35	3	27.00	0.10	3	20.07	0.68	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C3	40.7	0.12	3	38.30	1.9	3	35.03	0.90	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C4	64	1.2	3	62.00	1.2	3	59	3.5	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C5	108	2.5	3	105.00	1.0	3	102	1.0	3	<lod< td=""><td></td><td>0</td></lod<>		0
Zn C6	294.7	0.58	3	294	2.1	3	275.9	0.47	3	29.5	0.15	3
Zn C7	550	1.5	3	546	2.3	3	458	3.1	3	8.58	0.092	2
Zn C8	1023	15	3	1008	17	3	998	13	3	10.5	0.82	3

Appendix A.5 – Cont.

	Ur	filtered			0.45			HF			Chelex	
Oh	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Control 1	22.1	0.93	3	19.9	0.35	3	21	1.7	3	5.1	0.30	2
Al C1	47	2.1	3	64	18	3	42	1.7	3	6.6	0.25	3
Al C2	79	9.9	3	71	5.3	3	67	4.5	3	10.6	0.12	3
AI C3	119	1.7	3	116	6.4	3	117	2.3	3	23.5	0.53	3
AI C4	200	13	3	201	3.5	3	203.2	0.27	3	46	2.7	3
AI C5	319	5.7	3	283	17	3	299	2.6	3	71	4.5	3
	Ur	filtered			0.45			HF			Chelex	
96h	Mean	SD	n	Mean	SD	n	Mean	SD	n	Mean	SD	n
Control 1	21	3.0	3	20	3.0	3	15.8	0.26	3	15.2	0.67	3
Al C1	42	2.7	3	42	0.6	3	34	4.0	3	18.0	1.84	3
Al C2	65.1	0.23	3	67	0.6	3	157	2.8	2	30.5	5.58	3
AI C3	113	4.5	3	112	8.4	3	103	2.1	3	39.2	1.81	3
Al C4	208	1.2	3	199	12	3	173	9.3	3	54.7	0.07	2
Al C5	318	7.8	2	262	18	3	268	3.6	3	82.7	2.61	3

Table A.5.3: Average, SD, and n of AI measured in water samples for each exposure group, at 0h and 96h. Mean values are given in $\mu g/l$.

	Α	В	С
Correlation	Х	Х	Х
Conciation	VS.	VS.	VS.
	Cu	Zn	AI
Pearson r			
r	0.9978	0.9985	0.9908
95% confidence interval	0.9649 to 0.9999	0.9894 to 0.9998	0.8621 to 0.9994
R squared	0.9955	0.9970	0.9816

Figure A.5: R-squared and correlation R of expected nominal concentration and the measured concentration of Cu, Zn and Al in the exposure water. Screenshot from Graphpad Prism.

Appendix A.6 – Metal speciation

The speciation of metals was determined by calculating the different fractions by eq. 2-4. The species were then calculated to a percentage of the total concentration. In the case when the total sum of all fraction surpassed 100% was the percentage colloidal fraction determined by subtracting the particle and LMM- fraction from total 100%. In the case of LMM results surpassing total, they adjusted down to 100%. The LMM cations are calculated as the percentage of the LMM fraction. The percentage for each average fraction of each metal at 0h and 96 hours are given in table A.6 (Cu, Zn, and Al).

Table A.6: Percentage of total for species of Cu, Zn and Al for each exposure group given in total conc. (μ mol/I). Bold letters denotes the results have been modified to fit a sum of 100% in total. LMM cations are calculated as a percentage of LMM fraction.

Cu	Particles	Colloids	LMM	LMM cations
μmol/l	Farticles	collolus	LIVIIVI	Livilyi cations
Control	0 %	24 %	76 %	22 %
0.08	16 %	46 %	38 %	62 %
0.14	4 %	76 %	20 %	100 %
0.25	5 %	80 %	15 %	100 %
0.42	1 %	83 %	16 %	100 %
0.56	0 %	69 %	31 %	100 %
2.08	5 %	85 %	10 %	77 %
3.44	0 %	32 %	72 %	98 %
6.98	2 %	15 %	84 %	99 %
Zn				
µmol/l	Particles	Colloids	LMM	LMM cations
Control	0 %	51 %	44 %	17 %
0.27	6 %	55 %	40 %	85 %
0.45	3 %	19 %	78 %	100 %
0.64	4 %	10 %	85 %	100 %
1.02	2 %	8 %	90 %	100 %
1.72	2 %	4 %	93 %	100 %
4.35	0 %	8 %	92 %	89 %
8.24	0 %	9 %	92 %	99 %
15.70	0 %	1 %	100 %	99 %
Al		0 11 11		
µmol/l	Particles	Colloids	LMM	LMM cations
Control	7 %	10 %	83 %	38 %
1.66	0 %	14 %	86 %	68 %
2.67	4 %	0 %	100 %	73 %
4.31	2 %	3 %	95 %	72 %
7.56	2 %	6 %	92 %	74 %
11.79	14 %	0 %	89 %	73 %

Appendix A.7 – Fish characteristic

Fish were weighed and measured before dissection, all weights and lengths for each fish are summarized in table A.7. Any missing fish are marked with grey spaces.

Metal	El ala sua	Maight (g)	Longth (one)	Metal	Et als and	Mainht (n)	Longth (and)	Metal	El ala sua	Mainht (a)	Length
			Length (cm)	exposure	Fish nr		Length (cm)	exposure	Fish nr	Weight (g)	(cm)
Cu C5	119	69.1	19.1	Zn C5	84	82.3	21	Cu/Zn Control	49	64	18.5
Cu C5	118	71.9		Zn C5	83	55.5		Cu/Zn Control	48	74.9	19.7
Cu C5	117	71.4			82	73.7	19.5	Cu/Zn Control	47	69.2	19.3
Cu C5	116	75		Zn C5	81	79.9	21		46	84.5	20.5
Cu C5	115	84.2		Zn C5	80	76.9	20.5	Cu/Zn Control	45	94.4	21.2
Cu C5	114	73.9		Zn C5	79	77.4		Cu/Zn Control	44	76.1	19.5
Cu C5	113	81.3		Zn C5	78	63.1	19.3		43	60.8	18.5
Cu C4	112	82.1		Zn C4	77			Cu/Zn Control	120	68.08	18.5
Cu C4	111	69.6		Zn C4	76	87	21.5		121	83.08	20
Cu C4	110	65.7		Zn C4	75	84.8	20.8		122	91.34	21
Cu C4	109	58		Zn C4	74	75.6	20.5	Cu/Zn Control	123	92.4	21
Cu C4	108	78	20.3		73	87.5	21.3	Cu/Zn Control	124	85.77	20.7
Cu C4	107	88.9		Zn C4	72	76.4		Cu/Zn Control	125	72.75	19.6
Cu C4	106	87		Zn C4	71	61.1	19.2	Cu/Zn Control	126	82.82	20.5
Cu C3	105	88.5			70	79.8	19.8	Al Control	7	89.3	20.7
Cu C3	104	79.8			69	69.5	19.5	Al Control	6	69.3	18.9
Cu C3	103	66.2		Zn C3	68	91.5	21.7		5	79.8	19.8
Cu C3	102	60.8		Zn C3	67	61.1	18.5	Al Control	4	85.2	20.5
Cu C3	101	62.4	18.7	Zn C3	66	93.8	21.8		3	74.8	19.4
Cu C3	100	61.8	19.4	Zn C3	65	68.8	19.5	Al Control	2	95.3	21
Cu C3	99	96	22	Zn C3	64	60	18.7	Al Control	1	78.3	18.5
Cu C2	98			Zn C2	63	83.4	20	AI C5	14	55.9	17.4
Cu C2	97	84.7	21.1	Zn C2	62	92.7	21.3	AI C5	13	57.6	17.8
Cu C2	96	75.8	20.4	Zn C2	61	55.9	17.5	AI C5	12	67.9	19
Cu C2	95	81.3	21.3	Zn C2	60	82.9	20.6	AI C5	11	64.3	18.4
Cu C2	94	63.2	18.6	Zn C2	59	80.7	20.4	AI C5	10	69.3	19
Cu C2	93	69	19.5	Zn C2	58	82	19.8	AI C5	9	62.5	17.4
Cu C2	92	70.9	19.8	Zn C2	57	80	19.5	AI C5	8	68.5	19
Cu C1	91			Zn C1	56	73.8	20.7	AI C4	21	73	19.6
Cu C1	90	83.9	20.1	Zn C1	55	62.1	18.8	AI C4	20	65.1	18.8
Cu C1	89	61.7	19	Zn C1	54	74.3	19	AI C4	19	88.1	19.6
Cu C1	88	86.8	21.7	Zn C1	53	82	20	AI C4	18	56.5	17.8
Cu C1	87	87.5	21.3	Zn C1	52	73.2	19.3	AI C4	17	79.7	19
Cu C1	86	62.7	18.5	Zn C1	51	58.2	18.2	AI C4	16	63.1	18.5
Cu C1	85	88.6	21.5	Zn C1	50	56.3	18.5	AI C4	15	104.5	21.3
Cu C6	127	84.52	20.1	Zn C6	148	106.36	21.4	AI C3	28	81.8	20.3
Cu C6	128	64.06	19.1	Zn C6	149	77.97	19.9	AI C3	27	84.8	20.4
Cu C6	129	70.58	18.9	Zn C6	150	82.7	21.2	AI C3	26	61.4	18.1
Cu C6	130	93.24		Zn C6	151	88.78		AI C3	25	103.5	22
Cu C6	131	97.15		Zn C6	152	53.29	17.5	AI C3	24	74.2	18.7
Cu C6	132	74.06		Zn C6	153	53.21	17.1	AI C3	23	82.1	20
Cu C6	133	89.96		Zn C6	154	80.7	20		22	72.8	18.6
Cu C7	134	76.87			155	92.9	21.5	AI C2	35	73	18.7
Cu C7	135	58.77			156	82.81	20.2	AI C2	34	65.9	18.4
Cu C7	136	83.66			157	75.43	19.6		33	75.7	19.6
Cu C7	130	70.16		Zn C7	158	92.89	20.4		32	59.5	17.5
Cu C7	138	66.7		Zn C7	150	69.18	19	AI C2	31	85	20.1
Cu C7	130	66.01			160	64.16	18.4	AI C2	30	80.8	20.1
Cu C7	135	89.79	20.9		161	83.53	20.2		29	60.5	17.7
Cu C8	140	63.67		Zn C8	161	96.1	20.2		42	61.6	17.7
Cu C8	141	95.66	21.7	Zn C8	162	75.76	19.7	AI C1	42	65.6	18.5
Cu C8	142	78.43		Zn C8	164	96.82	21.6		41	52.6	16.8
Cu C8	145	66.8		Zn C8	164	74.74	19.9	AICI AICI	39	79.7	20.1
Cu C8	144	68.64		Zn C8	165	74.74	19.9		39	66.6	18.5
Cu C8	145	90.03			160	84.94	20	AIC1 AIC1	37	78	18.5
	140	90.03	21.1	211 60	T01	04.94	20	ALCT	37	/8	19.7

Table A.7: Weight (grams) and length (cm) of each fish.

Appendix A.8 - Fish tissue metal concentration

Fish tissue (gill, kidney, liver) was measured after dissection. The measured concentration of metals in each tissue of each fish is given in table A.8.1 (Cu), A.8.2 (Zn), and table A.8.3 (Al). All values are given in both μ g/l and mg/kg.

Table A.8.1: Measured Cu concentration in tissues (gill, kidney, liver) for each individual fish in each exposure group. Concentration was measured in $\mu g/l$ and converted to mg/kg.

