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Abstract 

Runoff from arable land is recognised as the main reason for water degradation, eutrophication and 

reduced water quality. The aim of the study is to model runoff on a 1h temporal resolution from an 

arable catchment using the Distance Distribution Dynamics model. Research objectives are to 

compare the model with and without artificial drainage system as part of the model parameters and 

introduce two alterations to the recession analysis of the pre-processing routine. Model inputs are 

precipitation and temperature. Pre-processing includes recession analysis, to determine subsurface 

storage and subsurface flow velocities i.e. celerities, and distance distribution analysis. The study 

area is the small agriculturally dominated catchment Skuterud, which is a part of The Norwegian 

Agricultural Environmental Monitoring Programme (JOVA). The calibration period is from 2000-

2004, and the validation period 2005-2009. Time series from 2000-2004 were aggregated to 3h, 

6h, 12h and 24h temporal resolution to check the assumption of time invariance for the recession 

characteristics. The results show an improvement of Nash-Sutcliffe efficiency (NSE) and Kling-

Gupta Efficiency (KGE) criterion when artificial drainage is included in the model, and further 

improvement using the altered recession analysis methods. Limitation and uncertainties with the 

model include, but is not limited to, instrumental limitation for runoff measurements at low flow, 

hydrological impact on soil characteristics or seasonal influences. The overall best result is an NSE 

of 0.56 and KGE of 0.74.  
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Sammendrag 

Avrenning fra jordbruksdominerte nedbørfelt er en av hovedkildene til vannforurensing og 

eutrofiering i omkringliggende innsjøer og elver. Målet med dette studiet er å modellere avrenning 

fra et jordbruksfelt ved hjelp av Distance Distribution Dynamics (DDD) modellen på 1t 

tidsoppløsning. Delmål inkluderer implementering av drensrør i avstandsfordelingsrutinen og 

endringer i resesjonsanalysen som brukes til å estimere vannets bølgehastighet gjennom bakken. 

Inndata er nedbør og temperatur, parameterdata estimeres i avstandsfordeling- og resesjonsanalyse. 

Fokusområdet for oppgaven er Skuterud nedbørfelt som er et av forskningsfeltene til Jord- og 

vannovervåking i landbruket (JOVA). Fire ulike modellscenarier kalibreres i perioden 2000-2004 

og valideres i perioden 2005-2009. Resultatene viser akseptable (> 0.5) Nash-Sutcliffe (NSE) og 

Kling-Gupta (KGE) kriteria for simulering på 1t tidsoppløsning. Simuleringen bedres ved 

implementering av drensrør i modellens avstandsfordeling. Endringene i resesjonsanalysen bedrer 

resultatene, men ikke i like stor grad. Dette kan skyldes begrensninger ved hydrologisk måling når 

vannstanden er lav, og hydrologiske eller sesongvariasjoners påvirkning på jordegenskaper. Det 

beste resultatet er en NSE på 0.56 og en KGE på 0.74.  
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Introduction 
1.1. Motivation 
1.1.1. Runoff, water quality and climate change 

Runoff from arable land is recognised as a main reason of water degradation, eutrophication and 

reduced water quality (Deelstra et al., 2011; Vagstad & Bechmann, 2013).  Runoff is the amount 

of water from precipitation that travels on the surface and subsurface through the catchment to 

lakes and rivers.  It is composed of direct runoff; the contribution from overland flow and quick 

interflow, and base flow; the contribution from delayed interflow and groundwater runoff 

(Ramirez, 2000). The process of runoff generation is complex: It depends on the climate, shape, 

size, topography, geology, soil and storage characteristics of the catchment. The runoff process can 

carry high amounts of organic and inorganic matter, pesticides, nutrients or pollutant from the 

catchment to lakes and rivers. Consequently, the runoff process closely relates to water pollution. 

Water pollution is the introduction of a substance that weakens the quality of the aquatic ecosystem. 

It is introduced through the air, soil or water, and has indirect or direct effect on the water body 

(Union, 2000). Specifically, anthropogenic water pollution is a result of contamination of 

substances from human activity. Sources include, but are not limited to, acid rain, agriculture, 

mining, urbanization and runoff from sewage and roads. These substances can come from one 

specific source (point source) or many diffuse sources (non-point) and can be both local and long 

transported. Water pollution has a harmful effect on the biogeochemistry of fresh water systems 

and negatively affect the organisms living in and off the water (Smol, 2008). A common 

consequence of anthropogenic pollution is enhanced eutrophication. Eutrophication is an increase 

in primary production and trophic state due to enrichment of nutrients. Typical signs of 

eutrophication are the occurrence of algal blooms and changes in macrophytes and oxygen levels. 

The algal blooms are often toxic, and make water unfit for recreational purposes and unviable as a 

source of drinking water (Romarheim & Riise, 2009). Changes in oxygen level and macrophytes 

might damage other organisms living in the water. The most important, and often limited, nutrients 

for primary production is phosphorus and nitrogen.  
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Agricultural lands are dominated by soils rich in phosphorus and nitrogen due to fertilizing. The 

phosphorus and nitrogen are main sources of nutrient load to the environment. The rate of nutrient 

loss from agricultural catchments is determined by runoff rates, farming practices, soil types, 

topography and climate conditions (Deelstra et al., 2011). Scenarios of the global climate up to 

2100 indicates an increase in runoff rates for Norway (Deelstra et al., 2011). The Norwegian 

climate is presumed to have less snow accumulation, more frequent winter floods and fewer spring 

floods, more autumn precipitation, and more extreme events such as floods and droughts 

(Klimaservicesenter). A changing climate will lead to change in runoff patterns, which in turn will 

affect nutrient load to the aquatic ecosystems. The European Union (EU) Water Framework 

Directive (WDF) was established in 2000 to provide guidelines for assessment, management, 

protection and improvement of the quality of water across EU (Union, 2000). One of the main 

goals of the directive is that waters must achieve good ecological and chemical status, to protect 

human health, water supply, natural ecosystems and biodiversity (Union, 2000). In order to 

accomplish the goal, set by the Water Framework Directive, the study of rainfall-runoff processes 

from agricultural catchment needs to be further researched.  

1.1.2. Rainfall-runoff modelling 

One approach to the study of rainfall-runoff processes is through rainfall-runoff models. Runoff 

generation is a complex process and we do not have the means to measure all parts of the 

hydrological process. Rainfall-runoff modelling estimates processes of the real world based on a 

theoretical or mathematical approach using fewer measurements (Beven, 2012). This can be helpful 

for investigating sites that do not have measurement, and future climate change scenarios. If we 

can determine what controls runoff patterns today it can help gain insight to the changes that will 

happen in the future. This will help prepare mitigation and abatement measurements to minimise 

the negative effects of climate change and changing runoff patterns has on the aquatic ecosystem. 

There are many different approaches to rainfall-runoff modelling. Physical models reproduce the 

natural world at a larger or smaller scale, analogue models use knowledge of one physical process 

to simulate a physically analogue natural process, and mathematical models use algorithms, logical 

steps and equations based on theory to simulate natural processes (Dingman, 2015). Mathematical 

models have different approaches to how runoff is calculated (Sitterson et al., 2017). Physically 

based models describe the hydrologic processes using physical laws (Dingman, 2015; Sitterson et 
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al., 2017). Conceptual models use simple transfer function to minimise the number of calibrated 

parameters (Dingman, 2015). There are also different approaches to spatial and temporal 

representation (Dingman, 2015). The spatial representation is either lumped or distributed. Lumped 

models treat the catchment as a single unit and represent the catchment characteristics using an 

average (Beven, 2012). Distributed models divide the catchment into zones or grids. Each grid is 

represented by an average (Beven, 2012). The semi-distributed models aim to fit a distribution 

function of characteristics to the catchment and make all calculations based on the function (Beven, 

2012). Temporal representation is either steady-state, single-event or continuous (Dingman, 2015). 

Steady-state models focus on the long-term average or equilibrium, single-event models simulate 

isolated events and continuous models simulate sequence of responses (Dingman, 2015). In order 

to choose the right model, it is important to consider the main objective of the modelling and try to 

determine if the model of choice has the right output to answer the research question.  

1.2. Research focus & literature review 

The research focus of this study is to model runoff using a rainfall-runoff model at high temporal 

resolution (1h) on an arable catchment. Deelstra and Iital (2008) found that diurnal variation is 

important when considering nutrient loss processes from agricultural catchments. Simulations of 

runoff patterns at high temporal resolution represent the diurnal variations and extreme events of 

the catchments and is important in order to understand the hydrological processes governing in the 

catchment (Deelstra et al., 2010). Modelling runoff from an arable catchment is challenging. A 

common mitigation to deal with water logging and increase productivity in agriculturally 

dominated lands is to install artificial drainage (Hauge et al., 2011). Artificial drainage enhances 

the productivity of crops, but alter the total annual water flow and change the natural water balance 

of the catchment (Gramlich et al., 2018). Other anthropogenic influences on the water balance 

include irrigation, urban areas and sewage. It is thus important to consider that runoff processes in 

these catchments might differ from natural catchments.  

The Norwegian Agricultural Environmental Monitoring Programme (JOVA) has worked on 

documenting the environmental effects of agriculture on water quality since 1992 (Bechmann & 

Deelstra, 2013; JOVA, 2019). One of their monitored catchments is the Skuterud catchment. 

Skuterud is a small, agriculturally dominated catchment in the southeast of Norway. Farkas et al. 
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(2016) conducted a study comparing five rainfall-runoff models’ ability to predict runoff from 

Skuterud. The models were SWAT, COUP, DRAINMOD, HBV and INCA. DRAINMOD and 

COUP are one-dimensional, physically based models. DRAINMOD was developed to model the 

hydrology of poorly and/or artificially drained soils, and to predict the effects of drainage and water 

management practices on water table depths (Skaggs et al., 2012). COUP focuses on the vertical 

movement of water, heat, carbon, nitrogen and solutes in the soil profile (Jansson & Karlberg, 

2004). HBV, INCA and SWAT are semi-distributed catchment models describing the surface and 

subsurface runoff generation process in an integrated way. HBV simulates the characteristics of 

the rainfall-runoff process and calculates the water balance for 10 elevation zones (Lindström et 

al., 1997). INCA describes water and mass transport in the soil and stream system, and was first 

introduced by Jarritt and Lawrence (2006). SWAT quantifies the impact of land management 

practices in large watersheds on water supply and nonpoint pollution (Arnold et al., 1998). The 

five models were tested on one year, one month, one week and one day temporal resolution.  The 

study had two relevant conclusions. First, the models performed well on yearly, monthly and 

weekly basis, but unsatisfactory on daily temporal resolution (Farkas et al., 2016). Secondly, the 

more complex models, with more calibrated parameters, did not necessarily perform better than 

simpler models (Farkas et al., 2016).  

