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B Abstract 
In the event of a reactor accident, debris plumes containing artificially produced radionuclides 

could impose a great risk for the environment in distances far from the accident site. 

Radionuclides can enter the marine environment through atmospheric deposits and runoffs from 

terrestrial environment by rivers.  

To evaluate the risk of radionuclides in marine systems, it is important to identify their physico-

chemical form (speciation). The speciation of radionuclides are dynamic and changes in 

dissimilar water qualities e.g., in estuaries. Speciation of radionuclides will change by time and 

transport in coastal water. In water, cesium (Cs) can be present as different species, where the 

ions are more reactive and mobile than particles. 

Utilizing numerical models as a tool to predict the atmospheric transport and deposition of 

radionuclides in the event of nuclear accidents can be helpful in risk assessments and in 

deciding where countermeasures are necessary. Such models are using the distribution 

coefficient, Kd, as a basis to estimate the water-sediment distributions. The Kd is the ratio 

between radionuclide concentrations in the particulate (Bqkg-1) and in the dissolved phase  

(BqL-1). Kd is site specific and depend upon the physico-chemical properties of both the 

radionuclide and the water-sediment system. If the system change, the Kd changes. Existing Kd 

values are based on the assumption that equilibrium conditions are valid, but such systems are, 

however, highly dynamic and more information about the dynamic changes are needed. 

Recently, a numerical dispersion model was developed where speciation of Cs was included. 

To improve the dispersion model, more information about the changes of Cs species as a 

function of salinity and time are required. This master thesis provides such inputs to the 

dispersion model by generating experimental data of time dependent changes in Cs speciation 

by mixing freshwater with saline water and the use of gamma emitting 134Cs and 137Cs tracers 

to follow the processes. The experiments simulate the transformation processes in mixing zones 

that occur in the river outlet where fresh waters meet saline water. In the saline water, the ionic 

composition differs greatly from the riverine fresh water, leading to an alteration of the water 

chemistry, which again can change the radionuclide speciation, as well as components found in 

the river water, e.g. particles and humic substances.    

 

Water and sediment samples were retrieved from the river Storelva situated in Risør, in south 

of Norway. The sorption of 134Cs was studied by adding tracer to isolated riverine colloids and 
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clay. Further on, the riverine colloids and clay were studied as two compartment systems in 

brackish water designed to investigate;  

(i) the remobilization of 134Cs associated with riverine colloids and sorption of 137Cs 

ions in saline water to riverine colloids as a function of increasing salinity and time 

(ii) the remobilization of 134Cs from clay and sorption of 137Cs ions in saline water to 

clay as a function of salinity and time. The brackish water had an increasing salinity 

from 1 to 25 PSU (Practical salinity unit).  

The compartment experiments lasted one month.  

The Cs speciation was determined by utilizing size fractionation techniques at different 

timelines and the tracer activity was measured by a NaI-detector (PerkinElmer 2480 automatic 

gamma counter with wizard software). 

The sorption of 134Cs to riverine colloids had inconsistencies, compared to the sorption to clay. 

After 5 months only ±5 % 134Cs was associated with the colloidal fraction while for the clay 

fraction, 99 % 134Cs was associated with the clay fraction. This experiment is still ongoing. 

The remobilization of 134Cs from the riverine colloids was rapid in freshwater. As for 137Cs 

accompanied by the saline water, there was only a minor association with the riverine colloids. 

The remobilization of 134Cs from riverine clay was minimum at the lowest salinities (1, 3 and 

5 PSU) and then increased with salinity and time.  

The 137Cs sorption to riverine clay was higher for the low salinities. The 137Cs was, mostly 

associated with the LMM fraction at high salinities. 

The apparent Kd obtained in this experiment was in the range of 73-215 Lkg-1 for 134Cs and 13-

54 Lkg-1 for 137Cs, decreasing with increasing salinity in line with literature data. The transfer 

rates, k, that describe the dynamic changes in transfer models, for both sorption and desorption 

were in the same magnitude in brackish water with low and high salinity.  In general, the 

sorption rates (k1) seemed to decrease by salinity by a factor of 2, while the desorption rates 

(k2) were not dependent upon salinity.  
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C Sammendrag 
Ved hendelser som involverer reaktor ulykker kan antropogene radionuklider, som 

transporteres til atmosfæren, utgjøre en stor risiko for det marine miljøet også på store avstander 

fra ulykkesstedet. Radionuklider kan tilføres det marine miljøet direkte ved atmosfæriske 

avsetninger og ved avrenning fra terrestrisk miljø til elver.  

Radionuklider kan foreligge som ulike tilstandsformer i vann, som løste ioner, tilknyttet 

kolloider eller partikler. For å evaluere risikoen med radionuklider i marine systemer er det 

viktig å identifisere biotilgjengelighet og mobilitet til radionuklidene. Dette avhenger av 

tilstandsformen, hvor ioner er mere reaktive og mobile enn partikler. Fordelingen av de ulike 

tilstandsformene er avhengige av en rekke nøkkelfaktorer og ved endring av disse 

nøkkelfaktorene så vil tilstandsformene endres. Slike endringer finner sted for eksempel i 

estuarier der ulike vannkvaliteter blandes. Fordeling av tilstandsformer i estuarier vil endre seg 

som funksjon av tid og med økt innblanding av sjøvann.  

Numeriske modeller er verktøy som blant annet kan benyttes for å simulere transport av 

radionuklider. Slike modeller benyttes for å vurdere risiko, for eksempel etter en atomulykke 

og for å vurdere hvor tiltak skal iverksettes. Slike modeller er basert på informasjon om hvordan 

radionuklidene vil fordele seg mellom vann og sedimenter, som uttrykkes ved fordelings 

koeffisienten Kd. Kd beskriver slik forholdet mellom partikulære og oppløste konsentrasjoner. 

Den vil variere fra sted til sted og er avhengig av de fysiske-kjemiske egenskapene til både 

radionukliden og vann-sediment systemet. Ved endring av de vannkjemiske forholdene vil også 

Kd endres.  Eksisterende Kd verdier baserer seg på at det foreligger likevekt. Men naturlige 

akvatiske økosystem er høyst dynamiske og det er derfor behov for mer informasjon om 

dynamikken i endringene.  

Nylig ble det utviklet en spredningsmodell hvor tilstandsformene til Cs ble inkludert. For å 

forbedre spredingsmodellene ytterligere er det behov for mer kunnskap om endringene i 

tilstandsformene til Cs som en funksjon av saltholdighet og tid. Målet med denne master 

oppgaven er å gi bidrag til utviklingen av spredningsmodeller, ved å generere eksperimentell 

informasjon om tidsavhengige endringer i fordeling av tilstandsformene til Cs i vann av 

varierende saltholdighet.  Dette ble utført ved å bruke 134Cs og 137Cs tracer i ulike blandinger 

av ferskvann og sjøvann. Forsøket simulerte endringene som skjer i blandingssonene i 

elveutløp, der hvor ferskvann møter sjøvann. Det er spesielt den høye ione-konsentrasjonen i 
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sjøvannet og at sjøvann har høyere pH enn ferskvannet som påvirker tilstandsformene til Cs i 

en slik blanding.  

Prøver av vann og sediment ble hentet fra Storelva som ligger i Risør, sør i Norge. Sorpsjon av 
134Cs ble studert ved å tilsette tracer til isolert kolloid- og leirefraksjon fra elven. Kolloid- og 

leirefraksjonen ble studert i to separate systemer i brakkvann utformet for å undersøke;  

(i) remobilisering av 134Cs assosiert med kolloidene og sorpsjon av 137Cs-ioner i 

saltvann til kolloidene som funksjon av økende salinitet og tid. 

(ii) (ii) remobilisering av 134Cs fra leire og sorpsjon av 137Cs-ioner i saltvannet til leire 

som funksjon av salinitet og tid. Brakkvannet hadde en økende saltholdighet fra 1 

til 25 PSU (praktiske salinitetsenheter).  

Mobiliseringsstudiene varte i en måned.  

For å bestemme tilstandsformene til Cs ble det benyttet fraksjonering med hensyn på størrelse 

på fastsatte tidspunkt og tracer aktiviteten ble bestemt med en NaI-detektor (PerkinElmer 2480 

automatic gamma counter with wizard software).   

Det var stor forskjell i sorpsjon av 134Cs til kolloider og til leire i elvevannet. Etter 5 måneder 

var kun ±5% assosiert med den kolloidale fraksjonen mens for leire var hele 99% 134Cs assosiert 

med leire. Dette sorpsjonseksperimentet pågår fremdeles.  

Remobilisering av 134Cs fra kolloidene var hurtig i ferskvann og sorpsjon av 137Cs fra saltvannet 

til kolloidene var minimal.  

Remobiliseringen av 134Cs fra leire var minimal ved de laveste saltholdighetene (1, 3 og 5 PSU) 

og økte deretter med økt saltholdighet og tid.  

Det var høyere sorpsjon av 137Cs fra saltvann til leire i brakkvann med lav saltholdighet. For 

brakkvann med høyere saltholdighet var 137Cs for det meste assosiert med LMM fraksjonen. 

Den tilsynelatende Kd var i området 73 - 215 Lkg-1 for 134Cs og 13 - 54 Lkg-1 for 137Cs og avtok 

som en funksjon av økende saltkonsentrasjon på lik linje som i litterære data.   

Endringskoeffisientene, k, som forklarer de dynamiske endringene for både sorpsjons og 

desorpsjons var i samme størrelsesområde for brakkvann med lav og moderat saltholdighet. 