Exposure						Exposure							Exposure					I
group	Fish nr	Tissue	weight, g	Conc. [ug/l]	mg/kg	group	Fish nr	Tissue	weight, g	Conc. [ug/l]	mg/kg		group	Fish nr	Tissue	weight, g	Conc. [ug/l]	mg/kg
Cu control	F43	Gill	0.024	4.16564439	1.74	Cu control	F43	Kidney	0.0456	21.7280889	4	.76	Cu control	F43	Liver	0.053	1172.6316	221
Cu control	F44	Gill	0.0287	4.80642362	1.67	Cu control	F44	Kidney	0.0478	28.0522162	5	5.87	Cu control	F45	Liver	0.096	4850.0669	505
	F45	Gill	0.0422	6.89045039	1.63		F45	Kidney	0.0549	34.5828993			Cu control	F46	Liver	0.0973	1531.26619	
Cu control	F46	Gill	0.0311	4.68450034	1.51	Cu control	F46	Kidney	0.0537				Cu control	F44	Liver	0.0834	2545.93636	
Cu control Cu control	F47 F48	Gill Gill	0.0266 0.0218	4.623944 4.08170404	1.74 1.87	Cu control Cu control	F47 F48	Kidney Kidney	0.0272 0.026			7.11 : 18	Cu control Cu control	F47 F48	Liver Liver	0.082 0.0889	2290.98276 1942.21584	
	F40 F49	Gill	0.0218	3.80969823	1.87	Cu control	F40 F49	Kidney	0.020	19.411751			Cu control	F40 F49	Liver	0.0889	1260.54854	
Cu Control 2		Gill	0.0307	5.47090685	1.78	Cu Control 2		Kidney	0.0364	25.3222935			Cu Control 2		Liver	0.0758	392.942519	
Cu Control 2	F121	Gill	0.0361	6.42604954	1.78	Cu Control 2	F121	Kidney	0.0484	33.0779543	e	5.83	Cu Control 2	F121	Liver	0.1059	1333.65075	488
Cu Control 2	F122	Gill	0.0338	5.76713809	1.71	Cu Control 2	F123	Kidney	0.077	43.8838549		5.7	Cu Control 2	F122	Liver	0.1366	216.6529	101
Cu Control 2		Gill	0.0232	4.49107152	1.94	Cu Control 2		Kidney	0.0656				Cu Control 2		Liver	0.1076	496.672348	
Cu Control 2		Gill		4.77107471	1.97	Cu Control 2		Kidney	0.0493	31.1887327 30.3390412			Cu Control 2		Liver	0.0884	586.236336	
Cu Control 2 Cu Control 2		Gill Gill	0.0267 0.0351	5.22182805 12.9281566	1.96 3.68	Cu Control 2 Cu Control 2		Kidney Kidney	0.0605 0.0586				Cu Control 2 Cu conc 1	F120 F85	Liver Liver	0.0907	379.815928 1016.18346	
Cu conc 1	F85	Gill	0.0338	5.7351165	1.7		F85	Kidney	0.0453			_	Cu conc 1	F86	Liver	0.044	1632.85685	
Cu conc 1	F86	Gill	0.0289	5.40093895	1.87	Cu conc 1	F86	Kidney	0.0449	27.116434			Cu conc 1	F88	Liver	0.0844	3269.12215	
Cu conc 1	F87	Gill	0.0367	6.4060933	1.75	Cu conc 1	F87	Kidney	0.0754	39.2842475	5	5.21	Cu conc 1	F89	Liver	0.0445	352.759599	79.3
Cu conc 1	F88	Gill	0.0338	5.7562487	1.7		F88	Kidney	0.0738	23.4818119			Cu conc 1	F90	Liver	0.102	2441.03588	
Cu conc 1	F89	Gill	0.0222	3.86011698	1.99	Cu conc 1	F89	Kidney	0.0416	30.712269	7		Cu conc 2	F92	Liver	0.058	982.879417	
Cu conc 1	F90	Gill	0.0348	5.73437115	1.65	Cu conc 1	F90	Kidney	0.0577				Cu conc 2	F93	Liver	0.0576	983.264163	
Cu conc 2 Cu conc 2	F92 F93	Gill Gill	0.0306 0.0251	6.17231982 5.28402533	2.02 2.11	Cu conc 2 Cu conc 2	F92 F93	Kidney Kidney	0.04 0.052	42.5629069 26.6610303			Cu conc 2 Cu conc 2	F94 F95	Liver Liver	0.056 0.0999	1853.61533 1732.2442	
Cu conc 2	F94	Gill	0.0335	5.74215074	1.71	Cu conc 2	F94	Kidney	0.0315			 	Cu conc 2	F96	Liver	0.0525	784.467242	
Cu conc 2	F95	Gill	0.0302	5.70278386	1.89		F95	Kidney	0.0505	24.8439076			Cu conc 2	F97	Liver	0.0798	2167.53751	
Cu conc 2	F96	Gill	0.0224	4.97358249	2.22	Cu conc 2	F96	Kidney	0.0722	39.9535777	5	5.53	Cu conc 3	F99	Liver	0.1003	2997.24911	299
Cu conc 2	F97	Gill	0.035	6.38497861	1.82	Cu conc 2	F97	Kidney	0.066	34.4182941	5	5.21	Cu conc 3	F100	Liver	0.0729	2213.1908	304
Cu conc 3	F99	Gill	0.0292	6.68004262	2.29		F100	Kidney	0.042	22.6096328			Cu conc 3	F101	Liver	0.068	2489.64859	
Cu conc 3	F100	Gill	0.0141	3.48677034	3.14		F101	Kidney	0.0343	19.3678836			Cu conc 3	F102	Liver	0.0706	1430.16201	
Cu conc 3 Cu conc 3	F101 F102	Gill Gill	0.0245	5.11004058 4.27074123	2.09		F102 F103	Kidney Kidney	0.0295			_	Cu conc 3	F103 F104	Liver	0.0494	421.538361 2094.67228	
Cu conc 3	F102	Gill	0.0228	5.82772609	1.94	Cu conc 3 Cu conc 3	F103	Kidney	0.0320				Cu conc 3 Cu conc 3	F104	Liver	0.0713	1510.87707	
Cu conc 3	F104	Gill	0.0233	5.73354963	2.46		F105	Kidney	0.0728				Cu conc 4	F107	Liver	0.0965	2921.43879	
Cu conc 3	F105	Gill	0.0325	6.26219457	1.93	Cu conc 4	F106	Kidney	0.0308	31.6853988	1	.0.3	Cu conc 4	F109	Liver	0.0489	997.634606	204
Cu conc 4	F106	Gill	0.0322	8.42433726	2.62	Cu conc 4	F107	Kidney	0.0403	35.7459456	8	8.87	Cu conc 4	F110	Liver	0.052	959.807062	185
Cu conc 4	F107	Gill	0.0388	8.23228958	2.12	Cu conc 4	F108	Kidney	0.0593				Cu conc 4	F111	Liver	0.0815	2610.70058	
Cu conc 4	F108	Gill	0.031	6.84631661	2.21		F109	Kidney	0.051	22.8058495			Cu conc 4	F112	Liver	0.0834	1903.69667	
Cu conc 4 Cu conc 4	F109 F110	Gill Gill	0.0194 0.0263	4.03441038 5.69866957	2.28 2.17	Cu conc 4 Cu conc 4	F110 F111	Kidney Kidney	0.0414 0.0442				Cu conc 5 Cu conc 5	F113 F114	Liver Liver	0.0764	1120.7356 2897.06351	
Cu conc 4	F111	Gill	0.0277	6.71162069	2.42		F112	Kidney	0.0607	32.1718893	-		Cu conc 5	F115	Liver	0.0766	2531.72648	
Cu conc 4	F112	Gill	0.0311	6.81652601	2.19	Cu conc 5	F113	Kidney	0.055		5		Cu conc 5	F116	Liver	0.0788	1588.68953	
Cu conc 5	F113	Gill	0.0322	8.11549065	2.52	Cu conc 5	F114	Kidney	0.0595	34.4494828	5	5.79	Cu conc 5	F117	Liver	0.0836	1324.68044	158
Cu conc 5	F114	Gill	0.027	5.87995874	2.18		F115	Kidney	0.0672				Cu conc 5	F118	Liver	0.0756	1338.27099	
Cu conc 5	F115	Gill	0.0311	8.47558635	2.73		F116	Kidney	0.0594				Cu conc 5	F119	Liver	0.0755	1678.04459	
Cu conc 5	F116 F117	Gill Gill	0.0302	7.43894278	2.46		F117 F118	Kidney	0.0477	26.1462675 31.1910238	5		Cu conc 6	F127 F128	Liver	0.1119 0.1311	664.35641 831.054835	
Cu conc 5 Cu conc 5	F117 F118	Gill	0.025	6.82409636 7.96658755	2.73		F118	Kidney Kidney	0.0588	26.1269798			Cu conc 6 Cu conc 6	F128 F129	Liver Liver	0.1311	1075.71176	
Cu conc 5	F119	Gill	0.0257	5.71054938	2.22	Cu conc 6	F129	Kidney	0.0524	31.145423			Cu conc 6	F130	Liver	0.1366	683.044947	
Cu conc 6	F127	Gill	0.0222	5.1875422	2.34	Cu conc 6	F130	Kidney	0.0731				Cu conc 6	F131	Liver	0.1178	850.828968	
Cu conc 6	F128	Gill	0.0205	8.07166505	3.94	Cu conc 6	F131	Kidney	0.0875	49.2753377	5	6.63	Cu conc 6	F132	Liver	0.1124	829.66324	
Cu conc 6	F129	Gill		13.9536326	5.96	Cu conc 6	F132	Kidney	0.0532				Cu conc 6	F133	Liver	0.1243	500.293504	
Cu conc 6	F130	Gill	0.0365	13.8416724	3.79		F133	Kidney	0.0625	39.7590659			Cu conc 7	F134	Liver	0.1115	403.896043	
Cu conc 6 Cu conc 6	F131 F132	Gill Gill		11.0967456 13.2956104		Cu conc 6 Cu conc 7	F134 F135	Kidney Kidney	0.0499	30.9998438 19.8387571			Cu conc 7 Cu conc 7	F135 F137	Liver Liver	0.103	534.651647 1080.84698	
	F132 F133	Gill		12.2350467		Cu conc 7 Cu conc 7	F135	Kidney		31.8378022			Cu conc 7 Cu conc 7	F137	Liver		673.828376	
Cu conc 7	F135	Gill		10.0167334		Cu conc 7 Cu conc 7	F137	Kidney		34.3233301			Cu conc 7	F140	Liver	0.1004		
Cu conc 7	F136	Gill		14.1539836		Cu conc 7	F138	Kidney		30.6624605			Cu conc 8	F142	Liver	0.1362	824.72815	
Cu conc 7	F137	Gill		14.4200942		Cu conc 7	F139	Kidney		28.5776113			Cu conc 9	F143	Liver		756.524591	
Cu conc 7	F138	Gill		12.6809311		Cu conc 7	F140	Kidney		32.7873491			Cu conc 8	F145	Liver	0.0988	228.68512	
Cu conc 7	F139	Gill		9.92750628		Cu conc 8	F141	Kidney	0.0382				Cu conc 8	F146	Liver		927.230692	
	F140	Gill		15.2116764		Cu conc 8	F142	Kidney		56.5068484			Cu conc 8	F147	Liver	0.1333	294.363987	121
Cu conc 8 Cu conc 8	F141 F142	Gill Gill		13.8618206 28.7468055		Cu conc 8 Cu conc 8	F143 F144	Kidney Kidney	0.0677	35.8821797 32.163862		5.3 5.58						
Cu conc 8	F142 F143	Gill		20.6986327		Cu conc 8	F144 F145	Kidney		28.3155134		5.38 5.27						
	F144	Gill		16.3211026		Cu conc 8	F146	Kidney	0.0698			.49						
Cu conc 8	F145	Gill	0.0258	15.6883429	6.08	Cu conc 8	F147	Kidney		24.9752714		.45						
Cu conc 8	F146	Gill		22.0623864	6.81													
Cu conc 8	F147	Gill	0.0286	18.7027174	6.54									-				

Appendix A.8 – Cont.

Table A.8.2: Measured Zn concentration in tissues (gill, kidney, liver) for each individual fish in each exposure group. Concentration was measured in µg/l and converted to mg/kg.