Using many calibrated variables makes it difficult to find what the errors of the model are, and in 

which process representation they lie. Calibrated parameters are optimised for a specific catchment 

for a specific period. This makes them unsuitable for future prediction. Skaugen & Onof (2014) at 

the Norwegian Water Resource and Energy Directorate first authored the DDD model. It is 

operational at 3h and 24h temporal resolution for flood forecasting services (Skaugen & Onof, 

2014). The development of the DDD-model was initiated with the advance of new technology. The 

use of satellites and GIS has provided detailed observations of catchments and its characteristics, 

and the idea was that parameters should be derived from these observations and actual 

measurements, not calibrations. In the DDD model parameters derive from the distance distribution 

of points in catchment to river reach and points in river network to river outlet, and recession 

analysis based solely on the runoff measurements. The distance distribution is used to describe 

how the catchment is drained, and the recession analysis adds velocities and moisture states of the 

subsurface. Skaugen and Onof (2014) compared the DDD model with the HBV model and found 

that DDD predicts floods more precisely in both timing and amount. It shows a better representation 
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of the groundwater and subsurface water description, even with less calibrated parameters. The 

model has been developed and tested for 140 Norwegian catchments (Skaugen & Onof, 2014; 

Skaugen et al., 2015; Skaugen & Saloranta, 2015; Skaugen & Mengistu, 2016; Skaugen & 

Weltzien, 2016), but not for agriculturally developed land.  

 

1.3. Research objectives 

The aim of this study is to model runoff from an agricultural catchment on 1h temporal resolution. 

The research objectives and corresponding hypotheses are as follows:  

 To provide a rainfall-runoff model that satisfactory simulate runoff on 1h temporal 

resolution. 

Hypothesis: Due to good simulation of the subsurface and few calibrated parameters, the 

DDD model will perform better than previous models and provide a satisfactory estimation 

of runoff patterns on an hourly temporal resolution. 

 

 To implement the artificial drainage system as river network in the model and assess the 

effect on the modelling results.   

Hypothesis: When adding artificial drainage network as river network the model improves 

its overall runoff simulation and peak flow estimation.  

 

 To improve the recession analysis for the subsurface celerity estimation. The main goal of 

the two altered estimation methods are to filter out erroneous observations that are most 

likely a result of high temporal resolution, measuring error or runoff variability.  

Hypothesis: Using the parameters of the altered recession methods will yield better 

calibration and validation results than the original method.  

 

 



6 

 

1.4. Outline 

This thesis will model runoff using the Distance Distribution Dynamics model in order to provide 

a rainfall-runoff model that satisfactory simulate runoff on 1h temporal resolution from the 

agricultural catchment, Skuterud.  

In order to understand, compare and discuss the results of the model, the DDD model background, 

theory and parameter data are introduced first. To make results comparable to other studies, the 

evaluation criterion and how to objectively interpret the results will be stated. Study area, tools, 

pre-processing routine, data acquisition and the four model scenarios needed to complete the 

modelling are included in the materials section. The results of the pre-processing routine of distance 

distribution and recession analysis are stated to highlight the differences in input parameter data of 

the different model scenarios. The main results of the calibration and validation are presented last. 

Main discussion topics are the effect of including the artificial drainage network, the effect of 

altering the recession analysis, and lastly a discussion of the best model scenario. 
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Methods & Materials  

Method 

2.1. The Distance Distribution Dynamics model 

The DDD model is written in the programming language R (see 2.4 Tools). The model simulates 

saturated soil water flow, states of subsurface, snow accumulation, distribution and melt, and runoff 

for a given catchment. Model inputs are measurements of temperature and precipitation. Parameter 

data are estimated from observations.  

2.1.1. Background 

The DDD model is an extension of the unit hydrograph method (Skaugen & Onof, 2014). The unit 

hydrograph (UH) of a watershed is defined as the direct runoff hydrograph resulting from one unit 

volume (1 mm or 1 in) of excess rainfall at a constant intensity and uniformly distributed over the 

drainage area for a duration of time (Dooge, 1959; Ramirez, 2000; Sherman, 1932). The duration 

of the UH, or response time, is the time it takes for the water farthest away in the catchment to 

reach the outlet. The UH is derived from the relationship between the hydrograph and catchment 

area. The hydrograph is the runoff measured at a point in the river, usually the outlet, over time. 

The shape and size of the hydrograph are determined by catchment characteristics: shape, size, 

slope, elevation, drainage density, infiltration characteristics: land use and cover, soil type and 

geology, the occurrence of lakes and swamps and river network characteristics: cross-section, 

roughness and storage capacity (Subramanya, 2013). The UH of a catchment is thus a reflection of 

the individual catchment and its response to one unit of rainfall excess. In discretised form, the 

ordinates of the UH is used to estimate the direct runoff of any storm of any length (Sherman, 1932; 

Skaugen & Onof, 2014).  

There are two main assumptions that constitute the basis of the unit hydrograph theory. The first is 

time invariance, which implies that the UH is the same for any rainfall event in time (Dooge, 1959; 

Subramanya, 2013). The second assumption is a linear response, which assumes a linear 

relationship between the runoff response to a given rainfall excess. This implies scaled responses 
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for rainfall events of different intensity, and superimposed responses of several rainfall events. If 

three rainfall excess events occur consecutively, their combined effect is obtained by superposing 

the respective UHs (Dooge, 1959; Ramirez, 2000; Subramanya, 2013).  

2.1.2. Modules 

The DDD model consists of two parts, the hydrological module and the runoff dynamics module 

(Skaugen & Onof, 2014). The hydrological module estimates the amount of excess water that enters 

the runoff dynamics module. The runoff dynamics module use distance distribution analysis to 

describe the transport of water from hillslope to river network and from river network to outlet. In 

addition, recession analysis is used to provides celerities of water transport. The two parts create 

the UH of the hillslope and the UH of the river network. The combination of the two UHs estimates 

how an impulse of water is temporally and spatially distributed through the hillslope and river 

network (Skaugen & Onof, 2014). 

Hydrologic module 

The excess water for a single time step is estimated in the hydrologic module of the DDD model, 

illustrated in Figure 1. I(t) is the input of precipitation and snow, Ea(t) is the actual 

evapotranspiration, Z(t) is the soil water content of the total volume D(t) of the unsaturated zone, 

and Ss(t) is the volume and water content of the saturated zone. M is the shared volume of D(t) and 

Ss(t), and thus the total volume of the subsurface reservoir. X(t) is the excess water reservoir of the 

unsaturated zone, and Q(t) is the excess water from the saturated zone (Skaugen & Onof, 2014). 

Precipitation is distributed to 10 elevation zones in the catchment. To distinguish between 

precipitation as rain or snow a temperature threshold, TX = 0.5 °C, is used,  

    (1) 

      

    (2)

       

Where T is the observed temperature, TX is the temperature threshold, P is the total precipitation, 

Prain is precipitation as rain, Psnow is precipitation as snow, θprecip is the precipitation correction factor 
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used if temperature is greater than 0.5 °C (equation 1), and θsnow is the snow correction used when 

temperature is below 0.5 °C (equation 2). 

 

Figure 1 Illustration of the hydrologic module of the DDD model. Edited from Skagen and Onof, 
2014.  

The input of water can, in addition to precipitation, come from snowmelt. To estimate the amount 

of melt equation 3 is used 

     (3) 

Where ∆SWE [m] is the change in snowpack’s water equivalent, K [kJm-2] is net shortwave 

radiation, Lnet [kJm-2] is the atmospheric and terrestrial net longwave radiation, H [kJm-2] is the 

sensible heat exchange, LE [kJm-2] is the energy flux related to vaporisation and condensation of 

water vapor, G[kJm-2] and R[kJm-2] is the ground and precipitation heat and CC[kJm-2] is 

snowpack heat storage. λF [kJkg-1] is latent heat fusion and ρw [1000kgm-3] is the density of water.  

These values are estimated as a function of location, time of year, precipitation and air temperature 

(Skaugen & Saloranta, 2015).  

The energy balance is used for estimating the potential evapotranspiration, Ep. The DDD model 

use the Priestly-Taylor method for estimating potential evapotranspiration (Priestley & Taylor, 

1972) 
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   (4) 

Where αPT is the Priestly-Taylor constant,  is the slope of saturation vapor pressure-temperature 

relation [P T-],  is the psychrometric constant [P T-1], K [kJm-2] is net shortwave radiation, Lnet 

[kJm-2] is the atmospheric and terrestrial net longwave radiation, LE [kJm-2] is the energy flux 

related to vaporization and condensation of water vapor and ρw [1000kgm-3] is the density of water. 

The actual evapotranspiration, Ea, is a function of Ep and the combined water content of the 

saturated Ss(t) and unsaturated Z(t) reservoirs.  

     (5) 

When the input, I(t), reaches the unsaturated zone, D(t), it adds to the volume Z(t). Movement of 

water from D(t) to Ss(t) happens when the actual water content, Z(t), reaches field capacity, Rfc, of 

0.3 which is of 30 % of the capacity of D(t). The change in soil water content is,   

      (6) 

Where X(t) is the excess water volume to saturated zone Ss(t) and is the amount of water that 

exceeds 30 % of the volume of D(t). 

     (7) 

The volume X(t) is added to the volume of the saturated zone Ss(t) where Q(t) is the water output 

from the saturated zone, and the change in Ss(t) is  

     (8) 
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The runoff dynamics module 

To estimate direct runoff  at the outlet, the convolution integral of excess water from hillslope 

 and the unit hydrograph  of the river network, is used  

     (9) 

where  is the excess water contributed by the hillslope. It is estimated using the convolution 

integral of excess water  (from the hydrologic module) and the unit hydrograph  of the 

hillslope.  

     (10) 

Deriving the unit hydrograph for hillslope 

The unit hydrograph is derived from distance distribution and recession analysis. The distance 

distribution is the cumulative distribution of actual distances (m) from points in the catchment to 

the river network. The distribution is modelled as an exponential distribution with a cumulative 

distribution function (CDF) illustrated in Figure 2 and equation 11.  

 

 

 

a) b) 

Figure 2 (a) An illustration of the distribution of distances (m) from river network in a catchment 
and (b) the corresponding CDF of distances (m). 
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    (11) 

 is the rate constant of the exponential distribution. If water transport down the hillslope is 

constant with velocity ν , then is the distance travelled by water during the time step  

(Skaugen & Onof, 2014). The distance distribution is then a distribution of travel times where the 

response time th,max = dmax/vh.  

    (12) 

The derivative of  is the unit hydrograph of the hillslope,  where  is the parameter used to 

describe its characteristics. The velocity ν  and  are estimated through recession analysis. The  

of the hillslope is then 

     (13) 

Deriving the unit hydrograph for each subsurface saturation level 

The DDD model assumes different levels, i = 1…I, of saturation based on the distribution of . 

The saturation levels have different velocities and recession characteristics. The level specific unit 

hydrograph is  

     (14) 

Where  is the level specific recession characteristic. The  is further discretised into intervals, 

ji = 1…Ji, to obtain the weights  that each layer contributes at each time interval. The number 

of intervals for each level is Ji = th,i,max/∆t. Where th,i,max = dmax/ν(i) . dmax is the maximum distance 

observed in the distance distribution and ν(i)  the level specific celerity estimated from recession 

analysis. The number of time intervals Ji is the time it takes for the wave farthest away in the 

hillslope to reach the river network. The weight of each time interval j at level i (equation 15) is 

illustrated in Figure 3.  