Generelt, avtok sorpsjonsratene (k1), grunnet saltholdighet med en faktor på 2, mens 

desorpsjonsratene (k2) viste ingen endringer grunnet saltholdighet.   
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1 Introduction 
Radionuclides can enter the marine environment through atmospheric deposits and runoffs from 

terrestrial environment by rivers. In the event of a reactor accident, debris plumes containing 

artificially produced radionuclides could impose a great risk for the environment in distances 

far from the accident site. This was demonstrated by fallout from the Chernobyl accident in 

1986. The accident resulted in deposition of large fuel particles, with variable radionuclide 

composition, within a 30 km zone with respect to the plant, while small-sized particles were 

identified up to 2000 km from the site (Devell et al., 1968; Salbu, 2000). The Chernobyl 

accident resulted in large deposits of radiocesium in central Norway, especially in mountainous 

areas like Valdres and Jotunheiemen (Baranwal et al., 2011; Skuterud et al., 2014). Other 

sources to artificially produced radionuclides transport to the marine environment are global 

fallout from nuclear weapons testing and discharges from radioactive waste and nuclear 

facilities like Cap de Haag in France or Sellafield and Dounreay in the UK (UNSCEAR, 2000). 

In water, cesium (Cs) can be present in different physico-chemical forms having different 

properties, where the ions are more reactive and mobile than particles. The transfer of 

radionuclides are such highly dependent upon speciation where the radionuclide ions are most 

bioavailable (Salbu, 2004). Information regarding speciation is essential for risk assessments 

(Salbu, 2016). To evaluate the risk of radionuclides in marine systems, it is important to identify 

the size distribution of radionuclides. The speciation of radionuclides are, however, dynamic 

and changes with changing water qualities e.g., in estuaries where freshwater rivers enters salt 

water. Speciation of radionuclides will change by time and transport in coastal water.  

The distribution coefficient, Kd, is site specific and depends on the physico-chemical properties 

of both the radionuclide and the water-sediment system. If the system change, the Kd is affected 

(P. Ciffroy et al., 2001). The changes can be related to the speciation of the radionuclide or an 

alteration in the water-sediment chemistry, such as salinity alterations in an estuary. 

Numerical models exist to predict the transportation and fate of radionuclides in the marine 

environment (e.g., Perianez et al., 2016a; Simonsen et al., 2017; Vives i Batlle et al., 2018). 

Utilizing models, as a tool to predict the atmospheric transport and deposition of radionuclides 

in the event of nuclear accidents, can be helpful in deciding where countermeasures could be 

needed. Therefore, generic and operationally available preparedness models for marine 

radionuclide contamination are necessary for fast-response in emergencies (e.g., Duffa et al., 
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2016). Such models are using distribution coefficients (Kd) as a basis to estimate the water- 

sediment distributions. Existing Kd values assume that equilibrium conditions are valid, but 

such system is, however, highly dynamic and more information about the dynamic changes are 

needed. When non-equilibrium conditions exist, the apparent Kd can be used (Strandring et. al., 

2002).  

In previous models the speciation of the radionuclides have often been ignored (e.g., Karcher 

et al., 2004; Orre et al., 2010; Tsumune et al., 2013; Simonsen et al., 2017). As the speciation 

of radionuclides are important to assess the overall environmental consequence of an accidental 

release, this has become more common to include in models (Aldridge et al., 2003; Smith et al., 

2003; Kobayashi et al., 2007; Choi et al., 2013). However, to incorporate the speciation into 

models still has some gaps in knowledge, as these processes are not yet fully understood (Salbu, 

2016). Recently, a transfer model was developed, where speciation of Cs was included 

(Simonsen et. al., 2019). The study was based on a hypothetical accidental release of Cs from 

HAL - storage tanks (High Activity Liquor) at Sellafield in UK during a storm as the main 

contributor to the model. The scenario included deposited Cs on land, and subsequent run-off 

by rivers to the marine environment.  

 

Simonsen has also developed a transport model of trace metal species in the Sandnesfjord 

(Simonsen et. al, 2019). The model incorporated element speciation, based on measured 

distribution of aluminum speciation as a function of time and distance from the outlet of the 

freshwater river Storelva into the Sandnesfjord.  

In general, the transport model was able to reproduce the distribution of trace metal 

concentration and speciation in coastal waters. However, the study showed that the model had 

improved if background levels of trace metals, originating from the coastal water, were 

included, as this lead to an underestimation of the trace metal concentration. The model also 

overestimated the near-surface vertical mixing, resulting in an under estimation of the trace 

metal in surface waters. In addition, the model showed a good correlation between the measured 

and estimated distribution of trace metal species during low-flux periods. While a weaker 

correlation between the predicted surface salinity and total trace metal concentration during 

high-flux periods were recognized. The study proved that by including the changes in metal 

speciation (transfer rates), the prediction of the distribution of total contaminant and 

concentration levels of element species where improved.    
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At current time, there is few such data available for Cs and more information is highly needed 

about the changes of Cs speciation as a function of salinity and time to improve the transfer 

models. This master thesis provides such inputs to the dispersion model by generating 

experimental data of time dependent changes in Cs speciation by mixing freshwater with saline 

water and the use of gamma emitting 134Cs and 137Cs tracers to follow the processes. Both the 

remobilization of Cs from colloidal and particulate material transported by the river as well as 

the sorption of Cs in marine environment was investigated. The experiments simulated the 

transformation processes in mixing zones that occur in the river outlet where fresh waters 

encounter saline water. The Cs speciation information was obtained by utilizing size 

fractionation techniques at different timelines.   

1.1 Goal for master thesis 
The overall goal for this master thesis is to establish information on the transfer of Cs species 

in fresh waters to coastal areas. Hence, the work will focus on the dynamic water-sediment 

distribution coefficients and transfer-rates of Cs species as a function of salinity and time.  

The hypotheses is:  

H0: The distribution coefficient (Kd) of Cs between radioactivity in water and sediment is 

dynamic and dependent on salinity and will vary in brackish water with increasing salinity.   

H1: Remobilization of Cs from riverine colloids and particles is more prominent for the marine 

transport than sorption of Cs to surfaces in saline waters.  
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2 Background 

2.1 Estuaries  
Estuaries, defined as a semi-enclosed coastal body and a mixing zone, have connection to the 

open sea. In estuaries, saline water dilutes with fresh water due to run-off from land drainage 

(Pritchard, D.W., 1967). In general, estuaries have a regular variation of low to high salinity 

concentrations when moving from river-outlet to the open sea. The variations in salinity is both 

horizontal and vertical, where the salinity occasionally increases by depth as an effect of higher 

density of saline water. Seasonal changes due to ice melting, floods, wet and dry periods e.g. 

will affect the arrangement in the estuary (vanLoon G.W. & Duffy S.J., 2011). In estuaries, the 

concentration of several trace metals and radionuclides decrease due to an increase in salinity 

and by dilution through saline water with lower concentrations of trace metals (Simonsen et. 

al., 2017).  

2.2 Properties of cesium 
In nature, Cs is present as the stable 133Cs isotope. In addition, Cs exist as 134Cs and 137Cs 

radioactive isotopes.  134Cs and 137Cs, both gamma emitters, are fission products from nuclear 

power plants and have a half-life of 2 and 30 years respectively (Dietz et. al., 1963). Cs can be 

present as large entities like fragments or particles (>0.45 μm) or as simple Cs-ions. The 

Chernobyl accident resulted in large deposits of both 134Cs and 137Cs across Europe (OECD, 

1996; CEC, 1998).  

Cesium is very soluble and the mobility of both 134Cs and 137Cs in marine environments are 

highly dependent on contact time between the radionuclide and the sediments (Børrentzen P., 

Salbu B. 2002; e.g. Oughton, Børretzen, Salbu & Tronstad, 1997). The fate of Cs in freshwater 

and the marine environment depend on the physico-chemical properties of the radionuclide and 

the physical, chemical and biological composition of the water. The physico-chemical 

properties of radionuclides are their molecular mass, interacting ligands, crystallographic 

structure, oxidation state, charge properties and magnetic properties. The composition of water 

like the salinity, the content of complexing organic and inorganic ligands like carbonates, the 

pH and the redox state will influent the speciation of the radionuclide (Salbu 2000b; Salbu et 

al., 2004b).    

The physico-chemical speciation of Cs is dependent on many influencing factors in fresh 

water, as well as in coastal and marine water. Trace metals and radionuclides can be present 
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as, either, particles, high molecular masses like colloids or low molecular masses (LMM) like 

simple ions (Salbu, 2009). Due to their size (>0.45μm) and high density, particles will most 

likely undergo sedimentation in the water phase. Particles will not easily bioaccumulate in 

organisms. However, particles can be retained in bottom dwelling and filter feeding 

organisms like mussels, and bioaccumulate (Jaeschke et al., 2015; Børretzen and Salbu, 

2009). Particles associated with sediments can remobilize due to weathering, hence become 

bioavailable and induce ecosystem transfer by time (Kashparov et al., 1999). Colloids are 

smaller (<0.45 μm – 10 kDa), due to this colloids will not settle and are kept in solution. The 

low molecular masses (LMM) are small (<10 kDa), mobile, bioavailable and easily taken up 

in organisms. LMM is the speciation of most concern, as they will bioaccumulate in biota and 

can interfere with normal homeostasis within the cells of an organism (Teien et al., 2006).     

Especially the reactive LMM species absorbs in specific tissues and target organs through 

external body exposure or through contaminated food or water (Carvalho, 2018).  

 

Estuaries where freshwater enter coastal water are in non-equilibrium conditions and are 

dynamic systems, meaning they will change over time (Periáñez et al., 2018). Thus, in coastal 

water, the speciation of radionuclides such as Cs will change by time. LMM can aggregate 

and turn into colloids, or radionuclides associated with colloids or particles can remobilize to 

LMM species due to the presence of competing ions in saline water. In general, the 

remobilization of radionuclides associated with riverine particles or colloids increase in line 

with the salinity. This may lead to a higher concentration in LMM species locally, even 

though there is a high degree of dilution in estuaries (Teien et al., 2006; Machado et al., 2016; 

Sanial et al., 2017). In such mixing zones the speciation is highly dependent on the properties 

of the recipient water (pH, humic content, presence of competing ions, salinity, currents, 

water flow (river) and waves (ocean) e.g.) (Salbu, 2000b).  