Genume propine Nume Tune Weight and Carl. [wigh] mg/s. Exame prope Num. Exame Weight and Carl. [wigh] mg/s. Weight and Carl. [wight mg/s. SynCarcenter H4 Let Loss 31 2014 Sin 2014 Sin 2014 Sin 2014 Heile Loss 31 2014 Sin 2014 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																		
Darbox Test Control Test Control Test Control Test Lance Dest Data Data <thdata< th=""> <thdata< th=""> <thdata< th=""></thdata<></thdata<></thdata<>																		
Disclosante PA Online OSA Disk																		
Description 144 011 0212-06272 042 Normered 164 Normered <																		
Description Field Control Field																		
DipUlsControl PAD OutpUlsControl PAD OUTPULSCONT																		
DipUlsControl F120 GHU GUID	Zn/Cu control	F48	Gill	0.0218	1386.32487	636	Zn/Cu control	F48	Kidney	0.026	756.86483	291	Zn/Cu control	F48	Liver	0.0889	828.868126	93.2
DipUlControl F12 Gall DipUlControl F12 Gall DipUlControl F12 Low DipUlContro F12 Low DipUlC	Zn/Cu control	F49	Gill	0.0207	1089.74472	526	Zn/Cu control	F49	Kidney	0.0322	655.614565	204	Zn/Cu control	F49	Liver	0.0709	628.694237	88.7
Div Div <thdiv< th=""> <thdiv< th=""> <thdiv< th=""></thdiv<></thdiv<></thdiv<>					1817.47749	592	Zn/Cu control		Kidney		1023.88622	281	Zn/Cu control		Liver	0.0758	128.439604	
Div Div< Div< Div< Div< Div< Div< Div< Div Div< Div< <thdiv<< th=""> Div< Div< <</thdiv<<>													· ·					
DAVL-COMM P12- PAV-COMM P12- PAV-COMM P12- PAV-COMM P12- PAV-PAV-PAV-PAV P12- PAV-PAV-PAV P12- PAV P12- PAV P12- PAV P12- PAV																		
DAUC-LONG PLA OLINE DAUGA DAUGA PLA PLA DAUGA PLA PLA DAUGA PLA PLA DAUGA PLA DAUGA PLA PLA DAUGA PLA PLA DAUGA PLA PLA DAUGA PLA PLA PLA PLA PLA PLA PLA PLA </td <td></td>																		
Div Div <thdiv< th=""> <thdiv< th=""> <thdiv< th=""></thdiv<></thdiv<></thdiv<>																		
Partorner. F51 Genery D.0.319 P3.1397349 P272 Conce. 151 User D.0.56 P3.720668 P2.2 Arroner. 152 Gell 0.0.21 125.86628 772 Arroner. 153 Gell 0.0.25 125.32022 Partorer. 154 Gell 0.0.21 125.86628 772 Partorer. 154 Gell 0.0.22 125.32022 Partorer. 155 Gell 0.0.22 125.32022 Partorer. 155 Gell 0.0.22 125.32022 Partorer. 155 Gell 0.0.22 125.2022 Partorer. 155 Gell 0.0.22 125.202 Gell 125.2022 125.202 125.2022 125.202																		
Datom F3 Gui O.221 J25.8622 J79 Datom F3 Mode O.288 O.246073 Size Datom F3 Mode O.288 D.270782 J27 Datom F3 Gui O.222 J25.2022 J26.00071 F55 Mode J20 Latom F5 Latom O.228 J25.2022 J26.00071 F55 Mode J20 Latom F55 Latom O.238 J27.00071 F55 Mode J20 Latom F55 Latom O.238 J27.00071 F55 Mode J20 J20 F55 Latom Catom J20 Latom J20 J20 <td>Zn conc. 1</td> <td></td>	Zn conc. 1																	
Space 153 Guil 0.025 123.2022 448 Access 155 Guil 0.038 382.70 123 Access 155 Uter 0.044 42.2008 45. Cronce.1 155 Guil 0.0321 155.3032 449 Access 155 Guil 0.034 31.2007 155 Uter 0.0444 42.2008 86. Access 155 Guil 0.0337 128.8468 519 Access 158 Uter 0.038 31.427678 96. Access 156 Guil 0.033 124.84851 355 Access 166 Guil 0.038 31.427678 35. Access 161 Guil 0.032 124.84934 42.1 Access 162 Guil 0.038 31.427678 35. Access 164 Guil 0.032 124.840783 30 Access 162 Liner 0.038 31.375778 35. Access 164<	Zn conc. 1	F51	Gill	0.0187	948.37336	507	Zn conc. 1	F52	Kidney	0.0345	800.012145	232	Zn conc. 1	F52	Liver	0.056	517.696603	92.4
Process Process <t< td=""><td>Zn conc. 1</td><td>F52</td><td>Gill</td><td>0.0217</td><td>1255.85628</td><td>579</td><td>Zn conc. 1</td><td>F53</td><td>Kidney</td><td>0.0386</td><td>701.660755</td><td>182</td><td>Zn conc. 1</td><td>F53</td><td>Liver</td><td>0.0588</td><td>627.879082</td><td>107</td></t<>	Zn conc. 1	F52	Gill	0.0217	1255.85628	579	Zn conc. 1	F53	Kidney	0.0386	701.660755	182	Zn conc. 1	F53	Liver	0.0588	627.879082	107
Zhonch. P55 Olifi O.0212 1935. 2932 403 Zhonch. P57 Gindy O.0348 1128. 2932 1127. 10615 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617 1128. 10617																		
Space Space <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																		
Dation 2 157 Gui 0.022 158.486 513 Prome 2 159 More 0.053 91.42676 90.053 91.42676 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.42876 90.053 91.92977 91.53777 91.237 91.23775 85.3544 90.053 91.92786 92.27 70.07374 83.4 Chock 2 456 Gui 0.023 129.53971 91.275533 98.27 10.077 92.955273 10.27 92.27 17.977373 93.27 70.07.139.23 92.27 10.27 79.77377 93.27 70.07.139.23 92.27 10.07.27 79.77377 93.27 70.07.139.79 90.27 70.97.77																		
Parton Parton<																		
Parcenc.2 PF9 Gill 0.033 908.48853 992 Room.2 P60 Liver 0.0388 714.999997 105 Conc.2 P61 Gill 0.0378 1264.89514 621 Room.2 F61 Liver 0.0388 311.37375 85.5 Chocn.2 F63 Gill 0.0328 1264.83503 522 Room.2 F63 Liver 0.0378 1264.83503 1263 Chocn.2 F63 Gill 0.0325 1264.37023 552 Liver 0.0561 1263 227 706.737440 83.8 Chocn.3 F65 Gill 0.0321 1293.2402 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																		
back Process Prod Gill 0.037 Part Mark																		
Znonc.2 F62 Gill 0.0342 Zike/A423 S22 Zinonc.2 F63 Kidney 0.031 Sike/A2007 88.4 Znonc.3 F64 Gill 0.0351 Sike/A2007.0 Sike/A20																		
Data Concell PF63 Gill 0.0395 Select-3023 SS2 Data Concell SS2	Zn conc. 2	F61	Gill	0.0268	1664.95914	621	Zn conc. 2	F62	Kidney	0.0624	1480.05765	237	Zn conc. 2	F62	Liver	0.082	851.055035	104
2ncon.3 Fe6 Gill 0.0221 1239 S247 473 Pronc.3 Fe6 Uter 0.0021 572 Otto 575 S2279 114 ncon.3 Fe6 Gill 0.032 1272 Otto 38 Non.3 Fe6 Uter 0.051 423 724275 83.1 ncon.3 Fe6 Gill 0.028 249.09003 443 Pronc.3 Fe6 Uter 0.0054 423.724275 83.1 ncon.3 Fe6 Gill 0.028 2040.7753 711 Rice 0.0352 121.97182 226 Pronc.3 Fe6 Uter 0.0069 450.15171 83.1 2n con.4 F70 Gill 0.0271 1020.6518 513.47709 277 Pronc.3 F70 Uter 0.0038 505.3227 27.27 Pronc.4 F71 Kidney 0.0461 193.465031 240.277 Pront.4 F73 Kidney 0.0461 193.462032 Prot.4 F74 Liver 0.0483 83.837 1151.257	Zn conc. 2	F62	Gill	0.0342	1786.74263	522	Zn conc. 2	F63	Kidney	0.0591	1541.339	261	Zn conc. 2	F63	Liver	0.0787	706.737447	89.8
2ncon.3 F65 Gill 0.0292 1972.0219 538 2ncon.3 F66 Uwer 0.0073 71.97737 79 2ncon.3 F66 Gill 0.0282 2040.77534 71.1 fnconc.3 F67 Hiver 0.0564 437.36529 91.8 2ncon.3 F68 Gill 0.0287 2040.77534 71.1 fnconc.3 F69 Kidney 0.057 1071182 226 fnconc.3 F60 Liver 0.0604 451.315171 81.5 2nconc.3 F69 Gill 0.0227 120.6677 434 fnconc.4 F71 Kidney 0.0546 1178.71608 221 fnconc.4 F71 Liver 0.0030 69.93998 91.112.4052 112 fnconc.4 F72 Liver 0.0033 95.6339898 91.2 fnconc.4 F73 Kidney 0.062 164.24332 21.2 nconc.4 F74 Liver 0.0033 95.6333 15.5 fnconc.4 F74 Kidney 0.062 15	Zn conc. 2	F63	Gill	0.0295	1646.37023	558	Zn conc. 3	F64	Kidney	0.0291		203	Zn conc. 3	F64	Liver	0.0373		
Incom.3 Fef Gill 0.053 2349.09003 443 Incom.3 Fe7 Wert 0.051 427.24275 83.1 Incom.3 Fe7 Gill 0.0287 20077 170711382 227 ncom.3 Fe6 Uver 0.0694 451.30529 91.3 Incom.3 Fe6 Gill 0.0277 1202.66778 434 Incom.3 FF0 Uver 0.0603 451.9779 277 ncom.3 FF0 Uver 0.0603 485.42 85.9 Incom.3 FF1 Gill 0.0237 1107.0614 F71 Kidney 0.0457 127.9178 277 Incom.3 F71 Uver 0.0383 300.07022 126 Cncom.4 F71 Gill 0.0239 1838.371515 558 Ancom.4 F74 Kidney 0.0485 139.4423 215 Ancom.4 F75 Liver 0.0438 410.0708 127 Incom.4 F74 Kidney 0.0655 139.243.3067 592 Anco							Zn conc. 3		Kidney									
2n conc. 3 F67 Gill 0.0287 2000.7534 711 Zn conc. 3 F68 Kinery 0.0753 1213/202 Zar conc. 3 F69 Gill 0.0386 D057/5118 533 Zn conc. 3 F69 Gill 0.0386 D057/5118 533 Zn conc. 3 F70 Kinery 0.0531 1213/3402 Z12 Zn conc. 3 F70 Liver 0.0361 360.5929 91.8 Zn conc. 4 F71 Gill 0.0321 1993.14107 G22 Zn conc. 4 F71 Kinery 0.0485 1278.21007 472 Liver 0.0638 360.59299 91.8 Zn conc. 4 F72 Gill 0.0321 1993.1816 432 nconc. 4 F74 Kinery 0.0485 1378.5108 120 nconc. 4 F74 Gill 0.0231 138.3184 382 nconc. 4 F74 Kinery 0.0481 1404.8127 nconc. 4 F76 Kinery 0.0461 120 120.217 120.217 120.217 120.217																		
2nconc.3 F68 Gill 0.0382 2057.712.8 533 Znconc.3 F69 Kidnery 0.0546 1514.7798 242 Znconc.3 F60 Liver 0.0602 496.1510/11 81.5 Znconc.3 F70 Gill 0.0271 1202.66778 434 Znconc.4 F71 Kidney 0.0454 1514.7798 212 Znconc.4 F71 Liver 0.0833 1050.70225 126 Znconc.4 F73 Gill 0.0231 1393.5486 532 Cnonc.4 F73 Kidney 0.0487 933.65031 402 Znconc.4 F73 Liver 0.0618 481.01708 112 Znconc.4 F75 Gill 0.0231 1531.7519 552 Cnonc.4 F76 Kidney 0.0541 1492.0184 132 Znconc.4 F76 Liver 0.0648 494.6574 127 Znconc.5 F78 Gill 0.0341 1794.5574 837 Cnonc.5 F81 Liver 0.0664 426.6																		
2n conc.3 F69 Gill 0.0321 1991/14107 613 700 Kidney 0.0463 1514.7798 212 2n conc.3 F70 Liver 0.0321 1993/89 993 2n conc.3 F71 Gill 0.0321 1993/14107 613 2n conc.4 F71 Liver 0.0383 1050.7022 122 2n conc.4 F72 Gill 0.0302 1993.1846 533 Zn conc.4 F73 Liver 0.0833 1050.7022 122 2n conc.4 F74 Gill 0.0293 1538.5719 559 Zn conc.4 F74 Kidney 0.0468 1004.2424 215 Zn conc.4 F75 Liver 0.0633 954,63337 151 Zn conc.5 F78 Gill 0.0314 1274,65674 837 152 Zn conc.5 F78 Liver 0.0648 142,65764 127 Zn conc.5 F79 Gill 0.0314 1746,5574 837 Conc.5 F88 Liver 0.0648 <td></td>																		
2n conc.3 F70 Gill 0.0231 1999.14107 623 2n conc.4 F71 Kidney 0.0465 178.71609 221 2n conc.4 F71 Liver 0.0333 105070225 126 Cancon.4 F73 Gill 0.0239 1983.63926 412 Zn conc.4 F73 Kidney 0.0465 1178.71609 223 Zn conc.4 F74 Liver 0.0333 105070225 122 Zn conc.4 F73 Gill 0.0239 1383.5519 559 Zn conc.4 F76 Kidney 0.0662 1600.24362 202 Zn conc.4 F76 Liver 0.0648 400.24727 228 Zn conc.4 F76 Liver 0.0648 406.74717 258 Zn conc.4 F76 Liver 0.0648 406.74717 258 Zn conc.5 F78 Liver 0.0648 406.7461 477 Zn conc.5 F78 Liver 0.0642 482.63746 417 Zn conc.5 F80 Liver 0.0642 482.63746 417 Zn conc.5 F80 Liver 0.0642 482.6383437 1060 Zn conc																		
2n conc.4 F72 Gill 0.028 199.2188 522 2n conc.4 F73 Kidney 0.048 93.65031 204 2n conc.4 F73 Liver 0.089 717.12052 122 2n conc.4 F74 Gill 0.028 193.154168 493 2n conc.4 F75 Kidney 0.0602 1564.35064 202 2n conc.4 F75 Liver 0.083 94.63317 151 2n conc.4 F76 Gill 0.031 192.138282 618 2n conc.5 F78 Kidney 0.054 1404.1277 255 2n conc.5 F78 Liver 0.0602 682.68744 127 2n conc.5 F78 Gill 0.0342 1249.6575 500 2n conc.5 F80 Kidney 0.0481 205.0577 758 Liver 0.0462 682.43242 101 2n conc.5 F81 Gill 0.0281 1429.66755 500 2n conc.5 F81 Kidney 0.0384 190.79584 282 2n conc.5 F83 Liver 0.0461 292.32446 102 2n conc.6																		
2n conc. 4 F73 Gill 0.028 1391-5418 493 2n conc. 4 F74 Kidney 0.0461 1004,2443 215 2n conc. 4 F74 Liver 0.031 4931.0331 151 2n conc. 4 F75 Gill 0.0291 1583.384 583 2n conc. 4 F75 Kidney 0.0651 1193.0014 125 2n conc. 4 F76 Liver 0.083 199.46331 151 2n conc. 4 F76 Gill 0.0314 1921.3882 Canc. 5 F78 Kidney 0.051 204.9033 400 nonc. 5 F78 Uver 0.0664 822.6574 127 2n conc. 5 F78 Gill 0.0342 1746.23375 511 2n conc. 5 F80 Kidney 0.0467 1263.06377 259 2n conc. 5 F81 Liver 0.0646 822.63749 1015 2n conc. 5 F81 Gill 0.0381 141.05028 200 2n conc. 5 F81 Liver 0.0461 823.24928 101 2n conc. 6 F148 Gill 0.0381 141.05028	Zn conc. 4	F71	Gill	0.0239	983.603926	412	Zn conc. 4	F72	Kidney	0.0465	1178.71609	253	Zn conc. 4	F72	Liver	0.0833	1050.70225	126
Pronc. 4 F74 Gill 0.029 1638.57519 559 Zn conc. 4 F75 Kidney 0.062 1564.35064 260 Zn conc. 4 F75 Liver 0.0638 954.638317 151 Zn conc. 4 F76 Gill 0.031 1251.3388 538 Zn conc. 5 F78 Kidney 0.0565 1193.00184 182 Zn conc. 5 F78 Liver 0.0648 4826.6764 127 Zn conc. 5 F78 Gill 0.0342 1274.63375 510 Zn conc. 5 F80 Gill 0.0486 826.37612 116 Zn conc. 5 F80 Gill 0.0486 1429.6755 500 Zn conc. 5 F81 Liver 0.0566 681.81.43856 116 Zn conc. 5 F81 Gill 0.0481 1420.6755 500 Zn conc. 5 F81 Liver 0.0561 823.3246 110 Zn conc. 6 F148 Gill 0.0322 1440.5028 500 Zn conc. 5 F81 Liver 0.0561 823.3246 100 Zn conc. 6 F148 Gill	Zn conc. 4	F72	Gill	0.0306	1599.21886	523	Zn conc. 4	F73	Kidney	0.0487	993.665031	204	Zn conc. 4	F73	Liver	0.0589	717.124052	122
Pronc.4 F75 Gill 0.0294 1581.3884 538 Pronc.4 F76 Kidney 0.0656 1193.00184 182 Pronc.4 F76 Liver 0.0488 1098.95728 225 Pronc.4 F76 Gill 0.0311 1921.83882 Gill Pronc.5 F78 Kidney 0.0541 1204.01237 Z25 Pronc.5 F78 Liver 0.0642 622.83437 100 Pronc.5 F79 Gill 0.0246 1276.23375 S11 Pronc.5 F80 Kidney 0.0481 1263.06377 259 Pronc.5 F81 Liver 0.0846 821.34366 102 Pronc.5 F81 Liver 0.0846 823.24428 101 Pronc.5 F82 Gill 0.0281 1441.05028 S00 Pronc.5 F83 Kidney 0.0374 195.75844 283 Pronc.5 F84 Liver 0.0123 772.24054 102 Pronc.6 F148 Gill 0.0324 1476.60853 272 Pronc.6 F149 Kidney 0.0569 1420.6075 120	Zn conc. 4				1391.54168			F74	Kidney		1004.24432	215	Zn conc. 4	F74	Liver	0.0418	481.01708	
2n conc.4 F76 Gill 0.031 1921.83682 618 2n conc.5 F78 Kidney 0.054 1404.61277 258 Zn conc.5 F78 Liver 0.0642 842.66764 127 Zn conc.5 F78 Gill 0.0342 2794.56574 837 A conc.5 F79 Kidney 0.0432 1263.06377 579 Liver 0.0642 622.88343 106 Zn conc.5 F80 Gill 0.0326 1429.66755 500 Zn conc.5 F81 Kidney 0.0369 989.19716 268 Zn conc.5 F81 Liver 0.0642 592.32446 109 Zn conc.5 F82 Gill 0.0281 1476.60833 272 Zn conc.5 F84 Kidney 0.0352 460.79411 92.5 Zn conc.6 F148 Liver 0.1235 79.085472 113 Zn conc.6 F149 Gill 0.0242 1476.60833 272 Zn conc.6 F148 Liver 0.1235 79.085472 113 Zn conc.6 F150 Gill 0.0242 127.398371 786																		
2n conc. 5 F78 Gill 0.0334 279.456574 837 2n conc. 5 F79 Kidney 0.0513 208.490393 406 2n conc. 5 F79 Liver 0.0642 682.883437 106 2n conc. 5 F80 Gill 0.0342 1746.23375 511 2n conc. 5 F81 Kidney 0.0345 881.48462 116 2n conc. 5 F81 Gill 0.0286 1429.66755 500 Zn conc. 5 F81 Kidney 0.0369 989.197196 268 Zn conc. 5 F81 Liver 0.0542 592.323446 109 2n conc. 5 F83 Gill 0.0328 1441.05028 500 Zn conc. 5 F84 Kidney 0.0369 989.197196 268 Zn conc. 6 F144 Liver 0.0512 590.3264 423 Zn conc. 6 F144 Kidney 0.0369 989.197196 268 Zn conc. 6 F144 Liver 0.0151 Zn conc. 6 F150 Kidney 0.028 Zn conc. 6 F144 Liver 0.123 Zn 20464 203.43824 20 Conc. 6 F150 </td <td></td>																		