 =    j = 1 … Ji    (15) 

The runoff from each interval and saturation level is then,  
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     (16) 

Where  is the weights distributing  to each saturation level i and interval j depending on 

their individual degree of saturation.  

 

Figure 3 Illustration of the subsurface saturation levels i = 1…5, where each has its own UH 
defined by the recession characteristic λi and individual no. of intervals Ji = 1…Ji. Edited from 

Skaugen (2018).  

 

Estimating the level specific celerity using recession analysis 

In the DDD model, recession analysis is used to assign celerities to the superimposed UHs and 

determine the distribution of saturation levels. Recession analysis is the study of how a catchment 

drains after a rainfall episode. The method investigates the recession period of the hydrograph, 

which is the part of the hydrograph after the peak flow when flow decreases. The assumption is 

that the recession period reflects the withdrawal of water from the storage reservoirs in the 
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catchment and that there is a direct link between subsurface storage and runoff recession. The 

relationship between change in storage and runoff is often modelled as a power law relationship 

(Brodie & Hostetler, 2005; Kirchner, 2009; Stoelzle et al., 2013), and its shape and size say 

something about the contributing storage reservoirs (Subramanya, 2013). The recession 

characteristic is individual for each catchment and aims to provide information about the storages 

that convey water to the outlet (Skaugen & Onof, 2014; Tallaksen, 1995). The DDD model models 

the rate of the recession curve using the following equation 

     (17) 

Q0 is the discharge at the start of the recession period.  is the slope of the recession curve and 

determined from the log-difference in discharge at time t during the recession (equation 18). A high 

indicates a large change in storage and subsequent higher celerity (equation 19).   

    (18) 

      (19) 

The parameter  is the mean of the distance distribution, and  is the slope of the recession. There 

are different celerities ν  corresponding to different saturation levels i. The celerity for each level 

is estimated as 

      (20) 

Where  is the level specific recession characteristic and is solved using the assumption that 

  

  (21) 

is integrated over all saturation levels for the hillslope. The weights reflect the 

discharge each level of saturation contributes and is estimated  

     (22) 
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Distribution of saturation level and estimation of the mean storage 

The DDD assumes that the variability in celerity for each level is due to the variability in storage 

and the higher the saturation level is, the higher the celerity. This is reflected by a higher difference 

in subsequent runoff values in equation 18 (Skaugen & Onof, 2014). The distribution of  is 

modelled as a gamma distribution (Equation 23). This distribution reflects the distribution of 

saturation, so that the saturation levels are also modelled as a gamma distribution (Equation 24), 

    (23) 

where α is the shape parameter and β is the scale parameter of the gamma distribution. The expected 

mean value E(Ʌ) is αβ and variance Var(Ʌ) is αβ2  

   (24) 

Where the , and .  α is the shape parameter, η is the scale parameter and ms is 

the mean storage. The mean storage ms is estimated through the daily excess moisture input X, 

which depends on the mean annual runoff (MAR) and catchment area (A) 

    (25) 

The total sum of moisture input X after J days is 

        (26) 

Where Qss is the total runoff after J days, Sss is the water left in the soil and represent the mean 

storage ms  

     (27) 

     (28) 

The distribution of each level Si is then calculated as quantiles of f(S) where the subsurface reservoir 

capacity, M, is the 99 % quantile of the distribution of S.  
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     (29) 

 

Deriving the unit hydrograph of the river network 

The same principles apply when deriving the river network ur. The distance distribution of points 

in river network to the outlet is determined as the distance from points in the river network to the 

outlet. The mean celerity of the river network ν  is used to transform the function to a distribution 

of travel times. The unit hydrograph of the river, ur, is the derivative of the cumulative distribution 

function of travel times where tr,max = Rdmax/ν . Rd,max is the maximum distance from points in the 

river network to outlet,   

      (30) 

 

2.1.3. Input and model parameters 

Input data in the DDD model is precipitation and temperature. Model parameters include 

estimations from GIS analysis and recession analysis, calibrations and fixed values. Input data in 

the GIS analysis include digital elevation maps to estimate the hypsographic curve, and river 

network and area cover database, to estimate the distance distribution. Recession analysis is based 

on discharge measurements from the catchment. All model parameters (estimations, calibrations 

and fixed values) are listed in Table 1.  

Additional parameters include glacier fraction, the mean and standard deviation of distance 

distribution for glacier and the areal fraction of glaciers in the elevation zone. These are not relevant 

for Skuterud and not listed in the table.  
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Table 1 Parameter data of the DDD model for Skuterud with description and method of estimation. 

Parameter Description Method of estimation 

Hypsographic 
curve 

11 values describing the quantiles of the 
elevation.  

GIS 

θWs (%) Max liquid water content in snow Observation 

Hfelt Mean elevation of catchment GIS 

θPrecipiation  Correction factor for precipitation Calibrated 

θSnow  Correction factor for precipitation as snow Calibrated 

θTX (°C) Threshold temperature rain/snow Fixed, 0.5  

θTS (°C) Threshold temperature melting/freezing Fixed, 0.0 

CFR (mm °C-1 hr-1) Degree-day factor for freezing Fixed, 0.02 

Area (m2) Catchment area GIS 

dmax,bog (m) Max distance for bogs GIS 

(m) Mean distance bogs GIS 

Frac Fraction of bogs in catchment GIS 

Zsoil Area fraction of zero distance for soil GIS 

Zbog Area fraction of zero distance for bogs GIS 

NOL Number of storage layers 5 

R Ratio defining field capacity  0.3 

α Shape parameter of gamma distributed celerities Recession analysis  

β Scale parameter of gamma distributed celerites Recession analysis  

θCV (m s -1) Coefficient of variation for spatial distribution of 
snow 

Observations 

a0 Par for new spatial dist of SWE, shape parameter Estimated from precip. 

D Decorrelation length of spatial precipitation.  Estimated from precip. 

θvr (m/s) Mean celerity in river Calibrated 

(m) Mean distance of river network GIS 

SDriver (m) Standard deviation of distance distribution of 
river  

GIS 

dmax,river (m) Max of distance distribution of the river  GIS 

soils (m) Mean of distance distribution soil GIS 

dmax, soils Max of distance distribution for soil GIS 
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2.2. Evaluation criterion 

A rainfall-runoff model provides an estimation of the real world. To evaluate how good the estimate 

is, the “goodness-of-fit” must be evaluated as objectively as possible. In this study, the model 

output is assessed with the Nash-Sutcliffe efficiency criterion (Nash & Sutcliffe, 1970) and the 

Kling-Gupta efficiency criterion (Kling & Gupta, 2009).  

The Nash-Sutcliffe efficiency criterion (NSE) is a dimensionless skill score ranging from –inf to 

1.0, where an NSE of one indicates a perfect fit. The NSE value is obtained by dividing the mean 

square error (MSE), which is the difference between the simulated discharge and observed 

discharge, by the variance of the observations and subtracting the result from 1.0 (Equation 31), 

     (31) 

where Qs
t is the simulated discharge, Qo

t the observed discharge and  is the mean of observed 

discharge. The NSE value represents how much of the observed variance is explained by the 

models mean squared error (Ritter & Muñoz-Carpena, 2013). The main drawback with using NSE 

as a skill score is that it uses the observed mean as a reference. This can cause an overestimation 

of model skill score for seasonal variables (i.e. snowmelt) and outliers (i.e. extreme events) (Gupta 

et al., 2009; Ritter & Muñoz-Carpena, 2013). Gupta et al (2009) proposed a revised NSE to deal 

with the problem of overestimation and bias, and named it the Kling-Gupta Efficiency criterion 

(KGE),  

   (32) 

 

 

Where  is the maximum (potential) value for the KGE if the other components achieve their 

maximum value, υ is the ratio between the mean simulated, , and mean observed runoff  i.e. 

the bias,  is the coefficient of variation of the simulated CVs divided by CVo. The coefficients of 
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variation (CVs and CVo) is found by divided the standard deviation of the simulation, σs, or 

observation, σo, by its mean value  or .  

Ritter and Muñoz-Carpena (2013) suggested a standard criterion for the range of values that 

indicate when model performance is acceptable, good or very good, where an NSE of 0.65-0.80 is 

acceptable, 0.80-0.90 is good and above 0.90 is very good. Based on reviews of several studies of 

hydrology and model evaluation methods, Moriasi et al. (2007) recommended a lower value of 

acceptable NSE of 0.5, satisfactory results range between 0.50 – 0.65, good between 0.65-0.75 and 

very good between 0.75 to 1.00. 
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Materials 

2.3. Study area 

Skuterud is located in Ås and Ski municipality in Akershus in the Southeast of Norway (Figure 4). 

The catchment area is approx. 4.5 km2. 60 % of the area is arable land, 28 % is forest and the rest 

are either bog, urban area, roads or other. Topographic values range from highest point at 406 

m.a.s.l. and lowest is 91 m.a.s.l. The east side is steeper with shorter slopes than the west side 

(Deelstra et al., 2005). The catchment has been a part of the JOVA program since 1993 (JOVA, 

2019), and contains a large database with information about runoff, nutrient and soil loss together 

with farming practices, soil properties and meteorological data.  

Figure 4 Location and extent of Skuterud catchment. Adapted from JOVA, 2019.  
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The Quaternary geology is made up of marine clay and moraine. The soil consists of mostly silty 

and clay loam (Deelstra et al., 2005; Fikse, 2016). The topsoil (20-30 cm) in the cultivated area is 

characterised mechanical mixing due to farming practices (Fikse, 2016). At 0.8 m depth, there is 

artificial drainage with drain spacing of approx. 8 m (Deelstra et al., 2005). The pipes are installed 

at different times and with different materials. The arable land is dominated by crops of wheat (80-

90 %), the rest is potatoes, ley or other. 28 % of the catchment is coniferous or deciduous forest 

(Deelstra et al., 2005). There is a small bog located in the south of the catchment and urban area to 

the southwest. 

The average yearly temperature between 2000 and 2009 is 6.5 ⁰C, and average daily precipitation 

is 3.15 mm (JOVA, 2019). The minimum temperature during this period is usually observed 

between January and February and the maximum temperature is in July. The minimum 

precipitation is usually recorded in February and the maximum is recorded in October. The average 

runoff during this period is 0.08 m3/s. The highest runoff is observed in September, and the smallest 

is between May and August. Figure 5 shows the typical values of precipitation, temperature and 

runoff for one year.  

Figure 5 Observed precipitation, temperature and runoff for one year (2001) for Skuterud 

catchment. Data provided by JOVA (2019). 
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The runoff from the catchment drains through Skuterudbekken to Østensjøvannet and Årungen and 

ends in Bunnefjorden (Deelstra et al., 2005). At the outlet of Skuterudbekken JOVA has a 

measuring station. Discharge is measured at every hour using a crump-weir. 

 

2.4. Tools  
2.4.1. R 

The R project for Statistical Computing is a free software environment for statistical computing 

and graphics (https://www.r-project.org). In this study, R x64 3.5.2 was utilised to run the 

calibration and validation of the DDD model. R Studio, which is an integrated development 

environment for R, was used to create and edit code and figures (https://www.rstudio.com/).  

