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Abstract 
The forest is an important renewable resource in a sustainable bioeconomy. Yearly, fungal 

decay causes economical losses that exceed 100 million NOK within the Norwegian forest 

sector. Root and butt rots are the main contributors and Heterobasidion spp. and Armillaria 

spp. are the most common fungi registered. Norway spruce (Picea abies (L.) Karst.) is 

Norway’s most significant commercial tree species and is especially exposed to infections from 

pathogenic fungi. It is estimated that one out of four spruce trees is infected at final felling. 

Infected trees are difficult to map over large areas as they show few external symptoms, and 

only manual methods currently exist. With future climate change, the extent of the damage is 

expected to increase, and new methods need to be developed which can detect rot with high 

accuracy over large areas. The spectral signature of trees can reveal information about plant 

health and laser data can be used to segment individual trees. A combination of airborne 

hyperspectral images and laser scanning was used to develop logistic regression and random 

forest models capable of predicting rot in spruce. Laser data were used to create individual tree 

crowns (ITC) from which hyperspectral pixels were extracted. The visible, near-infrared (NIR) 

and infrared (IR) parts of the electromagnetic spectrum were analyzed (400-2500 nm) with 

data from a VNIR and SWIR sensor. There were partial significant differences between healthy 

and infected trees in the spectrum, but a defined rule to separate them was difficult to establish. 

Additionally, significant wavelengths are not easily comparable with similar studies, as many 

factors can affect the hyperspectral images. Significant wavelengths from all parts of the 

analyzed spectrum were incorporated into the models. Mean prediction accuracy was 63%, 

which is a modest improvement from previous research. The inclusion of laser data did 

improve the results, but the implementation needs to be further addressed. As continuous 

advances within hyperspectral sensors are made, the combination of airborne hyperspectral 

images and laser scanning to detect rot in spruce forests with high accuracy is promising. 
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Sammendrag 
Skogen er en viktig fornybar ressurs i en bærekraftig bioøkonomi. Årlig forårsaker råteskader 

økonomiske tap som overstiger 100 millioner NOK innenfor den norske skogsektoren. Rotråte 

er den største bidragsyteren hvor Heterobasidion spp. og Armillaria spp. er de vanligste 

råtesoppene registrert. Gran (Picea abies (L.) Karst.) er Norges viktigste kommersielle treslag 

og er spesielt utsatt for angrep fra råtesopper. Det er estimert at en av fire grantrær er infisert 

ved slutthogst. Det er vanskelig å kartlegge infiserte trær ettersom de viser få eksterne 

symptomer, og det eksisterer kun manuelle metoder foreløpig. Med framtidige klimaendringer 

er det forventet at omfanget av skadene kommer til å øke, og det er behov for å utvikle nye 

metoder som kan detektere råte med høy nøyaktighet over større områder. Spektralsignaturen 

til et tre kan avsløre informasjon om plantehelse og laser data kan benyttes til å segmentere 

individuelle trær. En kombinasjon av flybåren hyperspektrale bilder og laserskanning ble 

benyttet til å utvikle logistisk regresjon og random forest modeller. Laser data ble brukt til å 

lage individuelle trekroner (ITC) som hyperspektral piksler ble ekstrahert fra. De synlige, nær 

infrarød (NIR) og infrarøde (IR) delene av det elektromagnetiske spekteret ble analysert (400-

2500 nm) med data fra en VNIR og SWIR sensor. Delvis var det signifikante forskjeller 

mellom friske og infiserte trær i spekteret, men en definert regel for å skille mellom disse var 

vanskelig å etablere. Videre er signifikante bølgelengder lite sammenlignbare med lignende 

studier ettersom mange faktorer kan påvirke hyperspektrale bilder. Signifikante bølgelengder 

fra alle deler av det analyserte spekteret bli inkorporert i modellene. Gjennomsnittlig 

prediksjonsnøyaktighet var 63% som er en beskjeden forbedring fra tidligere forskning. 

Inkluderingen av laser data førte til en forbedring av resultatene, men implementering må 

adresseres ytterligere. Kontinuerlige fremskritt innen hyperspektrale sensorer gjør at 

kombinasjonen av flybåren hyperspektrale bilder og laserskanning til å detektere råte i 

granskog med høy nøyaktighet ser lovende ut.  
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Introduction 
 

Background 

The forest is a formidable renewable resource with vast potential for the future of a sustainable 

society. In a prospective world where its dependency on oil is gradually replaced by renewable 

resources, the importance of the forest will only increase. During the last decade, there has 

been a large focus on the “green shift” towards an eco-friendlier bioeconomy in Norway. The 

forest industry is a fundamental part of this new direction, which the Norwegian government 

recognizes. In the national strategy for the forest industry, it is stated that the forest industry 

will play a crucial part in a more sustainable economy, and the government wants to facilitate 

future development (Ministry of Agriculture and Food, 2015). With its increasing importance, 

the forest must be managed optimally, and its resources utilized accordingly.  

 

The forest industry is already an essential part of Norway’s economy in large parts of the 

country. It is important to settlement, employment and business development. The forest 

industry needs to be active, profitable and competitive to maintain its position of importance 

and to profit from the potential in its increased value creation (Ministry of Agriculture and 

Food, 2018). The forest area in Norway is 12 million ha, where 8.6 million ha is considered 

productive forest (Breidenbach et al., 2018). The growing stock has tripled from 1925 to 2014, 

and the last update from the Norwegian National Forest Inventory (NFI) estimated total 

growing stock of 9.7 billion m3 in 2018 (Statistisk Sentralbyrå, 2018). Over the last decade, the 

commercial harvest of timber has seen a steady increase. Norway spruce (Picea abies (L.) 

Karst.) has been the most important commercial tree species during this period, and has 

accounted for roughly 2/3 of the total commercial harvest of timber (Norwegian Agriculture 

Agency, 2020). In 2019 forest owners sold 11 million m3 roundwood to industry with an 

estimated value close to 5 billion NOK (Statistisk Sentralbyrå, 2020). 

 

Buyers and sellers of roundwood designated for industry or export are obligated by Norwegian 

law to take measurements of the roundwood (Skogbrukslova, 2005). The measurement of 

roundwood is usually performed by Norsk Virkesmåling (2018), which acts as a neutral third-

party between sellers and buyers of industrial roundwood, biofuel and chips in Norway. The 

value of industrial roundwood is based on their evaluation. By their regulations, industrial 

roundwood is either classified as a sawlog, or pulpwood, with subcategories based on different 
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parameters for quality and dimensions (Norsk Virkesmåling, 2015a; Norsk Virkesmåling, 

2015b). Between the two, sawlogs are significantly more valuable. In 2019, the average price 

for sawlogs was 517 NOK/m3 compared to 350 NOK/m3 for pulpwood (Norwegian Agriculture 

Agency, 2020). If the roundwood doesn’t meet the requirements for a sawlog, it is usually 

degraded to pulpwood. If the standards for neither category are met, the roundwood is rejected 

and considered a loss for the seller. The presence of rot is one of the quality parameters which 

roundwood is evaluated after that can lead to both degradation and rejection. In sawlogs, rot 

cannot be present, and it must be removed by shortening the length of the log. If the shortening 

exceeds 0.6 m, the entire log is rejected (Norsk Virkesmåling, 2015b). Rot is allowed in 

pulpwood but is limited to the overall prevalence at the ends of the log. In the lowest 

subcategory, the maximum prevalence is 70% of the diameter and 50% of the area (Norsk 

Virkesmåling, 2015a). The yearly economic loss from rot in Norway is estimated to exceed 

100 million NOK, and the collective loss for Europe is estimated to be around 7.5 billion NOK 

(Dalen, 2018). There are considerable uncertainties related to these estimates though, 

considering shifts in the environment, market and political landscape (Thor, 2005). In any case, 

there is no doubt that rot contributes to a significant economic loss on a yearly basis within the 

forest sector.  

 

Prevalence of root and butt rot in spruce 

Rot can be defined as the decomposition of organic material caused by fungal decay. The 

fungus produces enzymes that can decompose the organic material in wood. Depending on the 

fungus present, different organic materials are affected. Cellulose, hemicellulose and lignin are 

the main structural components in wood. The position of decay in the tree, and the affected 

wood components, is categorical for the rot. Root and butt rot is a common term for fungi that 

typically operate within this named group.   