2n conc. 5 F79 Gill 0.0342 1746.23375 511 Zn conc. 5 F80 Kidney 0.0487 1263.06377 259 Zn conc. 5 F80 Liver 0.0586 681.814862 116 Zn conc. 5 F80 Gill 0.0286 1429.66755 500 Zn conc. 5 F81 Kilney 0.0548 881.438566 162 Zn conc. 5 F81 Liver 0.0016 826.324928 100 Zn conc. 5 F82 Gill 0.0281 1441.05028 500 Zn conc. 5 F83 Kidney 0.0374 1059.75844 283 Zn conc. 6 F148 Liver 0.0733 770.284054 102 Zn conc. 6 F148 Gill 0.0332 2699.07665 813 Zn conc. 6 F148 Kidney 0.0594 642.073421 92.5 Zn conc. 6 F148 Liver 0.0123 279.085472 113 Zn conc. 6 F149 Kidney 0.0594 440.142 Zn conc. 6 F151 Liver 0.0121 166.94039 91.5 279.085472 113 Zn conc. 6 F151																		
2n conc. 5 F80 Gill 0.0286 1429.66755 500 2n conc. 5 F81 Kidney 0.0364 881.438566 162 2n conc. 5 F81 Liver 0.0816 826.324928 101 2n conc. 5 F81 Gill 0.0816 127.01713 156 2n conc. 5 F83 Kidney 0.0374 1095.75844 283 2n conc. 5 F84 Liver 0.0121 159.012454 109 2n conc. 5 F83 Gill 0.0542 14476.60853 272 n conc. 5 F84 Kidney 0.0694 642.073421 92.5 n conc. 6 F148 Liver 0.1217 159.012454 65.3 2n conc. 6 F148 Gill 0.0264 2073.98371 786 Conc. 6 F148 Liver 0.0212 166.694039 91.5 2n conc. 6 F150 Gill 0.0228 1503.48365 505 2n conc. 6 F151 Kidney 0.038 1391.4377 229 2n conc. 6 F152 Liver 0.0683 12.680291 82.5 2n conc. 6 F153 Gill																		
2n conc. 5 F81 Gill 0.0816 1270.01713 156 2n conc. 5 F82 Kidney 0.0369 989.197196 268 Zn conc. 5 F83 Liver 0.0542 592.323446 109 Zn conc. 5 F83 Gill 0.0281 1441.05028 500 Zn conc. 5 F84 Kidney 0.0374 1059.75844 283 Zn conc. 5 F84 Liver 0.0213 770.280454 102 Zn conc. 6 F148 Gill 0.0322 2699.07665 813 Zn conc. 6 F148 Kidney 0.0754 4160.10095 574 Zn conc. 6 F149 Liver 0.0122 1265.06303 915.5 Zn conc. 6 F150 Gill 0.0294 103.48365 505 Zn conc. 6 F151 Kidney 0.0681 131.43777 229 Zn conc. 6 F151 Liver 0.0618 28.355405 81.2 Zn conc. 6 F152 Gill 0.0192 1225.7344 638 Zn conc. 6 F153 Kidney 0.0371 418.3861 20 conc. 6 F153 Liver 0.1146 16															-			
Zh conc. 5 F82 Gill 0.0288 1441.05028 500 Zn conc. 5 F83 Kidney 0.0374 1059.75844 283 Zn conc. 5 F84 Liver 0.0753 770.284054 102 Zn conc. 5 F83 Gill 0.0542 1476.60853 272 Zn conc. 5 F84 Kidney 0.0694 642.073421 92.5 Zn conc. 6 F148 Liver 0.1217 159.012454 65.3 Zn conc. 6 F149 Gill 0.0242 2073.98371 786 Zn conc. 6 F150 Liver 0.051 82.355405 81.2 Zn conc. 6 F150 Gill 0.029 1503.48365 505 Zn conc. 6 F151 Liver 0.051 82.355405 81.2 Zn conc. 6 F152 Gill 0.0374 125.7344 638 Zn conc. 6 F152 Liver 0.0181 126.860291 82.5 Zn conc. 6 F153 Gill 0.024 125.7344 638 Zn conc. 6 F153 Liver 0.0146 199.1471 77.9 Zn conc 7 F153																		
Zn conc. 6 F148 Gill 0.0332 2699.07665 813 Zn conc. 6 F148 Kidney 0.0725 4160.10095 574 Zn conc. 6 F149 Liver 0.1235 279.085472 113 Zn conc. 6 F149 Gill 0.0246 2073.98371 766 Zn conc. 6 F149 Kidney 0.0589 2604.42063 442 Zn conc. 6 F150 Liver 0.0912 166.964039 91.5 Zn conc. 6 F151 Gill 0.0377 253.38431 668 Zn conc. 6 F151 Kidney 0.0673 3418.38661 537 Zn conc. 6 F153 Liver 0.068 122.680291 82.3 Zn conc. 6 F153 Gill 0.0192 1225.7344 638 Zn conc. 6 F153 Kidney 0.0389 1303.9395 327 Zn conc 7 F155 Liver 0.1146 167.091719 72.9 Zn conc. 6 F153 Gill 0.0284 1527.88623 538 Zn conc 7 F155 Kidney 0.0377 267.93246 442 Zn conc 7 F155 Liver 0															Liver			
Zn conc. 6 F149 Gill 0.0264 2073.98371 786 Zn conc. 6 F149 Kidney 0.0589 2604.42063 442 Zn conc. 6 F150 Liver 0.0912 166.964039 91.5 Zn conc. 6 F150 Gill 0.0298 1503.48365 505 Zn conc. 6 F150 Kidney 0.0607 3418.38661 537 Zn conc. 6 F151 Liver 0.0618 82.8355405 81.2 Zn conc. 6 F152 Gill 0.0377 2632.38431 698 Zn conc. 6 F152 Kidney 0.0637 3418.38661 537 Zn conc. 6 F153 Liver 0.0618 112.6802119 342 Zn conc. 6 F153 Liver 0.1146 199.314741 87 Zn conc. 6 F154 Gill 0.0284 152.788623 538 Zn conc. 6 F155 Kidney 0.0672 1458.39568 219 Zn conc 7 F155 Liver 0.1162 241.878851 74.4 Zn conc 7 F155 Gill 0.0363 1849.3347 559 Zn conc 7 F155 Kidney <	Zn conc. 5	F83	Gill	0.0542		272	Zn conc. 5	F84	Kidney	0.0694	642.073421	92.5	Zn conc. 6	F148	Liver	0.1217	159.012454	65.3
Zn conc. 6 F150 Gill 0.0298 1503.48365 505 Zn conc. 6 F150 Kidney 0.068 1391.43777 229 Zn conc. 6 F151 Liver 0.051 82.8355405 81.2 Zn conc. 6 F151 Gill 0.037 2632.38431 668 Zn conc. 6 F151 Kidney 0.0637 3418.38661 537 Zn conc. 6 F152 Liver 0.0683 112.680291 82.5 Zn conc. 6 F153 Gill 0.0192 1225.7344 638 Zn conc. 6 F153 Kidney 0.039 1303.9395 327 Zn conc. 7 F155 Liver 0.1146 199.314741 87 Zn conc 7 F155 Gill 0.028 1849.3347 509 Zn conc. 7 F155 Kidney 0.057 2679.33246 464 Zn conc 7 F157 Liver 0.1152 148.40125 77.4 Zn conc 7 F156 Gill 0.0342 176.35043 519 Zn conc 7 F158 Kidney 0.0567 1300.79774 229 Zn conc 7 F151 Liver 0.1152 <td>Zn conc. 6</td> <td>F148</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F148</td> <td>Kidney</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Liver</td> <td></td> <td></td> <td></td>	Zn conc. 6	F148						F148	Kidney						Liver			
Zn conc. 6 F151 Gill 0.0377 2632.38431 698 Zn conc. 6 F151 Kidney 0.0637 3418.38661 537 Zn conc. 6 F152 Liver 0.0683 112.680291 82.5 Zn conc. 6 F152 Gill 0.0192 1225.7344 638 Zn conc. 6 F153 Kidney 0.039 1303.9395 327 Zn conc. 6 F153 Liver 0.1146 167.091719 72.9 Zn conc. 6 F154 Gill 0.0284 1527.88623 538 Zn conc. 6 F154 Kidney 0.0667 1458.39568 219 Zn conc 7 F155 Liver 0.1146 199.314741 87 Zn conc 7 F155 Gill 0.0304 1299.7914 789 Zn conc 7 F155 Kidney 0.0677 2679.33246 464 Zn conc 7 F155 Liver 0.1172 216.86089 83.3 Zn conc 7 F155 Gill 0.0342 176.35043 519 Zn conc 7 F157 Kidney 0.0657 1300.79774 229 Zn conc 7 F160 Liver 0.0847<																		
Zn conc. 6 F152 Gill 0.0192 1225.7344 G38 Zn conc. 6 F152 Kidney 0.0384 1306.20194 340 Zn conc. 6 F153 Liver 0.1146 167.091719 72.9 Zn conc. 6 F153 Gill 0.028 180.36064 496 Zn conc. 6 F153 Kidney 0.0399 1303.3935 327 Zn conc. 7 F155 Liver 0.1146 199.314741 87 Zn conc. 6 F154 Gill 0.0364 1527.88623 538 Zn conc. 6 F154 Kidney 0.0667 1458.39568 219 Zn conc 7 F155 Liver 0.1622 241.878851 74.4 Zn conc 7 F155 Gill 0.0304 239.97914 789 Zn conc 7 F155 Kidney 0.0577 2679.33246 464 Zn conc 7 F158 Liver 0.1146 167.0473 83.8 Zn conc 7 F158 Gill 0.0342 176.35043 519 Zn conc 7 F158 Kidney 0.0567 1300.79774 229 Zn conc 7 F160 Liver 0.0965 <td></td>																		
Zn conc. 6 F153 Gill 0.0238 1180.36064 496 Zn conc. 6 F153 Kidney 0.0399 1303.9395 327 Zn conc 7 F155 Liver 0.1146 199.314741 87 Zn conc. 6 F154 Gill 0.0284 1527.88623 538 Zn conc. 6 F154 Kidney 0.0667 1458.39568 219 Zn conc 7 F155 Liver 0.1625 241.878851 74.4 Zn conc 7 F155 Gill 0.0364 1489.3347 509 Zn conc 7 F155 Kidney 0.0702 1311.9711 161 Zn conc 7 F155 Liver 0.1146 199.314741 87 Zn conc 7 F155 Gill 0.0364 1299.7914 789 Zn conc 7 F155 Kidney 0.0702 1310.9711 161 Zn conc 7 F155 Liver 0.1146 199.314741 87 Zn conc 7 F155 Gill 0.0364 1299.7914 789 Zn conc 7 F155 Kidney 0.0702 1300.79774 229 Zn conc 7 F160 Liver 0.0163																		
Zn conc. 6 F154 Gill 0.0284 1527.88623 538 Zn conc. 6 F154 Kidney 0.0667 1458.39568 219 Zn conc 7 F156 Liver 0.1625 241.878851 74.4 Zn conc 7 F155 Gill 0.0363 1849.3347 509 Zn conc 7 F155 Kidney 0.0702 1131.19711 161 Zn conc 7 F157 Liver 0.1377 226.586089 82.33 Zn conc 7 F156 Gill 0.0304 2399.7914 789 Zn conc 7 F156 Kidney 0.0577 2679.33246 464 Zn conc 7 F158 Liver 0.1152 178.401625 77.4 Zn conc 7 F158 Gill 0.0342 1776.35043 519 Zn conc 7 F158 Kidney 0.0663 1818.44325 289 Zn conc 7 F160 Liver 0.1106 184.819713 83.6 Zn conc 7 F159 Gill 0.0241 1484.83726 601 Zn conc 7 F159 Kidney 0.0651 120.74491 318 Zn conc 8 F162 Liver 0.1243<																		
Zn conc 7 F155 Gill 0.0363 1849.3347 509 Zn conc 7 F155 Kidney 0.0702 1131.19711 161 Zn conc 7 F157 Liver 0.1377 226.586089 82.3 Zn conc 7 F156 Gill 0.0304 2399.7914 789 Zn conc 7 F156 Kidney 0.0577 2679.33246 464 Zn conc 7 F158 Liver 0.1152 178.401625 77.4 Zn conc 7 F157 Gill 0.0342 176.35043 519 Zn conc 7 F157 Kidney 0.0567 1300.7977 429 Zn conc 7 F159 Liver 0.0152 178.401625 77.4 Zn conc 7 F158 Gill 0.0342 176.35043 519 Zn conc 7 F159 Kidney 0.0661 2100.74491 318 Zn conc 7 F161 Liver 0.0106 184.819713 83.6 Zn conc 7 F160 Gill 0.0247 1484.83726 601 Zn conc 7 F159 Kidney 0.0561 2100.74491 318 Zn conc 8 F162 Liver 0.1106																		
Zn conc 7 F156 Gill 0.0304 2399.7914 789 Zn conc 7 F156 Kidney 0.0577 2679.33246 464 Zn conc 7 F158 Liver 0.1152 178.401625 77.4 Zn conc 7 F157 Gill 0.0264 1408.82208 534 Zn conc 7 F157 Kidney 0.0567 1300.79774 229 Zn conc 7 F159 Liver 0.0965 161.69473 83.8 Zn conc 7 F158 Gill 0.0242 1776.35043 519 Zn conc 7 F158 Kidney 0.0661 1818.44325 289 Zn conc 7 F160 Liver 0.0847 151.154639 89.2 Zn conc 7 F150 Gill 0.0247 1484.83726 601 Zn conc 7 F159 Kidney 0.0661 2100.74491 318 Zn conc 7 F161 Liver 0.1016 184.81971 83.6 Zn conc 7 F160 Gill 0.0213 1504.3610 706 Zn conc 7 F160 Kidney 0.0565 1935.65344 343 Zn conc 8 F162 Liver 0.1043																		
Zn conc 7 F157 Gill 0.0264 1408.82208 534 Zn conc 7 F157 Kidney 0.0567 1300.79774 229 Zn conc 7 F159 Liver 0.0965 161.69473 83.8 Zn conc 7 F158 Gill 0.0342 1776.35043 519 Zn conc 7 F158 Kidney 0.063 1818.44325 289 Zn conc 7 F160 Liver 0.0847 151.154639 89.2 Zn conc 7 F159 Gill 0.0247 1484.83726 G01 Zn conc 7 F159 Kidney 0.0661 2100.74491 318 Zn conc 7 F161 Liver 0.0106 184.819713 83.6 Zn conc 7 F160 Gill 0.0213 1504.36101 706 Zn conc 7 F160 Kidney 0.0565 1935.65344 343 Zn conc 8 F162 Liver 0.1243 257.348093 104 Zn conc 8 F161 Gill 0.0363 2197.85918 Cn conc 8 F162 Kidney 0.0565 1355.65344 343 Zn conc 8 F164 Liver 0.1243 252.147	-																	
Zn conc 7 F159 Gill 0.0247 1484.83726 601 Zn conc 7 F159 Kidney 0.0661 2100.74491 318 Zn conc 7 F161 Liver 0.1106 184.819713 83.6 Zn conc 7 F160 Gill 0.0213 1504.36101 706 Zn conc 7 F160 Kidney 0.0536 2575.07949 480 Zn conc 8 F162 Liver 0.1243 257.348093 104 Zn conc 7 F161 Gill 0.0301 2041.17684 G78 Zn conc 7 F161 Kidney 0.0565 1355.65344 343 Zn conc 8 F163 Liver 0.1065 203.371709 95.5 Zn conc 8 F164 Gill 0.0363 2197.85918 G65 Zn conc 8 F164 Kidney 0.0565 1385.7577 27 Zn conc 8 F164 Liver 0.1065 203.371709 95.5 Zn conc 8 F164 Gill 0.0363 2197.85918 G65 Zn conc 8 F163 Kidney 0.0565 1389.28611 239 Zn conc 8 F164 Liver 0.1269 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>													1					
Zn conc 7 F160 Gill 0.0213 1504.36101 706 Zn conc 7 F160 Kidney 0.0363 2575.07949 480 Zn conc 8 F162 Liver 0.1243 257.348093 104 Zn conc 7 F161 Gill 0.0301 2041.17684 678 Zn conc 7 F161 Kidney 0.0565 1935.65344 343 Zn conc 8 F163 Liver 0.1065 203.371709 95.5 Zn conc 8 F162 Gill 0.0363 2197.85918 645 Zn conc 8 F162 Kidney 0.0552 1385.75707 277 Zn conc 8 F164 Liver 0.1339 252.147734 94.2 Zn conc 8 F164 Gill 0.0363 2197.85918 605 Zn conc 8 F164 Kidney 0.0582 1389.28611 239 Zn conc 8 F164 Liver 0.1269 199.171964 78.5 Zn conc 8 F165 Gill 0.0264 1327.28675 503 Zn conc 8 F164 Kidney 0.0596 3272.60706 549 Zn conc 8 F168 Liver 0.1074 </td <td>Zn conc 7</td> <td>F158</td> <td>Gill</td> <td></td> <td></td> <td></td> <td></td> <td>F158</td> <td>Kidney</td> <td>0.063</td> <td>1818.44325</td> <td>289</td> <td>Zn conc 7</td> <td>F160</td> <td>Liver</td> <td></td> <td></td> <td></td>	Zn conc 7	F158	Gill					F158	Kidney	0.063	1818.44325	289	Zn conc 7	F160	Liver			
Zn conc 7 F161 Gill 0.0301 2041.17684 678 Zn conc 7 F161 Kidney 0.0565 1935.65344 343 Zn conc 8 F163 Liver 0.1065 203.371709 95.5 Zn conc 8 F162 Gill 0.0365 2353.95036 645 Zn conc 8 F162 Kidney 0.0656 1815.75707 277 Zn conc 8 F164 Liver 0.1339 252.147734 94.2 Zn conc 8 F164 Gill 0.0363 2197.85918 605 Zn conc 8 F163 Kidney 0.0582 1389.28611 239 Zn conc 8 F164 Liver 0.1269 199.171964 78.5 Zn conc 8 F165 Gill 0.0264 1327.28675 503 Zn conc 8 F164 Kidney 0.0596 3272.60706 549 Zn conc 8 F168 Liver 0.1074 170.204698 79.2 Zn conc 8 F166 Gill 0.0319 2018.01259 Gill Zn conc 8 F165 Kidney 0.0582 126.39824 309 Zn conc 8 F167 Gill																		
Zn conc 8 F162 Gill 0.0365 2353.95036 645 Zn conc 8 F162 Kidney 0.0656 1815.75707 277 Zn conc 8 F164 Liver 0.1339 252.147734 94.2 Zn conc 8 F164 Gill 0.0363 2197.85918 605 Zn conc 8 F163 Kidney 0.0582 1389.28611 239 Zn conc 8 F167 Liver 0.1269 199.171964 78.5 Zn conc 8 F165 Gill 0.0264 1327.28675 503 Zn conc 8 F164 Kidney 0.0596 3272.60706 549 Zn conc 8 F168 Liver 0.1074 170.204698 79.2 Zn conc 8 F166 Gill 0.0249 1539.05296 618 Zn conc 8 F165 Kidney 0.051 1047.79352 205 Zn conc 8 F167 Gill 0.0319 2018.01259 633 Zn conc 8 F166 Kidney 0.0688 2126.39824 309	-																	
Zn conc 8 F164 Gill 0.0363 2197.85918 605 Zn conc 8 F163 Kidney 0.0582 1389.28611 239 Zn conc 8 F167 Liver 0.1269 199.171964 78.5 Zn conc 8 F165 Gill 0.0264 1327.28675 503 Zn conc 8 F164 Kidney 0.0596 3272.60706 549 Zn conc 8 F168 Liver 0.1074 170.204698 79.2 Zn conc 8 F166 Gill 0.0249 1539.05296 618 Zn conc 8 F165 Kidney 0.051 1047.79352 205 Zn conc 8 F167 Gill 0.0319 2018.01259 633 Zn conc 8 F166 Kidney 0.0688 2126.39824 309																		
Zn conc 8 F165 Gill 0.0264 1327.28675 503 Zn conc 8 F164 Kidney 0.0596 3272.60706 549 Zn conc 8 F168 Liver 0.1074 170.204698 79.2 Zn conc 8 F166 Gill 0.0249 1539.05296 618 Zn conc 8 F165 Kidney 0.051 1047.79352 205 Zn conc 8 F167 Gill 0.0319 2018.01259 633 Zn conc 8 F166 Kidney 0.0688 2126.39824 309																		
Zn conc 8 F166 Gill 0.0249 1539.05296 618 Zn conc 8 F165 Kidney 0.051 1047.79352 205 Zn conc 8 F167 Gill 0.0319 2018.01259 633 Zn conc 8 F166 Kidney 0.0688 2126.39824 309																		
Zn conc 8 F167 Gill 0.0319 2018.01259 633 Zn conc 8 F166 Kidney 0.0688 2126.39824 309														LT00	Livel	0.1074	170.204098	19.2
	Zn conc 8	F168	Gill					F168	Kidney			223						