Important packages for the model are the hydroPSO, hydroGOF and hydroTSM. The hydroPSO-

package, where PSO stands for Particle Swarm Optimization, is developed to help users with 

optimization during the calibration of environmental models such as rainfall-runoff models 

(Zambrano-Bigiarini & Rojas, 2013). The hydroGOF (Goodness-of-fit) includes several goodness 

of fit functions including NSE, KGE and BIAS functions used for evaluation of environmental 

models (Zambrano-Bigiarini, 2017a). The hydroTSM: Time series Management, Analysis and 

Interpolation for Hydrological Modelling includes functions to analyse, interpolate and plot time 

series in hydrology (Zambrano-Bigiarini, 2017b).  

2.4.2. ArcGIS 

ArcGIS Pro is a professional desktop geographic information system (GIS) that allows you to view, 

explore and analyse spatial data (https://pro.arcgis.com). The program lets you work with spatial 

data in either raster or vector form. A raster is a spatial data model that defines space as equally 

sized cells, where each cell contains a value and coordinates. The vector data model represents 

geographic features as points, lines or polygons. Each feature is associated with an attribute and 

coordinates.  

Important toolboxes in the distance distribution pre-process is the spatial analysist toolbox which 

includes a hydrology toolset to explore water flow across the surface. The toolbox includes the 

function flow direction, which finds each cells flow direction to the neighbouring cell and flow 
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length, to calculate the length of the flow path. The toolbox also includes the distance toolset which 

includes the Euclidian distance function used to calculates the straight-line distance from each cell 

to a given point or line. The conditional toolset includes the function conditional evaluation and 

provides a way to filter out data and only include distances for a specific area type. The zonal 

statistics function calculates the minimum, maximum and mean values of the distance distribution 

for the specific area type. Another important function is rasterize, which converts a vector dataset 

to a raster dataset.  

 

2.5. Model setup 
2.5.1. Input data 

Input data in the DDD model is precipitation and temperature. Discharge measurements are used 

as input in the recession analysis and to evaluate the “goodness-of-fit” of the model.   

Time series with precipitation and temperature originate from the measuring station at Søråsjordet 

(Location 1 in Figure 6). This station is owned and managed by BIOKLIM at the Norwegian 

University of Life Science (https://www.nmbu.no/fakultet/realtek/laboratorier/bioklim). It is 

approx. 3.9 km from the crump weir at the outlet of Skuterudbekken (Location 2 in Figure 6). 

The air temperature (⁰C) is measured at 2 m height with a PT100 measuring station. The instrument 

has an uncertainty of ±0.1 ⁰C (BIOKLIM, 2014b). Precipitation (mm) is also measured at 2 m 

height. The instrument, developed at NLH (now NMBU), weights the precipitation and has an 

uncertainty of ±0.1 mm (BIOKLIM, 2014a).  

Discharge is measured using a Crump-weir at the outlet of Skuterudbekken. The relationship 

between the discharge and water level is explained in Deelstra (2008):  

 (33) 

Q is discharge (m3/s), Bc the width of the crest (m), Cd is discharge coefficient. If h1 is less or equal 

to 0.10 m, Cd is 1.163. If h1 is higher than 0.10m, Cd is 1.163*(1-0.003/h1)1.3. Cv is a correction 

factor for flow velocity at the gauging station, h1 is the level measured at the control section, g is 

the acceleration of gravity (m/s).  
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Crump-weirs are commonly used in areas with high amounts of sediment transport since this 

usually tends to disrupt measurements when it builds up at the outlet. The crump-weir allows the 

sediment to be transported out. There is some restriction to the upstream section and measuring 

distance when installing a crump-weir. The upstream section must be straight over five times the 

length of the width of the crest. The water level has to be measured upstream of the crest, with a 

distance two times the maximum height of the water table (Deelstra, 2008).  

 

 

Figure 6 Map of Skuterud catchment with location of gauging station at outlet (red dot no. 2), 
which is the source of discharge measurements, and the location of BIOKLIM station at 

Søråsjordet (red dot no. 1), the source of precipitation and temperature data. 

 

 

 

 



26 

 

2.5.2. Model parameters 

Distance distribution parameters   

The goal of the distance distribution analysis is to obtain summary statistics of the distances for 

points in the catchment of different area types to river network, and of points in the river network 

to the outlet. The distance distribution analysis describes the transport of water from hillslope to 

the river network and from the river network to the outlet. The results of the analysis are used as 

model parameters. In order to complete the pre-processing databases containing information about 

area types, the extent of the river and artificial drainage network, catchment boundary and digital 

elevation maps are needed.   

Data with catchment characteristics are gathered from satellite data and downloaded in the form of 

vector or raster data. The river network shapefile was collected from Elvis at Geonorge 

(https://kartkatalog.geonorge.no/). The Elvis database contains information about the river network 

for all Norwegian catchments. All catchment elements (river, stream and water bodies) are in the 

form of a polyline. For the different land types, the AR50 area type database was downloaded from 

Kilden, a database managed by NIBIO (https://kilden.nibio.no/). The database contains spatial data 

of all the main land resources (forest, agriculture, urban, grasslands, bog, etc.) categorised into 

different classes. The DDD model categorise the catchment into Soils, Bog and Glacier. Only Soils 

and Bogs are relevant for this study. Soils includes all land resources except glacier and bog, and 

Bog is all land resources categorised as bog/wetland according to the AR50 area type map.   

Johannes Deelstra and Alexander Engebretsen from JOVA (JOVA, 2019) provided the spatial 

dataset which included the location and extent of the Skuterud catchment. Follo Landbrukskontor 

has archives with physical drawings and maps of location and distribution of the artificial drainage 

system at Skuterud. In order to access these, one needs permission from the landowners at 

Skuterud. The plans and previous literature (Deelstra et al., 2005; Fikse, 2016) showed that the 

artificial drainage system is in almost every part of the arable land at Skuterud, and the distance 

between these are approx. 8 m, while the length of the pipes varies. To create a digitalised 

approximation, a grid with pixel size 50*8m covering the arable land at Skuterud was created. A 

digitalised elevation map (DEM) in both 10mx10m and 1mx1m was downloaded from Kartverket 

(https://www.kartverket.no/data/Hoydedata-og-terrengmodeller/). 
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Two distance distribution analyses were needed in order to compare the effect of the drainage 

system on the model. One with a natural river network (NRN), and one with an artificial river 

network (ARN): 

1) NRN: Distance distribution analysis with the river network as a flow path, which calculates 

the distances from points in the catchment to the river network, and points in the river 

network to the outlet.  

 

2) ARN: Distance distribution analysis with the artificial drainage network as a flow path, 

which calculates the distances from points in the catchment to the nearest drainage pipe. 

Also, a distance distribution analysis of the points in the drainage network to the outlet.  

Recession analysis parameters 

Recession analysis is a study of the decreasing part of the hydrograph and is based on runoff 

measurements. The aim is to find the slope, Ʌ, whenever Q(t) is greater than Q(t+1). The 

distribution of Ʌ is used to estimate hillslope celerities, ν and ν(i) distribution of saturation levels 

and storage capacity M. 

A problem with the recession analysis for high temporal resolution runoff data (1h) is that there 

are observations of high celerities i.e. high Λ for low Q(t) and no clear relationship between the 

two. The assumption of the recession analysis is that high celerities reflect high runoff and high 

saturation, and that the recession characteristic is time invariant.  To study this problem further 

several modifications for the Ʌ (Lambda) estimation method (LEM) are introduced:  

1) LEM1: Ʌ is selected when runoff in timestep t+1 is smaller than the discharge in t. This is 

the “original” method and is used to compare with the alternative methods: LEM2 and 

LEM3.    

 

2) LEM2: To deal with the problem of high values of Ʌ for low runoff values, a screening 

method is suggested. Ʌ is calculated under the same assumption as before (equation 18), 

but the highest Ʌ values for low Q(t) are filtered out. The values that are filtered out are 

determined by a lower quantile boundary and is set to 0.8. The remaining Ʌ´s are used to 

find celerities and storage capacity.  
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3) LEM 3: The third solution is to create a master recession curve based on the theoretical 

power law relationship between Ʌ and Q(t). The proposed Ʌ estimation method fits a line 

through the recession plot, and estimates the subsurface celerities and storage based on the 

relationship.    

The parameters of the gamma distribution from LEM1, LEM2 and LEM3 are used in the calibration 

scenarios. The results are compared according to the individual estimated celerities, NSE and KGE 

results, and a test of model assumption.    

Temporal and seasonal variation in recession parameters 

To investigate the effect of different recession lengths and seasonality of the recession analysis, an 

investigation of the effect of estimating Ʌ using equation 18 when Q(t) is in recess for three 

consecutive hours (prev. one hour) is conducted. In addition, the effect of filtering out observations 

with precipitation greater than 0 mm. This is done using the original LEM method (LEM1).  

Also, a comparison of the difference in recession characteristics for different seasons during 2001 

to examine the reason for the high variability in the recession plots. The seasons range from March 

17th to May 11th (spring), May 12th to September 20th (summer), September 21st to November 19th 

(autumn) and November 20th to March 16th (winter).   

Test of time invariance 

The expected value of Ʌ, E(Ʌ), of the gamma distribution should be time invariant and thus scale 

for time series of different time resolution. If Ʌ ~ Gamma(α,β), the expected E(Ʌ) is α*β. The E(Ʌ) 

at time resolution m, should be equal to E(Ʌ) at time resolution n multiplied with value of m i.e. 

(E(Ʌ)n/n) *m = E(Ʌ)m. To check the assumption, recession analyses for aggregated time series for 

3h, 6h, 12h and 24h are performed. The estimated values from each recession analysis are used to 

scale to lower and higher temporal resolution. The estimated and scaled values of E(Ʌ) should 

follow a one-to-one relationship with temporal resolution.   
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2.5.3. Model scenarios   

Four model scenarios are tested and compared. The first two compare the difference between the 

natural river network and the artificial drainage network. Since the aim is to incorporate the 

artificial drainage network in the model, the altered Ʌ estimation methods are used together with 

the model scenario including artificial drainage network.  

NRN:LEM1: The first calibration is done with parameters from the distance distribution of the 

natural river network (NRN), and celerities are estimated using the original method (LEM1). The 

calibration period is 2000-2004 and the validation is 2005-2009.  

ARN:LEM1: The second calibration is with parameters from the distance distribution of the 

artificial drainage system (ARN). The celerities are estimated using the original method (LEM1). 

The calibration period is 2000-2004 and the validation period 2005-2009. 

ARN:LEM2: The third calibration use parameters from the distance distribution of the drainage 

system (ARN), and celerities estimated using the screened recession estimation method (LEM2). 

The calibration period is 2000-2004 and the validation period 2005-2009. 