 

2.3 Size and charge fractionation techniques 
Size and charge fractionation techniques can distinguish between radionuclide species in water. 

These techniques are applicable for trace metals as well. Using size and charge fractionations 

techniques in water, before determination of the radionuclides in collected fractions, can 

provide information about the speciation of radionuclides present in water and their physico-

chemical properties (Salbu, 1985). 
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2.4 Binding of Cs to clay and colloids 
The characteristics of sediments influence the degree of Cs-binding. In the contraire to sand 

and silt, clay is highly reactive due to a large surface area (Rose, 2005). Clay minerals offers 

many binding sites for Cs and the degree of binding are dependent on factors like the presence 

of competing ions (K+, Na+, Ca2+) and the sorption time. Radiocesium can a) sorb to the clay 

surface and planar sites and is easily exchangeable with other ions in general, b) sorb to wedge 

sites and is exchangeable with cations of similar size and charge, or c) sorb to interlayer clay 

sites where cesium is not readily exchanged, hence, regarded as fixed (Evans, Alberts Clark III, 

1983). According to Børretzen, P. and Salbu, B. (2002) the planar sites on the clay surfaces are 

considered “reversible binding sites”, the wedge sites on the clay mineral are considered as 

“slowly reversible binding sites” and the interlayer sites on the clay mineral are considered as 

irreversible binding sites (figure 1)  (Børrentzen P., Salbu B. 2002).  

 

 

Clay minerals can be present in the water phase due to erosion (storm, flood e.g.) or in the 

sediment bed. When riverine clay minerals, contaminated with radiocesium, transports to the 

ocean, the changes in salinity will affect the binding sites and Cs can remobilize to the water 

phase. Since ion exchange is prevailing on the clay mineral (Cornell, R. 1993), competing ions 

in saline water will exchange sites with Cs.  

FIGURE 1 CESIUM SORPTION TO CLAY MINERAL BY SORPTION TO WEDGE SITES, SORPTION TO 

SURFACE AND SORPTION TO INTERLAYER. THE DEGREE OF BINDING DEPENDS ON TIME, 

COMPETING IONS, PH, SALINITY. FIGURE REPRINT FROM BØRRENTZEN AND SALBU 2002.  
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Dissolved organic matter, like humic material (HM) or colloids, in freshwater systems origins 

primarily from plant or microbial residues. Colloids suspended in lakes or rivers will not 

aggregate, due to repelling forces of the similar net charge on the colloid, resulting in long 

lasting suspension of colloids (vanLoon G. W. & Duffy J. D., 2011). However, in the presence 

of ions with suitable charge, ions will undergo sorption to the colloids, providing with an overall 

net zero charge; hence, colloids act as transporting agents in natural water systems (Kersting et 

al., 1999; Salbu, 2000; Novikov et al., 2006). In estuaries, where riverine colloids enters high 

saline water, they aggregate due to the high levels of the competing ion, Na+, hence increasing 

their size and density. Due to this and the general decrease of the river water flow, observation 

of sedimented colloids in estuaries are common (vanLoon G. W. & Duffy J. D., 2011). Cs 

adsorbs to colloids through ionic and covalent bonds (Figure 2).  

 

 

 

 

 

 

 

The strength of the interaction between metals and humic material depends on the properties of 

the metal, number of binding sites on the colloid and HM functional groups available for 

complexing reactions, pH and the presence of other competing ions. In estuaries, where high 

levels of competing ions are present, since Cs is monovalent ions they are generally desorbed, 

especially in the presence of Al3+ ions, which is a trivalent ion whom tend to be strongly bonded 

to humic material (vanLoon G. W. & Duffy J. D., 2011).  

2.5 Transfer rate 
To interpret the speciation in dispersion models, Simonsen developed new equations where the 

dynamic changes in the system are included (Simonsen et. al. 2019). The equations builds on 

the theory that a specie transfers into another specie during a time step, referred to as dynamic 

transfer rates (e.g., Periáñez, 2005). High transfer rates indicate rapid transfer processes, and 

low transfer rates indicate a slower specie transformation.  

FIGURE 2 CS BONDED TO HUMIC MATERIAL 

(HM) BY ELECTROSTATIC FORCES (VANLOON 

G.W. & DUFFY J. D., 2011). 
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The transfer rate is the quantity of the concentration transferred to another specie in a given 

time. Figure 3 illustrates the transformation processes between ions and particles, assuming 

only reversible sorption. Where desorption, are also referred to as remobilization.  

 

  

 

 

 

The transfer rates are calculated by equation 1 and 2. Equation 1 and 2 assumes reversible 

processes and incorporates the dynamic changes in the system. This gives one equation for the 

dissolved species (LMM (Cw), and one for the particle-bound species (Cp).  

 

 

 

 

 

K12 and k21 are the transfer rates for sorption and desorption respectively, m is the mass 

density of suspended particulate mass (SPM) in the water column and advw,p  and diffw,p  are 

the convergence of advective and diffusive terms for the dissolved and the particle bound 

fractions. In a closed system the advw,p and diffw,p  will be zero.  

Transfer rates utilized in previous models on the distribution of Al-species in the estuaries in 

Sandnesfjord (Simonsen et. al., 2018) for both sorption (k12) and desorption (k21) were in the 

range of 1x10-4 s-1 to 1x10-5 s-1 where sorption rates decreased with an increasing salinity and 

desorption rates increased with increasing salinity. However, these are transfer rates for 

aluminum with other element properties than Cs and a direct comparison should emphasis 

FIGURE 3 A SIMPLIFIED SYSTEM INVOLVING THE DISSOLVED AND THE PARTICLE-BOUND SPECIES 

ILLUSTRATING THE TRANSFORMATION PROCESSES (FIGURE REPRINTED FROM PERIÁÑEZ, 2012) 



9 
 

carefulness. Nonetheless, the changes in the transfer rates due to salinity are eligible for 

comparing.  

Periáñez (2012) has also calculated sorption rates for Cs, these rates were in the range  

1.0x10-5 s-1.  

2.6 Distribution coefficient, Kd 
In the marine environment, radionuclides are distributed between the dissolved phase and the 

particulate phase, the fate and bioavailability strongly depends on this distribution and on the 

strength of the radionuclide association (P. Ciffroy et al., 2001). The distribution is 

characterized by the distribution coefficient (Kd). The Kd is the ratio between the particulate and 

the dissolved concentration and is time dependent.  

If radionuclides are released to freshwater or saline water from the soil or sediment, the 

theoretical mobility will depend on the Kd (Equation 3).  

 

 

 

 

Analysis of contaminated surface sediments and water collected in the field or kinetic model 

experiments using tracers can provide information about the Kd (Skipperud et al., 2000a; 

Skipperud et al., 2000b; Salbu, 2000b). The Kd is unique for each radionuclide and will vary 

according to the salinity, pH and temperature in the water and likewise the components in the 

soil and sediment. The Kd is highly site specific, and will vary in different locations.  

Low Kd values indicate that the element of interest is mobile, conservative or non-reactive, 

whereas high Kd values indicates that the element is particle-reactive or non-conservative. 

IAEA (2004) recommend Kd values, however the uncertainties regarding these Kd values should 

not be neglected. Kd is obtained when a state of equilibrium is achieved (IAEA 2004). The state 

of equilibrium is hard to obtain in the environment, as systems are in constant changes due to 

natural weathering processes. Therefore, in practice, such conditions are hardly ever obtained, 

and the equilibrium distribution is not very useful in model applications (Periáñez et al., 2018). 

The apparent Kd, defined as a distribution coefficient under non-equilibrium conditions can 
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provide information about an expected area where the distribution coefficient would reach 

equilibrium at a given time and salinity (Strandring et. al., 2002). 

Based on reported Kd values, Cs is considered particle reactive (Kd = 2.9 x104Lkg-1 (IAEA, 

2010)) in freshwater, meaning that Cs will interact with other components in the water phase. 

In saline water, Cs is considered less particle reactive as the Kd is lower (Kd = 2 x103 Lkg-1 

(IAEA, 2004)). When Cs enters the ocean, particle reactivity decrease as a direct result of the 

presence of competing ions. 
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3 Materials and Method 
This method covers the remobilization of Cs from riverine colloids and clay studied in a 

controlled laboratory experiment. The colloids and clay were added water of different salinity 

(brackish water), thus simulating river outlet into brackish water. In addition, sorption of Cs 

from saline water to colloids and clay in the brackish water were studied. The remobilization 

and sorption experiments were performed using 134Cs and 137Cs as tracers simultaneously. 

The riverine colloids and clay were studied as two separate compartment systems in brackish 

water. Two compartment systems were established designed to investigate;  

(i) the remobilization of 134Cs associated with riverine colloids and sorption of 137Cs 

ions in saline water to riverine colloids as a function of increasing salinity and time 

(ii) the remobilization of 134Cs from clay and sorption of 137Cs ions in saline water to 

clay as a function of salinity and time. The brackish water had an increasing salinity 

from 1 to 25 PSU (Practical salinity unit).  

The remobilization experiment lasted one month, whereas the sorption experiment had a one-

year timeline. The latter is still an ongoing experiment.    

3.1 Sources 
The sampling area chosen for this master thesis was the River Storelva situated in Risør, 

Aust-Agder in south of Norway. Storelva is part of the Vegårvassdraget and runs out into the 

Sandnesfjord. The Storelva is approximately 13 kilometers long. Due to acidification, 

Storelva has been limed since 1983, the river still has some variables in pH (Norwegian 

Environmental Agency, 2016). Figure 4 shows a map of the area and the sampling site. 
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FIGURE 4 STORELVA RUNS OUT INTO SANDNESFJORD. STORELVA IS MARKED WITH BLUE LINE 

AND THE SAMPLING SITE FOR WATER AND SEDIMENTS MARKED WITH RED. 

Sediment and water samples were collected upstream the outlet of the river Storelva in 

November 2018. The river water was sampled filling 25 L containers directly from the river. A 

grab was used to retrieve the sediments. Several grabs of sediments from the same site were 

transferred to a 5 L bucket. Both water and sediments were stored dark at 4○C prior to use.  

By retrieving sediments and riverine water from Storelva, the hypothesis could be tested. By 

adding the tracer 134Cs to the riverine sediments and applying brackish water with different 

salinities, the speciation of the tracer would most likely change. The 137Cs tracer added to the 

saline water illustrated the sorption of Cs ions from the saline water to riverine sediments. 

Utilizing size fractionations, the speciation of the tracers were followed over time. Information 

regarding the distribution of the tracers provided information about Kd given at different 

salinities as well as sorption rates.  
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3.2 Isolation and concentration of colloids 
A 0.45μm High Capacity In-Line Groundwater Sampling Capsule 

excluded particles from the Storelva riverine water before further 

processing (Figure 5). The colloidal fraction present in riverine water 

was prepared by recycling the water through a 10 kDa hollow-fiber 

hence removing the LMM fraction. Using this method reduced 8L 

riverine water to 800 mL colloidal suspension. Standard curve for 

determination of Total Organic Concentration (TOC) was made 

based on samples measured in a TOC analyzer (TOC-V cpn, 

Shimadzu), and the concentrated colloidal fractions were measured 

photometric (UV-1800 spectrometer, Shimadzu) towards this curve.  

3.3 Isolation and concentration of clay 
Clay fraction from the Storelva sediments were isolated at the Isotope lab at Ås using a modified 

in-house method developed by A.O. Stuanes (NLH, 1998). Figure 6 illustrates the steps in this 

procedure. 

First, a 2 mm sieve removed the gravel and plant debris, leaving the sand, silt and clay fraction. 

Second, a 0.63 mm sieve removed the sand fraction. Sedimentation due to Stokes law removed 

the silt fraction. The water-clay suspension was transferred to a bottle before the clay 

suspension was concentrated by flow through a 10 kDa hollow-fiber. 2 L of the clay suspension 

was concentrated down to 800 ml by removal of the water in LMM-fraction. 

To determine the mg clay present in the clay suspension 3 parallels of each 1 ml was pipetted 

and dried at 60°C in approx. 2 h, and then the weight was determined by an analytical balance 

with an accuracy of 0.001 g. This gave the mg clay / ml clay-suspension. Appendix E contains 

the experimental weights. 

 

 

FIGURE 5 0,45 μM FIBER 
USED FOR EXCLUDING 
PARTICLES. 
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3.4 Preparation of experimental water 

3.4.1 Riverine water from Storelva 
Conductivity and pH were measured. The pH meter (WTW Multi 340i with pH electrode Sentix 

41) was calibrated daily using buffers at pH 4.01 and pH 7.00. Conductivity was determined by 

means of the WTW Multi340i with a TetraCon electrode. The major cation and stable Cs 

concentrations were determined using ICP-MS (Agilent 8900, Japan). 

3.4.2 Artificial riverine water 
Using artificial river water in the experiment ensured low levels of TOC. The ionic composition, 

pH and conductivity of riverine Storelva water was analyzed using ICP-MS. Artificial riverine 

water mimicked the ion composition and concentration of the riverine Storelva water. A stock 

ion solution (100 times concentration of Storelva) was diluted using Type II purified water, and 

was then measured for pH and conductivity to achieve the same as the Storelva riverine water. 

FIGURE 6 THE ISOLATION OF CLAY FROM THE SEDIMENTS. (1) SIEVES 

ISOLATES THE CLAY AND SILT FRACTION (2 AND 3), SEDIMENTATION BY 

STOKES LAW (4) AND FLOW THROUGH HOLLOW-FIBER WITH REMOVAL OF THE 

LMM FRACTION (5) TO CONCENTRATE THE CLAY SUSPENSION (6).  
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The artificial riverine water was the washing agent for the marked clay and colloidal 

suspension, and a component to make the brackish water.  

3.4.3 Saline water  
Saline water retrieved from NIVA MF Solbergstranda in the Oslofjord (experimental collected 

at 40 m depth), had a salinity at 31.9 PSU (Practical Salinity Unit). A 0.45μm filter and a 10 

kDa hollow-fiber removed particles and HMM organic matter in the saline water. This left the 

LMM fraction in the saline water for experimental use and ensured minor influence from 

organic matter within the experiment. The saline water contributed to making the gradient 

brackish water in the experiment.  

3.5 Sorption of Cs tracer to riverine colloidal and Clay fraction 
The use of radioactive tracers gained information about the distribution of species in the system. 

Whereas, 134Cs and 137Cs tracers were added to the clay and colloidal (HMM) suspension and 

the saline water, respectively.   

Before using radioactivity in experiments, a BAT (Best Available Technique) and a RAV (Risk 

and Vulnerability Analysis) were performed to justify the use of radioactivity, and to ensure 

good laboratory practice and waste control.  

The 134Cs tracer was added the riverine colloidal and clay fractions according to table 1. The 

Cs tracers were added as Cs-ions from a weak acid tracer solution.  

 

Table 1: Overview of total amount of suspensions and the nominal activity added each 

suspension.  

Suspension Total volume of suspension (mL) Activity of 134Cs (Bq) 

Colloidal 800  18100 

Clay 800  18100 

 

Roller tables kept the particulate matters in suspension. Experiments were conducted in room 

temperature (~20°C).  

 

To follow the changes in the size distribution of 134Cs, suspensions were fractionated with 

respect to size. To obtain this information, 0.45 μm syringe membrane filters (VWR 0.45 

Polyetersulfone (PES) membrane, prod. no. 514-0075) and 10 kDa ultrafiltration membrane 
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filters (Amicon Ultra-15 10K Centrifugal Filter Devices operating at 4000 rpm in 15 minutes) 

were used according to Salbu.et al., 1985. Fractionations were performed at time intervals, 1 

hour, 1 day, 1 week, one and 5 months. The NaI-detector (PerkinElmer 2480 automatic gamma 

counter with wizard software) determined the activity in each fraction (LMM, colloidal, 

>0.45μm).  

3.6 Mixing of riverine colloids with brackish water 
An aliquot of the riverine colloid suspension marked with 134Cs was extracted. The contact time 

between the riverine colloids and the tracer was 5 days before separation. The activity 

concentration of 134Cs associated with the LMM fraction in the riverine colloidal suspension 

was excluded by using artificial river water as a washing agent. The riverine colloidal 

suspension was diluted and then filtered through a 10 kDa hollow-fiber (SLP 0053, PALL) until 

the original volume and TOC was achieved (measured spectrophotometric) (figure 7). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The washing procedure was repeated three times, assuming removal (dilution) of the LMM 

marked fraction. The wastewater was measured on the NaI-detector. 

 

 

 

 

FIGURE 7 SHOWS THE HOLLOW-FIBER FILTRATION UNIT WITH MESH SIZE 
10 KDA EITHER ISOLATING OR REMOVING THE LOW MOLECULAR 
MASSES. A PERISTALTIC PUMP PROVIDES VACUUM IN THE SYSTEM.  
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Samples were prepared in centrifugal tubes (50mL) according to table 2 with three replicates. 

Table 2: The mixture ratio of different waters used to prepare the brackish test waters 

of different salinities (PSU).  

Practical Salinity 

Unit (PSU) 

mL saline water  

(100 Bq 137Cs) 

mL colloidal suspension  

(marked with 134Cs) 

mL artificial river 

water 

1  1.6 10.8 37.6 

3  4.7 10.8 34.5 

5  7.8 10.8 31.4 

10 15.7 10.8 23.5 

15 23.5 10.8 15.7 

25 39.2 10.8 0 

 

To ensure equal activity and relatively stable speciation of 137Cs in each replicate, the saline 

water from table 2 was added 100 μl 137Cs tracer solution (137Cs activity: 1032 Bq/ml) one day 

prior to additional sample preparation. This also allowed some contact time between the saline 

water and the tracer. To ensure the tracer was present as Cs-ions, marked saline water was 

centrifuged by a 10 kDa ultrafiltration membrane (Amicon Ultra-15 10K Centrifugal Filter 

Devices operating at 4000 rpm in 15 minutes) before use and activity in the filtrates analyzed 

by the NaI-detector.  

Before adding the colloidal suspension to the centrifuge tubes, artificial river water diluted the 

marked 137Cs saline water. This to avoid remobilization of 134Cs due to high salinity.  Roller 

tables kept the samples in suspension. Experiment executed at room temperature (~20○C).  

To follow the changes in the system and the distribution of 134Cs and 137Cs species after 

introducing the brackish saline water, sampling (~8mL) by syringe was performed after 0.5h, 

2h, 5h, 24h, 8 and 30 days of interaction.        

To obtain information on the distribution of Cs-species, fractionation by 0.45 μm syringe 

membrane filter (VWR 0.45 PES membrane) and 10 kDa ultrafiltration membrane (Amicon 

Ultra-15 10K Centrifugal Filter Devices operating at 4000 rpm in 15 minutes, swing-out rotor) 

was performed (Figure 8).  
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Thus, size fractionation techniques separated and determined in which size range the 134Cs and 
137Cs species were: 

 Particle (clay) (>0.45μm)  

 High molecular mass (HMM) / colloidal fraction (>10 kDa ≤0.45 μm)  

 Low molecular mass (LMM) (≤10 kDa)  

An analytical balance with an accuracy of 0.001g determined the weights. Appendix B contains 

the experimental weights. The activity concentration of 134Cs and 137Cs in each fraction was 

determined by using a NaI-detector (PerkinElmer 2480 automatic gamma counter with wizard 

software) (Appendix D).  

3.7 Mixing of riverine clay with brackish water 
The same method as for the riverine colloids applied when determining the system changes in 

the riverine clay suspension. Allowing the clay suspension 6 days of contact time with the 134Cs 

tracer prior to mixing with brackish saline water. To avoid sedimentation of the clay in 

suspension, clay samples were constantly in movement by roller tables or magnetic stirrers 

when preparing aliquots and extracting samples. Appendix A - D contains the analytical weights 

and the measurements with the NaI-detector.  

3.8 Determination of stable Cs and radiocesium 

The activity in samples was counted by using the NaI-detector (PerkinElmer 2480 automatic 

gamma counter with wizard software). The NaI-detector has an auto sampler, which allows 

FIGURE 8 SAMPLES FILTERED BY 0.45μM SYRINGE MEMBRANE FILTER AND 10 

KDA ULTRAFILTRATION MEMBRANE.  
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running a large quantity of samples. Three replicates were analyzed and counting time for each 

sample was 15 minutes. Analytical blanks determined the background radiation. Standards was 

used to ensure low counting errors (137Cs test tube check source, PerkinElmer, IAEA 300/IAEA 

373 reference materials). In addition, "house" standards of 134Cs and 137Cs as separate and 

mixed solutions was prepared to ensure good specter overlap control and to determine the 

counting efficiency within the energy spectra. The wizard software was set up to count both 
134Cs and 137Cs sample at the same time.  

To quantify the concentration of stable Cs (133Cs) in the experimental waters, ICP-MS (Agilent 

8900)) was utilized.  

3.9 Data handling 

3.9.1 Calculation of activity obtained by the NaI detector 
The activity obtained by the NaI detector was adjusted according to background radiation from 

analytical blanks and the counting efficiency of the instrument (Equation 4). This gives the 

dpm, disintegration per minute.  

 

 

 

Cpm (counts per minutes) is the detected signals from the sample due to radioactive decay, and 

dpm is the given activity in a known reference material. Activity of the reference materials are 

given in Becquerel, Bq, defined as disintegrations per second (Choppin, G., Liljenzin, J. O. & 

Rydberg, J., 2016). By rearranging equation 4, the efficiency of the instrument was obtained.    

The quantification limit was calculated based on 10 times the standard deviation of cpm from 

10 blank samples. If the cpm sample was lower than the quantification limit, then the activity 

could not be quantified in the sample.  

Kd was calculated by dividing dpm pr. kg. of particle (dry weight) divided by dpm pr. L water.  

The transfer raters, of sorption (K12) and desorption (K21) illustrated in figure 3, was calculated 

by Simonsen M. and Saetra Ø (Appendix G).  
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3.9.2 Data analysis  
The dpm was calculated for all replicates (LMM fraction, colloidal fraction and >0.45μm 

fraction) and organized in excel. The percentage distribution was calculated and the average of 

3 replicates were graphically plotted pr. time or pr. salinity including the standard deviation for 

each sample replicate (3 replicates for each salinity).  
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4 Results and discussion 

4.1 Traceability and precision 
The uncertainty and precision of the NaI-detector depends on the counting time and the activity 

concentration in the analytical samples. A radionuclide with a high activity will result in many 

counts, as this nuclide will readily undergo radioactive decay. Hence, the counting time could 

be reduced. If a sample has a low activity, the radioactive decay occurs seldom. By increasing 

the counting time, a higher number of counts could be detected by the NaI-detector, and the 

standard error is reduced (Choppin, G., Liljenzin, J. O. & Rydberg, J., 2016). If the activity 

detected by the NaI-detector is below 10 times the standard deviation of measured blanks, the 

activity is below the quantification limit of the NaI-detector and the activity cannot be 

quantified. The quantification limit was ~10 and ~5 cpm for 134Cs and 137Cs, respectively. The 

HMM/colloidal fraction for both sorption and remobilization was, in general, below the 

quantification limit.    

By increasing the counting time, the uncertainty could have decreased and a higher activity 

(dpm) might been acquired. However, in this thesis, the change in the speciation distribution 

was important to monitor and not the exact activity concentration in each sample replicates. 

The tracer activity added to the riverine colloid and clay suspensions as well as the saline water 

was dependable to provide enough counts to assure that monitoring would be possible.   

ICP-MS was employed to determine the amount of stable Cs (133Cs) in the experimental waters. 

Since stable Cs will compete with the radiocaesium, it is important to have knowledge about 

the amount of stable Cs in the system. The quantification limit (LOQ) of 133Cs in freshwater 

was 6.0x10-4 μg/L and for saline water 6.0x10-3 μg/L. The LOQ for saline water is higher, due 

to a 10 times dilution of the samples. The detection limit (LOD) for freshwater and saline water 

was 2.0x10-4 and 2.0x10-3 correspondingly. The LOD and LOQ were calculated to 3 times and 

ten times the standard deviation of the blank samples, respectively. The measurements were 

within <1 % of the certified value of the standard used (NIST 1640a).  
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4.2 Water chemistry 
Table 3 gives an overview of the chemistry of different experimental waters used in the 

compartment systems. 

Table 3: The chemical composition of experimental waters 

Parameter <10kDa 

Storelva  

<0,45μm 

Storelva 

(including 

HMM) 

<10kDa 

Artificial 

Storelva water 

<10kDa Saline 

water (LMM) 

pH 6.43 6.63 6.17 7.8 

Temperature (◦C) 20 20 20 20 

Conductivity 41 μS/cm 51 μS/cm 32 μS/cm 58.3 mS/cm 

TOC (mg/L) 3.9 5.8 0.36 2.0 

Na(mg/L) 2.4 2.9 3.2 11000 

Mg(mg/L) 0.74 0.63 0.62 1600 

K(mg/L) 0.41 0.48 0.35 420 

Ca(mg/L) 1.1 2.0 1.5 430 
133Cs (μg/L) 0.023 0.037 0.0061 0.30 

Cl- (mg/L) 5.2 4.8 0.3 42400 

SO42- (mg/L)  2.6 3.6 13 6300 

NO3- (mg/L) 0.13 0.18 <0.02 12 

 

The amount of stable Cs will influence the binding of radiocesium to colloids and clay minerals, 

as stable Cs will compete for available binding seats. This applies for K+, Na+, Mg+ and Ca+ as 

well. As expected, there is a high amount of competing ions in the saline water. There is also a 

higher amount of stable Cs in the saline water than the riverine water. Thus, assumed a higher 

competition of stable cesium with radiocesium in water of high salinity than at low salinity.  

4.3 134Cs activity sorption to riverine colloids   
The sorption of 134Cs to riverine colloids from Storelva was investigated and the change in 

distribution of the tracer was followed by size fractionations. The distribution of the 134Cs tracer 

is presented in figure 9. As the figure indicates, the Cs tracer was mainly associated with the 

LMM fraction in the riverine colloids (blue column). After 10 minutes, 2.5 % 134Cs was 

associated with the riverine colloidal fraction, with an increase to 5 % after 5 months sorption 
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time. This indicates that the Cs tracer show a minor sorption to the colloidal fraction, and if 

sorption happens, the reaction is rapid (1 hour 4.4 %). The bar graph suggests that the sorption 

to the colloidal fraction decreases after 5 month, this result could be within the sampling and 

measurement uncertainty for the NaI-detector. During the 5 months, there was no detection of 

Cs in the >0.45 μm syringe filters, which means Cs was not associated with particles in the 

colloidal suspension. Visual observations on the syringe filters suggest that there were a small 

amount of colloids agglomerated into particles during the 5 months in freshwater. This 

experiment is ongoing as a part of another study and further analysis will not be included in this 

thesis.     

 

 

FIGURE 9 SHOWS THE RELATIVE (%) DISTRIBUTION OF 134CS ASSOCIATED WITH THE LMM, 

COLLOIDAL AND PARTICLE FRACTION. DURING THE 5 MONTHS, 5 % 134CS HAD SORBED TO THE 

RIVERINE COLLOIDS FROM STORELVA. THERE WAS NO AGGREGATION OF COLLOIDS INTO 

PARTICLES.    
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4.4 Salinity dependent remobilization of 134Cs from riverine colloids   
Remobilization of 134Cs from riverine colloids from Storelva was tested with regards to gradient 

saline brackish water. To ensure removal of the 134Cs tracer associated with the LMM fraction 

in the riverine colloidal suspension, the colloidal suspension went through a washing procedure 

using artificial Storelva water. This washing procedure proved to be too efficient, as it caused 

remobilization of the 134Cs tracer associated with the colloidal fraction in the suspension. This 

washing step has been illustrated in figure 10 were the colloidal suspension with tracer were 

washed successively with MilliQ water, artificial riverine water and saline water with PSU 30 

(5mL of tracer colloidal suspension washed with 5 mL, 5 times). As the figure demonstrates, 

washing with 25 mL of water (5 times dilution), regardless of water quality, remobilized the 

tracer.     

Even though there were low levels of 134Cs tracer left in the colloidal suspension, the experiment 

proceeded, and the colloidal suspension was added gradient saline brackish water. As indicated 

in figure 11 on the next page, the 134Cs tracer showed a clear association with the LMM fraction 

(95-100 %) and some association with the HMM (0-1%) and the >0.45 μm fraction (2-5%) for 

all salinities for the entire period of the experiment.  This indicates that if 134Cs associates with 

riverine colloids, Cs will easily mobilize due to either 1) an increase of river-water with lower 

concentrations of Cs, which leads to a dilution or 2) in the presence of brackish saline water, 

which introduces competing ions.  

FIGURE 10 SHOWS THE SUCCESSIVELY WASHING OF THE CESIUM COLLOIDAL SUSPENSION WITH 

MILLI Q WATER, ARTIFICIAL RIVERINE WATER AND SALT WATER WITH PSU 30. AFTER WASHING 

WITH 25ML, THE TRACER HAD REMOBILIZED.  
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As the binding of Cs to colloids occurs through ion exchange (Cornell, R., 1993), and the 

electron affinity of Cs is less than other ions (K+ and Na+) (Myers, R. T., 1990). Cs is not 

readily attracted to the colloids. The degree of Cs binding to colloids is affected by the presence 

of other competing ions, the number of binding seats available for cesium on the colloid, 

available humic material functional groups for complexation reactions and water chemistry like 

pH and salinity (vanLoon G. W. & Duffy S.J., 2011). Even though Cs not readily sorbs to 

riverine colloids, some association should be expected. This factor is important in risk 

assessments. If there are some Cs association to colloids, this association will most likely 
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FIGURE 11 SHOWS THE RELATIVE (%) DISTRIBUTION OF 134CS AT A: 5 HOURS, B: 24 HOURS, C: 8 

DAYS AND D: 1 MONTH WITH GRADIENT SALINITY (1, 3, 5, 10, 15 AND 25 PSU). AT EXTRACTION 

TIME 5H, 24H AND 8 DAYS THE STANDARD DEVIATION IS NOT GRAPHICAL VISUAL, AS FOR 1 

MONTH THE STANDARD DEVIATION INCREASED, THIS IS DUE TO AN INCONSISTENCY IN RESULTS 

FROM THE NAI-DETECTOR FOR EACH SAMPLE REPLICATE.     
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disrupt the moment the colloids enters brackish waters or in periods with high precipitation or 

snow melting that leads to an alteration in the water chemistry and a dilution of the Cs 

concentration in water. When this association disrupts, a local increase in LMM Cs+ ions are 

expected although elevated dilution processes are ongoing in estuaries (Teien et al., 2006; 

Machado et al., 2016; Sanial et al., 2017).    

The standard deviation increased at the 1-month extraction time. The counting of the colloidal 

and particle fraction by the NaI-detector showed clear inconsistencies (Appendix C). This could 

indicate that the samples were heterogeneous. However, it is difficult to conclude as the activity 

in some samples were below the quantification limit of the NaI-detector.  

Tracer activity detected in the syringe filters (>0.45 μm) indicates some agglomeration of 

colloids into particles. This activity was however very low. There was a slightly indication that 

agglomeration in the lower salinities were higher and that this trend increases by time. Particle 

growth (brownish strands) was visually observed in some of the sample replicates.     
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4.5 Salinity dependent sorption of 137Cs ions to riverine colloids 
137Cs present as ions in saline water was added to the riverine colloids to study the sorption of 

radioactive cesium to riverine colloids as a function of gradient salinity. Figure 12 gives a 

presentation of the activity (dpm) of 137Cs associated with the riverine colloids after one-month 

sorption time with gradient salinity.  

As the figure demonstrates, there were some 137Cs association with the riverine colloids. The 

figure indicates that the 137Cs association with colloids were highest at salinity 5 PSU, although 

uncertainties are rather high. The measured activity (dpm) of 137Cs associated with the colloids 

in the 5 PSU sample are graphical represented as a function of time (Fig. 13).   
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FIGURE 12 THE MEASURED ACTIVITY (DPM) OF 137CS ASSOCIATED WITH RIVERINE COLLOIDS 

AFTER ONE-MONTH SORPTION TIME AS A FUNCTION OF GRADIENT SALINITY.   
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FIGURE 13 THE MEASURED ACTIVITY (DPM) OF 137CS ASSOCIATED WITH RIVERINE COLLOIDS AT 5 

PSU WITH A ONE-MONTH SORPTION TIME.  
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The figure clearly demonstrates that after one-month sorption time, there was an increase of Cs 

associatied with riverine colloids in brackish water with a salinity of 5 PSU. Even though the 

measured activity was minor, and most 137Cs was associated with the riverine LMM fraction 

(Appendix D), in risk assessments and models this evident relationship must be accounted for.  

As mentioned before, if riverine colloids contaminated with Cs enters high salinity waters, 

hence, introducing a high amount of competing ions to the colloids, the Cs would most certain 

be desorbed from the particle surface.  This will lead to a local increase of LMM Cs+  ions even 

though there is a high degree of dilution in estuaries (Teien et al., 2006; Machado et al., 2016; 

Sanial et al., 2017). As uptake and accumulation of the LMM species in biota are of most 

concern, (Teien et al., 2006; Carvalho, 2018), it is important to take into account the Cs 

association with both colloids as well as particles in risk assessments and models. If not 

accounted for, this could lead to an underestimation of the amount of contaminants present in 

river-ocean systems.    

4.6 134Cs activity sorption to riverine clay   
The isolated riverine clay fraction was also added 134Cs to study the sorption of Cs to clay.  The 

sorption of 134Cs to the clay displayed a different image than for the colloids. As figure 14 

reveals, 98.8 % of the 134Cs tracer was sorbed to the riverine clay after only one day. After 5 

month, the sorption of 134Cs to clay reached 99%, indicating that the sorption of Cs to clay was 

rapid and effective in freshwater qualities similar to Storelva. The degree of binding to the clay 

(irreversible, fixed, e.g.) is not obtained from size fractionation techniques. Thus sequential 

extraction would provide information about this (Oughton et al., 1992; Skipperud, L. & Salbu, 

B. 2015 ). However, this was not the scope in this thesis.  
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FIGURE 14 SORPTION OF 134CS TO RIVERINE CLAY FROM STORELVA WITH CONTACT TIMES 1 HOUR, 

24 HOURS, 1 MONTH AND 5 MONTHS. AFTER 5 MONTH THE SORPTION TO CLAY WAS 99 %.  

There were no findings of 134Cs association with the colloidal fraction, as the remaining fraction 

was associated with the LMM fraction in the Storelva clay suspension.   

4.7 Salinity dependent remobilization of 134Cs from riverine clay  
Riverine clay was added brackish water with gradient salinities to study the remobilization of 
134Cs. Prior to this, the same washing procedure with artificial water was performed on the clay 

freshwater suspension as for the colloids, the remobilization of 134Cs from clay was minimal 

compared to the riverine colloids.  

Figure 15 gives a presentation of the relative (%) distribution of 134Cs associated with the LMM 

and particle (>0.45 μm) fraction for each salinity as a function of time. Figure 16 present the 

same data, but gives the relative distribution of 134Cs associated with the LMM, HMM and 

particles (>0.45 μm) for each extraction time as a function of salinity. The HMM fraction was 

excluded in figure 15, as the 134Cs associated with the HMM fraction was minor (0-1 %) as 

indicated in figure 16. This could be due to absence of the colloidal fraction in the riverine clay 

suspension, resulting in no colloidal fraction in the solution to offer binding seats for Cs or that 

the HMM colloidal fraction was aggregating to size fractions larger than 0.45 μm.  



30 
 

Figure 15 demonstrates that the remobilization of 134Cs associated with clay increased by time. 

This trend was also a function of the increasing salinity. After 24 hours, nearly 40 % 134Cs was 

associated with the LMM fraction for all salinities. After 8 days and at 25 PSU, there was more 
134Cs associated with the LMM fraction than the clay fraction. After 1 month, this appeared at 

10 and 15 PSU as well. As for the lower levels of salinity (1, 3 and 5 PSU), there were more 
134Cs associated with the clay throughout the experiment. This demonstrates that Cs associated 

with riverine clay can remobilize as a function of an increase in salinity and time. The higher 

salinities, the more Cs remobilized.  

Figure 16 also demonstrates that with an increase in both time and salinity the remobilization 

of 134Cs from clay increases, and the remobilization was faster.   

This means that if riverine clay containing Cs discharges to the coastal water, Cs+ can 

remobilize from the clay. When riverine clay enters saline waters, an increase in competing 

ions appears (K+, Na+ and Ca+ as well as stable Cs+). This results in an increased ionic strength 

of the solution. K+ has an especially high affinity to clay, as K+ ions are commonly found in 

clay minerals, binding the interlayers together (Børrentzen P., Salbu B. 2002). This result in 

tracer Cs+ ion exchanging with K+ (or stable Cs), leaving Cs+ ions kept free in solution.  

When riverine water meets coastal water, dilution occurs. Riverine particles, like colloids and 

clay, will undergo sedimentation in estuaries due to a decrease in the water-flow. Due to their 

small size, the LMM fraction would disperse with ocean currents. This again leads to dilution 

of the LMM fraction. As demonstrated with models and environmental monitoring programs 

(RAME, 2017), detection of radionuclides discharged to the marine environment from far 

distances are possible along the Norwegian coastline. This clearly shows that the LMM fraction 

has the ability to travel a far distance with the ocean currents, and can then induce harm at other 

locations than discharge origin.    
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FIGURE 15 REMOBILIZATION OF 134CS  FROM RIVERINE CLAY  AS A FUNCTION OF TIME AND AT 

DIFFERENT SALINITIES: A IS 1 PSU, B IS 3 PSU, C IS 5 PSU, D IS 10 PSU, E IS 15 PSU AND F IS 25 
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4.8 Salinity dependent sorption of 137Cs ions to clay  
137Cs present as LMM species in saline water was mixed with freshwater clay to study the 

sorption of radioactive cesium. Figure 17 gives the relative (%) distribution of 137Cs for each 

salinity as a function of time after mixing, while figure 18 gives the relative (%) distribution of 
137Cs for each extraction time as a function of salinity. After 1 month there was more 137Cs 

associated with the clay fraction (>0.45 μm) than the LMM fraction at salinity 1 PSU. At 

salinities above 1 (3, 5, 10, 15 and 25 PSU) and at all extraction times (2h, 5h, 24h, 8 days and 

1 month) there was more 137Cs associated with the LMM fraction than with clay. At 3 and 5 

PSU, after 1 month about 40 % 137Cs was associated with the clay fraction (>0.45 μm) as for 

10 PSU there were only 25 %. For 25 PSU after 1 month, there were only 9 % associated with 

the clay. This indicates that the sorption is salinity dependent and increases with decreasing 

salinity. 

At salinity 1 PSU, 20 % of the 137Cs ions had sorbed to the riverine clay after 0.5 hours. After 

1 month, the sorption increased to 54 %. The graph indicates that if the experiment had gone 

on for a longer time, the sorption of 137Cs to clay had increased even more. However, the 

standard deviation for 1 PSU at extraction time 1 month was very high. This was due to 

inhomogeneous samples, with very little clay left in two of the sample replicates. These were 

clear outliers and correction for this was made in the graph. For all other salinities, the standard 

deviation indicates that there was a good correlation between the replicates. 

In this experiment, obviously, there were a competition between the two tracers 134Cs and 137Cs, 

over the available binding seats on the clay mineral. As the binding seats might already been 

occupied by 134Cs, this could lead to a lower sorption of 137Cs to the clay.      

The results demonstrated that if 137Cs are present as ions in saline water, sorption to riverine 

clay occurs, but the sorption is highly dependent upon salinity, contact time and the presence 

of competing ions (e.g. Na+, 134Cs). In general, the sorption increased with increasing contact 

time and decreasing salinity.  
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FIGURE 17 SORPTION OF 137CS IONS FROM SALINE WATER TO RIVERINE CLAY AS A FUNCTION OF 

TIME AT DIFFERENT SALINITIES: A IS 1 PSU, B IS 3 PSU, C IS 5 PSU, D IS 10 PSU, E IS 15 PSU AND F 

IS 25 PSU. 
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As indicated in figure 18, 137Cs showed no sorption to the riverine HMM fraction. However, at 

8 days and 1 month there was detection of trace amounts (Appendix C).   

4.9 Size distribution dependent upon source 
 The 134Cs tracer originated from the riverine clay and the 137Cs tracer from the saline water. 

When comparing the LMM association for both tracers at all salinities after 1 month, there 

was a lower amount of 134Cs associated with LMM than 137Cs. This indicates that the source 

origin of the tracer matters. It can also indicate that some 134Cs has a degree of fixation to the 

clay, as maximum of  ~60 % could remobilzed from the clay (25 PSU after 1 month). The 

experiment lasted for 1 month, there could be a possibility that the remobilization of 134Cs 

from the clay would have continued if conducting the experiment for a longer period. As 

demonstrated in figure 15, the remobilization of 134Cs showed an increasing tendency after 1 

month, except for the salinity 1 PSU. At this salinity, a state of equilibrium was suggested. 

This was also the case for the 137Cs tracer, where figure 17 indicates a state of equlibrium at 

higher salinity levels (15 and 25 PSU), while the sorption to clay was still increasing at low 

salinity levels. In addition, a competition between the two tracers over avaliable binding seats 

on the clay mineral should not be ignored. However, the radioactive tracers represents minute 

amount of atoms compared to stable Cs in waters (Salbu,  

4.10 Apparent Kd as a function of salinity  
The distribution of Cs did not reach equilibrium in this experiment. That is why the apparent 

Kd is presented. Figure 19 and table 4 show the apparent Kd obtained for clay and water at 

different salinity. Appendix F contains the experimental data.  

Table 4: Apparent Kd range determined for 134Cs and 137Cs at different salinities. The 

unit for Kd is Lkg-1 (dw)  

Salinity - PSU 134Cs 137Cs 

1 215 160 

3 147 84 

5 150 79 

10 107 47 

15 99 29 

25 73 13 
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The Kd was calculated by using the dry weight (dw) of clay. Due to the small amount of clay in 

each syringe filter, it was not possible to determine the weight of the actual amount of clay for 

each sample replicate. Hence, the weight of clay used in the Kd calculations was based on gram 

clay per ml solution (see section 3.3 in method and materials). However, due to inhomogeneous 

samples, a large uncertainty to this method was detected. Recommended Kd values for Cs is 2.9 

x104Lkg-1 in freshwater and 2 x103 Lkg-1 in saline water (IAEA, 2004; IAEA, 2010). These Kd 

values suggest orders of magnitude higher values than the Kd values obtained in this experiment. 

This could be due to an overestimation of the amount of clay in each replicate. Since the 

apparent Kd values are much lower than recommended Kd values, and there is a high uncertainty 

in the determination of the weight of the clay, the obtained Kd values should be used with care. 

However, the relative changes of Kd due to the increase in salinity can be used.  

In addition, it is important to recognize that the recommended values given by IAEA are for Cs 

in freshwater or saline water and are under equilibrium conditions. This experiment was 

conducted in brackish waters and equilibrium conditions during the one-month period were not 

achieved. However, the Kd values obtained in this experiment should be expected in between 

the recommended Kd values.    

As mentioned in the introduction, a high Kd indicates that the element is particle-reactive or 

non-conservative. Meaning that the element shows a higher fixation to the sediments, which 

leads to a low mobility. A low Kd means there is an increase in the mobility and the element is 

conservative (i.e., non-reactive), meaning it is kept in solution. The Kd obtained in this 

experiment indicates a decreasing values when the salinity increased by a factor of 3 for 134Cs 

and 2 for 137Cs. The change in Kd with increasing salinity clearly demonstrates that  Kd is highly 

dependent on site-specific conditions.  

The Kd is said to be time dependent. As demonstrated in the figures below, the Kd will change 

with time until equilibrium condition is reached. These alterations are important to recognize, 

as they will make it easier to understand why a system is in constant change. Ion-exchange 

properties effects the system, as Cs will both sorb and desorb at the same time. The interaction 

or contact time between Cs and clay is important, as this can ultimately lead to a fixation of Cs 

in the interlayer clay mineral.  

As demonstrated by Børrentzen and Salbu (2002), sequential extraction can be utilized to 

evaluate the degree of binding of Cs in clay. This technique used water and chemicals with 

different extraction strength. The stronger extraction chemicals needed to break the bindings 



38 
 

the higher degree of fixation to the clay are expected. In this experiment, after one year of 

contact time between tracer and clay, the tracer was regarded fixed, and could not be extracted. 

At this point, a state of equilibrium or at least pseudo-equilibrium was obtained.  

Equilibrium condition in nature is hard to achieve, as water-sediment systems are in constant 

change (water flow, waves, precipitation, sedimentation, particle growth, weathering of 

sediments during storms e.g.). In this work, closed compartment systems without external 

influence were employed. If the experiment had been conducted for a longer period, a state of 

equilibrium might have been achieved.  
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FIGURE 19 APPARENT KD FOR 134CS AND 137CS AS A FUNCTION OF TIME FOR WATERS WITH 

DIFFERENT SALINITIES: A IS 1 PSU, B IS 3 PSU, C IS 5 PSU, D IS 10 PSU, E IS 15 PSU AND F IS 25 

PSU. 
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4.11 Transfer rates  
The estimated sorption and desorption rates are presented in table 5 and 6 respectively.  

Appendix G gives an overview of the methodology and results for the calculations of transfer 

rates.  

Table 5: The estimated transfer rates from the 137Cs sorption data. Units of the 
transfer rates are s-1. 
Salinity -PSU k1 k2 
1 4.448 x 10-6 3.771 x 10-6 
3 3.804 x 10-6 6.069 x 10-6 
5 3.124 x 10-6 5.217 x 10-6 
10 1.734 x 10-6 4.872 x 10-6 
15 1.452 x 10-6 6.608 x 10-6 
25 1.717 x 10-6 1.777 x 10-6 

 

Table 6: The estimated transfer rates from the 134Cs remobilization data. Units of the 
transfer rates are s-1. 
Salinity - PSU k1 k2 
1 - - 
3 7.354 x 10-6 6.679 x 10-6 
5 8.331 x 10-6 7.462 x 10-6 
10 5.742 x 10-6 7.056 x 10-6 
15 5.217 x 10-6 6.964 x 10-6 
25 4.174 x 10-6 7.623 x 10-6 

 

Results show that both the sorption and desorption rates are in the same magnitude in brackish 

water of low and high salinity. In general, the sorption rates (k1) seems to decrease by salinity 

by a factor of 2, while the desorption rates (k2) are not dependent upon salinity. The distribution 

of Cs is, however, dependent upon salinity, thus the time to reach equilibrium will depend upon 

salinity. 

The estimated transfer rates utilized in a kinetic model could give an estimate of the dispersal 

of Cs in Storelva and into the Sandnesfjord. In case of an adverse event with a release of 

radiocesium, utilizing this model could be a useful tool for deciding on countermeasures or in 

a risk assessment perspective, to plan for adverse events.  
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5 Sources of errors 
The concentration of stable Cs was not quantified in the riverine clay. Stable Cs could interfere 

with the sorption to clay for both tracers, as stable Cs will occupy binding seats on the clay. 

This could lead to a lower degree of sorption for the tracers towards the clay. However, the 

amount of clay present in the experiment was thought to offer sufficient binding seats for both 

tracers, hence the concentration of stable Cs in clay was neglected.    

The 137Cs was added each sample replicate by pipette (100 μl). This could give a variation in 

the activity among replicates, and increase the standard deviation of the mean. The activity of 

the tracer determined by the NaI-detector was also included in the evaluation of the accuracy 

of the pipetting. The variation of this pipetting was approximately 1 %. It is eligible to believe 

that the same uncertainty will apply for the mentioned above sampling.   

When extracting samples, the distribution of clay in the suspension showed an uneven 

distribution. Samples were collected with syringe from the suspension, and the content of clay 

in each collected sample was not constant. This became clear for the samples extracted after 

one month. The syringe filters were weighed empty and with clay to determine the clay content 

in each sample and to normalize the data. However, the weight of clay was only minor 

compared to the weight of the filter making this estimate uncertain. For some of the syringe 

filters the tared weight came out negative. Some samples became clear outliers due to visual 

observations of small clay amounts and a low counting result on the NaI-detector compared to 

equal replicates. Due to this, clear outliers were removed, as they affected the presentation of 

the results.  

The Kd values obtained for Cs in this experiment were much lower than reported Kd values for 

Cs.  This could be due to an uncertainty in the determination of amount clay in each sample 

replicate.  

When centrifuging samples, some of the fluid did not pass the centrifugal filter. There was a 

small residue in fraction (>10 kDa). The residue would have been analyzed as the HMM 

fraction, but could likely be LMM or a mix of HMM and LMM, the residue was therefore 

removed. Thus, it could lead to an overestimation of measured activity in the HMM fraction. 

The residue was not retained, nor analyzed on the NaI-detector and is therefore unaccounted 

for. In fact, the fraction of LMM should thus be slightly underestimated.  
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Working with tracers, some common errors are necessary to take into account. Number one is 

the half-life of the tracer and number two is loss of tracer during sample preparation. The half-

life of both Cs tracers is relatively long (2 and 30 years) so for most sorption experiments 

(months to years) the half-life of 134Cs must be accounted for. This experiment is still ongoing. 

When washing the clay and colloidal suspension with artificial water, some leakages due to 

damaged tubes caused some loss of tracer. Loss of tracer can also happen due to the tracers’ 

ability to sorb to surfaces like for instance the centrifugal tubes or syringes. 
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6 Suggestion to further investigations 
The sorption study of 134Cs to clay and colloids are ongoing. To obtain more results and to 

conclude whether the sorption to colloids decreases or increases by time, this experiment still 

needs following up. As results indicate so far, there seems to be a small decrease in the sorption.  

The actual amount of clay present in the syringe filters should be determined, and the Kd values 

obtained in this thesis should be corrected for the actual amount of clay present in each sample 

replicate. This would reduce the uncertainty regarding the weight determination of clay and 

might provide more accurate Kd values.  

To better achieve information on Kd under equilibrium conditions, the sorption and 

remobilization experiments should last for longer periods to prove if the calculated Kd is correct.  

To evaluate the degree of binding of 134Cs to clay, sequential extraction should be utilized. This 

would provide information about 134Cs fixation to clay in estuarine waters. Thus improving the 

model, not only containing a two-box model, but a three-box model; dissolved, reversible 

sorption to particles and irreversible sorption to particles.  

Further investigations of establishing methods to obtain information on Cs associated with the 

HMM fraction is also needed, as this were not fully obtained in this experiment.   

In this master thesis, radioactive Cs tracers were used and the results obtained will provide 

useful information regarding transfer rates for Cs implemented into the transfer model 

developed by Simonsen et. al. (2019). Further research using other tracers or trace metals with 

different physico-chemical properties would give useful input information to the transfer 

model. For instance, experiments regarding element speciation of cadmium (Cd) would be 

useful, as there are still substantial levels of Cd in the terrestrial environment due to industrial 

activities (Norwegian Environmental Agency, 2017) that could impose a risk to the estuaries 

and the marine environment due to river run-offs. 

  



44 
 

7 Conclusion 
The overall goal of this master thesis was to establish information on the transfer of Cs species 

in fresh waters to coastal areas. Hence, the work would focus on the dynamic water-sediment 

distribution coefficients and transfer-rates of Cs species as a function of salinity.  

The hypotheses was:  

H0: The distribution coefficient (Kd) of Cs between radioactivity in water and sediment is 

dynamic and dependent on salinity and will vary in brackish water with increasing salinity.   

H1: Remobilization of Cs from river transported colloids and particles is more prominent for 

the marine transport than sorption of Cs to surfaces in saline waters.  

7.1 Assessments of the hypothesis 
H0 was supported, as the distribution coefficient (Kd) wass clearly dynamic and highly site 

specific. The distribution of Cs, both remobilization and sorption, changed by time. The salinity 

was a direct cause to an increase in the remobilization of 134Cs from clay, and clearly interfered 

with the sorption of 137Cs to clay. The distribution of Cs changed when the surroundings 

changed; an increase in salinity caused an increase in remobilization, and a decrease in the 

sorption.  

H1 was supported, as the sorption of Cs to surfaces in saline waters was lower than the 

remobilization due to the presence of competing ions. The sorption was at is minimum due to 

the high levels of competing ions in saline waters. When Cs associated with riverine colloids 

or particles transports to the ocean, remobilization will occur due to the increase of competing 

ions. This will increase the concentration of LMM Cs+ ions. As uptake and accumulation of 

LMM species are of key concern, this could lead to adverse effects for marine biota in estuaries.  

Water-sediment distribution coefficient (Kd), transfer rates for sorption (k12) and desorption 

(k21) for Cs as a function of salinity were established in this thesis. The Kd obtained did not 

reach the state of equilibrium within 1 month. The apparent Kd range was calculated and 

indicated a decreasing value as a function of increasing salinities, thus Cs is considered 

conservative (i.e. non-reactive) and is kept in solution.  

The transfer rates, both sorption and desorption, were in the same order of magnitude in 

brackish water with low and high salinity.  In general, the sorption rates (k1) seemed to decrease 

by salinity by a factor of two, while the desorption rates (k2) were not dependent upon salinity. 
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The distribution of Cs was, however, dependent upon salinity, thus the time to reach equilibrium 

conditions will depend upon salinity.  

The estimated transfer rates utilized in kinetic models could provide predictions of the dispersal 

and time dependent distribution of species of Cs in the estuaries of Sandnesfjord, thus providing 

useful information when performing risk assessments for instance in the event of a release with 

Cs.  

To monitor the distribution of Cs, size-fractionations techniques were utilized. However, to 

gain information of the degree of fixation of Cs to clay minerals, sequential extractions could 

be used.   

Further investigations regarding the information of the speciation of radionuclides and trace 

elements are also needed. The speciation is important to incorporate into kinetic transfer models 

as the speciation will affect the transport of elements in the marine environment. As 

demonstrated in this thesis, increasing salinity would change the system and hence the 

distribution of Cs species changed.      
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9.5 Appendix E – Clay content  
Table E1: Results from determining gram clay per liter by pipetting 1 ml of the clay suspension, 
drying (60◦C) and determining weight with an analytical balance (Accuracy 0.0001 g).  

Sample (1 ml) Clay (g) 
1 0,0065 
2 0,0070 
3 0,0069 
Average  0,0068  
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9.6 Appendix F: Distribution coefficient, Kd 
Table F1: Apparent distribution coefficient for 134Cs and 137Cs at salinity 1 PSU.  

Kd   Hours 

   1 PSU 0,5 2 5 24 192 720 

Cs-134 DPM/kg >0.45 um / Cs-134 
DPM/L LMM 

Kd Cs-
134 701 410 328 219 226 215 

Cs-137 DPM/Kg >0.45 um / CS-137 
DPM/L LMM 

Kd Cs-
137 31 45 61 78 128 161 

 

Table F2: Apparent distribution coefficient for 134Cs and 137Cs at salinity 3 PSU.  

Kd   Hours 
   3 PSU 0,5 2 5 24 192 720 

Cs-134 DPM/kg >0.45 um / Cs-134 
DPM/L LMM 

Kd Cs-
134 441 354 267 208 188 147 

Cs-137 DPM/kg >0.45 um / CS-137 
DPM/L LMM 

Kd Cs-
137 28 27 38 52 88 84 

 

Table F3: Apparent distribution coefficient for 134Cs and 137Cs at salinity 5 PSU.  

Kd   Hours 
   5 PSU 0,5 2 5 24 192 720 

Cs-134 DPM/kg >0.45 um / Cs-134 
DPM/L LMM 

Kd Cs-
134 427 333 236 204 173 150 

Cs-137 DPM/kg >0.45 um / CS-137 
DPM/L LMM 

Kd Cs-
137 17 23 25 41 70 79 
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Table F4: Apparent distribution coefficient for 134Cs and 137Cs at salinity 10 PSU.  

Kd   Hours 
   10 PSU 0,5 2 5 24 192 720 

Cs-134 DPM/kg >0.45 um / Cs-134 
DPM/L LMM 

Kd Cs-
134 369 268 197 182 141 107 

Cs-137 DPM/kg >0.45 um / CS-137 
DPM/L LMM 

Kd Cs-
137 12 16 16 25 39 47 

 

Table F5: Apparent distribution coefficient for 134Cs and 137Cs at salinity 15 PSU.  

Kd   Hours 
   15 PSU 0,5 2 5 24 192 720 

Cs-134 DPM/kg >0.45 um / Cs-134 
DPM/L LMM 

Kd Cs-
134 322 285 266 172 148 99 

Cs-137 DPM/kg >0.45 um / CS-137 
DPM/L LMM 

Kd Cs-
137 8 11 14 19 29 29 

 

Table F6: Apparent distribution coefficient for 134Cs and 137Cs at salinity 25 PSU.  

Kd   Hours 
   25 PSU 0,5 2 5 24 192 720 

Cs-134 DPM/kg >0.45 um / Cs-134 
DPM/L LMM 

Kd Cs-
134 390 309 224 155 131 73 

Cs-137 DPM/kg >0.45 um / CS-137 
DPM/L LMM 

Kd Cs-
137 7 10 10 14 19 13 
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