Appendix A.8 – Cont.

Table A.8.3: Measured AI concentration in tissues (gill, kidney, liver) for each individual fish in each exposure group. Concentration was measured in μg/l and converted to mg/kg.

Alcontrol F1 Gill 0.048 31.911919 Dob Alcontrol F1 Kidney 0.056 6.512989 1.8 Alcontrol F3 Liver 0.075 10.06648 2.53 Alcontrol F3 Gill 0.0248 2.5365554 8.8 Alcontrol F4 Kidney 0.0042 7.6274566 1.8 A control F5 Kidney 0.0042 7.6274567 2.4 A control F6 Kidney 0.0055 5.61342641 1.58 A control F6 Kidney 0.0055 5.6134841 1.58 A control F6 Kidney 0.0069 9.438481 1.64 A control F6 Kidney 0.0069 9.438481 1.64 A control F7 Kidney 0.0069 9.438481 1.63 A control F7 Kidney 0.0061 1.60.07369 1.23 A control F7 Kidney 0.0061 1.60.073786 2.24 A control F7 Kidney 0.0061 1.20.00718 1.2712371	F	Fiele and	T:		Cana wall		F	Fich as	Tierre	undialate a	Cono vall		F	Fiels an	T:		Cana wall	
Alcontrol F2 Gill 0.0484 5.3.83168 7.1 Alcontrol F3 Kidney 0.0248 7.6.8266 8.3 Alcontrol F3 Kidney 0.024 7.6.8266 8.3 Alcontrol F3 Kidney 0.028 9.339321 1.2 Alcontrol F5 Lie O.0392 2.8.21732 1.8 Alcontrol F5 Kidney 0.0385 5.5.335544 1.5 Alcontrol F5 Kidney 0.0385 5.5.335544 1.5 Alcontrol F6 Kidney 0.0385 5.1335544 1.5 Alcontrol F6 Kidney 0.0685 9.15562277 1.3 Alcontrol F10 Lie 0.0375 1.2712171 3.5 Alcontr.1 F90 Gill 0.0226 2.2313414 1.0 Alcontr.1 F10 Kidney 0.0685 3.16217548 3.24 Alcontr.1 F10 Kidney 0.0371 Alcontrol F3 Kidney 0.0471 2.161848 3.44 0.0171 F11 Kidney			Tissue	0,0	10,	mg/kg		•	Tissue		1.4		1 0 1		Tissue		Conc. μg/l	mg/kg
Alcontrol F3 Kidney 0.0422 7.64 (2)3566 1.82 Accontrol F5 Liver 0.0931 2.54 (3)579 2.91 Al control F5 Gill 0.0317 16.67381.1 5.26 Al control F5 Kidney 0.0355 5.61335544 1.58 Al control F7 Liver 0.0160 5.5633554 1.58 Al control F7 Liver 0.0160 5.9633622 1.58 Al control F7 Gill 0.0293 2.3522260 Kidney 0.0608 5.61335544 1.58 Al control F7 Liver 0.0593 1.521754 2.88 Al control F7 Gill 0.0282 2.4794423 Bl control F8 Kidney 0.0693 3.222 Al control F11 Liver 0.0353 1.451979 1.8 Al control F14 Kidney 0.06763 2.2065504 3.24 Al control F13 Liver 0.0383 1.459179 2.77 Al control F13 Kidney 0.0675 2.2065504 3.74 Al control F13 Liver																		
Alcontrol F4 Gill 0.033 6.202037 6.83 Alcontrol F4 Kidney 0.0785 5.3324212 1.2 Alcontrol F6 User 0.0137 16.6045799 2.4 Alcontrol F6 Gill 0.0232 2.3522266 7.38 Alcontrol F6 Kidney 0.0688 9.1558227 1.28 Alcontrol F7 User 0.0357 6.1335544 1.28 Alcontrol F7 User 0.0357 6.1335544 2.87 Alcontrol F8 Kidney 0.0688 9.1558227 3.28 Alcontrol F1 User 0.0357 6.1335544 3.23 Alcontrol F10 User 0.0358 6.3311785 3.28 Alcontrol F10 Gill 0.0282 2.3233317 6.53 Alcontrol F12 Kidney 0.0568 3.1260753 3.24 Alcontrol F12 Kidney 0.0563 3.1260753 3.24 Alcontrol F12 Kidney 0.0563 3.1260753 3.23 Alcontrol F12 Kidney 0.0563 3.1260753 3.23																		
Alcontrol P5 OIII O.037 16 (a)35544 1.58 Alcontrol P7 User 0.1639 25 (9)33622 1.58 Alcontrol P7 Gill 0.025 22 (2)222 7.58 Alcontrol P7 Kidney 0.0686 9.435481 1.58 Alconc.1 P9 User 0.0595 6.352953 2.67 Alcontrol P7 Kidney 0.0688 9.15562277 1.31 Alcont.1 P1 User 0.0199 0.3357554 2.88 Alcont.1 P19 Gill 0.0288 3.0417584 3.22 Alcont.1 P10 Kidney 0.0686 3.1562277 1.33 Alcont.1 P12 Kidney 0.0763 2.2605393 3.24 Alcont.1 P13 Kidney 0.0777 3.23 Alcont.1 F14 Kidney 0.0681 3.1202244 3.93 Alcont.1 F14 Kidney 0.0681 3.1208233 3.23 Alcont.2 F15 Liver 0.0384 3.4468824 1.13																		
Alcontrol F6 Gill 0.0141 27.029317 6.54 Alcontrol F7 Kidney 0.0688 9.4584843 1.64 Aconc.1 F8 Uver 0.0587 6.5330593 2.87 Alconci.1 F8 Gill 0.0212 22.0493423 8 Alconc.1 F8 Kidney 0.0583 16.2173548 3.22 Alconc.1 F10 Uver 0.0495 8.311178 1.8 Alconc.1 F10 Gill 0.0222 30.015799 1.8 Alconc.1 F11 Kidney 0.0366 3.1260799 3.4 Alconc.1 F11 Uver 0.0383 1.491997 2.77 Alconc.1 F13 Gill 0.0229 2.85993 9.66 Alconc.1 F13 Kidney 0.0353 1.2007393 2.93 Alconc.1 F14 Uver 0.0384 3.34 Alconc.1 F14 View 0.0384 3.4 Alconc.2 F15 Kidney 0.0435 1.2007393 2.89 Alconc.2 F16 Kidney 0.0435 1.84209349 2.54 Alconc.2 F16 Kidney																		
Alcontont F7 Gill 0.04281 22.0293317 5.56 Al conc.1 F9 Liver 0.0359 0.2352754 2.88 Alconc.1 F9 Gill 0.0208 22.2331041 10.8 Al conc.1 F9 Kidney 0.06503 162.213488 3.24 Alcon.1 F11 Liver 0.0357 2.28 Alcon.1 F11 Liver 0.0357 2.211371 3.56 Alconc.1 F10 Gill 0.0224 13.61477 5.51 Alconc.1 F12 Kidney 0.0763 2.296073 3.4 Alconc.1 F13 Kidney 0.0461 3.1200739 3.4 Conc.1 F13 Liver 0.0383 4.5683277 3.3 Alconc.1 F14 Gill 0.0226 2.4678650 9.23 Alconc.1 F13 Kidney 0.0452 12.085827 3.4 Alconc.2 F16 Kidney 0.0452 12.085827 3.4 Alconc2 F16 Kidney 0.0462 12.0858857 3.7 Alconc2 F16 Kidney 0.0462 12.0858857 3.7 Alconc2 F1									,									
Alconc.1 F8 Gill 0.0281 22.4794423 8 Alconc.1 F8 Kidney 0.0693 16.217348 3.22 Alconc.1 F10 Uure 0.0495 8.9111785 11.3 Alconc.1 F10 Gill 0.0206 22.3231041 0.03 Alconc.1 F11 Uure 0.0381 1.91379 2.77 Alconc.1 F11 Gill 0.0292 2.839599 9.64 Alconc.1 F11 Uure 0.0381 0.9383 4.98397 3.03 Alconc.1 F13 Gill 0.0292 2.839599 9.64 Alconc.1 F13 Kidney 0.0451 1.0243 3.0 Alconc.1 F14 Uure 0.0381 0.9383 4.933957 3.0 Alconc.1 F13 Gill 0.0223 3.0 Alconc.2 F14 Kidney 0.0453 1.00528 3.0 Alconc.2 F15 Kidney 0.0453 1.00528 3.0 Alconc.2 F17 Kidney 0.0453 3.0 Alconc.2 F17 Kidney 0.0453 3.9405612 1.14 Alconc																		-
Alconc.1 P9 Gili 0.0026 22.331041 0.012 Alconc.1 P10 Kidney 0.0067 21.216588 3.28 Alconc.1 F11 Liver 0.0357 12.712371 3.56 Alconc.1 F11 Gili 0.0284 30.015799 3.38 Alconc.1 F13 Liver 0.0387 12.712371 3.56 Alconc.1 F11 Gili 0.0284 3.6194177 5.51 Alconc.1 F12 Kidney 0.0763 2.205043 3.8 Alconc.1 F14 Liver 0.0384 10.9433937 3.03 Alconc.1 F14 Gili 0.0226 7.480109 2.2 Alconc.1 F14 Kidney 0.0451 13.209320 2.93 Alconc.2 F16 Liver 0.0383 3.9482622 5.13 Alconc 2 F16 Gili 0.028 3.040262 1.6 Alconc 2 F16 Kidney 0.0385 3.842867 Alconc 2 F18 Liver 0.0682 2.473500 2.4 Alconc 2 F18 Gili 0.0258 3.0546245 3.1 <td></td>																		
Alconc.1 F10 Gill 0.0282 3.0.413797 13.8 Alconc.1 F11 Kidney 0.0765 3.2.4 Alconc.1 F12 Liver 0.0381 1.9.9379 2.77 Alconc.1 F11 Gill 0.0294 16.1943677 5.51 Alconc.1 F11 Kidney 0.077 26.3112264 3.9 Alconc.1 F13 Liver 0.0384 10.343397 3.03 Alconc.1 F13 Gill 0.0226 27.4450109 12.2 Alconc.1 F13 Kidney 0.0651 11.060512 1.44 Alconc.2 F15 Liver 0.0383 4.348205 1.16 Alconc.2 F15 Gill 0.0333 4.338222 1.03 Alconc2 F16 Kidney 0.0359 13.8958855 3.87 Alconc2 F19 Liver 0.0822 21.464880 2.67 Alconc2 F18 Gill 0.0328 3.942612 11.8 Alconc2 F19 Kidney 0.0484 8.7642874 3.104 Alconc2 F19 Liver 0.0682 21.8454683 2.1 1.0	-																	
Alconc. 1 F11 Gill 0.0294 1.6.1941677 5.5.1 Alconc. 1 F11 Kidney 0.0737 2.2.905003 3.3 Alconc. 1 F13 Liver 0.0348 10.5433977 3.03 Alconc. 1 F13 Gill 0.0226 2.7.4850109 1.2.2 Alconc. 1 F13 Kidney 0.0451 13.095293 2.3.9 Alconc. 2 F15 Liver 0.0388 1.04838 2.144 Alconc. 1 F14 Gill 0.0231 2.2.467869 9.7.3 Alconc. 1 F14 Kidney 0.0652 1.1.661162 1.74 Alconc 2 F16 Liver 0.0132 2.4.67869 2.5.7 Alconc 2 F16 Gill 0.0339 3.9.476182 1.6 Kidney 0.0655 1.8.51885 3.87 Alconc 2 F17 Liver 0.0622 2.7.875002 3.19 Alconc 2 F16 Gill 0.0389 3.4.214 Alconc 2 F10 Liver 0.0623 2.7.875002 3.19 Alconc 2 F16 Gill 0.0139 3.9.3721801 Alconc 2																		
Al conc. 1 F12 Gill 0.029 28.895593 9.66 Al conc. 1 F13 Gill 0.026 27.485009 12.2 Al conc. 1 F13 Kidney 0.0451 13.209329 213 Al conc. 2 F15 Liver 0.0383 4.9683403 2.14 Al conc. 1 F14 Gill 0.022 22.4678659 9.73 Al conc. 1 F14 Kidney 0.0651 1.066162 1.74 Al conc 2 F15 Liver 0.139 4.018422 2.13484892 A.51 Al conc 2 F16 Gill 0.0228 8.0154952 1.64 Al conc 2 F18 Liver 0.0855 2.27475002 3.19 Al conc 2 F19 Gill 0.0139 3.9946182 1.18 Kidney 0.0679 8.89287303 1.01 Al conc 2 F18 Liver 0.0655 2.28645803 2.67 Al conc 2 F19 Gill 0.0149 4.59670671 4 Al conc 2 F20 Liver 0.0057 8.9328936 3.13 Al conc 3 F22 Gill 0.0059 8.7334																		
Al conc. 1 F13 Gill 0.0226 27.4850109 12.2 Al conc. 1 F14 Kidney 0.0451 13.209329 2.93 Al conc. 2 F15 Liver 0.1208 25.9034303 2.14 Al conc. 1 F14 Gill 0.0331 22.4676659 9.73 Al conc. 2 F15 Liver 0.1328 25.913855 3.87 Al conc. 2 F15 Liver 0.1328 25.913855 3.87 Al conc 2 F16 Kidney 0.0359 13.893855 3.87 Al conc 2 F17 Gill 0.0226 36.1054952 16 Al conc 2 F18 Kidney 0.0359 13.893855 3.87 Al conc 2 F19 Kidney 0.0359 9.4250057 4.5 Al conc 2 F19 Kidney 0.0679 6.82978933 1.01 Al conc 2 F20 Liver 0.067 28.372133 1.00 Al conc 2 F21 Kidney 0.0468 8.9267103 1.19 Al conc 3 F22 Liver 0.067 28.372433 1.01 Al conc 3 F22 Liver 0.067 8.92781033 1.19 Al conc	-																	
Al conc. 1 F14 Gill 0.0321 22.4678659 9.73 Al conc. 2 F14 Kidney 0.0635 11.0605162 1.74 Al conc. 2 F16 Liver 0.139 16.1384505 1.16 Al conc. 2 F15 Gill 0.0233 30.1054952 1.03 Al conc. 2 F16 Kidney 0.0385 9.4290054 2.45 Al conc. 2 F18 Kidney 0.0385 9.4290054 2.45 Al conc. 2 F18 Kidney 0.0385 9.4290054 2.45 Al conc 2 F18 Kidney 0.0385 9.4290054 2.45 Al conc 2 F18 Kidney 0.0385 9.4290054 2.45 Al conc 2 F19 Liver 0.068 2.46233985 4.1 Al conc 2 F10 Gill 0.0675 98.0329809 1.4 Al conc 2 F10 Kidney 0.0468 8.7942873 2.41 Al conc 3 F22 Liver 0.0676 8.391343 Al conc 3 F23 Kidney 0.0467 9.433919 2.44 Al conc 3 F24 Liver 0.068 18.983692 2.79 Al con																		
Al conc 2 F15 Gill 0.0393 40.3136222 10.3 Al conc 2 F15 Kidney 0.0462 12.6518855 2.74 Al conc 2 F17 Liver 0.1123 28.1464892 2.51 Al conc 2 F17 Gill 0.0226 36.105495 16 Al conc 2 F17 Kidney 0.0385 3.4893885 3.47 Al conc 2 F18 Liver 0.0682 2.17375002 3.19 Al conc 2 F18 Gill 0.0258 80.5546246 31.2 Al conc 2 F18 Kidney 0.0678 8.29278933 1.10 Al conc 2 F20 Liver 0.065 2.46233985 4.1 Al conc 2 F20 Gill 0.0677 9.8331867 2.74 Al conc 3 F21 Liver 0.005 15.7454648 4.1 Al conc 2 F20 Gill 0.0619 43.731677 5.4 Al conc 2 F21 Kidney 0.0648 8.92871703 1.19 Al conc 3 F22 Liver 0.0076 8.3328592 2.79 Al conc 3 F22 Gill 0.00219	Al conc. 1											2.93	Al conc 2					