ARN:LEM3: The fourth calibration use parameters from the distance distribution of the drainage 

system (ARN). Celerities are estimated using the master recession curve (LEM3). The calibration 

period is 2000-2004 and the validation period 2005-2009. 
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Results 
The results are presented in the following order: distance distribution analysis, recession analyses, 

and calibration and validation of model scenarios. Results from the distance distribution analyses 

include summary statistics and CDFs of the distance scenarios. The highlights of the recession 

analyses are the recession plots, the expected Ʌ, the mean celerities and the gamma distribution of 

Ʌ with α and β parameters. In addition, the main findings from the investigation of temporal and 

seasonal variation in recession characteristics, and time invariance.  The summary statistics of the 

distance distribution and gamma distribution parameters of the recession analysis compose the 

input parameter data for the four model scenarios. These are evaluated with KGE and NSE 

criterion. To further evaluate differences between model scenarios, excerpts of runoff simulation, 

and celerity and storage estimations are compared. Lastly, a presentation of the water balance 

components and seasonal variability of the best performing model.  
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3.1. Distance distribution  
3.1.1. Natural river network 

The results of the distance distribution from points categorised as Soil, i.e. all land resources except 

bog and glaciers, and Bog to nearest natural river reach are summarised in Table 2. The graph in 

Figure 7 shows the cumulative distribution function (CDF) of the distances from soil to the river 

network. The x-axis represents the distance from Soil to the river network and the y-axis is the 

fraction of the total area of the catchment. The solid line represents the actual distances, where 67 

% of the total area is closer to the river network than 350 m ( ). Figure 8 illustrates the distance 

distribution of points in the river network to the outlet. 46 % of points in the river network lies 

within the mean distance of the river network. The CDF is characterised by an almost linear 

increase in distances, reflecting the simple layout of the river network with few tributaries.  

 

Table 2 Distance distribution parameter data: Maximum distance to river network (dmax), mean 
distance to river network type, standard deviation (SDtyoe), fraction of area type (Fractype) and 
fraction of area type with zero distance to river network (Ztype).  

 

Type dmax,type (m) type (m) SDtype FracType Ztype 

Soil 1117 350 - - 0,011 

Bog 251 118 - 0.019 0,00230 

River  2596 1442 684 - - 



33 

 

 

Figure 7 CDF of the distances (m) of points categorised Soil, taken from the area type map from 
Kilden, in Skuterud catchment to river network.  is the mean distance.   

 

Figure 8 CDF of the distances (m) of points in river network, taken from the map in the Elvis 
database, to outlet in Skuterud catchment.  is the mean distance 
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3.1.2. Artificial river network 

The results of the distance distribution from points categorised as Soil, i.e. all land resources except 

bog and glaciers, and Bog to the nearest artificial drainage pipe are summarised in Table 3. The 

graph in Figure 9 shows the cumulative distribution function (CDF) of the distance distribution. 

The x-axis represents the distance from soil to artificial river network, and the y-axis is the fraction 

of the total area of the catchment. The solid line represents the actual distances, where almost 72 

% of the total area is closer to the river network than the mean distance, . The starting point of 

the CDF is at 0.18, which is the value of the fraction with zero distance to the artificial river network 

(Zsoil). 65 % of the soil is within 5 m of the artificial river network, and this is approx. the area of 

the arable land. The CDF of the river network is displayed in Figure 10, where 46 % of the drainage 

system is within 2017 m of the outlet.  

 

Table 3 Distance distribution parameters: Maximum distance to river network (dmax,type), mean 
distance to river network ( type), standard deviation (SDtype), fraction of area type of total area 
(Fractype), fraction of area type with zero distance to river network (Ztype). 

 
Type dmax,type (m) type (m) SDtype Fractype Ztype 

Soil 581 63 - - 0.18 

Bog 32 5.86 - 0.019 0.078 

River 3254 2017 803.9 - - 



35 

 

 

Figure 9 CDF of distances (m) of points, taken from the area type map from Kilden, to points 
categorised as artificial river network, in the Skuterud catchment.  is the mean distance 

 

Figure 10 CDF of distances (m) of points in artificial river network, from digitalised map, to 
outlet, taken from Elvis database, in the Skuterud catchment.  is the mean distance. 
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3.2. Recession analysis 
3.2.1. Celerities  

The aim of the recession analysis is to derive the celerities (m/s) and subsurface saturation levels 

of the catchment. The analysis is done for the calibration period of 2000-2004 with the three 

different methods. The mean annual discharge for the period is 0.084. Table 4 shows the summary 

of the recession analysis; the value of the expected Ʌ (α*β), the variance (α*β2), and the related 

overall hillslope celerity for both natural (NRN) and artificial river network (ARN) estimated using 

equation 19. LEM2 estimates the highest Ʌ and mean celerity. LEM1 estimates the lowest Ʌ and 

mean celerity, while LEM3 has the lowest variance and almost equal Ʌ and mean celerity as LEM1.  

Table 4 Summary statistics of the recession analysis using the three different methods: LEM1, 
LEM2 and LEM3. The values are the representative mean values of the expected Ʌ and its 
variance, the celerity for Skuterud catchment with natural river network (NRN) and celerity 
with artificial river network (ARN) is estimated using equation 19.   
 NRN  ARN 

Time period LEM MAD E(Ʌ) Var(Ʌ) ν  m/s ν  m/s 

2000-2004 LEM1 0.084 0.029 1*10-3 2.81*10-3 5.07*10-4 

2000-2004 LEM2 0.084 0.053 2*10-3 5.15*10-3 9.27*10-4 

2000-2004 LEM3 0.084 0.031 8*10-4 2.91*10-3 5.43*10-4 

 

Figure 11 shows the Ʌ values (left) used to fit the gamma distribution (right) and corresponding α 

and β parameters used as input in the parameter file. An overall effect of the altered LEMs is a 

reduction in the β (scale) parameter and an increase in the α (shape) parameter.  
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Figure 11 Ʌ selection with the corresponding CDF of gamma distribution with α and β 
parameters. 

 

3.2.2. Sources of temporal and seasonal variability   

The method of selecting Ʌ values is important because it affects the gamma distribution and the 

subsequent celerity estimation. In LEM1, Ʌ is calculated whenever Q(t+1) is less than the previous 

Q(t). The scatterplot (Figure 12) of Ʌ values show no clear structure with respect to the associated 

Q(t), and high Ʌ values for low Q(t) for 1) recession period of one hour, 2) recession period of a 

minimum three consecutive hours, and 3) recession period of three consecutive hours and no 

precipitation. Increasing the recession period from one to three hours did not show a significant 

difference in the scatterplot of selected Ʌ. Filtering out runoff observation with precipitation, 
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reduced the max Q(t) for a given Ʌ from 4 to 2.9. It did not show a great difference in the 

scatterplots or estimated velocities because there were only a few Ʌ values that were filtered out.  

 

 

Figure 12 From top: 1) Recession segment is one hour, 2) recession segment is minimum three 
consecutive hours (above) and 3) three consecutive hours and precipitation is 0. The orange line 
is an illustration of the theoretical power law relationship that the values are expected to follow.  
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Table 5 summarises the recession characteristics of the different seasons. Autumn and spring 

have the highest mean annual discharges (MAD) and both slowest and fastest celerities. Winter 

and spring have the lowest MAD, but celerities are slower during winter than summer. There is 

no clear relationship between MAD and celerity estimation, but the lower MADs during summer 

and winter are reflected by lower variance. 

Table 5 Summary statistics of the recession analysis using the original method LEM1 on four 
different seasons during 2001/2002. The values are the representative mean values of the 
expected Ʌ and its variance, the celerity for Skuterud catchment with natural river network 
(NRN) and celerity with artificial river network (ARN) is estimated using equation 19.   

 NRN ARN 

Season LEM MAD E(Ʌ) Var(Ʌ) ν  m/s ν  m/s 

Autumn  LEM1 0.14 0.019 4.75*10-4 1.84*10-3 3.33*10-4 

Spring  LEM1 0.152 0.047 3.24*10-3 4.56*10-3 8.23*10-4 

Winter  LEM1 0.085 0.030 1.47*10-3 2.91*10-3 5.25*10-4 

Summer  LEM1 0.023 0.041 1.76*10-3 3.98*10-3 7.18*10-4 

 

The scatterplots in Figure 13 to Figure 16 show the difference in Ʌ for corresponding Q(t) for the 

different seasons. The autumn period (Figure 13) has the least variation in observations and only a 

few observations when Q(t) is low. The summer season (Figure 14) is like autumn for high Q(t) 

but has a high count of high Ʌ when Q(t) is low. Spring (Figure 15) has the highest spread in 

observed Ʌ, with few structures in the observations. There is no structure in the scatterplot for the 

winter season either (Figure 16).   
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Figure 13 Ʌ and corresponding Q(t) for the autumn period of 2001 

 

Figure 14 Ʌ and corresponding Q(t) for the summer period of 2001 
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Figure 15 Ʌ and corresponding Q(t) for the spring period of 2001 

 

Figure 16 Ʌ and corresponding Q(t) for the winter period 2001/2002 
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3.2.3. Test of time invariance 

The 1h time series from 2000-2004 were aggregated to 3h, 6h, 12h, and 24h time series to test the 

assumption of time invariance of the recession characteristics. For all LEMs, the values scaled from 

12h and 24h temporal resolution are close to the one-to-one line. LEM2 show an exponential 

deviation from the one-to-one line. LEM3 values are lower than those derived from the two other 

methods, and only values scaled from 12h and 24h fit close to the one-to-one line. The summary 

and results of the scaling calculation are shown in Table 6. Figure 17 illustrates the expected and 

scaled values under the assumption that E(Ʌ) is time invariant e.g. E(Ʌ)m = (E(Ʌ)n/n) *m. If 

estimated and scaled values are equal, they should follow the one-to-one line of the expected 

values.  
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Table 6 Expected Ʌ value for aggregated time series using LEM1, LEM2 and LEM3. Values in 
bold are derived from analysis, other values are derived from scaling.  
                   m 

n 

1 3 6 12 24 

LEM1 1 0.0285 0.0262 0.0220 0.0114 0.0136 

3 0.0856 0.0786 0.0659 0.0343 0.0409 

6 0.1713 0.1571 0.1318 0.0686 0.0819 

12 0.3426 0.3142 0.2637 0.1371 0.1637 

24 0.6852 0.6285 0.5274 0.2743 0.3274 

LEM2 1 0.0534 0.04796 0.0370 0.0253 0.0175 

3 0.16047 0.1438 0.1109 0.0759 0.0526 

6 0.3209 0.2877 0.2217 0.1518 0.1053 

12 0.6419 0.5755 0.4435 0.3036 0.2105 

24 1.2838 1.1510 0.8871 0.6072 0.4211 

LEM3 1 0.0308 0.0152 0.0111 0.0065 0.0083 

3 0.0924 0.0457 0.0334 0.0196 0.0248 

6 0.1849 0.0913 0.0668 0.0392 0.0496 

12 0.3697 0.1827 0.1336 0.0784 0.0992 

24 0.7394 0.3653 0.2672 0.1568 0.1984 
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Figure 17 Plot of estimated E(Ʌ) and scaled E(Ʌ) values for LEM1 (top), LEM2 (middle) and 
LEM3 (bottom). The black line represents the theoretical one-to-one line scaled values should 

follow. Scaling values based on E(Ʌ) of the lower temporal resolution (12h and 24h) are closer to 
the theoretical one-to-one line than scaled values from the higher temporal resolution (1h, 3h, 

6h).  
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3.3. Calibration and validation of model scenarios 
3.3.1. Evaluation of the model scenarios 

The parameter data from the distance distributions of NRN and ARN, and the recession analysis 

using LEM1, LEM2 and LEM3 were used to create the four model scenarios: NRN:LEM1, 

ARN:LEM1, ARN:LEM2 and ARN:LEM3. These were calibrated for the period 2000-2004 and 

validated for the period 2005-2009. The calibration and validation results show that scenarios using 

artificial river network have an overall better calibration and validation criterion. ARN:LEM1 and 

ARN:LEM3 has the highest NSE results of 0.56, and ARN:LEM3 has the highest KGE of 0.74. 