 

Growth and quality can be negatively affected by rot, and spruce is especially exposed to 

infections by pathogenic fungi (Solheim, 2010). Additionally, mortality increases. In 

prolonged infections, some fungi are capable of killing trees.  Aside from trees dying directly 

from the infection itself, they are more exposed to windthrows as the wood structure is 

weakened. The proportion of decay in a forest impacts its stability, making trees vulnerable 

during storms (Hanssen et al., 2019). This reduces the total production of roundwood and is a 

considerable problem given its significance as a commercial tree species. NFI has carried out 
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multiple surveys that investigate the prevalence of rot in spruce forests. During the period 

1964-1976, a survey found that 7.9% of the forests were infected by rot (Huse, 1983). A survey 

from the period 1982-1986 showed a larger degree of rot, with 9.3% of spruce forests being 

infected south of Saltfjellet (Solheim & Holen, 1990). Rot was identified from core samples 

taken at breast height in these surveys. The results can thus be misleading, as various studies 

show that core samples taken at breast height can underestimate the prevalence of rot in stumps 

by over 50% (Stenlid & Wästerlund, 1986; Thor, 2005). This is illustrated in Huse et al. (1994) 

where they studied the presence of root and butt rot in spruce stumps. The study was nationwide 

and included samples from 5000 different forest owners. The forest owners were given 

instructions to inspect and identify rot in stumps after clear-cutting. Of the examined stumps, 

27% showed signs of visible rot, and it was most prevalent in the eastern parts of Norway. 

Multiple factors can contribute to the occurrence of rot in a forest. Thor et al. (2005) found that 

the frequency of rot increased with stand age, site index and altitudes above 100 m. Soil and 

bedrock properties have also shown to affect the occurrence of rot (Solheim, 2010). 

 

Two main fungi cause root and butt rot in spruce in Norway; Heterobasidion spp. and 

Armillaria spp. (Næsvold, 1989; Solheim, 2010). Heterobasidion spp. is divided into two 

subspecies that differ concerning distribution and host tree. H. parviporum which mainly 

infects spruce and is common throughout the eastern parts of Norway, stretching from the south 

and up to Saltfjellet. H. annosum which has Scots pine (Pinus sylvestris L.) as its primary host, 

but can also infect spruce and broad-leaved trees, and is most common in the western parts of 

Norway (Fjærli, 2016; Solheim, 2010). Armillaria spp. can infect all wooden species, including 

coniferous and broad-leaved trees. Four types are known to occur in Norway, but only two are 

prevalent. These are A. borealis and A. cepistipes and they share a similar appearance. Both 

can be found all over Norway but the former is more common (Solheim, 2010). In a nationwide 

study by Huse et al. (1994), the most common fungi were H. parviporum 71% and Armillaria 

spp. 28%. Both appearing either alone or in combination with other fungi. There was a higher 

tendency for rot within older forests, but no correlation with altitude was found. This coincides 

with a probability model for rot in spruce forests developed by Granhus and Hylen (2016). The 

model predicts a higher probability of rot with increasing age and diameter. The results also 

substantiate H. parviporum as the dominant and most important fungus to cause rot in spruce 

(Solheim et al., 2012). Solheim (2010) estimates that on average, every fourth tree is infected 

by rot at final felling and Heterobasidion spp. is behind 80% of the cases. In a report from the 

Norwegian Institute of Bioeconomy Research (NIBIO) (Hanssen et al., 2019), it is expected 
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that the extent of the damage from Heterobasidion spp. and Armillaria spp. will increase with 

future climate change. 

 

Bjørbæk (2016) studied rot in spruce in higher altitudes of eastern Norway and found results 

that contradict the notion of H. parviporum as the most prevalent fungi in spruce at higher 

altitudes. The study areas ranged from an altitude of 585 – 840 meters above sea level. The 

results revealed that 32.8% of the stumps contained rot. Armillaria spp 38.9% was most 

frequent, but only 7.2% was caused by H. parviporum. This study shows that even though H. 

parviporum is considered the more dominating fungus in spruce, this may vary with altitude, 

and the occurrence of Armillaria spp. may be more dominating in some cases. Furthermore, 

the results also included numerous lesser-known and unidentified species of fungi that occurred 

more frequently compared to H. parviporum. Even though H. parviporum and Armillaria spp. 

are considered as the dominant fungi in spruce, the results show a more complicated picture. 

The dominant fungi may vary with local conditions and other factors. Still, enough evidence 

remains to support Heterobasidion spp. and Armillaria spp. as the two dominant fungi to cause 

root and but rot in spruce in eastern parts of Norway.  

 

Biology of H. parviporum and Armillaria spp. 

H. parviporum spreads in one of two ways, known as primary- and secondary spread (Solheim, 

2010). Primary spread happens through spores carried by wind, water or birds to freshly cut 

stumps, or wounds in the tree, where it can induce an infection. Freshly cut stumps have shown 

to be ideal for spores to establish within a limited time frame depending on competition from 

other fungi, temperature, moisture and spore production (Redfern & Stenlid, 1998a; Solheim, 

2010). Secondary spread develops through root contact, or grafts, between infected and healthy 

trees where the mycelium is transferred (Solheim, 2010). Infection through root contact 

becomes more important for further spreading as the forest ages, and usually occur in 

conjunction with thinning and final felling where it spreads to new trees (Molin, 1957; Redfern 

& Stenlid, 1998b). Areas with frequent root death, caused by unstable groundwater conditions 

or other reasons, are more receptive to infections. Typical soil conditions where rot recurs are 

calcareous and nutrient-rich soils and arable lands (Solheim, 2010). Some studies also show a 

higher tendency for rot within areas with limestone and high pH values (Korhonen & Stenlid, 

1998). Young infected trees usually die within 3 years. In older trees, the rot is chronic and 

develops internally. The rot expands both vertically and horizontally, and can reach heights 
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beyond 12 meters (Solheim, 2010; Stenlid & Wästerlund, 1986). As a white-rot fungus, it 

gradually decays the cellulose in the wood, leaving behind a soft wood texture where it has 

established itself (Solheim, 2010). The rot can also affect the growth in addition to the quality. 

Bendz-Hellgren and Stenlid (1995) found that the diameter increment was smaller for infected 

trees compared to healthy by 10.1% over 10 years. A later study by Bendz-Hellgren and Stenlid 

(1997) supported these findings. Infected and healthy trees were paired and monitored for over 

4 years. A comparison showed a reduction in volume growth by 23% for the infected trees. 

 

Like H. parviporum, Armillaria spp. also spreads by spores and through root contact. As the 

rot develops in an infected tree, it starts to produce rhizomorphs, which grows through the 

forest floor and connects to new roots where it can prompt new infections. Infection through 

rhizomorphs usually happens in damaged, weakened or dead roots, and is considered more 

important than spores for infection. Stressed trees are more exposed to infection (Solheim, 

2010). The fungus is less aggressive and mostly remains in the heartwood where it gradually 

advances. Heights beyond 1-2 meters in the stem have rarely been observed (Solheim, 2006). 

In addition to cellulose, it also consumes lignin, destroying the wood that is affected. Once 

infected, young trees commonly die within 2 years, while the process takes a longer time in 

older trees. As the infection advances the crown commonly turns yellow and the shoots become 

shorter. In the end, the tree can die from the top (Solheim, 2006).  

 

Existing methods to detect rot in standing forest 

The life cycle of H. parviporum and Armillaria spp. illustrates how these fungi can have such 

a financial impact in the forest sector. Both mostly develop internally and few external 

symptoms are visible (Redfern & Stenlid, 1998b; Solheim, 2010). In cases where the rot has 

advanced significantly, the crown can be reduced and the needles start to turn yellow (Greig, 

1998; Huse et al., 1994). This can also be the result of multiple other circumstances like drought 

or attacks from pests, making it hard to determine the exact cause (Hanssen et al., 2019). 

Moreover, they establish themselves at the center at the bottom of the stem, where the wood is 

gradually decayed. This is where the largest industrial potential is, and decay can render this 

part useless in an industrial context. Additionally, H. parviporum and Armillaria spp. can 

survive as saprobic organisms in dead trees for a long time. In the remaining stumps and roots 

after final-felling, H. parviporum can remain contagious for 50 years and possibly infect new 

trees and cycle rotations (Solheim, 2010).  
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Given that the rot shows few visible external symptoms in trees, it is hard to detect it without 

using destructive measures (Carson et al., 2006). There are developed methods for rot 

detection, but these are carried out manually on individual trees. This can either be done by 

taking a core sample or using specially developed tools. Core samples are often taken at breast 

height (1.3 m). The sample is then inspected to determine whether the tree is infected by rot 

(Carson et al., 2006). Since the samples are taken at a specific height, this might cause the 

method to underestimate the amount of rot, since it can be present at lower heights that are not 

inspected (Huse et al., 1994). Several specially developed tools use non-destructive methods. 

The use of ground-penetrating radar and ultrasounds are common for these tools (Carson et al., 

2006). Rotfinder is an example of a tool specifically developed to detect rot in trees using a 

non-destructive method by applying an electric current to the tree. Based on the resistance, this 

tool can distinguish between healthy and infected trees (Larsson et al., 2004; Sundblad et al., 

2008).  

 

Information regarding rot occurrence is essential in forest management. A forest inventory 

including this information can be presented as a map and contribute to strategic choices. This 

could result in a better economic outcome for the forest owner if used to take measures that 

reduce the negative effects of rot. The existing methods to gather this information are currently 

inefficient. The methods are time-consuming and performed manually on individual trees. Rot 

can affect large areas within the forest, but the prevalence might not be that high. Hence, with 

the methods currently available, inventory of large forest areas would require extensive 

resources to get a clear picture of rot prevalence. The lack of distinct symptoms presents a 

challenge and prompts the development of new methods that can detect rot over large areas 

with high accuracy (Leckie et al., 2004).  

 

Airborne hyperspectral images and laser scanning 

The method of using remote sensing to collect information is a promising candidate that could 

detect rot over large areas with high accuracy. Remote sensing is the collection of information 

about an object without the need to be in direct contact with the object you are examining 

(Lillesand et al., 2008). Airborne hyperspectral and laser scanning instruments are remote 

sensing sensors capable of registering information about objects over large areas. 
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Hyperspectral sensors can register highly detailed data with spectral information. Normally, a 

picture is constructed of multiple pixels where each pixel contains a singular value (e.g. color). 

In a hyperspectral image, each pixel contains multiple radiance values in addition to spatial 

information (Grahn & Geladi, 2007). Each value represents the reflected electromagnetic 

energy in distinctive wavebands across the electromagnetic spectrum. The number of 

wavebands, and scope of the electromagnetic spectrum where data are gathered, depends on 

the sensor used. Multispectral sensors are also capable of registering spectral data, but they 

often register values in 3 to 12 wavebands. Hyperspectral sensors generally have over 100 

wavebands. This means that each pixel contains over 100 unique radiance values. The 

increased level of detail enables the detection of small differences in objects which 

multispectral sensors may not be able to differentiate (Adão et al., 2017). Hyperspectral sensors 

are in constant development, and new sensors are expected to arrive with greater spatial and 

spectral accuracy. A pixel from a hyperspectral image can be illustrated as a cube (see figure 

1). The spatial information is registered in the x-axis and y-axis. The z-axis represents 

wavelengths from the electromagnetic spectrum. The scope of the electromagnetic spectrum 

analyzed, and how many wavebands the spectrum is split into, varies depending on the sensor 

used. Hence, a pixel consists of numerous layers of wavebands along the z-axis with radiance 

values registered in each waveband.   
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Figure 1: Illustration of a pixel from a hyperspectral image. Spatial information is registered in the x-axis and the 
y-axis and spectral information is registered in the z-axis. 

 

Airborne laser scanning (ALS) is a remote sensing method using a laser scanner mounted in 

an aircraft and connected to an inertial navigation system and a global navigation satellite 

system (GNSS). The sensor distributes laser light in pulses and can register millions of points 

per second. Each point is georeferenced and attributed value for height. This is made possible 

by calculating the duration from a laser signal is emitted until it gets a reflected signal in return. 

The result is a point cloud from which it is possible to create digital models of the earth’s 

surface. Terrain and vegetation points can be classified. Vegetation points can be further 

processed to separate individual trees and give information about the physical properties of the 

forest. This gives ALS multiple applications within forestry (Maltamo et al., 2014). Figure 2 

demonstrates how a laser sensor attached to an airplane maps the earth’s surface.   
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Figure 2: Illustration of airborne laser scanning (University of Connecticut, n.d.) 

 

Historically, forest inventory has been based on manual measurements in the field combined 

with the interpretation of aerial photos. This has gradually been replaced by ALS, which has 

been common in Norway since the early 2000s (Kangas et al., 2018). The use of ALS has 

proven to be a cost-effective alternative able to cover large areas (Eid et al., 2004), and has 

become the most applied method in the collection of data and information in forest inventory 

(Solli et al., 2013). The use of ALS serves multiple purposes in forest inventory and is 

commonly used to collect quantitative information about the physical properties of a forest 

(e.g. dominant height of trees in a stand). The spectral signature of a tree is affected by its 

physical characteristics. Therefore, hyperspectral images facilitate the possibility to obtain 

information about the biophysical properties of the forest. Multiple studies have done this and 

show promising results. Hyperspectral images have been used to reveal information about tree's 

water management, plant health and stress factors (Kandare, 2017; Moorthy et al., 2008; 

Thenkabail et al., 2013). The combination of ALS and hyperspectral images presents the 

potential for multiple uses that could benefit forest management (Kandare, 2017). Anderson et 

al. (2008) looked at the individual and combined use of ALS and hyperspectral imagers to 

estimate biophysical properties. Combined, they gave the best results. Kandare et al. (2017) 

used a combination of ALS and hyperspectral images to estimate site index at various special 

scales including individual trees, and the approach showed promising results. Bollandsås et al. 

(2019) study on modeling of site index using hyperspectral images substantiates these findings. 

Hyperspectral imagers alone proved to be efficient at predicting site index, but the inclusion of 
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ALS further improved the model. Sørhuus (2019) used hyperspectral images to detect rot in 

spruce. His models were based on analysis of a single pixel per tree from hyperspectral images. 

The study displayed encouraging results but concluded with the need for more pixels to develop 

better models. Based on the existing research in the field, the combination of airborne 

hyperspectral images and laser scanning show potential as an accurate and cost-effective 

method to detect rot over larger areas with high accuracy. 

 

Thesis objective 

As society continues to increase its use of renewable resources, forest management must be 

given better tools that contribute to more efficient management of the available resources 

within the forest. Researchers predict further damage from rot with pending climate changes. 

The existing methods to detect rot over larger areas are inefficient and promote the need to 

develop new methods.  

 

The objective of this thesis is to explore if the combination of airborne hyperspectral images 

and laser scanning can be used to identify root and butt rot in Norway spruce with high 

accuracy. The study builds on previous research and applies state of the art remotely sensed 

data.  
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Material and methods 
 

Workflow 

A workflow describing the process of this study is illustrated in figure 3. Each step of the 

workflow and the dataset analyzed in this study are presented in the following subsections.  

 

 
Figure 3: Workflow illustrating each step in the process of this study.  

 
Study area 

The study was conducted in south-east Valdres close to the village Bruflat, in Etnedal 

municipality in Innlandet county. The study was conducted in one location (see figure 4) at an 

altitude of 700 meters above sea level. The area consisted of 3 different spruce stands with 

spruce (95%) as the main tree species along with pine (5%). The age of the different stands 

ranged from 81-131 years and the size of the stands varied from 0.45-7.75 ha. The total size of 

the area is 9.23 ha. The information about the stands was extracted from a forest inventory 

carried out in 2008 and the properties can be seen in table 1. The main data collection was 

performed in stand 1. The road passing the study area was constructed during the stands cycle.   
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Figure 4: Overview map of the study area in Etnedal municipality. 

 
Table 1: Stand data from the study area in Etnedal municipality.  

Stand Distribution (S/P) 1 Site index2 Age 

1 95/5 11 131 

2 100/0 11 91 

3 90/10 11 81 
1Composition of tree species in the percentage of total volume, S = spruce, P = pine.  

2Site index (H40): defined by average age at breast height and the average height of the 100 largest trees per hectare 

according to the diameter at breast height (dominant height) and where the specific values of the H40 index relate 

to the dominant height at an index age of 40 years (Tveite, 1977). 
 

The geological data about the study area are presented in table 2  (Geological survey of Norway 

(2015).  
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Table 2: Geological description of the soil and bedrock in the study area (Geological survey of Norway (2015). 

Soil Bedrock 

Moraine: incoherently or thin cover over the 

bedrock 

Sandstone: sand-sized mineral particles, 

quartz and feldspar. 

 

Data collection 

The data were collected in week 38 in September 2019. The data consist of two sets. The first 

set was in collaboration with another study and contained only stumps where rot was already 

selected (Moen, 2020). The stumps were spread out over the entire study area. The registrations 

were done during the two previous weeks. Core samples were taken at root cut and examined 

for rot. Based on the core samples, trees that were suspected of being infected by rot were 

singled out for further inspection before final felling was carried out. During harvest, each 

stump of interest was visually inspected for rot. Stumps with rot were then marked and given 

an ID, and their GNSS position registered. The GNSS positions registered using the harvester 

performing the cutting were expected to have a mean error of less than 1 m and were used to 

locate the stumps for the data collection in this study.  

 

The second set of data was collected using strip sampling. Each strip was laid out as a straight 

south-north line and had a width of 3 meters and a space of 10 meters between them. Since the 

data collection was time-consuming, the strips were distributed to cover most of the different 

terrain in the study area. Additionally, there were multiple cases where stumps occurred in both 

data sets. These were registered as duplicates.  

 

Only stumps of spruce trees were included in the registration. Each stump was marked and 

given a tree ID which corresponded with the GNSS point registered, visually inspected for root 

and butt rot, and registered as healthy (no rot) or infected (rot). If the stump had rot, this was 

classified as either H. parviporum, Armillaria spp. or other. The diameter of the stump and the 

rot was cross measured with a caliper in north-west and north-east directions. For each stump, 

the position was also registered with a TOPCON HiPer SR (Topcon, n.d.). This is an extended 

range site receiver with GNSS and RTK (Real-Time Kinetic). The receiver includes GPS 

(Global positioning systems), GLONASS (Global Navigation Satellite System) and a cellular 

modem for real-time correction of positioning. The correction data were obtained from the 

CPOS service at the Norwegian Mapping Authority (2017).  Each registration was done in a 
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fixed position at the center of the stump. The horizontal root mean square ranged between 1 – 

3 cm and the average was 2 cm. This is the error of margin for the positioning of each stump. 

All the stumps were also photographed with an Olympus TG-5 camera with GPS-positioning 

built-in. This was done in order to secure information that could be utilized later if the data 

needed correction or to be controlled.  

 

There were 318 samples in total. The number of samples was later reduced to 274 before further 

analysis after removing duplicates and stumps from the first dataset which were corrupted 

during harvest and made visual inspection impossible. Of the 274 samples, 112 were classified 

as healthy and 162 as infected trees. The positions of the stumps can be seen in figure 5. 

 

 
Figure 5: Registered stumps showed as healthy (green) or infected (red). 

 

Collection of airborne hyperspectral images and laser scanning data 

The airborne hyperspectral images and ALS data were collected on 03.08.2019 by Terratec AS 

(n.d.). The airplane used was a Piper PA-31-350 which carried two HySpex sensors capable of 

taking hyperspectral images: VNIR-1800 and SWIR-384 which were mounted in a gyro frame. 

These cameras collect data in the visible near-infrared, and the short wave infrared, spectral 
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range (HySpex, n.d.). The cameras were calibrated after parameters given by Norsk Elektro 

Optikk AS, the company developing the cameras (Norsk Elektro Optikk AS, n.d.). The 

specifications of the cameras can be seen in table 3. The hyperspectral data contains 

georeferenced hyperspectral images with a resolution of 0.3 × 0.3 meters for the VNIR camera 

and 0.7 × 0.7 m for the SWIR camera. Each pixel in the image contains multiple channels with 

information from the spectral range.  

 
Table 3: Specifications for the hyperspectral cameras used in this study (HySpex, n.d.). 

Sensor VNIR-1800 SWIR-384 

Spectral range 400-1000 nm 930-2500 nm 

Spatial pixels 1800 384 

Spectral channels 186 288 

Spectral sampling 3.26 nm 5.45 nm 

Field of view (FOV) 17° 16° 

Pixel FOV across/along 0.16/0.32 mrad 0.73/0.73 mrad 

Max speed at full resolution 260 fps 400 fps 

 

In addition to the hyperspectral images, laser data were collected with the Leica ALS70-HP 

ALS (Leica Geosystems AG, n.d.). The laser scanner creates georeferenced points with height 

attributes. The settings the ALS used during data collection are presented in table 4.  

 
Table 4: Settings for the airborne laser scanner used in this study. 

Measurement rate (kHz) 495.2 

Field of view (FOV) 16° 

Scan patters Single 

Scan rate (Hz) 68.9 

 

The aircraft maintained an altitude of 1150 meters and had a maximum speed of 130 km/h 

during data collection. The data was processed by Terratec. The georeferencing was performed 

with nearest neighbour interpolation in PARGE 3.4 (ReSe, n.d.). Corrections of heading, roll 

and pitch were performed by manual selection of natural control points between two crossing 

flight paths. 
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ITC delineation 

To delineate ITCs from the laser scanning data provided by Terratec for the study area, the 

itcSegment package (Dalponte, 2018) version 0.8 was used. The laser scanning data consisted 

of a raw point cloud where each point has height registered. By analyzing the variation in 

heights, the algorithm creates a canopy height model (CHM) where treetops are identified. The 

algorithm then proceeds to grow tree crowns outwards from the identified treetop according to 

parameters defined by the user. This process repeats itself for all identified treetops resulting 

in polygons that represent individual tree crowns (ITCs). Figure 6 shows a portion of the study 

area with ITCs as polygons in green. The default input parameters were used in this study. 

 

 
Figure 6: Polygons representing individual tree crowns (ITCs) calculated from the delineation algorithm. 

 

Preparation of data 

The ITC polygons were further processed in QGIS Geographic Information System (2020) to 

extract the hyperspectral data used for analysis and modeling. To single out the individual trees 

where field data had been registered, polygons with corresponding GNSS points from the data 

collection were isolated. A few GNSS points did not have a corresponding ITC polygon, and 

these were removed from the dataset (n = 26). Furthermore, some polygons contained several 
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GNSS points, indicating that some of the polygons were wrongly delineated to a single tree. 

Trees positioned close together could explain this phenomenon. To correct this, Voronoi 

polygons were created around GNSS points. A Voronoi diagram divides the plane into regions 

where all the points within individual regions are closest to a specific object. In this case, the 

GNSS points were used as the input to divide the plane using the Voronoi polygons. From the 

Voronoi polygons, the ITC polygons were split and matched with the GNSS points. 

Subsequently, some of the polygons were split into several parts, even though they only 

contained one GNSS point. This happened in areas were polygons were closely related to each 

other. To amend this problem, the polygons were manually inspected and corrected, and the 

final number of polygons were controlled and matched with the number of remaining GNSS 

points. A subjectively selected subset of the result can be seen in figure 7.  

 

 
Figure 7: Split ITC polygons as a result of the Voronoi diagram. 

 

To simplify the data processing in R, the SWIR images were resampled to the same resolution 

as the VNIR image (1960 × 1295) with a pixel size of 0.3 × 0.3 m. A nearest neighbor method 

was used during the resampling. This ensures that both images have the same number of pixels 

with information for statistical analysis and modeling. The ITCs polygons were converted from 
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vector to raster with the same resolution as the hyperspectral images preserving the tree ID 

information in each pixel. The tree ID was stored in order to distinguish individual trees and to 

classify the pixels as either healthy or infected. Lastly, the ITC raster was merged with the 

hyperspectral images from VNIR and SWIR before being imported into R.  

 

 
Figure 8: Illustration of how ITCs were used to extract pixels from the hyperspectral images. The image in the 
background is from the VNIR sensor. 

 

Further preparation, analysis and modeling were computed in R (R Core Team, 2020) version 

4.0.0. All the extracted pixels were grouped after tree ID and assigned a corresponding value 

for the state (healthy or infected) using the ID as an identification key. All pixels with the same 

tree ID constituted a single tree. After removing GNSS points with missing ITC polygons, 248 

trees remained where 96 were healthy and 152 were infected. The number of pixels per tree 

varied from 7-226, and the average amount of pixels per tree was 71. The total amount of pixels 

extracted was 17.718. Each pixel contained information from both sensors with a single value 

for light intensity (radiance) in distinctive wavebands. This amounts to 8.4 million radiance 

values as the basis for data analysis.  
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Pixels in the hyperspectral images can suffer from a shadow effect causing inaccurate radiance 

values. This is especially a problem at northern latitudes with shadows present even during 

optimal acquisition periods (Dalponte et al., 2014). This was not accounted for in the dataset 

from Terratec. Some combinations of wavelengths have proven useful in distinguishing 

vegetation and characteristics of vegetation. This knowledge can be used to clean up the dataset 

by implementing a normalized difference vegetation index (NDVI)  (NASA Earth Observatory, 

2000). The index uses wavelengths from the near-infrared and visible red spectrum, and NDVI 

was calculated after formula (1) using wavelengths 810 nm for  and 680 nm for  (Ju 

et al., 2014). The formula returns a value between 0 and 1 which can be used as a basis for 

selection. Pixels with an NDVI score < 0.6 often contain aspects of shadow or other elements 

(Kandare, 2017) and was used as the threshold for removal. Clean up of the dataset using NDVI 

resulted in the removal of 4.263 pixels.   

 

 

 
After removing pixels with NDVI, the data was normalized. The goal of normalization is to 

reduce the data to a common scale without distorting the differences in the ranges of values 

and to improve the integrity and performance of the models. Since the accuracy of 

hyperspectral image classification can be affected by the chosen normalization method, several 

different methods were considered (Cao et al., 2017). Based on Cao et al. (2017) comparisons 

of different normalization methods for hyperspectral image classification, the data were 

normalized after formula (2). The normalized radiance value  is a result of the original 

radiance value  divided by the maximum radiance value  identified from all 

registered radiance values in the distinctive wavelength. 

 

 

 

Exploratory research 

Before modeling the data, a preparatory exploration of the data was executed to see if 

individual wavebands in the electromagnetic spectrum could show any significant differences 

between healthy and infected trees. As a precursor, the mean radiance values for healthy and 

infected trees along all wavelengths were plotted to see if there were any significant differences 
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between them. To examine the significance of the different wavebands, Welch’s t-test was 

performed on individual wavebands from the NVIR and SWIR datasets. A total of 474 t-tests 

were completed across both. P-values below 0.05 were considered significant for the t-tests. A 

closer inspection of the dataset from SWIR revealed a lot of noise in radiance values in 

wavelengths above 1800 nm. This was caused by missing values or values close to 0. The t-

test results from these wavelengths were therefore disregarded in the evaluation.  

 

After the preparatory examination, the data was split into two datasets (see table 5). One dataset 

contained all the radiance values and the second dataset contained the mean waveband radiance 

values aggregated based on tree ID. This was done to see if there were any statistical difference 

between analyzing all and mean radiance values (i.e. multiple, or one radiance value per tree 

per waveband).  

 
Table 5: Difference in datasets size of all and aggregated radiance values. 

Dataset Total number of radiance values 

All radiance values 6.377.670 

Aggregated radiance values 117.552 

 
 
Prediction models 

A dataset with known classifications is fundamental in the development of prediction models. 

Based on a training dataset, prediction models can be developed which can predict 

classification on new data with equivalent variables. Normally, a dataset is split into a training 

and validation set before the model is fitted. Since the validation dataset includes true 

classifications, this can be used to evaluate the performance of the predictions made by the 

model. Logistic regression and random forest models were fitted to the data. To enhance the 

performance of models, only data from distinctive wavebands based on results from Welch’s 

t-tests were included. Both models were fitted with all and aggregated radiance values 

separately. Before modeling, the data were split into healthy and infected trees. From the split 

datasets, 10 random samples were taken in an 80/20 ratio and reassembled for training and 

validation sets. The data was split before they were designated to training and validation sets 

to ensure all random samples included an equal amount of healthy and infected trees when 

fitting the model. Both models were then fitted with the 10 different samples. For all individual 

models, the 15 most significant wavebands and their wavelengths were extracted to see if there 
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were any correlation in the models. The selection was based on P(>|z|) for the logistic 

regression models and mean decrease accuracy for the random forest models. The goal of the 

prediction models is to find the variables that best distinguishes between healthy and infected 

trees with high accuracy. The best model can then be used to predict the classifications of new 

trees. 

 

Logistic regression 

StepAIC from the MASS package (Venables & Ripley, 2002) version 7.3.51.6 was used for 

the logistic regression model. The model was adapted with a combination of forward and 

backward variable selection. In each step, the model can both include and remove variables. 

From this process, numerous models are adapted and the Akaike information criterion (AIC) 

is calculated. AIC is a measure of the quality of the model and provides a medium for model 

selection from which each model is compared relative to each other (Wang et al., 2013). By 

repeating these steps, the algorithm tries to simplify the model to include the optimal variables 

to explain the variations in the dataset. The result is a logistic regression model combined of 

selected wavebands which best predicts classifications of trees.   

 

Random forest 

To compute the random forest model, the randomForest package (Liaw & Wiener, 2002) 

version 4.6.14 was used. Random forest is an ensemble learning method. From a dataset, the 

algorithm takes random samples to grow numerous relatively uncorrelated decision trees for 

prediction. The process of repeated random sampling is known as bootstrapping, and the 

process repeats itself until a defined number of trees have been grown. When given new data, 

all the decision trees in the model make a prediction based on the input. The prediction follows 

a path of nodes that resemble crossways. In each node, the variables are compared and matched 

with accumulated knowledge. At the end of the path, a prediction is made based on 

comparisons made along the way. Collectively, each decision tree gives its own prediction, but 

the sum of all their predictions gives the final classification (see figure 9). Hence the definition 

as an ensemble method. The process of growing multiple trees from the same training dataset 

ensures the model can make precise predictions to assist in the classification of new trees 

(Suthaharan, 2016). In this study, the model was set to grow 500 decision trees per dataset.  
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Figure 9: A simplified example of how a random forest model makes a prediction. Each decision tree makes its 

individual prediction, then the final classification is based on majority rule.  

 

Model validation 

For each model, mean prediction accuracy, Cohen’s kappa and area under the receiver 

operating characteristic curve (ROC) were calculated and used as an aid in model validation. 

Mean prediction accuracy expresses the proportion of correctly classified trees in a model. A 

tree can be classified as healthy when it is infected and vice versa. This gives four possible 

outcomes: true positive, false positive, false negative and true negative, where only two are 

classified correctly. The logistic regression model is dependent on a threshold to determine a 

classification from the predictions made. In this study, the threshold was set to 0.5. Each 

prediction gives a numerical value for probability between 0-1. If the returned value is < 0.5 it 

is classified as healthy, and values > 0.5 are classified as infected. After all the predictions from 

a model had been made, the results were collected in a confusion matrix. Here the results from 

the four possible outcomes are displayed as a table that can be used to describe the performance 

of the model in terms of mean prediction accuracy.  

 

The confusion matrix is also essential in the computation of various statistical goals for 

compliance in prediction models and facilitates the calculation of Cohen’s Kappa. This 

coefficient expresses the reliability between the observed and predicted classes and permits the 

interpretation of the compliance among them. A numerical value between -1 and +1 is obtained 

from Cohen’s Kappa, where +1 is the ideal reliability. The method acknowledges 

unpredictability and considers this for the results of singular classifications (McHugh, 2012).  
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The last parameter used for model validation was the area under the ROC curve. The area under 

the ROC curve takes classifications of true positives and plots these against false positives. The 

area under the curve is estimated and given a number ranging from 0.5-1. The result expresses 

the model’s ability to discriminate between healthy and infected trees. If the area is 0.5, there 

is an equal amount of illegitimate and legitimate classifications (Chrzanowski, 2014).   

 

Results 
 

Overview 

The VNIR sensor contains radiance values from wavelengths between 400-1000 nm. The 

largest difference between healthy and infected trees occur between 750-900 nm (see figure 

10).  

 

 
Figure 10: Mean radiance values and standard deviation for healthy and infected trees in all wavelengths between 

400 – 1000 nm. The data is from the VNIR sensor. Healthy trees are displayed as green and infected as blue. 
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The SWIR sensor contains radiance values from wavelengths between 930 – 2500 nm. The 

largest difference between healthy and infected trees occur between 1000 – 1025 nm, and 

between 1200-1300 nm (see figure 11).  

 

 
Figure 11: Mean radiance values and standard deviation for healthy and infected trees in all wavelengths between 

930 – 2500 nm. The data is from the SWIR sensor. Healthy trees are displayed as green and infected as blue. 

 

Welch’s t-test 

For the VNIR dataset, significant values (p-value < 0.05) were detected in wavelength intervals 

between 405-526 nm and 575-669 nm (see figure 12).  
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Figure 12: Plot of significant values from Welch’s t-test across wavelengths from the VNIR sensor. 

 
For the SWIR dataset, significant values (p-value < 0.05) were detected in the wavelength 

intervals between 1126-1137 nm, 1148-1153 nm, 1415-1426 nm and above 2448 nm (see 

figure 13).  

 

 
Figure 13: Plot of significant values from Welch’s t-test across wavelengths from the SWIR sensor. 
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In table 6 all the significant wavelengths from both sensors are collected which were used to 

fit prediction models. 

 
Table 6: Significant wavelengths from Welch’s t-test used to fit prediction models. 

Dataset Wavelengths (nm) 

VNIR 405-526, 575-669 

SWIR 1126-1137, 1148-1153, 1415-1426 

 

Logistic regression models 

For all and aggregated radiance values models, the mean prediction accuracy was 63 and 54%, 

Cohen’s Kappa: 0.11 and 0.03 and area under the ROC curve: 0.61 and 0.54 respectively (see 

table 7). The best performing models had a mean prediction accuracy of 68 and 63%, Cohen’s 

Kappa: 0.20 and 0.24 and area under the ROC curve: 0.69 and 0.57. The worst performing 

models had a prediction accuracy of 58 and 49%, Cohen’s kappa: 0.10 and -0.05 and area under 

the ROC curve: 0.55 and 0.53.  

 
Table 7: Performance of all logistic regression models.  

Model nr. 
Prediction accuracy Cohen’s kappa ROC 

All Aggregated All Aggregated All Aggregated 

1 0.66 0.63 0.16 0.24 0.67 0.57 

2 0.61 0.53 0.07 0.03 0.57 0.47 

3 0.66 0.55 0.12 0.08 0.59 0.50 

4 0.61 0.59 0.08 0.13 0.57 0.59 

5 0.68 0.53 0.20 0.00 0.69 0.58 

6 0.58 0.49 0.10 -0.07 0.55 0.54 

7 0.63 0.49 0.13 -0.05 0.65 0.50 

8 0.65 0.55 0.15 0.08 0.62 0.54 

9 0.60 0.49 0.07 -0.05 0.60 0.53 

10 0.61 0.51 0.08 -0.08 0.57 0.53 

 
Mean 0.63 0.54 0.11 0.03 0.61 0.54 

SD 0.03 0.05 0.04 0.10 0.05 0.04 

 

Overall, wavebands from both the VNIR and SWIR sensors were significant in logistic 

regression models (see figure 14). From the spectrum used to fit the models, several intervals 
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display a high count of significant wavebands. Waveband with wavelength 1131 nm was most 

frequent with 16 appearances followed by 602, 612 and 1126 nm with 14 appearances each.   

 

 
Figure 14: The 15 most significant wavebands in all logistic regression models. Dark green represents models 

fitted with all radiance values while light green represents models fitted with aggregated radiance values. 

 

Random forest models 

For all and aggregated radiance values models, the mean prediction accuracy was 63 and 62%, 

Cohen’s kappa: 0.10 and 0.15 and area under the ROC curve: 0.55 and 0.57 respectively (see 

table 8). The best performing models had a prediction accuracy of 67%, Cohen’s kappa: 0.17 

and 0.31 and area under the ROC curve: 0.58 and 0.65. The worst performing models had a 

prediction accuracy of 57%, Cohen’s kappa: 0.07 and -0.01 and area under the ROC curve: 

0.53 and 0.49. 
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Table 8: Performance of all random forest models.  

Model nr. 
Prediction accuracy Cohen’s kappa ROC 

All Aggregated All Aggregated All Aggregated 

1 0.65 0.61 0.12 0.10 0.55 0.54 

2 0.62 0.67 0.07 0.27 0.53 0.63 

3 0.63 0.65 0.05 0.17 0.52 0.58 

4 0.63 0.57 0.09 0.03 0.54 0.51 

5 0.67 0.67 0.17 0.31 0.58 0.65 

6 0.57 0.61 0.07 0.15 0.53 0.57 

7 0.63 0.63 0.12 0.23 0.55 0.61 

8 0.65 0.61 0.12 0.10 0.55 0.54 

9 0.63 0.63 0.12 0.21 0.55 0.60 

10 0.63 0.57 0.10 -0.01 0.54 0.49 

 

Mean 0.63 0.62 0.10 0.15 0.55 0.57 

SD 0.03 0.03 0.03 0.10 0.01 0.05 

 

Mean decrease accuracy describes the significance of wavebands used in prediction. In this 

case how many individual pixels or trees are misclassified if the variable is removed from the 

model. In figure 15 the mean decrease prediction accuracy for wavebands used in the best 

model fitted to aggregated radiance values is plotted. As an example, the removal of waveband 

1 with a wavelength of 404 nm from the aggregated model would cause misclassification of 9 

trees.  
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Figure 15: Mean decrease accuracy for wavebands used in the best random forest models fitted to aggregated 

radiance values. 

 

Overall, wavebands from both the VNIR and SWIR sensor were significant (see figure 16). 

From the spectrum used to fit the models, wavelengths between 400-450 nm have the highest 

count of significant wavebands, but the wavelength intervals 1100-1150 nm and 1400-1425 

nm also had a high frequency of significant wavebands. Few significant wavebands came from 

wavelengths between 550-650 nm. Waveband with wavelength 414 nm was most frequent with 

18 appearances followed by 411 nm with 16 appearances.   
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Figure 16: The 15 most significant wavebands in all random forest models. Dark blue represents models fitted 

with all radiance values while light blue represents models fitted with aggregated radiance values. 

 

Compilation 

For logistic regression and random forest models fitted to all radiance values mean prediction 

accuracy was 63%, Cohen’s kappa: 0.11 and 0.10 and area under the ROC curve: 0.61 and 0.51 

respectively (see table 9). For the models fitted to aggregated radiance values mean prediction 

accuracy was: 54 and 62%, Cohen’s Kappa: 0.03 and 0.15 and area under the ROC curve: 0.54 

and 0.57.   

 
Table 9: Comparison of mean performance for logistic regression and random forest models.  

Model and  

radiance value type 

Prediction accuracy 

(mean/SD) 

Cohen’s kappa  

(mean/SD) 

ROC  

(mean/SD) 

Logistic regression (all) 0.63 / 0.03 0.11 / 0.04 0.61 / 0.05 

Random forest (all) 0.63 / 0.03 0.10 / 0.03 0.55 / 0.01 

Logistic regression (agg.) 0.54 / 0.05 0.03 / 0.10 0.54 / 0.04 

Random forest (agg.) 0.62 / 0.03 0.15 / 0.10 0.57 / 0.05 
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Overall, wavebands from both the VNIR and SWIR sensors were significant (see figure 17). 

From the selected spectrum used to fit the models, wavelengths between 400-450 nm have the 

highest count of significant wavebands, but wavelengths between 1100-1150 nm and 1400-

1425 nm also had a high frequency of significant wavebands. Wavebands with wavelengths 

414 and 1131 nm were most frequent with 26 appearances each.   

 

 
Figure 17: The 15 most significant wavebands in all models. Dark green represents logistic regression models 

fitted with all radiance values, light green represents logistic regression models fitted with aggregated values, dark 

blue represents random forest models fitted with all radiance values and light blue represents random forest models 

fitted with aggregated values. 

 

Prediction map 

The best random forest model fitted with aggregated radiance was used to create a prediction 

map over the study area (see figure 18). The prediction map is made up of ITCs, where each 

ITC is given a probability for rot between 0 and 1 based on the results from the prediction 

model. Data for the entire study area went through the same process as the data used for fitting 
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the models. All the pixels within ITC polygons contained an id that was used to extract the 

pixels. First, pixels with an NDVI value < 0.6 were removed, then the data was normalized and 

aggregated using normal mean. Lastly, the prediction model was used on the processed data 

and a prediction map was made. 

 

 
Figure 18: Prediction of rot in ITCs from the study area. 
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Discussion 
All the infected stumps were classified after rot type during data collection. The classification 

of rot was later verified with senior research scientist at the NIBIO, Halvor Solheim. The 

review exposed errors in the data collection. Some of the classifications were wrong or 

impossible to classify based on the pictures taken. Visual inspection of rot requires expertise, 

and if the known symptoms for a syndrome are not found, it may be especially difficult to 

perform a correct classification. Additional, more thorough methods might be required 

(Schulze et al., 1997). During the review, it was concluded that DNA samples were necessary 

to classify rot 100% correctly. In this study, DNA sampling was not part of the field protocol 

due to budget constraints. This did not affect the outcome of the thesis, as the study seeks to 

examine if the combination of airborne hyperspectral images and laser scanning can be used to 

detect rot in spruce, not differentiate between rot types. It should also be noted that during the 

initial data collection performed by Moen (2020), wounds were observed in several trees along 

the edges of the study area that were in close approximation to the nearby road. The wounds 

were distributed over the entire length of the tree. During the construction of the nearby road, 

explosives were partially used. The probable cause for the wounds was determined to be caused 

by the previous road construction. Wounds can be the entrance for numerous fungi to establish 

themselves in spruce. Bleeding stereum (Stereum sanguinolentum) is a fungus known to infect 

wounds in spruce which is able to infect all types of wounds regardless of their age (Solheim, 

2010). During the data collection, stumps were visually inspected for rot. This leaves the 

possibility of trees being classified as healthy even though the tree is infected. Rot could be 

present in higher parts of the tree that are not inspected. Still, the probability of many 

misclassifications caused by this is presumably low. Few trees in the dataset were in close 

approximation to the road. Additionally, Bleeding stereum is fairly uncommon. Solheim et al. 

(2017) inspected 1353 spruce stumps 20 years after selection felling and found Bleeding 

stereum in 3% of the stumps.  

 

To extract the pixels from the hyperspectral images, they were matched with ITC polygons 

containing GNSS points registered during fieldwork. There are multiple algorithms used to 

detect single trees from which ITS polygons are created, and a different algorithm might have 

provided different results. Vauhkonen et al. (2011) compared different algorithms to detect 

single trees from ALS and concluded that forest structure strongly affected the performance of 

all algorithms. Some ITC polygons included several GNSS points and a Voronoi diagram was 
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implemented to split the ITC polygons into multiple trees. A weakness with this approach is 

the unnatural division of tree crowns where polygons contain multiple GNSS points as seen in 

figure 7. Parts of the divided polygon may belong to other trees within the same polygon. This 

is especially a problem to consider in cases were the polygon consists of both healthy and 

infected trees. Furthermore, some ITCs with a single GNSS point were made up of many pixels. 

It is possible that parts of the ITC belonged to other trees nearby, which were not part of the 

data collection. These trees could have a different classification. Sørhuus (2019) encountered 

the same problem in his extraction of hyperspectral pixels for statistical purposes. Only pixels 

that were positioned directly over GPS points were extracted in his study. The use of a buffer 

was considered to include more pixels around GNSS points. Sørhuus (2019) concluded that 

this method would risk the possibility of including pixels from neighboring trees or other 

objects and could benefit from accompanied laser data. For the current study, the use of ITCs 

in the extraction of pixels was an interesting approach which also enabled the ability to examine 

if the contribution of more pixels per tree resulted in better predictions relative to Sørhuus 

(2019).  

                                                                                                                                                                               

The initial overview of the data revealed higher mean radiance values for healthy trees across 

multiple intervals of the analyzed spectrum in both the VNIR and SWIR datasets (see figures 

10 and 11). Additionally, a substantial variation in the radiance values was observed. Partially, 

the difference between mean radiance value for healthy and infected trees was apparent, but 

the range in variance was also high in the same areas. Due to extensive variations, a common 

rule for distinguishing between healthy and infected trees was difficult to establish. Sørhuus 

(2019) experienced the same difficulties in his study with similar data from VNIR and SWIR 

sensors. Aside from high variations, the SWIR dataset faced additional challenges contributed 

by the combination of lower spatial resolution (i.e. less information) and noise. The SWIR 

dataset was resampled to match the spatial resolution of the image from the VNIR sensor, but 

the additional information obtained by using nearest neighbor resampling can affect the 

precision of the new image (Qianxiang et al., 2003).  The effects of noise were apparent above 

1800 nm in the SWIR dataset (see figure 11). In these wavelengths, there was little to no 

difference in mean radiance values or variation in both healthy and infected trees. This can also 

be seen in the wavelengths around 1400 nm, but the exploratory research did not reveal noise 

in this area. Multiple factors influence the radiance values registered from airborne 

hyperspectral images which can explain the noise. Aside from the sensor itself, and algorithms 

used to process the data, atmospheric state and solar zenith angle can affect the spectral quality 
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of the hyperspectral images (Kerekes & Hsu 2004). Große-Stoltenberg et al. (2016) explain 

that the distortion of registered radiance values from a SWIR sensor can be caused by light 

absorption from water vapor and high atmospheric gases. The sensor registers information in 

parts of the electromagnetic spectrum which are especially exposed to these phenomena. 

Weather data from the study area were not obtainable to substantiate this theoretical cause for 

noise in the dataset. The report from Terratec suggests that the data collection was affected by 

a limited weather window. Multiple attempts to collect data were performed, but only data 

from a successful attempt were kept and processed.  Terratec were able to collect all the data 

during one flight which made this possible. Additionally, plants reflect less light in these parts 

of the electromagnetic spectrum, which can result in low or inadequate readings. Dalponte et 

al. (2013) and Sørhuus (2019) had similar radiance readings in several wavelength intervals 

from the SWIR sensor. By removing noise from the SWIR data, Dalponte et al. (2013) ended 

up discarding the data completely as the reduced data were insufficient for statistical purposes. 

Sørhuus (2019) also decided to exclude the SWIR data from his statistical modeling.   

 

T-tests on aggregated radiance values showed significant differences between healthy and 

infected trees in several wavelengths for both the VNIR and SWIR datasets (see table 6). The 

difference could be explained by multiple factors and the presence of rot is one of them. Bendz-

Hellgren and Stenlid (1995) and Bendz-Hellgren and Stenlid (1997) demonstrated that rot 

affects the growth and development of trees. Statistically significant wavelengths from the 

VNIR dataset were observed in the wavelength intervals 405-526 and 575-669 nm. This is 

similar to Sørhuus (2019) results where wavelengths between 415-485, 515-595 and > 700 nm 

were significant. This translates to the blue, green and near-infrared (NIR) parts of visible light 

in the electromagnetic spectrum. In this section of the electromagnetic spectrum, the color 

pigments of needles are visible. Changes in the color are directly affected by the needle's ability 

to perform photosynthesis. The process of photosynthesis is dependent on various inputs such 

as the availability of water and nutrients. The presence of root and butt rot can disturb a tree’s 

ability to accumulate the inputs needed for photosynthesis thus altering the color of its needles 

(Solheim, 2010).  

 

Regarding the SWIR dataset, statistically significant wavelengths were observed in the 

intervals 1126-1137, 1148-1153, 1415-1426 and above 2448 nm. This differs from Sørhuus 

(2019) who found significant p-values in all wavelengths except between wavelengths 1350-

1450 nm. As previously mentioned, SWIR data can be affected by multiple factors resulting in 
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inadequate readings and should be closely examined to eliminate potential noise. Since the 

results from t-tests were used as selection criteria for wavebands to be included in the modeling, 

data from these wavebands were inspected further. The wavebands with significant 

wavelengths from 2448 nm and upwards included a lot of noise and were rejected during the 

exploratory research while the wavebands within wavelengths 1126-1137, 1148-1153 and 

1415-1426 nm were kept. Sørhuus (2019) explained the lack of significant results around 1400 

nm with the distortion from light absorption from water vapor. The differences in significant 

results could be explained by the atmospheric state at the time of data collection. Multiple 

studies involving hyperspectral data and the selection of wavebands indicate that direct 

comparisons of the selected wavebands are not possible (Dalponte et al., 2013; Leckie et al., 

2004). Intricate variations in multiple factors can affect the information obtained from airborne 

hyperspectral images. The wavelengths in the SWIR dataset are from the infrared (IR) parts of 

the electromagnetic spectrum (Smith, 2000) which is known to reveal plant stress. Plant health 

can thereby be exposed from significant differences in these parts of the electromagnetic 

spectrum. Reduced health could be explained by a rot infection. However, abiotic factors such 

as water and soil conditions could also influence tree health. Previous studies show that soil 

properties can affect the development of butt rot in spruce. Mainly dry, sandy soils or soils with 

high pH facilitates infection and spreading of root and butt rot (Lindén & Vollbrecht, 2002). 

Geological data from the Geological survey of Norway (2015) showed that the bedrock in the 

study area was sandstone and the soil consisted of an incoherently, or thin cover, of moraine 

over the bedrock. Although sandy soil has shown to be a facilitator for root and butt rot, thin 

soil cover over bedrock can expose the forest to drought stress since water access is reduced. 

The soil cover is incoherently in the study area, enabling pockets of drought stressed trees to 

occur. Clark et al. (2005) found that radiance values were affected by the water level in the 

needles. If the water levels in some needles are a consequence of drought stress, this could 

undermine the effects of rot seen in radiance values. Visible drought stress was not observed 

during final felling or commented on by the forest owner, but an extensive summer drought 

occurred the year before the hyperspectral data acquisition and final felling.  

 

Many factors can cause a disturbance in the radiance values recorded in hyperspectral images. 

The largest source of error in spectral imagery comes from variability in the illumination 

characteristics between the reference and target material (Analytik & Headwall Photonics Inc, 

2016). Solar zenith angle and atmospheric state have already been mentioned, but a third source 

of illumination is often overlooked. Scattered light reflections from surrounding surfaces also 
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impact the illumination. The surrounding area and vegetation alongside with variations in the 

canopy cover may alter the radiance values registered in a pixel. Aiazzi et al. (2006) and Rasti 

et al. (2018) described these factors in their studies. Hence, the geographical position can cause 

distortion. The position of the forest relative to the surrounding area, inclination and inclination 

angle affects the solar irradiance and scattered light reflections (Lowe et al., 2017).  

 

The performance of logistic regression models for all radiance values was overall better 

compared to the ones for aggregated radiance values (see table 7). Models fitted to all radiance 

values had a mean prediction accuracy of 63% ranging from 58-68%. For models fitted to 

aggregated values the mean prediction accuracy was 54% and ranged from 49-63%. Cohen’s 

kappa (0.11 vs. 0.03) and area under the ROC curve (0.61 vs. 0.54) were also higher for models 

fitted to all radiance values indicating that these models had better reliability between observed 

and predicted classes and had a higher degree of correct classifications. The most significant 

wavebands included in the models showed some differences in which wavelengths were the 

most important predictors (see figure 14). Models fitted to all radiance values tended to favor 

wavebands from the SWIR sensor and the lower spectrum of the VNIR sensor between 

wavelengths 400-450 nm. Models fitted to aggregated radiance values included some 

wavebands from the SWIR sensor, but most were from the VNIR sensor in wavelengths 475-

525 and 575-650 nm. Significant wavebands appear to come from all parts of the included 

spectrum, but some wavebands stand out. None of the significant wavebands were included in 

all models, but wavebands with wavelengths: 427, 491, 523, 574, 602, 612, 629, 1126, 1131, 

1153 and 4269 nm were present in 50% or more of the models.  

 

The performance of random forest models for all radiance values was similar in comparison to 

the ones for aggregated radiance values (see table 8). Mean prediction accuracy was 63 and 

62% and ranged from 57-67%. All models had low variance in the model validations used to 

measure their performance. Models fitted to aggregated radiance values outperformed the 

models fitted to all radiance values in all model evaluations except mean prediction accuracy 

with Cohen’s kappa (0.15 vs. 0.10) and area under the ROC curve (0.57 vs. 0.55) respectively. 

Examining the most significant wavebands (see figure 16), there is an apparent contrast in 

which wavelengths the models have incorporated. Models fitted to all radiance values have the 

most significant wavebands from the SWIR sensor between wavelengths 1100-1150, 1400-

1450 nm and in the wavelengths 400-500 nm from the VNIR sensor. No wavebands in 

wavelengths between 500-675 nm were significant. The models fitted to aggregated radiance 
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values had few significant wavebands from the SWIR sensor compared to the VNIR sensor. 

Most of the significant wavebands were from the wavelengths 400-500 nm, but the models 

also included significant wavebands in wavelengths 500-675 nm. Significant wavebands 

appear to come from all parts of the included spectrum, but few come from wavelengths 

between 500-675 nm. None of the significant wavebands were included in all models, but all 

wavebands from the SWIR sensor were present in 50% or more of the models. For the VNIR 

sensor, this was the case for wavelengths: 405, 411, 414, 424, 427, 440 and 446 nm.  

 

It is interesting to further compare the mean performance of the logistic regression and random 

forest models (see table 9). The performance was better when both were fitted to all radiance 

values and there where little discrepancy in performance between the two methods. Mean 

prediction accuracy was the same: 63%, but the overall variance in performance was lower for 

the random forest models. The logistic regression models had higher mean Cohen’s kappa: 

0.11 vs. 0.10, and area under the ROC curve: 0.61 vs. 0.55. The low mean Cohen’s kappa for 

the random forest models indicates that the relation between illegitimate and legitimate 

classifications was close to 1, meaning the models predicted almost the same amount of correct 

and wrong classifications. The performance of the forest regression models was more similar 

with almost the same mean prediction accuracy: 63 and 62%. The difference was larger in 

Cohen’s kappa: 0.10 and 0.15, and area under the ROC curve: 0.55 and 0.57. There was a 

greater span in the logistic regression models performance. The disparity in prediction 

accuracy: 63 and 54%, was quite high with almost a 10% difference. Cohen’s kappa: 0.11 and 

0.03, and area under the ROC curve: 0.61 and 0.54, was also considerably different which 

suggests the logistic regression models made better predictions when they were fitted to larger 

datasets. The results are slightly better compared to Sørhuus (2019). When he fitted models to 

all his data, he got a prediction accuracy of 55 and 59% for his logistic regression and random 

forest models. Cohan’s kappa: 0.11 vs. 0.00 and area under the ROC curve: 0.61 vs. 0.51 were 

also higher for the logistic regression models in this study. Comparing the random forest 

models, Cohen’s kappa: 0.10 and area under the ROC curve: 0.55 were the same in both 

studies.  

 

The most significant wavebands (see figure 17) for all models were also compared, and some 

trends are visible. Wavebands from the SWIR sensor showed a high degree of significance 

with multiple appearing in over 50% of the models. There is also a clear distinction between 

wavebands in wavelengths 400-525 and 575-675 nm. The latter has some singular wavebands 
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which appeared in many models, but these are constricted to logistic regression models and 

few wavebands from random forest models were present in this spectral interval. The former 

is more balanced with multiple wavebands appearing in both logistic regression and random 

forest models. Furthermore, wavebands in wavelengths between 400-525 nm accounted for 

70% of all significant wavebands from the VNIR sensor. Wavebands with wavelengths: 414, 

427, 446, 1126, 1131, 1153 and 1426 nm were present in 50% or more of the models indicating 

that the lower end of the visible spectrum and infrared were most significant for prediction 

models in this study. Sørhuus (2019) found contradicting results with most significant 

wavelengths in higher parts of the visible spectrum and near-infrared: 705, 762, 833, 899 and 

944 nm. This underlines the problem of direct comparisons of significant wavelengths as 

troublesome.  

 

The difference in significant wavebands for logistic regression and random forest models 

illustrates the different approaches the models incorporate in their fittings and the influence of 

size for training datasets. The results indicate that logistic regression and random forest models 

are sensitive to the size and information in the data they are fitted to. When small, the quality 

of the data becomes crucial for the performance of the model and this has a large impact on 

significant wavebands. Larger sample size could have contributed to less difference in 

performance and highlighted the significant wavebands more clearly. In this study, the logistic 

regression models were more sensitive and gave better predictions when fitted to larger 

datasets. Overall, the logistic regression models gave better predictions. The results contradict 

what Sørhuus (2019) found in his study. He found that the random forest models performed 

better than the logistic regression models. This can probably be explained by how the logistic 

regression and random forest model are fitted to their training datasets. A closer look at the 

individual models reveals intriguing results (see table 7 and 8). Three out of the four best 

performing models were fitted to the same dataset. This was also the case for the worst-

performing models, indicating that the performance is depended on the random sample the 

models are fitted to. The range in prediction accuracy, 57-68%, is comparable to Sørhuus 

(2019) which got a prediction accuracy ranging from 51-71% in his models. The mean 

prediction accuracy was higher in this study for both logistic regression models 63 vs. 55% and 

random forest models 63 vs. 59%. It is unclear how many times the models in Sørhuus (2019) 

study were fitted. For this study logistic regression and random forest models were fitted 10 

times: once per random sample used for training.  How many times the models are fitted can 

affect prediction accuracy. This applies to both range and mean. This is especially the case for 
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random forest models that uses bootstrap. Numerous fittings to the same training dataset could 

lead to different results. The random forest model builds multiple decision trees from random 

samples within the same training dataset. This presents the possibility of a wider range in 

performance for models fitted to the same training dataset dependent on the bootstrapping 

performed at each fitting. The random forest models were fitted once per training dataset. If 

the random forest model were fitted several times, this could have led to overall better 

performance and may have outperformed the logistic regression models. The absence of 

multiple fittings is due to a lack of capacity.  

 

When deciding between which sensor is most beneficial for detecting rot, the VNIR sensor 

seems to be the better option with more significant wavebands, and less noise, present in its 

data compared to the data from the SWIR sensor. This coincides with Dalponte et al. (2013) 

experience. He found data in wavelengths above 1500 nm from the SWIR sensor to be 

inconclusive. Classifications in this part of the electromagnetic spectrum become challenging 

as the plants begin to reflect less light (Große-Stoltenberg et al., 2016). The exploratory 

research and t-tests did, however, show several significant wavelengths without noise between 

1100-1400 nm in the SWIR data. The infrared spectrum can expose plant stress, and 

wavelengths 1126, 1131, 1153 and 1426 nm were present and significant in 50% or more of 

the models. Although SWIR data can be troublesome in classification, this study shows 

potential in the infrared spectrum. The SWIR sensor should not be ruled out as an option but 

considered an addition to the VNIR sensor in rot prediction. The models in this study were not 

fitted without data from the SWIR, so the benefits of the additional information provided is 

uncertain.  

 

The aid of ALS did increase the performance of the models compared to Sørhuus (2019), but 

not significantly. The models still give unreliable results in detecting rot with a mean prediction 

accuracy of 63%. A higher number of observations and multiple fittings of the random forest 

models could have resulted in better models for this study. Furthermore, the method used to 

designate pixels to different trees using ITC polygons needs to be improved. The unnatural 

division of ITCs polygons containing both healthy and infected trees probably caused some 

pixels to be classified incorrectly. This could cause an imbalance in the data, making it difficult 

for the models to discriminate between significant wavelengths. The combination of airborne 

hyperspectral images and laser scanning also presents other challenges. The combination 

enables the collection of large quantities of data which burdens data processing. The process 
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of filtering out significant wavelengths in the electromagnetic spectrum affected by rot 

becomes complicated, and the possibility of excluding relevant data presents itself. The 

difference in significant wavelengths between Sørhuus (2019) study and this study 

substantiates this theory. Likewise, data collection from airborne hyperspectral images in 

different studies have proven to give various significant wavelengths (Leckie et al., 2004).  

 

If further improvements prove the method viable, it might be possible to predict the occurrence 

of rot in spruce with high accuracy using a combination of airborne hyperspectral images and 

laser scanning. The constant development and improvement of hyperspectral sensors could 

also assist the development of prediction models. It remains to be seen if the benefits outweigh 

the costs. Assuming such models can be developed, they can be used to produce prediction 

maps. The spreading dynamics of root and butt rot makes the infected trees mostly appear in 

clusters. These maps could potentially reveal the distribution of root and butt rot in a forest, 

and where they are concentrated. This could contribute to advances in forest management and 

gives the forest owners a tool to reduce the economic loss caused by root and butt rot. Areas 

with a high concentration of infected trees could be prioritized in felling to reduce the loss. 

Furthermore, troublesome areas could be altered by planting a different tree species during 

regeneration that is not receptive to the present fungi. Thus, contribute to maximizing the 

utilization of available forest resources.  

 

Conclusion 
The goal of this study was to explore if the combination of airborne hyperspectral images and 

laser scanning can be used to identify root and butt rot in Norway spruce with high accuracy. 

The results indicate that there is a significant difference in the radiance value between healthy 

and infected trees, but it is difficult to determine a defined rule to separate them from each 

other. Multiple factors could have contributed to this problem. The dataset was relatively small. 

Pixels classified incorrectly because of the method applied in fieldwork and implementation of 

ITC. Variations in the registered radiance values for each wavelength which differed largely 

from the mean radiance value were observed. Welch’s t-test found several significant 

wavelengths, but there was little cohesion in the models. Impacts from solar zenith angle, 

atmospheric state, landscape and drought stress can cause additional distortion in radiance 

values both directly and indirectly.  
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Logistic regression and random forest models were fitted to data from a hyperspectral image 

to predict the occurrence of root and butt rot in spruce. The performance for both was the same, 

with a mean prediction accuracy of 63%. The inclusion of ALS did improve the model slightly 

compared to previous studies. The method leaves room for improvement, but there is potential 

in combining airborne hyperspectral images and laser scanning to detect root and butt rot in 

Norway spruce with high accuracy. If the number of observations is increased, and the 

implementation of ITC is improved, this could result in models with satisfactory prediction 

accuracy.  
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