Al conc 2 F16 Gill 0.0226 36.1054952 15 Al conc 2 F17 Kidney 0.0385 3.897 Al conc 2 F18 Liver 0.0682 21.7375002 3.19 Al conc 2 F17 Gill 0.038 39.9420159 1.18 Al conc 2 F18 Kilney 0.0385 9.42900594 1.41 Al conc 2 F19 Liver 0.065 22.8645800 2.67 Al conc 2 F19 Gill 0.0149 45.9670671 4 Al conc 2 F19 Kidney 0.0346 8.76462874 2.41 Al conc 3 F22 Liver 0.067 8.233151 3.69 Al conc 3 F22 Gill 0.0677 9.83292909 1.45 Al conc 2 F21 Kidney 0.0466 8.1584842 2.41 Al conc 3 F22 Liver 0.068 8.9385892 2.79 Al conc 3 F23 Gill 0.0274 4.9.71784 1.89 Al conc 3 F26 Kidney 0.0523 9.8653212 1.86 Al conc 3 F26 Liver 0.0274 1.8.93766723 2.																		
Al conc 2 F17 Gill 0.0338 39.9426182 11.8 Al conc 2 F17 Kidney 0.0385 9.42900594 2.45 Al conc 2 F19 Liver 0.0855 2.8645803 2.67 Al conc 2 F18 Gill 0.0194 4.5967071 4.1 Al conc 2 F18 Kidney 0.0678 6.82978933 1.01 Al conc 2 F20 Liver 0.067 2.83371251 3.69 Al conc 2 F20 Gill 0.0675 98.0329809 14.5 Al conc 2 F20 Kidney 0.0648 8.3581834 2 Al conc 3 F22 Liver 0.0676 8.9327826 3.69 Al conc 3 F24 Gill 0.017 7.4942888 2.64 Kidney 0.052 9.8653212 1.81 Al conc 3 F24 Liver 0.0676 8.9325869 2.79 Al conc 3 F24 Gill 0.0274 1.5837667 4.23 5.83884 2.4 Al conc 3 F24 Liver 0.0274 1.5837676 4.28 Al conc 3 F26 Gill 0.0221 5.5868	Al conc 2	F15	Gill	0.0393	40.3136222	10.3	Al conc 2	F15	Kidney	0.0462	12.6518855	2.74	Al conc 2	F17	Liver	0.1123	28.1464892	2.51
Al conc 2 F18 Gill 0.0258 80.5546246 31.2 Al conc 2 F18 Kidney 0.0679 6.82978933 1.01 Al conc 2 F20 Liver 0.06 2.46233985 4.1 Al conc 2 F19 Gill 0.075 98.032900 14.5 Al conc 2 F19 Kidney 0.0364 8.29271703 1.19 Al conc 3 F21 Liver 0.067 28.332980 1.51 Al conc 2 F21 Gill 0.0819 43.7313677 5.34 Al conc 2 F21 Kidney 0.046 8.13581834 2 Al conc 3 F22 Kidney 0.046 8.13581834 2 Al conc 3 F24 Liver 0.068 8.938592 2.79 Al conc 3 F24 Gill 0.0234 49.7177894 18.9 Al conc 3 F26 Kidney 0.0466 13.626233 2.9 Al conc 3 F26 Liver 0.0274 11.5837676 4.23 Al conc 3 F26 Gill 0.0213 4.2584289 1.01 1.626280539 2.91 Al conc 3 F27 Kidney<	Al conc 2	F16	Gill	0.0226	36.1054952	16	Al conc 2	F16	Kidney	0.0359	13.8953855	3.87	Al conc 2	F18	Liver	0.0682	21.7375002	3.19
Al conc 2 F19 Gill 0.1149 45.9670671 4 Al conc 2 F19 Kidney 0.0748 8.92871703 1.19 Al conc 2 F21 Liver 0.0075 8.032809 1.5 Al conc 2 F20 Kidney 0.0748 8.92871703 1.19 Al conc 3 F22 Liver 0.0076 8.233703 1.6 Al conc 3 F23 Kidney 0.0438 8.92871703 1.12 Al conc 3 F23 Liver 0.0076 8.233702105 3.63 Al conc 3 F24 Gill 0.0317 7.14942858 22.6 Al conc 3 F23 Kidney 0.0437 9.79430391 2.24 Al conc 3 F24 Liver 0.068 8.9885892 2.79 Al conc 3 F24 Gill 0.0275 5.588465 10.9 Al conc 3 F26 Kidney 0.0532 9.8863212 1.18 Al conc 3 F27 Liver 0.027 Lixer 0.027 Lixer 0.027 Lixer 0.027 Lixer 0.027 Lixer 0.027 Lixer 0.027 <thlixer< th=""> <thlixer< th=""> 0.027</thlixer<></thlixer<>	Al conc 2	F17	Gill	0.0338	39.9426182	11.8	Al conc 2	F17	Kidney	0.0385	9.42900594	2.45	Al conc 2	F19	Liver	0.0855	22.8645803	2.67
Al conc 2 F20 Gill 0.0675 98.032989 14.5 Al conc 2 F20 Kidney 0.0364 8.76462874 2.41 Al conc 3 F22 Liver 0.0767 28.3371251 3.69 Al conc 2 F21 Gill 0.0819 43.731367 5.34 Al conc 2 F21 Kidney 0.0406 8.13581834 2 Al conc 3 F23 Liver 0.0876 8.7.9267038 10 Al conc 3 F23 Gill 0.0255 46.720757 I5.8 Al conc 3 F24 Kidney 0.0532 9.8853212 1.68 Al conc 3 F25 Liver 0.0274 11.583766 4.23 Al conc 3 F26 Gill 0.0253 4.77894 18.9 Al conc 3 F26 Kidney 0.0466 13.65263 2.92 Al conc 3 F26 Liver 0.0274 11.583766 4.23 Al conc 3 F26 Gill 0.0251 2.3707426 9.15 Al conc 3 F26 Kidney 0.0461 15.6950658 2.91 Al conc 4 F30 Liver 0.0262 8.0297	Al conc 2	F18	Gill	0.0258	80.5546246	31.2	Al conc 2	F18	Kidney	0.0679	6.82978933	1.01	Al conc 2	F20	Liver	0.06	24.6233985	4.1
Al conc 2 F21 Gill 0.0819 43.7313677 5.34 Al conc 2 F21 Kidney 0.0406 8.13581834 1 Al conc 3 F23 Liver 0.0876 8.79267038 10 Al conc 3 F22 Gill 0.0317 71.494258 22.6 Al conc 3 F24 Kidney 0.035 9.7943031 2.24 Al conc 3 F24 Liver 0.068 18.8985892 2.79 Al conc 3 F24 Gill 0.0253 47.77894 18.8 Al conc 3 F24 Kidney 0.0352 9.88653212 1.86 Al conc 3 F26 Liver 0.027 11.837676 4.23 Al conc 3 F26 Gill 0.0472 51.5884665 10.9 Al conc 3 F26 Kidney 0.0466 15.695068 2.91 Al conc 3 F28 Liver 0.052 23.707426 9.15 Al conc 4 F39 Liver 0.052 23.707426 9.15 Al conc 4 F30 Liver 0.052 23.707426 9.15 Al conc 4 F30 Liver 0.052 28.05577 3.14 </td <td>Al conc 2</td> <td>F19</td> <td>Gill</td> <td>0.1149</td> <td>45.9670671</td> <td>4</td> <td>Al conc 2</td> <td>F19</td> <td>Kidney</td> <td>0.0748</td> <td>8.92871703</td> <td>1.19</td> <td>Al conc 2</td> <td>F21</td> <td>Liver</td> <td>0.05</td> <td>15.7454648</td> <td>3.15</td>	Al conc 2	F19	Gill	0.1149	45.9670671	4	Al conc 2	F19	Kidney	0.0748	8.92871703	1.19	Al conc 2	F21	Liver	0.05	15.7454648	3.15
Al conc 3 F22 Gill 0.0317 71.4942858 22.6 Al conc 3 F22 Kidney 0.0437 9.79430391 2.24 Al conc 3 F24 Liver 0.068 18.9835892 2.79 Al conc 3 F23 Gill 0.0253 46.7520757 15.8 Al conc 3 F24 Kidney 0.056 10.1297855 1.18 Al conc 3 F25 Liver 0.1283 37.0721905 2.89 Al conc 3 F25 Gill 0.0217 14.584655 10.0 Al conc 3 F26 Kidney 0.066 13.626253 2.92 Al conc 3 F27 Liver 0.0207 13.812444 2.44 Al conc 3 F26 Gill 0.0231 24.5568115 10.6 Al conc 3 F27 Kidney 0.0451 15.6950658 2.91 Al conc 4 F28 Liver 0.062 18.9835892 2.93 Al conc 4 F30 Liver 0.062 26.023771 4.05 Al conc 4 F30 Gill 0.0279 24.891427 8.92 Al conc 4 F33 Kidney 0.0455	Al conc 2	F20	Gill	0.0675	98.0329809	14.5	Al conc 2	F20	Kidney	0.0364	8.76462874	2.41	Al conc 3	F22	Liver	0.0767	28.3371251	3.69
Al conc 3 F23 Gill 0.0295 46.7520757 15.8 Al conc 3 F24 Kidney 0.055 19.1297865 1.8.8 Al conc 3 F25 Liver 0.1283 37.0721905 2.889 Al conc 3 F24 Gill 0.0053 49.7177894 18.9 Al conc 3 F26 Kidney 0.0552 9.88653212 1.86 Al conc 3 F26 Liver 0.0274 11.5837676 4.23 Al conc 3 F26 Gill 0.0211 24.5568115 10.0 Al conc 3 F27 Kidney 0.025 6.42680593 2.18 Al conc 4 F28 Liver 0.022 7.47426274 1.9 Al conc 3 F27 Gill 0.031 42.8344298 14.2 Al conc 3 F28 Kidney 0.0455 1.9490335 2.95 Al conc 4 F30 Liver 0.052 28.969575 3.14 Al conc 4 F31 Gill 0.029 24.8981427 4.92 Al conc 4 F32 Liver 0.0625 13.821484 2.98 1.405 1.455 1.405 Al conc 4 <t< td=""><td>Al conc 2</td><td>F21</td><td>Gill</td><td>0.0819</td><td>43.7313677</td><td>5.34</td><td>Al conc 2</td><td>F21</td><td>Kidney</td><td>0.0406</td><td>8.13581834</td><td>2</td><td>Al conc 3</td><td>F23</td><td>Liver</td><td>0.0876</td><td>87.9267038</td><td>10</td></t<>	Al conc 2	F21	Gill	0.0819	43.7313677	5.34	Al conc 2	F21	Kidney	0.0406	8.13581834	2	Al conc 3	F23	Liver	0.0876	87.9267038	10
Al conc 3 F24 Gill 0.0263 49.7177894 18.9 Al conc 3 F24 Kidney 0.0532 9.88653212 1.86 Al conc 3 F26 Liver 0.0274 11.5837676 4.23 Al conc 3 F25 Gill 0.0472 51.5884665 10.9 Al conc 3 F25 Kidney 0.0266 13.626253 2.92 Al conc 3 F26 Liver 0.027 11.5837676 4.23 Al conc 3 F26 Gill 0.0212 24.5568115 10.6 Al conc 3 F26 Kidney 0.025 6.4268059 2.91 Al conc 4 F28 Liver 0.092 71.782144 4.05 Al conc 4 F29 Gill 0.031 42.8344298 14.2 Al conc 3 F28 Kidney 0.0455 1.9490335 2.95 Al conc 4 F30 Liver 0.0622 28.9695975 3.14 Al conc 4 F29 Gill 0.027 42.8384298 Al conc 4 F30 Kidney 0.035 5.72107262 1.71 Al conc 4 F31 Liver 0.0322 28.9695975	Al conc 3	F22	Gill	0.0317	71.4942858	22.6	Al conc 3	F22	Kidney	0.0437	9.79430391	2.24	Al conc 3	F24	Liver	0.068	18.9835892	2.79
Al conc 3 F25 Gill 0.0472 51.5884665 10.9 Al conc 3 F25 Kidney 0.0466 13.626253 2.92 Al conc 3 F27 Liver 0.1207 31.812148 2.64 Al conc 3 F26 Gill 0.0231 24.5568115 10.6 Al conc 3 F26 Kidney 0.0295 6.42680593 2.18 Al conc 3 F28 Liver 0.092 17.4782254 1.9 Al conc 3 F27 Gill 0.0253 2.3.7074266 9.15 Al conc 3 F27 Kidney 0.054 15.950658 2.91 Al conc 4 F29 Liver 0.092 17.4782254 1.9 Al conc 4 F20 Gill 0.0259 2.3.707426 9.12 Al conc 3 F27 Kidney 0.0451 14.8517916 3.29 Al conc 4 F30 Liver 0.0622 28.969775 3.14 Al conc 4 F31 Gill 0.0279 24.8981427 8.29 Al conc 4 F31 Kidney 0.0555 9.33319245 1.68 Al conc 4 F34 Liver 0.0622 <t< td=""><td>Al conc 3</td><td>F23</td><td>Gill</td><td>0.0295</td><td>46.7520757</td><td>15.8</td><td>Al conc 3</td><td>F23</td><td>Kidney</td><td>0.056</td><td>10.1297865</td><td>1.81</td><td>Al conc 3</td><td>F25</td><td>Liver</td><td>0.1283</td><td>37.0721905</td><td>2.89</td></t<>	Al conc 3	F23	Gill	0.0295	46.7520757	15.8	Al conc 3	F23	Kidney	0.056	10.1297865	1.81	Al conc 3	F25	Liver	0.1283	37.0721905	2.89
Al conc 3 F26 Gill 0.0231 24.5568115 1.0.6 Al conc 3 F26 Kidney 0.0295 6.42680593 2.1.8 Al conc 3 F28 Liver 0.092 17.4782254 1.9 Al conc 3 F27 Gill 0.0259 23.7074266 9.15 Al conc 3 F28 Kidney 0.054 15.6950658 2.91 Al conc. 4 F29 Liver 0.0589 19.8216409 3.37 Al conc 4 F29 Gill 0.0301 42.8344298 14.2 Al conc 3 F28 Kidney 0.0451 11.9490335 2.95 Al conc. 4 F30 Liver 0.0622 28.965975 3.14 Al conc 4 F30 Gill 0.029 24.8981427 8.2 Al conc. 4 F30 Kidney 0.0451 14.8517916 3.29 Al conc. 4 F34 Liver 0.0623 13.4255682 2.28 Al conc. 4 F33 Gill 0.0224 45.6279542 2.04 Al conc. 4 F33 Kidney 0.0133 5.7317543 2.38 Al conc. 4 F34 Liver 0.0623 <td>Al conc 3</td> <td>F24</td> <td>Gill</td> <td>0.0263</td> <td>49.7177894</td> <td>18.9</td> <td>Al conc 3</td> <td>F24</td> <td>Kidney</td> <td>0.0532</td> <td>9.88653212</td> <td>1.86</td> <td>Al conc 3</td> <td>F26</td> <td>Liver</td> <td>0.0274</td> <td>11.5837676</td> <td>4.23</td>	Al conc 3	F24	Gill	0.0263	49.7177894	18.9	Al conc 3	F24	Kidney	0.0532	9.88653212	1.86	Al conc 3	F26	Liver	0.0274	11.5837676	4.23
Al conc 3 F27 Gill 0.0259 23.7074266 9.15 Al conc 3 F27 Kidney 0.054 15.695058 2.91 Al conc. 4 F29 Liver 0.0589 19.8216409 3.37 Al conc 3 F28 Gill 0.0301 42.8344298 14.2 Al conc 3 F28 Kidney 0.0405 11.9490335 2.95 Al conc. 4 F30 Liver 0.0642 26.0237714 4.055 Al conc 4 F30 Gill 0.019 47.4627873 24 Al conc. 4 F30 Kidney 0.0451 14.8517916 3.29 Al conc. 4 F31 Liver 0.0622 28.965975 3.14 Al conc 4 F30 Gill 0.0279 24.8981427 8.92 Al conc. 4 F31 Kidney 0.0155 9.33319245 1.68 Al conc. 4 F32 Liver 0.0525 18.2928234 2.93 Al conc. 4 F33 Liver 0.0625 18.2928234 2.93 Al conc. 4 F34 Liver 0.0832 21.0201534 2.53 Al conc. 4 F35 Liver 0.0832 21.02	Al conc 3	F25	Gill	0.0472	51.5884665	10.9	Al conc 3	F25	Kidney	0.0466	13.626253	2.92	Al conc 3	F27	Liver	0.1207	31.8121484	2.64