ARN:LEM3 has the overall best score and NRN:LEM1 the overall worst score. All results are 

summarised in Table 7.  

 

Table 7 NSE and KGE of calibration (2000-2004) and validation (2005-2009) period. 

Model scenarios Calibration Validation 
 

NSE KGE NSE KGE 

NRN:LEM1 0.39 0.69 0.38 0.69 

ARN:LEM1 0.56 0.71 0.49 0.66 

ARN:LEM2 0.54 0.72 0.47 0.67 

ARN:LEM3 0.56 0.74 0.52 0.72 

 

Comparison of runoff simulations, and celerity and storage estimation  

The simulation plots in Figure 18-Figure 21 show observed (blue line) and simulated (red line) 

runoff and precipitation (black line) for the different model scenarios for the time period: 

September 6th to October 18th, 2000. The simulations show that when adding the artificial drainage 

as a river network, the model estimates slightly higher flood peaks. In the selected period there are 

two periods of overestimation (red arrows in Figure 18). Both after periods of low amounts of 

precipitation. After, the models underestimate most flood peaks (green arrow). All model scenarios 

estimate the overall runoff dynamics and timing of flood peaks well, but tend to under- or 

overestimate the amount of runoff (m3/s).  
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Figure 18 Observed runoff (blue), simulated runoff (red) and precipitation (black) for the time 
period September 6th (Hours = 0) to October 18th, 2000 using model scenario NRN:LEM1 

Arrows highlight periods of over- and underestimation of runoff. .

 

Figure 19 Observed runoff (blue), simulated runoff (red) and precipitation (black) for the time 
period September 6th (Hours = 0) to October 18th, 2000 using model scenario ARN:LEM1. 
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Figure 20 Observed runoff (blue), simulated runoff (red) and precipitation (black) for the time 
period September 6th (Hours = 0) to October 18th, 2000 using model scenario ARN:LEM2. 

Figure 21 Observed runoff (blue), simulated runoff (red) and precipitation (black) for the time 

period September 6th (Hours = 0) to October 18th, 2000 using model scenario ARN:LEM3. 
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The estimated celerity for the saturation levels (1-5) for the different scenarios (NRN:LEM1, 

ARN:LEM1, ARN:LEM2 and ARN:LEM3) is illustrated in Figure 22. Level 1 is saturated 

conditions. All scenarios show decreasing celerities with saturation level, and celerities using the 

ARN-distribution is slower than NRN. ARN:LEM3 has the slowest celerity for saturated 

conditions, but ARN:LEM1 estimates slower celerity for decreasing saturation levels. Based on 

the gamma distribution and celerity estimation, each model scenario estimates a maximum storage 

capacity M (equation 29) of the subsurface, results shown in Figure 23. ARN:LEM1 has the highest 

estimate of 11.87 mm, and ARN:LEM3 has the smallest estimate of 7.50 mm.  

 

Figure 22 Estimate of celerities (m/s) for five saturation levels, where 1 is saturated conditions, 
for the different calibration scenarios NRN:LEM1, ARN:LEM1, ARN:LEM2 and ARN:LEM3. 
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Figure 23 Estimates of subsurface storage M (mm) for the four model scenarios. 

 

3.3.2. Evaluation of the best model scenario 

ARN:LEM3 has the overall best score. The water balance components and seasonal variability is 

only presented for this model scenario.  

Water balance components 

The minimum, mean and maximum values (mm/h) of the different water balance components are 

shown in Table 8. The maximum change in storage corresponds to the estimated maximum 

capacity M. A minimum value for runoff is estimated -0.02 mm/h. Potential and actual 

evapotranspiration are compared in Figure 24. The actual evapotranspiration is considerably lower 

than the potential evapotranspiration, especially for the summer period.  

Table 8 Minimum, mean and maximum values of the water balance components for ARN:LEM3 

  Min (mm/h) Mean (mm/h) Max (mm/h) 

Ea 0 0.01 0.37 

Runoff -0.02  0.06 4.31 

Precipitation 0 0.07 24.71 

∆Storage 0 6.58 7.50 

10.24
11.87

8.96
7.50

NRN:LEM1 ARN:LEM1 ARN:LEM2 ARN:LEM3

M
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Figure 24 Potential (blue) and actual (green) evapotranspiration estimated from model scenario 

ARN:LEM3.  

 

Seasonal variability  

Scatterplots comparing simulated runoff from ARN:LEM3 and the observed runoff is presented in 

Figure 25. The model underestimates runoff during spring and autumn, and overestimates runoff 

during summer and winter. The water balance for each season calculated and illustrated in Figure 

26. Input is precipitation (mm), ∆S is change in storage (mm), Ea is the actual evapotranspiration 

(mm) and Q is the simulated runoff (mm). Summer and spring have the highest value of 

evapotranspiration. The greatest contribution from storage happens during autumn and summer. 

The water balance is balanced for all seasons except winter, where the model estimates a total 

output higher than total input from precipitation and storage.   
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Figure 25 Observed and simulated runoff (m3/s) values for spring (green), winter (blue), autumn 
(orange) and summer (red) 
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Figure 26 Water balance components (mm) for each season estimated with model scenario 
ARN:LEM3.  
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Discussion 
Modelling runoff at Skuterud on 1h temporal resolution using the DDD model proved to be a more 

difficult task than first anticipated. The overall best result is a NSE of 0.56 and KGE of 0.74 using 

scenario with artificial drainage as a river network and a master recession approach for recession 

analysis (ARN:LEM3). The DDD model simulates runoff dynamics and timing of peaks well, but 

occasionally lacks an accurate estimation of the amount of runoff.  

Based on the relevant findings, the discussion section is structured around four main topics. The 

first two concerns findings related to the effect of changing the distance distribution and altering 

the Ʌ estimation method. In relation to the recession analysis, instrumental limitation at low flow 

combined with high temporal resolution, hydrological impact on soil characteristics and time 

invariance of the recession parameters are highlighted. Then, a discussion of the evaluation of the 

model scenarios and of the best model scenario, including water balance components, 

anthropogenic influences, unexpected findings and comparison to previous studies.  

4.1. Distance distribution 

The calibration and validation for Skuterud for the two different scenarios NRN:LEM1 and 

ARN:LEM1, revealed that the artificial drainage system as a river network improves the simulation 

of runoff for both calibration and validation period. The scenario with an artificial river network 

(ARN) improves the simulation due to a reduction of subsurface celerities. With a higher density 

of river network, the mean distance used in the calculation of the celerity (equation 19: ) 

is smaller, and the subsequent celerity estimation is slower. This improves runoff simulation and 

peak estimation, especially for the recession periods. In addition, the distance distribution using 

artificial river network increase the ratio of channel length to the total drainage area, i.e. the 

drainage density. A larger drainage density is characterised by quick disposal of runoff down the 

river network, which is reflected in more pronounced peak discharge. This is similar to the observed 

runoff. Using the artificial drainage system as a river network has a positive effect on the runoff 

modelling and simulated flood peaks.   
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4.2. Recession analysis 

The major problems with the recession analysis for Skuterud are the high variability in estimated 

celerities for the same discharge, high Ʌ values for low discharge, and a large difference of 

celerities between seasons. The uncertainties could derive from instrumental limitation for runoff 

measurements at low flow, hydrological impact on soil characteristics and/or seasonal changes not 

reflected by the recession characteristics.  

4.2.1. Instrumental limitation for runoff measurements at low flow 

A comparison of , observed runoff and precipitation are shown in Figure 27. The model 

assumption is that an event with a high value of Ʌ should correspond to a change between 

subsequent runoff observations of high value, and thus represent high saturation levels. However, 

in Figure 27, events with high Ʌ do not correspond with high runoff or precipitation values, but 

correspond to a sudden drop in the runoff to 0.0 m3/s. This happened for several events during low 

flow and is assumedly a result of gauging limitation at low flow, either in the actual measurements 

of runoff or the measurement of the water table height (Øygarden & Botterweg, 1998). There could 

also be physical objects such as debris, sticks, logs or ice blocking/interfering with the flow or 

gauging instrument (Øygarden & Botterweg, 1998). It is difficult to determine exactly what is 

causing the erroneous measurements since it has not been possible to monitor the gauging station 

during this study. Regardless, equation 18: Ʌ = log Q(t) – log Q(t+1) yields higher values when 

change between two runoff observations occur during low flow. It is when runoff is low, faulty 

measurements are most frequent and cause higher Ʌ values:  

 

log (3) – log (1) = 1.09 log (1) – log (0.5) = 0.69 log (0.5) – log (0.1) = 1.60 
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Figure 27 Excerpt of Ʌ, observed precipitation and observed runoff highlighting (inside orange 

boxes) where gauging measurements approach 0 and cause high values of Ʌ.  

 

The aim of introducing LEM2 was to objectively filter out observations of high Ʌ for low runoff 

and fit the gamma distribution of Ʌ without these values. The results of the LEM2 recession 

analysis shows that there is still a lot of variation in the distribution of Ʌ. The method also estimates 

higher celerities than the original method LEM1. Even though the method excludes high Ʌ values 

when runoff is low (Figure 11), it also excludes many of the lower Ʌ values for corresponding low 

runoff i.e. Ʌ/Q(t) values we initially trust. This result is an overall higher celerity estimation. The 

lower quantile was chosen to exclude high Ʌ values close to the 0 m3/s boundary. When the 

boundary is too high, the recession analysis loses all low flow characteristics, and the estimated Ʌ 

and celerities reflect only the higher runoff values. Overall, it seems that a lower quantile of 0.8 is 

too strict. One solution could be to lower the boundary to for example 0.6, illustrated in Figure 28. 

The estimated mean Ʌ would change from 0.056 to 0.037 and could possibly improve model 

results.  
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Figure 28: To the left: Screened Ʌ estimation method (LEM2) using 0.8 as the lower quantile 
boundary. To the right: Screened Ʌ estimation method (LEM2) with a lower quantile boundary of 

0.6. Highlighted in the red box is the effect on the Ʌ selection. 

 

Another solution to the problems related to the estimation of celerities is the LEM3. LEM3 aims 

to create a master recession curve following the theoretical power law relationship between Ʌ(t) 

and Q(t) (Figure 11). The method minimises the variance, excludes all high Ʌ values for low runoff 

and still manages to include recession characteristics for low runoff observations. The mean 

estimated celerity is not lower than LEM1 (Table 4), but the celerity for saturated conditions (Level 

1 in Figure 22) is lower than all other LEMs, allowing for better simulation of recession periods 

and flood peak estimation. Using LEM3 in combination with artificial river network offers the best 

result, but the difference between the three methods is minor. Even if we filter out gauging 

measurements errors and fit the Ʌ values to the theoretical relationship between Ʌ/Q, the runoff 

simulation is still different from the observed runoff, depending on season (Figure 25) and possible 

wet/dry periods (Figure 21).  

4.2.2. Hydrological impact of soil characteristics 

Recession analysis links runoff and storage dynamics. The recession parameters aim to inform 

about storage through the estimated celerities, based on the runoff observations. A specific 

recession characteristic Ʌ should be the result of the same runoff processes and storage levels. 

There are three possible hypotheses related to the hydrological impact of soil characteristics that 

lq = 0.8 lq = 0.6 
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explain why this might not be the case for Skuterud: hysteresis, fluctuating infiltration capacity and 

seasonal inferences (evapotranspiration).  

Effect of hysteresis 

One process that could explain the variability is the difference in soil characteristics during drying 

(desorption) and wetting (sorption) periods. The saturation level, or soil moisture content, is a 

function of several factors but depends greatly on the water potential of the soil. The water potential 

says something about the tendency of water to move from one area (vertical and horizontal) to 

another due to osmosis, gravity, pressure or surface tension (Slawinski, 2011). Surface tension, or 

capillary forces, is the ability of a liquid to flow in micropores and be retained in the soil, defying 

gravity. Hysteresis is the difference in water content and suction (and thus water potential) during 

sorption and desorption (Slawinski, 2011). The water content in the desorption part of the matrix 

suction – water content relationship, shown in Figure 29, is larger than water content in the wetting 

branch of the same water potential. This effect is due to differences in vapor tension for different 

water content. Thus, for a specific level of saturation, depending on if the soil is in sorption or 

desorption condition, the suction of the soil could be different and yield different recession rates 

and celerities. The effect is especially important for clay-rich soil as these have high surface tension 

due to high specific surface area and micropores (Nyborg, 2008).  

 

Figure 29 The suction – water content curve during desorption and sorption periods. 
Intermediate loops are hysteresis loops (scanning curves) (Hillel, 1998). 
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Figure 30 illustrates the hysteresis effect for Skuterud derived from recession analysis on the whole 

hydrograph. The figure shows similar trends as the water suction – water content curve, where 

differences in sorption, desorption and scanning curves effects the Ʌ estimation. Skuterud is 

dominated with soils rich in clay, and the hysteresis effect could cause runoff rates to yield different 

recession characteristics depending on sorption or desorption differences. The hydrograph 

simulations (Figure 18-Figure 21) show that the model reacts similarly after a drying and wetting 

period, while the observed runoff have different responses after the same periods. A reason could 

be hysteresis. This could also explain why there is higher variability during spring as it is likely to 

have more wetting and drying periods. The DDD model estimates that the distribution of Ʌ is 

constant in time, and even though the hysteresis effect is recorded in the recession analysis, it is 

not accounted for in the simulations.  

 

 
Figure 30 Hysteresis effect for Skuterud catchment derived from recession analysis when finding 
Ʌ for the whole hydrograph segment. To the left is hydrograph rise (sorption) and to the right the 
recession curve (desorption). Between the sorption and desorption lines are the scanning curves. 

Most scanning curves are observed when there is precipitation during the recession segment. 
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Effect of changes in infiltration capacity 

Runoff generation depends on the infiltration capacity (Cerdà, 1996). The infiltration capacity is 

the maximum rate of infiltration to the subsurface. In runoff generation, the relationship between 

rainfall intensity and duration and the soils infiltration capacity plays a role in determining the 

amount of surface runoff, subsurface runoff, groundwater discharge and soil moisture (Cerdà, 

1996). A typical pattern during a rainfall event is a decrease in infiltration capacity over time as a 

result of pore saturation, clogging by sediments, crust formation or swelling of the clays. Important 

factors determining the infiltration rates are vegetation, crust and surface cover. Cerdà (1996) found 

that seasonal fluctuations modified runoff volumes, runoff sources and how water is redistributed. 

Tallaksen (1995) observed similar trends when studying recession analysis and stated that there are 

in general faster recession rates in summer than autumn and winter. The differences in recession 

analysis for the different seasons (Figure 13 to Figure 16) could be caused by the change in 

infiltration capacity due to seasonal changing vegetation cover or surface conditions.  

The arable catchment Skuterud has seasonally changing vegetation cover. During spring and 

summer, the soil is dominated by wheat and other produce, but during autumn and winter there is 

less vegetation. Vegetation increase the infiltration and storage capacities of the soils. They cause 

considerable slowing of overland flow and tend to reduce the peak flow. Cerda (1996) conducted 

a study of infiltration capacities of a catchment with different vegetation cover zones and through 

different seasons. Vegetation cover proved to play an important role in infiltration rates and could 

be a reason for seasonal differences in runoff and recession rates.  

Another seasonal factor for infiltration capacity is temperature. The ratio of runoff to rainfall is 

greater during cooler months than warmer months (Figure 25) and it could be correlated to 

temperature differences and the effect on infiltration (Constantz & Murphy, 1991). Increased 

infiltration rates with increased temperature could be due to the decrease in viscosity of liquid water 

with increased temperature (see Figure 31). For example, Constantz and Murphy (1991) conducted 

a study on the temperature dependency of ponded infiltration under isothermal conditions. The 

study proved that there is a difference in infiltration rates at different temperatures, and the 

difference is greatest in the upper part of the soil.  
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Figure 31 Infiltration rates at different temperature. Source: Constantz and Murphy (1991) 

 

Changing infiltration rates due to changing vegetation cover and/or temperature could thus be 

another reason for seasonal changes in recession characteristics. The DDD model use celerities 

estimated from observation for the whole year. If the forces governing a certain saturation level 

and subsequent runoff pattern are not the same during this entire period, the derived recession 

characteristic and celerities are not representative.  

Effect of evapotranspiration 

According to the theory of recession analysis, the characteristic of the recession segment is due to 

change in saturation level and drainage patterns of the subsurface alone. From the water balance 

calculations in Figure 26, it is evident that different sources contribute to runoff dynamics in 

Skuterud catchment during the different seasons. Different recession rates could be caused by 

different sources contributing to the stream flow, causing hydrograph rise and subsequent recession 

period. The value Ʌ could reflect change of another component of the water balance, for instance, 

evapotranspiration.  

In addition to runoff, water is lost through evapotranspiration. From the seasonal water balance 

illustrations (Figure 26) actual evapotranspiration has a greater role during summer, and almost 

half of the water lost in this season is lost through evapotranspiration. During growing seasons 
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recession curves tend to be steep, reflecting moisture lost to streamflow by evapotranspiration, 

while the dormant season is characterised by flattened recession curves due to less effect of 

evapotranspiration (Tallaksen, 1995; Weisman, 1977). Tallaksen (1995) also identified 

evapotranspiration as a factor for diurnal fluctuation in recession rates with higher rates in the 

daytime and slower rates at night. The recession analysis for the summer period (Table 5) reflects 

this characterisation with higher Ʌ values than winter and autumn, reflecting steeper recession rates 

and higher celerities. Plotting potential evapotranspiration against Ʌ (Figure 32) for three days in 

august without precipitation demonstrates the diurnal fluctuations described by Tallaksen (1995), 

with steeper recession curves when potential evapotranspiration is higher. If there is a correlation 

between Ʌ and evapotranspiration it would mean that the recession characteristic does not only 

reflect subsurface drainage but the effect of loss through evapotranspiration.  

 

Figure 32 Potential evapotranspiration, the slope of recession Ʌ, and precipitation for a 
recession period from August 20th, 2001. 
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The runoff and storage relationship 

The recession characteristic is derived from runoff and attempts to inform about storage conditions. 

Runoff is a function of storage, and changes in storage can be estimated from changes in runoff 

(Kirchner, 2009). In the DDD model, the temporal distribution of storage is considered to have the 

same shape as the distribution of observed recession characteristic Ʌ (Skaugen & Mengistu, 2016). 

Figure 33 shows how the model estimates the relationship between simulated runoff and storage 

versus the observed runoff and estimated storage. While the simulated runoff values and storage 

M is approximated by a power law relationship, the observed runoff values do not correspond to 

the same relationship. The reason for this could be that the recession characteristics are influenced 

by evapotranspiration in addition to changes in saturation level. A solution could be to estimate the 

recession characteristics when evapotranspiration has minimal impact or to find another method of 

estimating celerities.   

 

Figure 33 Left: Relationship between simulated runoff (m3/s) and estimated storage M (mm). 
Right: Relationship between observed runoff (m3/s) and estimated storage, M (mm) for 2001. 

Green = Spring, Blue = Winter, Red = Summer, Orange = Autumn. 

 

Kirchner (2009) suggested two approaches which aim to minimise the effect of precipitation and 

evapotranspiration on recession rates. The first is to select hourly time series where runoff is 10 

times larger than both potential evapotranspiration and precipitation. The second, to only use time 

series during night-time, since evapotranspiration rates are minimal. In this study, only the effect 

of selecting time series for recession analysis where precipitation was minimal was tested (Figure 



63 

 

12) and did not improve results. Further studies with the DDD model could test the effect of 

excluding evapotranspiration as well.  

Another solution could be to use infiltration rates derived from fieldwork. These values reflect only 

the characteristic of the subsurface. Fikse (2016) did an infiltration test at Skuterud comparing 

infiltration at different locations. The mean infiltration rate of the study was 5.8 * 10-5 m/s. The 

DDD-model estimates the lowest velocity at 3.3 * 10-4 m/s (Table 5) during autumn. By using the 

mean celerity derived by Fikse (2016), it is possible to obtain the E(Ʌ), α and β values. Ʌ is defined 

by Ʌ ~ Gamma(αβ) with the expected value E(Ʌ) is α*β. If α is equal to that of the LEM3 gamma 

distribution (1.185), it is possible to estimate the β value to 0.00279. These α and β values can be 

used as input in the DDD model. Initial testing of a model scenario using these values in the 

parameter data suggests simulation with higher storage capacity M and slower subsurface 

celerities, but the method needs to be further perfected in a future study.     

4.2.3. Are recession values time invariant?  

The assumption of recession analysis is that the E(Ʌ) is time invariant. It should be possible to 

scale 1h estimated values to other temporal resolutions. From the scaling plots (Figure 17) the E(Ʌ) 

of 1h, 3h and 6h temporal resolution overestimates E(Ʌ) when scaling to 12h and 24h temporal 

resolution. Scaling E(Ʌ) of 12h and 24h temporal resolution to 1h, 3h and 6h proved slightly better. 

One explanation could be that the higher temporal resolution includes more noise and obtains a 

higher estimate of the mean Ʌ, which leads to an overestimation in scaling. It would seem 1h values 

are not time invariant, while recession values derived from 24h values are time invariant. 

Rupp and Selker (2006) studied the effect of different temporal resolutions in recession analysis. 

A typical recession curve has a short steep slope in the beginning and a long sleek slope at the end.  

They found that an appropriate temporal resolution at early recession, when change is high, might 

be too high when runoff recession rates approaches the limit of the gauge instrument. Likewise, a 

temporal resolution appropriate for late time recession might be too low for the early recession 

(Rupp & Selker, 2006). The noise in the recession analysis for Skuterud could be due to a temporal 

resolution that is too high for analysing low flow. If the main problem with the recession analysis 

is the gauging limitation at low runoff values, it could be solved by using 24h runoff measurements 

instead. These values would exclude faulty measurements during low flow.   
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4.3. Calibration and validation of model scenarios 
4.3.1. Evaluation of model scenarios 

The main difference between the four model scenarios is between scenarios using natural river 

network and artificial river network in the distance distribution analysis, which had a strong impact 

on the estimation of subsurface celerities. There was a slight difference in subsurface celerities and 

storage capacity estimation (Figure 23) between the model scenarios using artificial river network 

and different LEMs. 

The NSE criterion was in the range 0.5-0.65 for ARN:LEM1, ARN:LEM2 and ARN:LEM3 for the 

calibration period, but only ARN:LEM3 has an NSE > 0.5 for the validation period. The KGE for 

the same scenarios during the calibration period was > 0.70, but only ARN:LEM3 had KGE > 0.70 

for the validation period as well. Moriasi et al. (2007) and Ritter and Muñoz-Carpena (2013) had 

different views on what constitutes an acceptable efficiency criterion, but due to the model’s high 

temporal resolution a NSE > 0.5 is deemed acceptable and only the ARN:LEM3 scenario yields 

acceptable results for both calibration and validation period. 

Compared to the result of the daily simulation of DRAINMOD, COUP, HBV, INCA and SWAT 

by Farkas et al. (2016) shown in Figure 34, the result from 1h temporal resolution is similar to 

those from the daily temporal resolution. The DDD model simulated runoff at 1h temporal 

resolution better than the SWAT model, and results are close to DRAINMOD, COUP, HBV and 

INCA. The figure shows a steadily decline in NSE with increasing temporal resolution. A 

hypothesis for a future study could be that the DDD model simulates runoff better on a daily 

temporal resolution than the previous tested models.  
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Figure 34 Results of rainfall-runoff modelling using DRAINMOD, COUP, HBV, INCA and 
SWAT on daily, weekly, monthly and yearly temporal resolution (Farkas, 2016). 

 

4.3.2. Differences in simulated and observed runoff values   

The simulation for the ARN:LEM3 scenario (Figure 21) shows that the recession rates are higher 

than the observed recession, leading to a faster drop after peak discharge. The main reason why the 

model does not simulate recession better is due to the estimated storage capacity M (Figure 23), 

which is 7.5 mm. It is difficult to determine what is a realistic storage capacity, but if we assume a 

depth of 0.8 m (to artificial drainage), multiply this with the catchment area and a porosity of 0.2, 

we get a rough estimate of the subsurface capacity of 160 mm. This is considerably higher than the 

subsurface capacity estimated by the model. The actual storage capacity might be somewhere 

between these two values.  

Another effect of assuming a constant maximum storage capacity is seen in the difference between 

observed and simulated flood peak simulation for dry and wet periods (Figure 21). The observed 

peak at 500-550 hours, is smaller than the simulated peak in the same interval. After several days 

of continuous precipitation, 800-900 hours, the observed peak is higher, while the simulated peak 

is almost equal in size as the peak at 500-550 hours. The precipitation at the time of the two peaks 

is almost the same (17 mm/h and 19 mm/h). The reason for this difference is that the estimated 

storage capacity is too small, and the differences between the observed runoff peaks could be due 

to differences in soil characteristics not reflected by the model. This is also observed in Figure 25, 
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where the model overestimate runoff values during summer (typically drier) and underestimate 

runoff during spring and autumns (typically wetter). Maximum storage capacity and water 

available for drainage could change during a wet and a dry period, due to sorption and desorption 

periods, or season (as discussed in relation to recession analysis in section 4.2.2). In the water 

balance equations (Figure 26) it results in a small input and output from storage. 

Another consequence of the low estimation of storage capacity M is shown in the estimated amount 

of evapotranspiration (Figure 24). The total volume of water lost through evapotranspiration is 

estimated from the subsurface reservoirs Z(t) and Ss(t) and lost from Ss(t) (equation 5). When the 

estimate of the subsurface volume is small, the subsequent estimate of actual evapotranspiration is 

small. A result of this is a greater difference in the observed and simulated runoff values, especially 

during summer (Figure 35). The observed runoff peak could be lower than the simulated either due 

to higher storage capacity and/or higher amount of evapotranspiration not reflected in the model. 

 

Figure 35 Observed runoff values in red, simulated runoff values in black, potential 
evapotranspiration in orange. 

 

There could be uncertainties linked to the measured runoff and its source. The catchment is mainly 

arable land, and agricultural practices and anthropogenic processes could affect the runoff 

processes. For example, a sudden hydrograph rise could be due to a non-natural event such as 
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irrigation. The model only assumes input from precipitation and snowmelt, and it would be 

impossible to simulate runoff from an artificial input source.  

Further, differences in the conductivity of the pipes could cause inaccuracies. The artificial 

drainage pipes were not constructed at a single point in time but is a result of work for 50+ years 

and is still ongoing. The pipes thus have differences in degradation and clogging.  A hydrograph 

rise and recession could be a result of drainage through only some pipes, while the model assumes 

equal flow through all pipes.  

Artificial drainage pipes replace natural pathways of water flow (Miller et al., 2014). The artificial 

drainage system intercepts the relatively slow process of interflow to the streams as most water in 

the upper layers of the subsurface is transported through the drainage pipes to the river network. 

Typical drainage in an artificially drained catchment is characterised by faster responses, reduced 

base flow and groundwater recharge, and higher peaks at a shorter time (Blann et al., 2009; Miller 

et al., 2014; Robinson et al., 1985). Deelstra and Iital (2006) noted that runoff from Skuterud has 

a very flashy character with large daily variations in runoff and fits the description of an artificially 

drained catchment well. 

Modelling runoff from a catchment with responses from both natural and artificial flow pathways 

is complex. In this study, the problem was solved by implementing artificial drainage pipes as a 

part of the river network. The hypothesis was that the model would perform better, and it did, but 

it is still difficult to model a hydrograph rise or a sudden reduction in runoff rates that could be a 

result of human impact. Further, measurements of runoff could be another source of error, since it 

does not always reflect the natural drainage pattern and its sources, causing faulty recession 

characteristics and affecting the evaluation process. When incorporating the artificial drainage 

system in the model, it is assumed that the flow of water is equal to that of a river network. The 

artificial drainage network might be more complex than first anticipated, which would make this 

approximation erroneous. 

4.3.3. Unexpected findings 

An unexpected finding was the simulation of negative runoff. It is illustrated in Figure 35 and 

Figure 36. One hypothesis is that due to the low estimate of storage capacity, when actual 

evapotranspiration is high, there is not enough water in the model. The observations of negative 
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runoff values correspond with periods of high estimates of actual evapotranspiration (Figure 36). 

The model estimates the actual evapotranspiration from the potential evapotranspiration and 

combined available water in D(t) and Ss(t) but draws the actual water from only Ss(t). This can 

cause miscalculations and deficit of Ss(t), resulting in negative values for runoff.

 

Figure 36 Simulated runoff (blue line) and actual evapotranspiration (red line) for the 
calibration period 2000-2004 for Skuterud catchment. 

 

One of the results of the seasonal water balance for the simulation ARN:LEM3 (Figure 26) was a 

negative balance, with more water leaving the catchment than entering it during winter. Even 

though it is common for the water balance to show seasonal differences, with water deficit and 

water surplus, the balance between the different components is assumed to always be equal to 

zero. When runoff is greater than precipitation, water must come from storage, or if precipitation 

is greater than runoff, water is stored or lost by evapotranspiration. As seen in Figure 37, the 

negative water balance (black dots) corresponds to periods with high change in SWE (purple 

line) and could be related to an error in the snow routine or input from snowmelt in the water 

balance calculations.  
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Figure 37 Periods where water balance is negative (black). Corresponding periods where 

change in SWE is large (purple). 0 hours is January 1st 2000. 
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Conclusion 
5.1. Aim and research objectives 

The main goal of this thesis was to apply a rainfall-runoff model of high temporal resolution on an 

arable catchment to better understand runoff patterns and help mitigation in the future. The 

Distance Distribution Dynamics (DDD) model simulates runoff at a temporal resolution of 1h on 

the arable catchment Skuterud with acceptable results: A Nash-Sutcliffe Efficiency (NSE) and 

Kling-Gupta Efficiency (KGE) criterion of more than 0.50 for both calibration and validation 

period. Model scenarios with and without artificial drainage as river network in the distance 

distribution pre-processing were compared. The conclusion is that runoff simulation is better with 

artificial drainage network acting as river network. The main effect of altering the distance 

distribution is slower subsurface celerities, which results in better runoff simulation and flood peak 

estimation. Three different approaches to recession analysis were compared. Sources of error in 

the original recession method include sensitivity at low flow and high variability in celerity 

estimation for different season. Possible explanations could be, but is not limited to, inaccuracies 

in measurements at high temporal resolution during low flow, hysteresis and/or changing soil 

characteristics for different seasons. The altered methods improved results but did not solve the 

problem completely as none proved to be time invariant at 1h temporal resolution. Compared to 

previous studies the DDD simulate 1h runoff at similarly to DRAINMOD, COUP, INCA, HBV 

and SWAT do at 24-hour simulation. The use of a parsimonious rainfall-runoff model is thus 

applicable for agricultural catchments and high temporal resolution.  

5.2. Reflections and further studies 

The result of this study shows that rainfall-runoff modelling on arable catchment using a 

parsimonious model yields acceptable results. Many calibrated parameters are not needed to obtain 

accurate simulations. Further, simple physically based models are robust, usable for ungauged 

basins and for future modelling. They can, however, be inclined to provide an inaccurate 

representation of reality with negative runoff, low evapotranspiration and negative water balance.   



72 

 

The use of high temporal resolution modelling helps understand the diurnal fluctuation in runoff 

patterns and what is causing it. This is especially important for flood forecasters, and for mitigation 

strategies that aim to minimise anthropogenic impact on our water bodies.  

Further testing and improvement of the DDD model for other arable catchments is needed. A 

sensitivity analysis of different parameters in model to investigate what parameters cause the 

greatest uncertainty and have the biggest effect on model result could also be constructive. One 

solution to the high celerities for low storage problem could be to use infiltration rates instead of 

recession rates or only conduct recession analysis at night. A solution to the problem of high 

variation in recession characteristics could be to assign different characteristics according to 

seasons, or sorption and desorption period, in the model. The use of scaled values from 24-hour 

time series might solve the problem related to gauge limitation at high temporal resolution during 

low flow. 
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