Al conc 3 F28 Gill 0.0301 42.8344298 14.2 Al conc 3 F28 Kidney 0.0405 11.9490335 2.95 Al conc. 4 F30 Liver 0.0642 26.0237714 4.05 Al conc 4 F29 Gill 0.0198 47.4627873 24 Al conc. 4 F29 Kidney 0.035 5.72107262 1.71 Al conc. 4 F31 Liver 0.0642 26.0237714 4.05 Al conc 4 F30 Gill 0.0279 24.8981427 8.92 Al conc. 4 F30 Kidney 0.0451 14.8517916 3.29 Al conc. 4 F33 Liver 0.0525 13.4255682 2.28 Al conc. 4 F33 Gill 0.0224 45.6279542 2.04 Al conc. 4 F33 Kidney 0.035 5.72107263 1.68 Al conc. 4 F33 Liver 0.0625 13.4255682 2.38 Al conc. 4 F33 Gill 0.022 28.15170527 1.25 Al conc. 4 F33 Kidney 0.043 10.467643 2.38 Al conc. 5 F36 Liver 0.0676<	Al conc 3	F26	Gill	0.0231	24.5568115	10.6	Al conc 3	F26	Kidney	0.0295	6.42680593	2.18	Al conc 3	F28	Liver	0.092	17.4782254	1.9
Al conc. 4 F29 Gill 0.0198 47.4627873 24 Al conc. 4 F29 Kidney 0.0335 5.72107262 1.71 Al conc. 4 F31 Liver 0.0922 28.9695975 3.14 Al conc. 4 F30 Gill 0.0279 24.8981427 8.92 Al conc. 4 F30 Kidney 0.0451 14.8517916 3.29 Al conc. 4 F32 Liver 0.0589 13.4255682 2.28 Al conc. 4 F31 Gill 0.024 45.6279542 2.04 Al conc. 4 F32 Kidney 0.0193 9.73583895 5.04 Al conc. 4 F34 Liver 0.0625 18.2928234 2.53 Al conc. 4 F33 Gill 0.022 31.5170527 1.5 Al conc. 4 F33 Kidney 0.0439 10.48743 2.38 Al conc. 4 F34 Liver 0.0322 21.0201534 2.53 Al conc. 4 F34 Gill 0.022 28.13889 10.8 Al conc. 4 F33 Kidney 0.039 10.497475 2.38 Al conc. 5 F36 Liver 0.0076 <td>Al conc 3</td> <td>F27</td> <td>Gill</td> <td>0.0259</td> <td>23.7074266</td> <td>9.15</td> <td>Al conc 3</td> <td>F27</td> <td>Kidney</td> <td>0.054</td> <td>15.6950658</td> <td>2.91</td> <td>Al conc. 4</td> <td>F29</td> <td>Liver</td> <td>0.0589</td> <td>19.8216409</td> <td>3.37</td>	Al conc 3	F27	Gill	0.0259	23.7074266	9.15	Al conc 3	F27	Kidney	0.054	15.6950658	2.91	Al conc. 4	F29	Liver	0.0589	19.8216409	3.37
Al conc 4 F30 Gill 0.0279 24.8981427 8.92 Al conc. 4 F30 Kidney 0.0451 14.8517916 3.29 Al conc. 4 F32 Liver 0.0589 13.4255682 2.28 Al conc. 4 F31 Gill 0.0268 32.2916607 12 Al conc. 4 F31 Kidney 0.0555 9.33319245 1.68 Al conc. 4 F33 Liver 0.0625 18.2928234 2.93 Al conc. 4 F33 Gill 0.0224 45.6279542 2.04 Al conc. 4 F33 Kidney 0.04367463 2.38 Al conc. 4 F34 Liver 0.0834 2.0923736 2.47 Al conc. 4 F34 Gill 0.0262 28.183889 1.08 Al conc. 4 F35 Kidney 0.058 10.799242 2.13 Al conc. 5 F36 Liver 0.0076 25.956934 3.53 Al conc. 4 F36 Gill 0.022 56.907428 1.7 Al conc. 5 F36 Kidney 0.0575 13.2455926 2.23 Al conc. 5 F38 Liver 0.0076 15.94774	Al conc 3	F28	Gill	0.0301	42.8344298	14.2	Al conc 3	F28	Kidney	0.0405	11.9490335	2.95	Al conc. 4	F30	Liver	0.0642	26.0237714	4.05
Al conc 4 F31 Gill 0.0268 32.2916607 12 Al conc. 4 F31 Kidney 0.0555 9.33319245 1.68 Al conc. 4 F33 Liver 0.0625 18.2928234 2.93 Al conc. 4 F32 Gill 0.0224 45.6279542 2.04 Al conc. 4 F32 Kidney 0.0193 9.73583895 5.04 Al conc. 4 F34 Liver 0.0625 18.2928234 2.53 Al conc. 4 F33 Gill 0.0252 31.5170527 12.5 Al conc. 4 F34 Kidney 0.04367463 2.38 Al conc. 4 F35 Liver 0.0625 18.2928234 2.93 Al conc. 4 F34 Gill 0.0252 31.5170527 12.5 Al conc. 4 F34 Kidney 0.038 10.799242 2.13 Al conc. 5 F36 Liver 0.0076 25.959384 3.53 Al conc. 4 F36 Gill 0.022 50.97428 1.77 Al conc. 5 F36 Kidney 0.0555 8.05541472 1.48 Al conc. 5 F38 Liver 0.0766 15.942	Al conc. 4	F29	Gill	0.0198	47.4627873	24	Al conc. 4	F29	Kidney	0.0335	5.72107262	1.71	Al conc. 4	F31	Liver	0.0922	28.9695975	3.14
Al conc. 4 F32 Gill 0.0224 45.6279542 2.0.4 Al conc. 4 F32 Kidney 0.0193 9.73583895 5.04 Al conc. 4 F34 Liver 0.0832 21.021534 2.53 Al conc. 4 F33 Gill 0.0252 31.5170527 12.5 Al conc. 4 F34 Kidney 0.04367463 2.38 Al conc. 4 F35 Liver 0.0834 20.592376 2.47 Al conc. 4 F35 Gill 0.0262 28.183889 10.8 Al conc. 4 F35 Kidney 0.0437 11.795357 2.34 Al conc. 5 F36 Liver 0.0056 23.188564 2.31 Al conc. 4 F36 Gill 0.022 58.993896 12.8 Al conc. 5 F36 Liver 0.0076 25.956384 3.53 Al conc. 4 F36 Gill 0.022 58.993896 12.8 Al conc. 5 F36 Liver 0.0076 25.956384 2.33 Al conc. 5 F36 Gill 0.027 63.99649 2.5 Al conc. 5 F36 Liver 0.0076	Al conc 4	F30	Gill	0.0279	24.8981427	8.92	Al conc. 4	F30	Kidney	0.0451	14.8517916	3.29	Al conc. 4	F32	Liver	0.0589	13.4255682	2.28
Al conc. 4 F33 Gill 0.0252 31.5170527 12.5 Al conc. 4 F33 Kidney 0.0439 10.4367463 2.38 Al conc. 4 F35 Liver 0.0834 2.0592376 2.47 Al conc. 4 F34 Gill 0.0262 28.183889 10.8 Al conc. 4 F34 Kidney 0.0439 10.4367463 2.38 Al conc. 5 F36 Liver 0.0074 26.9569384 3.53 Al conc. 4 F35 Gill 0.022 58.993894 12.8 Al conc. 5 F36 Liver 0.0105 23.188564 2.13 Al conc. 5 F36 Gill 0.027 63.49469 2.35 Al conc. 5 F36 Kidney 0.055 3.240598 1.4 Al conc. 5 F38 Liver 0.0105 23.188564 2.18 Al conc. 5 F37 Gill 0.027 63.49469 2.35 Al conc. 5 F37 Kidney 0.0555 13.240592 2.23 Al conc. 5 F39 Liver 0.0083 20.6261464 4.15 Al conc. 5 F39 Gill <	Al conc 4	F31	Gill	0.0268	32.2916607	12	Al conc. 4	F31	Kidney	0.0555	9.33319245	1.68	Al conc. 4	F33	Liver	0.0625	18.2928234	2.93
Al conc. 4 F34 Gill 0.0262 28.183889 10.8 Al conc. 4 F34 Kidney 0.0508 10.799242 2.13 Al conc. 5 F36 Liver 0.0764 26.9569384 3.53 Al conc. 4 F35 Gill 0.022 28.183889 12.8 Al conc. 4 F35 Kidney 0.077 11.1795357 2.34 Al conc. 5 F37 Liver 0.0105 23.188564 2.31 Al conc. 5 F37 Gill 0.032 56.90742 17.7 Al conc. 5 F36 Kidney 0.059 13.240592 2.23 Al conc. 5 F38 Liver 0.0764 26.9569384 3.53 Al conc. 5 F37 Gill 0.032 56.90742 17.7 Al conc. 5 F36 Kidney 0.059 13.240592 2.23 Al conc. 5 F39 Liver 0.0764 26.956934 41.5 Al conc. 5 F37 Gill 0.031 60.9167688 10.6 F37 Kidney 0.0593 13.240592 2.33 Al conc. 5 F30 Liver 0.0764 26.962689	Al conc. 4	F32	Gill	0.0224	45.6279542	20.4	Al conc. 4	F32	Kidney	0.0193	9.73583895	5.04	Al conc. 4	F34	Liver	0.0832	21.0201534	2.53
Al conc. 4 F35 Gill 0.028 35.8938946 12.8 Al conc. 4 F35 Kidney 0.047 11.1795357 2.34 Al conc. 5 F37 Liver 0.0105 23.188564 2.31 Al conc. 4 F36 Gill 0.032 56.907428 17.7 Al conc. 5 F36 Kidney 0.055 8.05541472 1.46 Al conc. 5 F38 Liver 0.0076 15.9427745 2.08 Al conc. 5 F37 Gill 0.027 63.494669 23.5 Al conc. 5 F37 Kidney 0.055 13.2405926 2.23 Al conc. 5 F39 Liver 0.0076 15.9427745 2.08 Al conc. 5 F38 Gill 0.031 60.916768 19.6 Al conc. 5 F37 Kidney 0.0672 15.6414237 2.33 Al conc. 5 F40 Liver 0.038 25.660589 3.39 Al conc. 5 F39 Gill 0.0302 78.870536 26.4 Al conc. 5 F30 Kidney 0.0672 15.6414237 2.38 Al conc. 5 F41 Liver 0.0368	Al conc. 4	F33	Gill	0.0252	31.5170527	12.5	Al conc. 4	F33	Kidney	0.0439	10.4367463	2.38	Al conc. 4	F35	Liver	0.0834	20.5923736	2.47
Al conc. 4 F36 Gill 0.0322 56.907428 1.7.7 Al conc. 5 F36 Kidney 0.055 8.05541472 1.46 Al conc. 5 F38 Liver 0.0766 15.9427745 2.08 Al conc. 5 F37 Gill 0.027 63.494669 23.5 Al conc. 5 F37 Kidney 0.055 13.2405926 2.23 Al conc. 5 F39 Liver 0.0766 15.9427745 2.08 Al conc. 5 F38 Gill 0.031 60.916768 1.66 Al conc. 5 F30 Kidney 0.0672 15.641237 2.33 Al conc. 5 F40 Liver 0.0766 15.942745 1.46 Al conc. 5 F38 Gill 0.031 60.916768 1.66 Al conc. 5 F30 Kidney 0.0672 15.641237 2.33 Al conc. 5 F40 Liver 0.0326 25.626589 3.39 Al conc. 5 F40 Gill 0.028 31.0178518 1.4 Al conc. 5 F40 Kidney 0.058 9.5154526 1.64 Al conc. 5 F41 Gill	Al conc. 4	F34	Gill	0.0262	28.183889	10.8	Al conc. 4	F34	Kidney	0.0508	10.799242	2.13	Al conc. 5	F36	Liver	0.0764	26.9569384	3.53
Al conc. 5 F37 Gill 0.027 63.494669 23.5 Al conc. 5 F37 Kidney 0.0595 13.2405926 2.23 Al conc. 5 F39 Liver 0.0788 32.6641464 4.15 Al conc. 5 F38 Gill 0.0311 60.9167688 10.6 Al conc. 5 F38 Kidney 0.0672 15.6414237 2.33 Al conc. 5 F40 Liver 0.0388 10.0551157 1.2 Al conc. 5 F39 Gill 0.0302 78.8700536 2.61 Al conc. 5 F39 Kidney 0.0594 16.6150211 2.8 Al conc. 5 F41 Liver 0.0756 25.6260589 3.39 Al conc. 5 F40 Gill 0.028 31.0178518 12.4 Al conc. 5 F40 Kidney 0.0477 24.5564561 5.15 Al conc. 5 F42 Liver 0.0655 11.584859 1.77 Al conc. 5 F41 Gill 0.0281 65.390649 2.3 Al conc. 5 F41 Kidney 0.0588 9.5154526 16.6	Al conc. 4	F35	Gill	0.028	35.8938946	12.8	Al conc. 4	F35	Kidney	0.0477	11.1795357	2.34	Al conc. 5	F37	Liver	0.1005	23.188564	2.31
Al conc. 5 F38 Gill 0.0311 60.9167688 1.9.6 Al conc. 5 F38 Kidney 0.0672 15.6414237 2.33 Al conc. 5 F40 Liver 0.0383 10.0551157 1.2 Al conc. 5 F39 Gill 0.0302 78.8700536 26.1 Al conc. 5 F39 Kidney 0.0594 16.6150211 2.8 Al conc. 5 F41 Liver 0.0366 25.626058 3.39 Al conc. 5 F40 Gill 0.025 31.0178518 12.4 Al conc. 5 F40 Kidney 0.0477 24.5564561 5.15 Al conc. 5 F42 Liver 0.0655 11.584859 1.77 Al conc. 5 F41 Gill 0.0281 65.390649 23.3 Al conc. 5 F41 Kidney 0.0588 9.5154526 16.6 1.64	Al conc. 4	F36	Gill	0.0322	56.907428	17.7	Al conc. 5	F36	Kidney	0.055	8.05541472	1.46	Al conc. 5	F38	Liver	0.0766	15.9427745	2.08
Al conc. 5 F39 Gill 0.0302 78.8700536 26.1 Al conc. 5 F39 Kidney 0.0594 16.6150211 2.8 Al conc. 5 F41 Liver 0.0756 25.626058 3.39 Al conc. 5 F40 Gill 0.025 31.0178518 12.4 Al conc. 5 F40 Kidney 0.0477 24.5564561 5.15 Al conc. 5 F42 Liver 0.0655 11.584859 1.77 Al conc. 5 F41 Gill 0.0281 65.390649 23.3 Al conc. 5 F41 Kidney 0.0588 9.5154526 16.6 5.15 F42 Liver 0.0655 11.584859 1.77	Al conc. 5	F37	Gill	0.027	63.494669	23.5	Al conc. 5	F37	Kidney	0.0595	13.2405926	2.23	Al conc. 5	F39	Liver	0.0788	32.6641464	4.15
Al conc. 5 F40 Gill 0.025 31.0178518 12.4 Al conc. 5 F40 Kidney 0.0477 24.5564561 5.1 Al conc. 5 F42 Liver 0.0655 11.5848859 1.77 Al conc. 5 F41 Gill 0.0281 65.390649 23.3 Al conc. 5 F41 Kidney 0.0588 9.5154526 1.62 Liver 0.0655 11.5848859 1.77	Al conc. 5	F38	Gill	0.0311	60.9167688	19.6	Al conc. 5	F38	Kidney	0.0672	15.6414237	2.33	Al conc. 5	F40	Liver	0.0836	10.0551157	1.2
Al conc. 5 F40 Gill 0.025 31.0178518 12.4 Al conc. 5 F40 Kidney 0.0477 24.5564561 5.1 Al conc. 5 F42 Liver 0.0655 11.5848859 1.77 Al conc. 5 F41 Gill 0.0281 65.390649 23.3 Al conc. 5 F41 Kidney 0.0588 9.5154526 1.62 Liver 0.0655 11.5848859 1.77	Al conc. 5	F39	Gill	0.0302	78.8700536	26.1	Al conc. 5	F39	Kidney	0.0594	16.6150211	2.8	Al conc. 5	F41	Liver	0.0756	25.6260589	3.39
Al conc. 5 F41 Gill 0.0281 65.390649 23.3 Al conc. 5 F41 Kidney 0.0588 9.51545226 1.62	-	F40	Gill	0.025	31.0178518	12.4	Al conc. 5	F40		0.0477	24.5564561	5.15	Al conc. 5		Liver	0.0655	11.5848859	1.77
	Al conc. 5	F41	Gill	0.0281	65.390649	23.3	Al conc. 5	F41	Kidnev	0.0588	9.51545226	1.62		·	°	·		
	Al conc. 5	F42	Gill	0.0257	53.9786756			F42	Kidney	0.0521	7.79430502	1.5						

Appendix A.9 Normality in fish tissue

Shapiro-Wilk test was used to analyze normality for the fish tissues. Data output with p-value $> \alpha = 0.01$ indicates that the data is, with 99% probability, normally distributed.

Hypothesis at α =0.01 H0: data is normally distributed vs H1: data is normally distributed

In GraphPad Prism

1. Select, Analyze> Normality and Lognormality test

One example of the Shapiro-Wilk test on normality in liver tissue of fish exposed to copper is given below.

Normality and Lognormality Tests	A	В	С	D	E	F	G	н	I.
Tabular results	Control	0.08	0.14	0.25	0.42	0.56	2.08	3.4	7.0
Shapiro-Wilk test									
W	0.9467	0.9331	0.6098	0.5918	0.7878	0.9427	0.9405	0.7862	0.8666
P value	0.5112	0.6046	0.0006	0.0004	0.0310	0.6812	0.6431	0.0440	0.1734
Passed normality test (alpha=0.01)?	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
P value summary	ns	ns	***	***	*	ns	ns	*	ns

Figure A.9: Screenshot of Normality test on Cu liver samples, using Graphpad Prism.

Appendix A.10 – One-way ANOVA test

One-way ANOVA with Dunnett's post hoc was used to determine the significant difference between means of the control group and other exposure groups. Data output with p-value > α = 0.05 implies that the mean of the exposure group is significantly different from the control group, with a 95% probability.

Hypothesis at α=0.05

H0: mean is significant different vs H1: mean is not significantly different

In GraphPad Prism

1. Select, Analyze>One-way ANOVA>Multiple Comparisons>Compare each mean with mean of control group

One example of a one-way ANOVA and Dunnett's multiple comparison test on gill tissue of fish exposed to aluminum is given below.

Table Analyzed		Al Gill			
Data sets analyzed	A-F				
ANOVA summary					
F		10.46			
P value		<0.0001			
P value summary	****				
Significant diff. among means (P < 0.05)?	Yes			
		Yes 0.5606			
Significant diff. among means (R squared			Significant?	Summary	Adjusted P Va
Significant diff. among means (R squared		0.5606	Significant? No	Summary ns	Adjusted P Va 0.3240
Significant diff. among means (R squared Dunnett's multiple comparisons test	Mean Diff.	0.5606 95.00% CI of diff.		-	
Significant diff. among means (R squared Dunnett's multiple comparisons test Control vs. 1.7	Mean Diff. -0.1500	0.5606 95.00% Cl of diff. -0.3769 to 0.07688	No	-	
Significant diff. among means (R squared Dunnett's multiple comparisons test Control vs. 1.7 Control vs. 2.7	Mean Diff. -0.1500 -0.2500	0.5606 95.00% Cl of diff. -0.3769 to 0.07688 -0.4769 to -0.02312	No Yes	ns *	0.3240 0.0255

Figure A.10: Screenshot of one-way ANOVA test, with Dunnett's multiple comparisons test using Graphpad Prism. Test conducted on aluminum in gills.

Appendix A.11 – Concentration factor

The concentration factor was calculated using the measured concentration of the LMM fraction of metals in the water. The CF was calculated using the <0.45 μ m fraction. The following results for CF calculated using LMM fraction and <0.45 μ m fraction is given below. The error is calculated by eq. 9

Eq. 9 %*Error* = $(CF_{LMM} - CF_{<0.45}) \div CF_{LMM}$

Table A.11: CF for Cu gills, and Al gills and kidney using <0.45 fraction and LMM fraction. With error% between the
fractions.

Nominal concentration					CF					
		Cu Gill			Al Gill		Al kidney			
μmol	LMM	<0.45µm	%error	LMM	<0.45	%error	LMM	<0.45	%error	
0.4	553	87	84 %							
0.6	228	66	71 %							
1.4		-		260	188	28 %	83	60	28 %	
2.4	294	32	89 %	176	193	-10 %	30	33	-10 %	
4.3	31	21	31 %	133	128	3 %	22	21	3 %	
7.8	18	15	15 %	79	75	6 %	14	13	6 %	
15.6				74	77	-4 %	9	9	-4 %	

Appendix A.12 – ICP-MS method

Different methods for the analysis of fish tissue and water samples were made before the experiment. On the ICP-MS were several gas modes, oxygen, ammonia, and helium used for different masses of the metals. The water samples were analyzed with the following gas modes and atomic masses, table A.12.1. The fish tissue samples were analyzed using the following gas modes and atomic masses, table A.12.2.

Table A.12.1: Gas modes, and atomic masses for corresponding metals analyzed on ICP-MS for water samples.

Reaction mode	Ammonia, NH3	Helium, H
Element	atomic mass	atomic mass
Coppor Cu		63
Copper, Cu	65	65
Zing Zn	64	64
Zinc, Zn	66	66
Aluminium, Al	27	

Table A.12.2: Gas modes, and atomic masses for corresponding metals analyzed on ICP-MS for fish tissue samples.

Reaction mode	Oxygen, O	Ammonia, NH3	Helium, H
Element	atomic mass	atomic mass	atomic mass
Coppor Cu		63	63
Copper, Cu		65	65
Zine Zn		64	64
Zinc, Zn		66	66
Aluminium, Al	27	27	

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway