

Norges miljø- og biovitenskapelige universitet

Master's thesis 201960 creditsFaculty of Environmental Sciences and Natural Resource Management

Changes in species richness and altitudinal distribution of vascular plants in Jotunheimen, Norway

Erlend Tandberg Grindrud Ecology

Changes in species richness and altitudinal distribution of vascular plants in Jotunheimen, Norway

Photo: Visdalen with Kyrkjetjønne in the upper valley. The photo was taken on Spiterhøi.

Master's thesis

Erlend Tandberg Grindrud

Preface

First of all, I want to thank my supervisor Kari Klanderud for the opportunity to resample the sites in Jotunheimen. I feel lucky to have been trusted with such an important task, and think my master's thesis could not have been more interesting. Because of personal issues I was not able to finish when planned, and at one time started to doubt if I would ever finish. However, thanks to Kari's continued support and patience I finally present this work. For this I am truly grateful.

I also want to thank my second supervisor John-Arvid Grytnes for being patient, and giving me the opportunity to finish my thesis. When I needed input on analysis and statistics he found time to help me in spite of busy days at work.

I want to thank fellow master student Jon Peder Lindemann for accompanying me on some of the mountains. I am also grateful for valuable information provided by Hanne Heiberg and Inger Hanssen-Bauer at The Norwegian Meteorological Institute and Wenche Aas at the Norwegian Institute for Air Research. Finally, thanks to Rigmor Solem, Pål Grev, Hans Nørstnes Graffer, Torkjel Solbakken and Rolv Rustem for providing information on reindeer and sheep in Jotunheimen.

Ås, 12 May 2019

Erlend Tandberg Grindrud

Abstract

Species richness was sampled on 254 sites distributed along the altitudinal gradient of 23 mountains in Jotunheimen, Norway. The sampling was conducted during the summer of 2014, on sites that previously had been sampled in 1930-31 and 1998. The purpose of the study was to investigate possible changes in species richness and altitudinal distribution of vascular plants, and try to explain any observed change.

The results show that species richness in Jotunheimen increased between 1998 and 2014, and that the relative increase was highest at higher elevation sites. Species richness also increased more in eastern parts of Jotunheimen than in western parts, both in 1930/31-1998 and 1998-2014. Species richness on the most species-rich sites has declined in 1998-2014, and high-altitude species have possibly declined at lower elevations. The high-altitude species *Beckwithia glacialis, Ranunculus pygmeus, Poa flexuosa, Saxifraga Cernua* and *Erigeron uniflorus* experienced a reduced number of occurrences at lower elevations in 1930/31-1998, and has continued this tendency in 1998-2014. High-altitude species that did not decline at lower elevations in 1930/31-1998 (e.g. *Cardamine bellidifolia, Luzula confusa* and *Juncus biglumis*) have started to decline in 1998-2014. A process called thermophilization, which can be described as the decline of cold-adapted species and/or the increase of higher temperature-adapted species, was detected for both 1930/31-1998 and 1998-2014 in Jotunheimen. Plant communities have hence become "warmer".

A strong warming tendency is observed after the 1998 sampling, and climate warming is the most likely driver of the observed changes in Jotunheimen. Nitrogen deposition and grazing pressure have been discussed, but further investigation is needed to determine their role. Hiking tourism, pseudoturnover and natural succession, are found to not explain the general changes observed in this study.

Table of Contents

Preface	1
Abstract	2
Introduction	5
Materials and methods	8
Geography, vegetation and topography	8
Temperature and precipitation	9
Nitrogen (N) deposition	11
Other anthropogenic impacts	12
Sampling	13
Recording problems	14
Misidentifications and nomenclature of species	14
Data analysis	15
Results	18
Change in species richness between 1930, 1998 and 2014.	18
Change in species richness along the west-east gradient	19
Change in number of species according to initial species richness	20
Change in number of species according to temperature indicator values	20
Thermophilization	21
Changes in species groups with different climate optimum, along the altitudinal gradie	ent 22
Species changes in the "MAlp, MAlp-HAlp" group, between 1998 and 2014	23
New altitudinal limits, altitudinal shifts and change in Poaceae family	25
Signs of grazing	26
Discussion	28
Change in species richness, new altitudinal limits and upward shifts	28
Change in species richness along the west-east gradient	28
Changes in species groups with different climate optimum, along the altitudinal gradie	ent 30
Change in number of species according to initial species richness	31
Change in number of species according to temperature indicator values	33
Thermophilization	33
Possible drivers for the observed changes	34

Climate change	
Grazing	
Natural succession	
Pseudoturnover	
Tourism	
Conclusions	
References	
Appendix 1	47
Appendix 2	95
Appendix 3	
Appendix 4	101
Appendix 5	105

Introduction

Life in alpine environments is harsh, with low temperatures, strong winds, lack of nutrients and prolonged snow cover during the year. In this environment facilitation is believed to be the dominant form of interaction among plants (Callaway et al., 2002). Abiotic stress is so limiting that amelioration of stress from neighbour plants, helps survival and reproduction. Under recent climate change however, abiotic stress is reduced as temperatures rise (Britton et al., 2009), and plant interactions in the alpine environment may switch from facilitation to competition (Callaway et al., 2002). Alpine plants can therefore be faced with another challenge: the competition from neighbour plants and new colonizers, which are climbing the mountains from lower elevations (Alexander et al., 2015; Steinbauer et al., 2018). In various studies, it has been suggested that competitive species might expand at the cost of less competitive alpine species (Alexander et al., 2015; Guisan et al., 1998; Klanderud & Birks, 2003; Steinbauer et al., 2018; Sætersdal & Birks, 1997; Vittoz et al., 2009), causing the latter to be pushed upward in elevation (Grabherr et al., 1994; Pauli et al., 2007; Speed et al., 2012; Walther et al., 2005). Other studies however suggest that environmental conditions vary so much on a micro scale, due to local microtopography, that most of the less competitive alpine plants are likely to find suitable habitat within a short distance (Scherrer & Koerner, 2010; Scherrer & Körner, 2011).

However, some observations indicate that alpine species might be experiencing retractions of their lower altitude range limits. For example, in Jotunheimen, Norway, Klanderud (2000) found that species frequent at high elevations (*Beckwithia glacialis*, *Ranunculus pygmaeus*, *Poa flexuosa*, *Trisetum spicatum* and *Cerastum alpinum* among others) had decreased in number of occurrences at lower altitudes between 1930-31 and 1998. In the Austrian Alps, Pauli et al. (2007) documented reduced cover of nival species, while many alpine and subnival species were increasing their ground cover. They concluded that alpine and subnival species are expanding their upper range edges, while nival species are experiencing a contraction of their lower range edges. In the Scottish highlands similar results were found, with a decline of species with a northern and alpine distribution (Britton et al., 2009). Possible range retractions of artic-alpine plants have also been reported from Montana, USA (Lesica & McCune, 2004). In spite of these findings, no broad-scale retraction of alpine plants' lower range limits has been documented.

Related to range retractions in the lower range-limits of alpine species, is thermophilization (Erschbamer et al., 2011; Gottfried et al., 2012). Thermophilization can be described as the decline of cold-adapted species and/or the increase of higher temperatureadapted species (species from lower elevation ranges), resulting in a relatively "warmer" plant community (Gottfried et al., 2012). Thermophilization has been detected by both Erschbamer et al. (2011) and Gottfried et al. (2012), the latter based on summit data from all mayor mountain systems in Europe, including Dovrefjell in Norway.

At the same time as thermophilization and possible decline of cold-adapted species have been observed, species richness has been found to increase on mountain summits around Europe (Grabherr et al., 1994; Jurasinski & Kreyling, 2007; Klanderud & Birks, 2003; Odland et al., 2010; Steinbauer et al., 2018; Wipf et al., 2013). The trend of increased species richness has also been observed to accelerate from 1,3 species to 3,7 species per decade in the Swiss Alps (Walther et al., 2005), and from 1,1 to 5,4 species per decade on a wide range of European summits (Steinbauer et al., 2018).

Between 1930-31 and 1998, Klanderud & Birks (2003) found an increase in species richness on 19 of 23 sampled mountains in Jotunheimen. Species richness in Jotunheimen also seemed to increase more at lower than higher elevations, and was more pronounced in the eastern mountains than in the western.

Although the vast majority of studies have found increased species richness on mountain sites, there are also examples of the opposite. Pauli et al. (2012) found that Mediterranean summits on average have experienced a significant decrease in species richness, possibly because of drought stress. On the Tibetan Plateau, Klein et al. (2004) found species losses in plots with high species richness, after a four year warming experiment. Klanderud (2000) between 1930-31 and 1998 also found reduced species richness on three of the westernmost mountains in Jotunheimen.

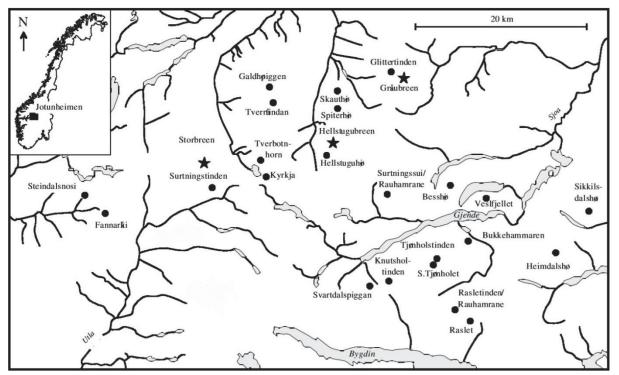
Most studies consider higher temperatures to be a main driver of the observed changes (Chen et al., 2011; Klanderud & Birks, 2003; Lenoir et al., 2008; Pauli et al., 2007; Pauli et al., 2012; Steinbauer et al., 2018). A growing number of studies however points at precipitation, or the interaction between precipitation and temperature, as a possible driver (Crimmins et al., 2011; Dolezal et al., 2016; Engler et al., 2011; Klanderud & Birks, 2003; Odland et al., 2010). Is has also been observed that herbivore grazing influences plant communities (Speed et al., 2012), and nitrogen deposition (Lenoir et al., 2008), migration lags in plants

since the Little Ice Age (Dullinger et al., 2012b) and hiking disturbances (Haugum, 2016) are factors that should be considered when explaining possible changes in this study.

The work presented is a resampling of historical plant records from the Jotunheimen mountain massif in southern Norway. In 1930 and 1931, Jørgensen (1932) undertook a mapping of the altitudinal limits of vascular plants in Jotunheimen. Starting at approximately 1500 m a.s.l, he registered the occurrences of vascular plant species along the altitudinal gradient of 25 mountains. Almost 70 years later, in 1998, Klanderud (2000) did a resampling of the sites. Then, in 2014, I visited the sites a third time, resulting in this study.

What makes the monitoring of plants in mountain ecosystems important is the increasing anthropogenic influence in these environments (Chen et al., 2014; Pauchard et al., 2009; Steinbauer et al., 2018). Additionally, the Jotunheimen study can be considered valuable due to the mapping of plants along a large altitudinal gradient. The majority of similar studies tend to focus only on summits. In the Jotunheimen study area it is also possible to focus at lower range limits of alpine plants, and we can therefore detect trends that other studies might not detect. The study area is also situated across an oceanic gradient, where the western areas are wetter and experience milder winters than the eastern areas. It may therefore be possible to observe trends along a temperature and precipitation gradients within the study area.

The study wishes to answer the following questions: 1. Is species richness changing over time on the mountains in Jotunheimen? 2. How is species richness changing along the altitudinal and west-east gradients? 3. Are changes in species richness related to initial species richness on sites? 4. Are changes in species richness related to microclimate on sites? 5. Can thermophilization be detected in Jotunheimen over time? 6. If so, how is thermophilization occurring along the altitudinal and west-east gradients? 7. Between 1998 and 2014, how is the number of occurrences of species, grouped according to temperature requirements, changing along the altitudinal gradient?


If any significant changes can be observed in the study, possible drivers will be discussed.

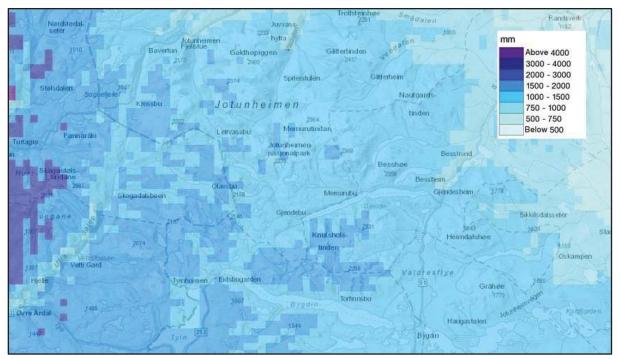
Materials and methods

Geography, vegetation and topography

Jotunheimen forms part of the Caledonian mountain range, and all of Norway's 23 peaks above 2300 m a.s.l. are found in Jotunheimen. These mountains are the highest in Northern Europe. In Jotunheimen you can also find Norway's highest peak, Galdhøpiggen (2469 m a.s.l.), where the highest growing vascular plant in Scandinavia, *Beckwithia glacialis*, has an altitudinal limit at 2370 m a.s.l. (Jørgensen, 1932; Lid & Lid, 2005). In the eastern parts of Jotunheimenen, Norway's highest growing forest treeline is found at 1200 m a.s.l.

The bedrock is in some areas calcareous, giving home to chalk-demanding species such as *Dryas octopetala* and *Pulsatilla vernalis*. Many glaciers are covering high-altitude areas, the largest being Smørstabbrean in the west. While jagged peaks and steep topography dominate in the west, the terrain becomes gentler in eastern parts. Steep slopes and precipices however occur on almost all mountains.

Figure 1. Map of the study area in Jotunheimen, showing the 23 sampled mountains and the glaciers Gråsubreen, Hellstugubreen and Storbreen. The map is modified from Klanderud (2000).


Temperature and precipitation

The western areas generally experience higher winter temperatures than eastern areas due to mild oceanic winds (Aune, 1993) (Table 1). The oceanic winds also create a precipitation gradient from west to east (Fig. 2). In the west, at the highest altitudes of Fannaråki, average annual precipitation is 2000-3000 mm, while annual precipitation around 1000-1500 mm is common around Heimdalshøa in the east (Fig. 2).

Table 1. Temperature values in the west (Fannaråki) and eastern Jotunheimen (represented by Vågåmo), from Aune (1993). Temperatures at Vågåmo have been modified to equal the height of Fannaråki meteorological station. Average lapse rates for January, July and the entire year (annual) have been calculated from Rolland (2003), and are respectively 0.46, 0.65 and 0.57 °C per 100 m. The table has been modified from Klanderud (2000).

		Mean temperatures in °C					
Station	M.a.s.l.	January	July	Annual			
Fannaråken*	2062	-9.5	2	2.7	-4.4		
Vågåmo**	371	(-17.5)	(2.	.9)	(-7.2)		

*= from 1932-78, **=from 1949-1976

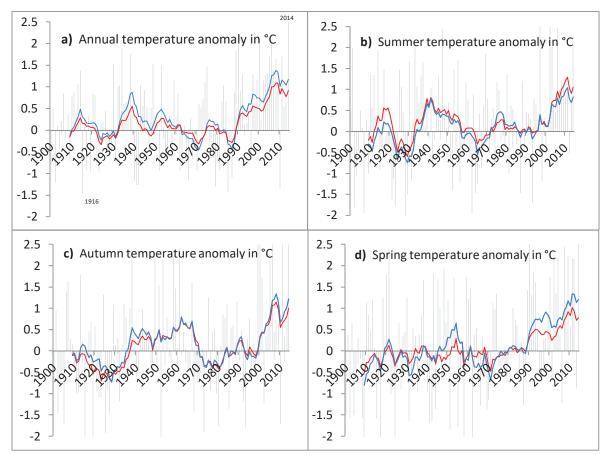


Figure 2. Average annual precipitation in Jotunheimen for normal period 1971-2000. The map was modified in Adobe Photoshop Creative Cloud (CC) 2015. Source: The Norwegian Water Resources and Energy Directorate et al. (n.d.).

Regional temperature values show that annual temperatures in Jotunheimen have mostly been above the 1961-1990 normal since 1990 (Fig. 3a). Summer- and autumn

temperatures on the other hand, first show a consistent warming trend after 2000 (Fig. 3bc). Spring temperatures, like annual temperatures, start to increase around 1990, and continue to increase after 2000 (Fig. 3d).

Both eastern and western Jotunheimen are experiencing a warming trend, although the annual warming trend seems to be stronger in the east (blue trendlines, Fig. 3a), and the summer warming trend is more accentuated in western Jotunheimen (red trendlines, Fig. 3b).

Figure 3. Regional temperature values between 1900 and 2014 with ten-year averaged trend-lines for **a**) annual temperature anomaly, **b**) summer temperature anomaly, **c**) autumn temperature anomaly and **d**) spring temperature anomaly in western (red line) and eastern (blue line) regions. The grey bars represent the annual values, and the values are shown relative to the 1961-1990 normal period. Data source: The Norwegian Meteorological Institute (n.d.).

Compared to the 1961-1990 normal period, in the eastern temperature region there has been an average temperature increase of 0.83°C between 1985 and 2014 (Hanssen-Bauer et al., 2015). In the western region the average temperature increase has been 0.63°C during the same time period. Annual precipitation in the eastern areas has increased by 7 % when comparing the periods 1971-2000 and 1985-2014 (Fig. 4a), while it has increased by 1 % in the west (Hanssen-Bauer et al., 2015). The winter precipitation in the western region had an increase in the 1990-2005 period (Fig. 4b), but since around 2005 has been lower than in the previous years, although it has still kept above the 1961-90 average. In the east winter precipitation has remained above average, but relatively constant in recent years.

Figure 4. Regional precipitation values between 1900 and 2014 with ten-year averaged trend-lines for **a**) annual precipitation and **b**) winter precipitation in western (red line) and eastern (blue line) regions. The grey bars represent the annual values, and the values are shown relative to the 1961-1990 normal period. Data source: The Norwegian Meteorological Institute (n.d.)

In Jotunheimen, the growth or melting of glaciers can be an indicator of climate conditions since the 1998 sampling. In the western parts of the study area, Storbreen (Fig. 1) is retreating. Since monitoring of mass balance started at Storbreen in 1949, the four years with greatest mass balance losses have all occurred after year 2000 (Hanssen-Bauer et al., 2015; NVE, 2018a). The two other glaciers that are being monitored for mass balance in Jotunheimen, Gråsubreen and Hellstugubreen (Fig. 1) (NVE, 2018b), are also retreating, and have experienced increasing mass balance losses since the year 2000 (Kjøllmoen et al., 2010; NVE, 2018a).

Nitrogen (N) deposition

Interpolated data of N deposition from the Norwegian Institute for Air Research (Aas, 2017) indicate a small reduction of N deposition in eastern parts of Jotunheimen, while the values in western parts seem to remain constant. The values are approximate, but give an indication of trends, according to Aas (2017).

Table 2. Estimates of nitrogen (N) deposition in Jotunheimen. N deposition is estimated in mg N/m²year. * Estimates from 1983-1987 are not representative, due to methodological differences. Data are provided by Aas (2017).

Years	West	East
1978-1982	467	354
1983-1987*	NA	NA
1988-1992	438	300
1992-1996	448	301
1997-2001	410	253
2002-2006	469	280
2007-2011	426	259

Other anthropogenic impacts

In the Jotunheimen area west of Glittertinden (Fig. 1), there is a winter population of between 2200 and 2400 tame reindeer. These numbers have remained relatively stable since 1985 (Graffer, 2016). In the eastern areas of Jotunheimen there is a winter population of around 2300-2400 tame reindeer, a slight increase from 1998 when the herd counted around 2100 animals (Grev, 2017). In western Jotunheimen, west of Utla (Fig. 1) there is a population of 200-300 wild reindeer, descendants of tame reindeer released in the sixties (Snøtun, 2013; Solem, 2017). Between 1998 and 2013 this population has decreased and later increased to previous numbers (Snøtun, 2013). Wild reindeer in eastern Jotunheimen have not been observed since 1926 (Mølmen, 1975).

According to Landbrukskontoret for Sel og Vågå (2017) it is difficult to know the exact numbers of sheep within the study area. However, by looking at numbers from sheep production subsidies, it can be observed that numbers between 2000 and 2014 are stable in the western municipalities of the study area (Lom and Luster) (Lom Landbrukskontor, 2017). The numbers in Vågå municipality, containing most of the eastern mountains in this study, have in 2000-2014 increased from 10800 to 14100 (Landbrukskontoret for Sel og Vågå, 2017). It therefore seems likely that the number of sheep in eastern parts of Jotunheimen has increased since 1998.

Hiking tourism has probably increased in Jotunheimen since 1998. Paths frequently hiked by tourists are situated on Veslefjellet, Bukkhammaren, Surtningssui, Glittertinden, Galdhøpiggen, Kyrkja and Fannaråki. On some of the sampled sites tourists hike close to, or cross the sites. Most of the sampled sites are however situated in path-free areas.

Sampling

The sampling started 13 July 2014 at Sikkilsdalshøa in eastern Jotunheimen; two days earlier than Klanderud's 1998 sampling. It started earlier because the weather had been exceptionally warm, so conditions were considered equivalent or more advanced than in 1998. The sampling was finished the 16 August at Fannaråki in western Jotunheimen. The sampling was done as similar as possible to Jørgensen (1930-31) and Klanderud (1998), to assure that sampling differences played a minimal role. Except from Sikkilsdalshøa, where two extra days were spent to get familiar with sampling techniques and species identification, one day was spent on each mountain. Because western parts of Jotunheimen are richer in snow than eastern parts (Fig. 2), the sampling was initiated in the east, and then moved westwards.

To find the sites sampled by Klanderud and Jørgensen, descriptions from both were used to relocate the sites, although most weight was put on Klanderud (2000)'s more detailed descriptions. Klanderud had manually estimated the UTM-coordinates of the sites in 1998 by looking at maps (Klanderud, 2000), and while these coordinates often helped to find the proximity of the sites, they were in many cases imprecise. Site descriptions were therefore the most important source of information.

Site descriptions were on some sites improved, and altitudes were on many sites slightly corrected (mostly five or ten meters up or down) to facilitate future samplings. Measurements of site exposure were conducted with a 360 degrees compass. Subsequently all vascular plant species on the site were registered and simple abundance measurements were conducted (Appendix 1). To delimitate the sampling area on each site I always tried to keep within the area described by Klanderud (2000). However, because of time pressure, sampling delimited itself as it was necessary to continue to the next site, to be able to finish one mountain in one day.

When arriving at a site, a Garmin "GPSMAP 62 series" with TOPO maps was used to register the site's UTM coordinates. Observations of herbivore feces, signs of grazing on plants, animal tracks and herbivore presence on sites were also registered. This was however not done systematically on the first two mountains, Sikkilsdalshøa and Heimdalshøa. The amount of herbivore grazing was divided into two categories: signs of grazing on few (1 - 9) plants and signs of grazing on many plants (10 or more). At high-

altitude sites with few specimens, but where a majority of the specimens had been browsed, sites were placed in the second category.

On some mountains new sites were established at high altitudes (Appendix 1). It is possible that these new sites were not sampled by Jørgensen (1932) or Klanderud (2000) because no plant species were found there in 1930-31 and 1998. A few new sites were also established at high altitudes where no species were found in 2014 (Appendix 1), for future research.

Specimens of most species were herborized during the field work, and the herborized material will be deposited in a herbarium. Specimens were often picked on the outskirts or between sites, to minimize impact on sites.

Recording problems

On some steep and rugged mountains, such as Knutsholstinden, Tverbotnhorn and Surtningstinden, considerable time was spent identifying the sites. Site identification was especially challenging in steep slopes between 1700-1900 m, where topography was irregular and personal security had to be considered. Klanderud also spent much time identifying the historic sites in 1998 (Klanderud, 2000).

In total 254 sites were resampled during the field work, while five sites were not found and are labelled "not found in 2014" in Appendix 1.

On some mountains the topography was so steep that future samplers should probably not work alone: these are Svartdalspiggan, Knutsholtinden, Tverbotnhorn and Surtningstiden. I was accompanied by fellow master-student Jon-Peder Lindemann on the steepest mountains.

Misidentifications and nomenclature of species

The two species *Luzula confusa* and *Luzula arcuata* are very similar species. In 1930/31 both species were recorded as *L. confusa* by Jørgensen (1932), while they in 1998 also were recorded together, but as *L. arcuata* (Klanderud, 2000). In 2014 the great majority of the *L. confusa* and *L. arcuata* specimens were identified as *L. confusa*. Therefore *Luzula arcuata* has been changed to *Luzula confusa*. Because the species have not been recorded as two species previously, they have been kept together in 2014.

The Anthoxanthum species in the dataset was by Jørgensen and Klanderud identified as Anthoxanthum odoratum. In the 2014 sampling this species was identified as Anthoxanthum nipponicum.

Agrostis mertensii was by Jørgensen wrongly identified as *Avenella flexuosa* (Klanderud, 2000), and there is therefore uncertainty about how many *A. mertensii* were found in 1930-1931. Klanderud (2000) deleted her own 27 findings of *A. mertensii* in 1998 due to Jørgensen (1932)'s sampling error. In the 2014 dataset *A. mertensii* is again included. This is because more weight is put on the comparison between 1998 and 2014 in this study. Also, the uncertainty around how many *A. mertensii* were found in 1930-1931 is assumed to have no influence on the general results of this study.

The nomenclature of species was adjusted according to Lid & Lid (2005).

Almost all species have been determined to species level. There are however a few exceptions (Appendix 2): *Alchemilla* species, except from *Alchemilla* alpina, and *Taraxacum* species are identified to genus. *Hieracium* species are identified to *Hieracium* sect. *hieracium* and *Hieracium* sect. subalpina.

Data analysis

The resampled data from the 23 mountains in Jotunheimen was plotted into Microsoft Excel 2010, and prepared for analysis in R (version 3.5.0.) Before starting any analysis, all sites were considered one by one, and six sampled sites that did not conform to descriptions from Jørgensen (1932) and Klanderud (2000), and showed unrealistic deviances in species composition between 1998 and 2014, were eliminated from the dataset (Appendix 1). One site which was most likely affected by landslide was also deleted. A total of 247 sites have therefore been analysed.

To analyse changes in species richness and possible thermophilization along a westeast gradient in Jotunheimen, UTM-coordinates of sites were used to spread the sites along the west-east axis.

To analyse whether species richness is changing according to the microclimate on sites, and to study possible thermophilization, the species were used as a temperature proxy. The species' Ellenberg Temperature (T.) indicator value was found for 79 species (Appendix 3), and the average Ellenberg T. value for the 247 sites, for each of the samplings, was calculated. Because the Ellenberg T. values could not be found for all species, Nordic

Indicator values (Helvik et al., n.d.) and indicator values from Gottfried et al. (2012) were also tried. Analyses were run with all three indicator values (Appendix 3), to see whether results were consistent. The Ellenberg T. values were finally found to be the most appropriate indicator values. This is discussed later.

As a second way to see if species richness is changing according to the microclimate on sites, a simple classification based on site exposure (Körner & Paulsen, 2004) (Appendix 1) was used. Sites exposed towards the northeast (1° to 90° degrees) were put in the "coldest" group and given a 0.25 score. Southeast sites (91° to 180°) were given a 0.75 score, southwest sites (181° to 270°) a 1.00 score, and northwest sites (271° to 360°) a 0.50 score. Sites on flat ground (for example summit sites) were given a 0.60 point score.

To group the species according to climate requirements a climate optimum value was calculated for each species (Appendix 5). To do this, the distribution of each species within bioclimatic vegetation zones in Norway was identified from Lid & Lid (2005). These vegetation zones are (1) nemoral zone, (2) boreonemoral zone, (3) southboreal zone, (4) middleboreal zone, (5) northboreal zone, (6) lowalpine zone, (7) middlealpine zone and (8) highalpine zone. Each zone was given a number in order to present each species' range numerically (Appendix 5). A species' range was the vegetation zones where a species could be found. The median of a species' range (Appendix 5) was determined to represent the species' optimum value, and optimum values were calculated.

When analysing changes in species richness between 1930/31 and 1998, and between 1998 and 2014, a one sample t-test was used. The sampling years 1930/31, 1998 and 2014 were the explanatory variables, and species richness the response variable. To examine how species richness changed between 1930/31, 1998 and 2014 along the altitudinal gradient, linear regression with F-tests was used. Altitude and the sampling years were the explanatory variables, and species richness the response variable.

The relative change in species richness along the altitudinal gradient was also analysed with linear regression. The altitude was the explanatory variable and relative change in species richness between 1998 and 2014 the response variable. The relative changes were analysed because a change in species richness at high altitudes can be small, but important taken the low number of existing species into account. Relative change in species richness can be defined as the ratio of change, and is dependent on the initial species richness on the sites.

For changes in species richness along the west-east gradient, the sampling years and west-east gradient were the explanatory variables and change in species richness the response variable. For change in species richness according to initial species richness, species richness in 1930/31 and 1998 was the explanatory variable and change in number of species in 1930/31-1998 and 1998-2014 the response variable.

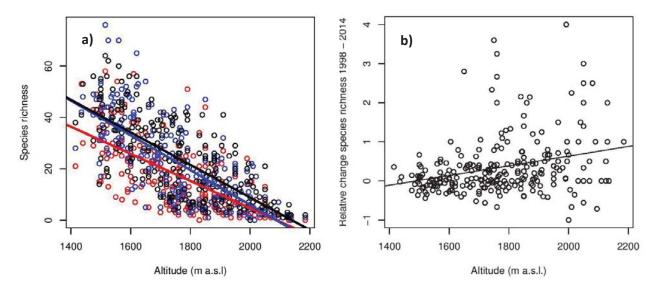
For change in number of species according to Ellenberg T. indicator values, Ellenberg T. indicator values for 1930/31 and 1998 was the explanatory variable, and change in number of species in 1930/31-1998 and 1998-2014 the response variable. Here analyses were weighted, meaning that sites with many species were given more importance than sites with few species. This was done to remove statistical noise, as sites with few species can give more arbitrary values. The analyses were however also run without weight, and results were unchanging.

In the exposure analysis, the exposure score of sites was the explanatory variable and change in number of species between 1998 – 2014 and 1930/31 – 1998 the response variables.

To analyse whether thermophilization is occurring, a one sample t-test was used; the explanatory variable being the years and the response variable the Ellenberg T. indicator values on sites. To analyse thermophilization along the altitudinal gradient, altitude and years were the explanatory variables and Ellenberg T. indicator values the response variable. To analyse thermophilization along the west-east gradient, UTM-coordinates and years were the explanatory variables and Ellenberg T. indicator values the response variable.

To see if any of the species in Jotunheimen showed significant changes in number of occurrences between 1998 and 2014, a randomization test with 999 permutations was run on the species (Appendix 3).

To compare groups with different climate optimum, along the altitudinal gradient, the species were divided in groups according to their optimum value (Appendix 5). The number of occurrences of each species was organized in altitudinal bands of 100 m. No statistical analysis has been conducted on the groups, but results are presented and discussed.


Results

Change in species richness between 1930, 1998 and 2014.

Species richness has increased on the sampled mountains in Jotunheimen between 1998 and 2014 (T-test, T = 3.88, p < 0.001), as it did between 1930-31 and 1998 (T = 9.49, p < 0.001).

Between 1930/31 and 1998, regression analysis shows a significant relationship between change in species richness and altitude (F-test, F = 32.24, R^2 = 0.113, p < 0.001), the increase in species richness being higher at lower altitudes. Between 1998 and 2014 there is no relationship between absolute change in species richness and altitude.

For the relative changes between 1998 and 2014, there is a highly significant relationship (F = 22.34, $R^2 = 0.080$, p < 0.001) between change in species richness and altitude, and at higher altitudes the relative increase is larger than at lower altitudes (Fig. 5b).

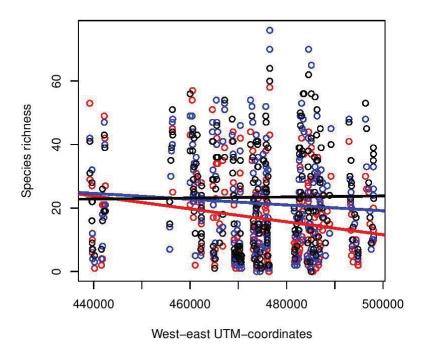


Figure 5. a) Species richness at different altitudes in Jotunheimen. Red line and circles represent the 1930/31 sampling, blue represents 1998 and black represents 2014. b) The relative change in species richness along the altitudinal gradient from 1998 to 2014.

Change in species richness along the west-east gradient

Between 1930/31 and 1998 there was a significant relationship between change in species richness and the west-east gradient (F = 9.49, R^2 = 0.033, p = 0.002). Species richness increased more in eastern parts of Jotunheimen than in western parts. Between 1998 and 2014 there is a continuation of this trend (F = 8.7, R^2 = 0.030, p = 0.003), with further increase of species richness in eastern Jotunheimen (Fig. 6).

In 1930/31 species richness was higher in western parts of Jotunheimen than in eastern parts (F = 10.03, R^2 = 0.035, p = 0.002) (Fig. 6). Between 1930/31 and 2014 this has changed, and in 2014 there is no relationship between species richness and the west-east gradient (F = 0.05, R^2 = -0.004, p = 0.832).

Figure 6. Species richness along the west-east gradient in 1930/31 (red circles and trendline), 1998 (blue) and 2014 (black).

Change in number of species according to initial species richness

Between 1930-31 and 1998 no significant relationship (F = 2.11, $R^2 = 0.005$, p = 0.147) between initial species richness and change in number of species can be observed (Fig. 7a). Species richness increased along the entire species richness gradient, although some of the most species-rich sites experienced species reduction (Fig. 7a).

Between 1998 and 2014, there was a significant relationship (F = 22.36, R² = 0.080, p < 0.001) between initial species richness and change in number of species (Fig. 7b). Species richness increased on species poor sites, but decreased towards sites with higher species richness, which have experienced species losses.

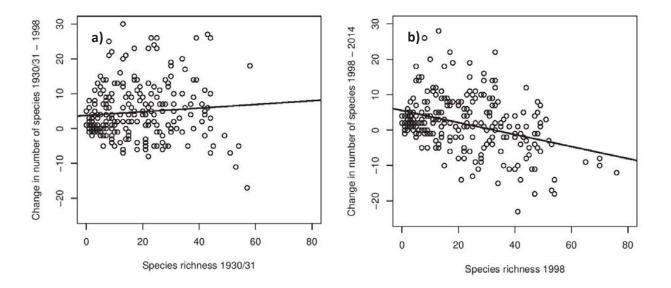
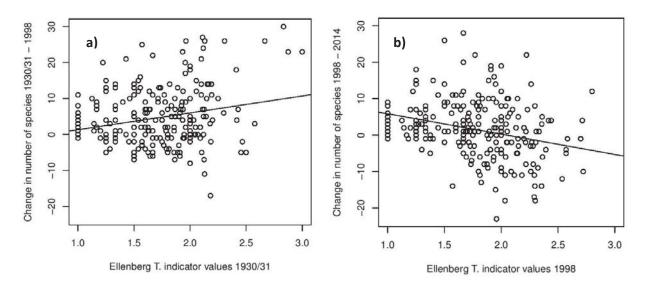



Figure 7. Change in number of species from (a) 1930-31 to 1998 and from (b) 1998 to 2014, according to initial species richness.

Change in number of species according to temperature indicator values

There is a significant relationship between the Ellenberg Temperature (T) indicator values and change in number of species, both for 1930/31 - 1998 (F = 11.08, Mean Sq = 3344.9, p = 0.001) (Fig. 8a) and for 1998 - 2014 (F = 17.78, Mean Sq = 5520.3, p < 0.001) (Fig. 8b). However, the trendlines are pointing in opposite directions. In 1930/31 - 1998 (Fig. 8a) sites with higher Ellenberg T. values experienced a higher increase in number of species than sites with lower Ellenberg T. values. Between 1998 and 2014 (Fig. 8b) sites with higher Ellenberg T. values experiences in number of species stagnation), compared to sites with lower Ellenberg T. values.

Analyses performed with Nordic Indicator values and indicator values from Gottfried et al. (2012), find the same significant relationships.

Figure 8. Change in number of species from (a) 1930/31 to 1998, according to Ellenberg T. indicator values for 1930/31, and for (b) 1998 - 2014 according to Ellenberg T. indicator values for 1998.

No relationship between site exposure and change in species richness could be observed between 1998 and 2014 (F = 0.57, Mean Sq = 33.828, p = 0.451). Between 1930/31 and 1998 there was a tendency (F = 3.67, Mean Sq = 217.182, p = 0.057), showing higher species increase on sites with high exposure (the "warmer" sites).

Thermophilization

Between 1998 and 2014 there is significant thermophilization within the study area (T-test, T = 5.87, p < 0.001). There is also thermophilization between 1930/31 and 1998 (T = 3.95, p < 0.001).

There seems to be a trend between altitude and thermophilization from 1930/31 to 1998 (Fig. 9a), indicating higher thermophilization at lower altitudes, but this apparent trend is not significant (F = 1.82, R^2 = 0.003, p = 0.179). Nor is there any relationship between thermophilization and altitude between 1998 and 2014 (F = 0.02, R^2 = -0.004, p = 0.895).

Neither from 1930/31 to 1998 nor from 1998 to 2014 is there any relationship between the west-east gradient and thermophilization (1930/31 – 1998, F = 0.79, $R^2 = -$ 0.001, p = 0.375) (1998 – 2014, F = 0.47, $R^2 = -0.002$, p = 0.493) (Fig. 9b). Between 1930/31 and 1998 Nordic Indicator values and indicator values from Gottfried et al. (2012) show significantly greater thermophilization in western parts of Jotunheimen (Nordic, F = 4.37, R² = 0.014, p = 0.038) (Gottfried, F = 5.30, R² = 0.017, p = 0.022). Between 1998 and 2014 indicator values from Gottfried et al. (2012) show greater thermophilization towards the east (F = 5.57, R² = 0.018, p = 0.019), and towards higher altitudes (F = 4.78, R² = 0.015, p = 0.030).

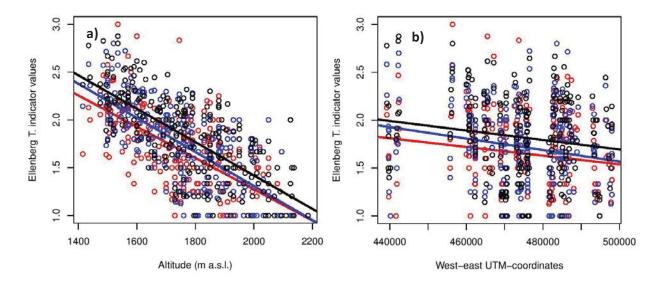


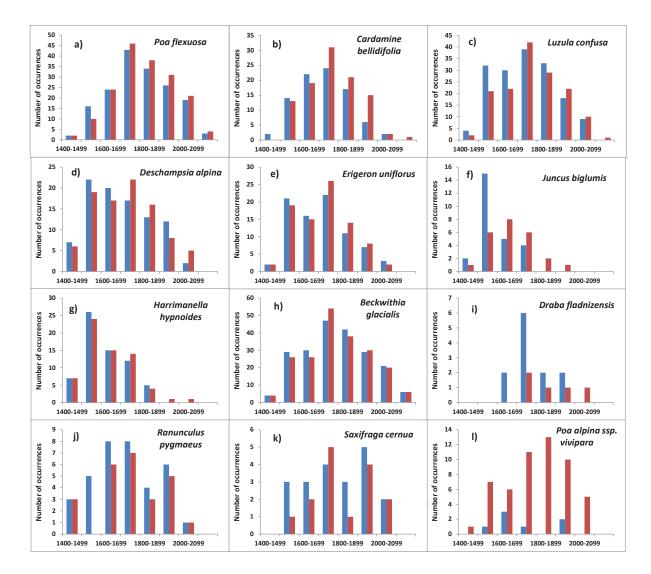
Figure 9. Thermophilization along an (a) altitudinal gradient and (b) west-east gradient, between 1930/31 (red circles and trendline), 1998 (blue) and 2014 (black).

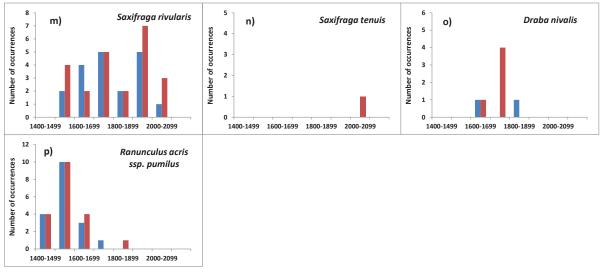
Changes in species groups with different climate optimum, along the altitudinal gradient

In the following analysis, changes when the number of occurrences is below 20 (in one or two plots) (Table 3) are ignored, as low numbers are easily influenced by arbitrary changes.

The only group showing reduction in the total number of occurrences between 1998 and 2014, is the Southboreal, Southboreal-Middleboreal group (SBor, SBor-MBor) (Table 3), containing species that prefer relatively high temperatures. The significant decrease in *Trientalis europea* (Randomizations, p = 0.029) (Appendix 3) can explain some of the observed reduction. The other groups are all increasing their total number of occurrences, and generally also seem to increase more at higher than lower altitudes, in terms of percent (relative) increase (Table 3). In terms of number of occurrences the groups Middleboreal, Middleboreal-Northboreal (MBor, Mbor-NBor) and Northboreal, Northboreal-Lowalpine (NBor, NBor-LAlp) also seem to increase considerably at lower altitudes. The only group at lower altitudes which shows a substantial reduction in number of occurrences between 1998 and 2014 is the Middlealpine, Middlealpine-Highalpine (MAlp, MAlp-HAlp) group, containing cold-adapted, high-altitude species. The observed decrease is greatest in the 1500-1599 m altitude band, but reduction in number of occurrences is also observed in the 1600 – 1699 m and 1400 – 1499 m bands.

Table 3. Number of occurrences of climate optimum groups, in 1998 and 2014, divided into 100 m altitudinalbands. Percent change between 1998 and 2014 is not shown when number of occurrences is below 20.Abbreviations: BNem = Boreonemoral, SBor = Southboreal, MBor = Middleboreal, NBor = Northboreal, LAlp =Lowalpine, MAlp = Middlealpine, HAlp = Highalpine.

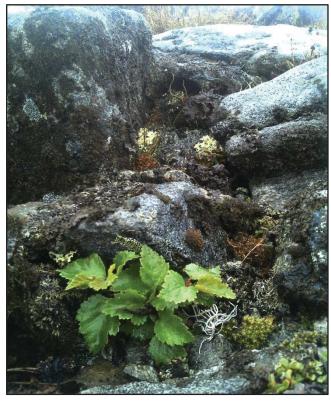

Number of occurrences and percent change (%) in groups												
Altitude (m a.s.l.)	Year	BNem, BNem-SBor	SBor, SBor-MBor	%	MBor, MBor-NBor	%	NBor, NBor-LAlp	%	LAlp, LAlp-Malp	%	MAlp, MAlp-HAlp	%
1400-1499	1998	0	10		46		70		173		37	
1400-1455	2014	3	10		48	4.3	71	1.4	175	1.2	32	-13.5
1500-1599	1998	1	51		222		330		809		196	
1300-1333	2014	2	47	-7.8	260	17.1	351	6.4	795	-1.7	160	-18.4
	1998	0	22		106		200		552		186	
1600-1699	2014	1	9		109	2.8	217	8.5	585	6.0	167	-10.2
1700 1700	1998	0	2		82		185		588		233	
1700-1799	2014	2	3		91	11.0	224	21.1	642	9.2	275	18.0
1000 1000	1998	0	0		21		60		288		167	
1800-1899	2014	0	1		29	38.1	96	60.0	361	25.3	183	9.6
1000 1000	1998	0	0		6		33		170		118	
1900-1999	2014	0	0		6		48	45.5	206	21.2	143	21.2
	1998	0	0		2		10		59		60	
2000-2099	2014	0	0		0		12		74	25.4	74	23.3
	1998	0	0		0		0		1		9	
2100-2199	2014	0	0		0		0		7		12	
Tatal	1998	1	85		485		888		2640		1006	
Total	2014	8	70	-17.6	543	12.0	1019	14.8	2845	7.8	1046	4.0


Species changes in the "MAlp, MAlp-HAlp" group, between 1998 and 2014

In the Middlealpine, Middlealpine-Highalpine (MAlp, MAlp-HAlp) group, which contains most of the highest-growing alpine plants in Jotunheimen, the only species experiencing a significant change in number of occurrences is *Poa alpina ssp. vivipara* (Randomizations, p = 0.001), which is increasing (Fig. 10l). None of the species in the group are experiencing significant reductions in number of occurrences (Appendix 3).

Seven of the species in the MAlp, MAlp-HAlp group seem to follow a tendency of reduction in number of occurrences at lower altitudes and increase at higher altitudes (Fig. 10a-g). These are abundant high-altitude species such as *Poa flexuosa* (Fig. 10a), *Cardamine bellidifolia* (Fig. 10b), *Luzula confusa* (Fig. 10c), *Deschampsia alpina* (Fig. 10d), *Erigeron uniflorus* (Fig. 10e), *Harrinmanella hypnoides* (Fig. 10g), and not so abundant *Juncus biglumis*

(Fig. 10f). The high-altitude species *Beckwithia glacialis* (Fig. 10h) seems to experience a small reduction in number of occurrences at lower elevations, but stagnates at higher altitudes. Three species, *Draba fladnizensis* (Fig. 10i), *Ranunculus pygmaeus* (Fig. 10j) and *Saxifraga cernua* (Fig. 10k), seem to experience a tendency of reduced number of occurrences along most of the altitudinal gradient. The species *Poa alpina ssp. vivipara* (Fig. 10l) shows an increase in number of occurrences along the entire altitudinal gradient. The last four species, *Saxifraga rivularis* (Fig. 10m), *Saxifraga tenuis* (Fig. 10n), *Draba nivalis* (Fig. 10o) and *Ranunculus acris ssp. pumilus* (Fig. 10p) do not fit into any of the above patterns.


Figure 10. Number of occurrences (Y-axis) of the species in the MAlp, MAlp-HAlp group, at different altitudinal bands of 1400-1499 m, 1500-1599 m, 1600-1699 m etcetera. Blue bars represent 1998, red bars 2014.

New altitudinal limits, altitudinal shifts and change in Poaceae family

In the 2014 sampling, a total of 57 species exceeded their recorded altitudinal limits in Norway (Appendix 2), when comparing with previous records (Lid & Lid, 2005). This is 37.3 % of the total number of species recorded in 2014. One of the species exceeding its recorded altitudinal limit was birch, *Betula pubescens* (Fig. 11), which was registered at 1740 m a.s.l. at Sikkilsdalshøa, 160 altitudinal meters higher than previous records (Appendix 2).

A total of 140 species were registered in Jotunheimen in 2014. In the 1998 and 1930/31 samplings, 138 and 125 species were registered, respectively (Appendix 2). A total of 127 species were registered both in 1998 and 2014. Between 1998 and 2014 these species on average experienced an upward shift of 33.2 altitudinal meters, the equivalent of 20.7 meters per decade.

Species of the Poaceae family (29 species registered) have expanded in Jotunheimen between 1998 and 2014. The total number of occurrences increased from 833 to 1119 (Appendix 2), which is a 34.3 % increase. Eleven of the species showed significant increase in number of occurrences (Appendix 3). None decreased significantly.

Figure 11. Specimen of *Betula pubescens* found on 1750 m a.s.l., Sikkilsdalshøa, 170 altitudinal meters higher than previous records in Norway (Lid & Lid, 2005). UTM-coordinates: west 0497710, north 6819223. This specimen was not found on any of the sites, and is not the same as the specimen found at 1740 m a.s.l. on Sikkildalshøa (see results above).

Signs of grazing

A total of 30 sites demonstrated signs of grazing on plants. Of the 30 sites, eight sites had signs of grazing on many plants (10 or more plants) while 22 sites had signs of grazing on a few plants (1-9 plants). Three sites on the high altitudes of Rauhamrane/Surtningssui had signs of extreme grazing, and nearly all specimens of *Beckwithia glacialis* and *Poa flexuosa* had been browsed (Fig. 13). Signs of heavy grazing on *Beckwithia glacialis* were also detected at high-altitude sites at Besshøi.

On 28 sites animal feces were registered. On three sites tracks with hoof prints from reindeer were registered. On two sites grazing sheep were also observed.

Signs of grazing and signs of herbivore presence were mainly observed in the east (Fig. 11), but also on the mountains Galdhøpiggen, Tverråtindan, Skauthøi and Spiterhøi, which are situated around Visdalen. In the western parts of Jotunheimen and around western Gjende (Fig. 1), signs of grazing and herbivore presence were fewer.

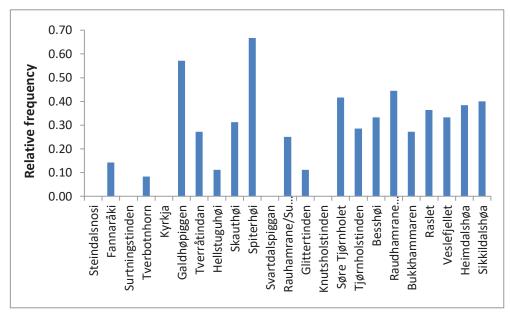


Figure 12. Signs of grazing and herbivore presence on the surveyed mountains, arranged from west to east.

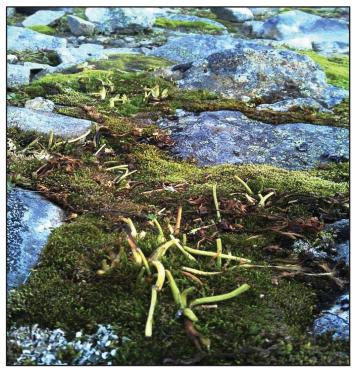


Figure 13. Signs of grazing on specimens of Beckwithia glacialis at Surtingssui, site number 20, 2070 m a.s.l.

Discussion

Change in species richness, new altitudinal limits and upward shifts

As expected, species richness in Jotunheimen has increased between 1998 and 2014. The increase of species richness is in line with other European studies (Grabherr et al., 1994; Jurasinski & Kreyling, 2007; Odland et al., 2010; Steinbauer et al., 2018; Wipf et al., 2013), and is a continuation of the trend observed in Jotunheimen between 1930-31 and 1998 (Klanderud & Birks, 2003).

In 1930/31- 1998 species richness increased more at lower than higher elevations. This is in line with findings of higher increase in species richness at lower rather than higher mountain summits in the Austrian Alps (Grabherr et al., 1994), and a similar tendency on Filefjell, Norway (Odland et al., 2010). In Jotunheimen, between 1998 and 2014, small or no relative increase in species richness was observed at the lower altitudes, and a higher relative increase was observed at the higher altitudes. It is difficult to find studies that can confirm this trend. The high relative increase at higher altitudes is, however, supported by reports of accelerated increase in species richness on summits in the Swiss Alps (Walther et al., 2005) and on many European summits (Steinbauer et al., 2018).

In 1998 a total of 40 species exceeded their recorded altitudinal limits (Klanderud, 2000), which was a 24,6 % of the total number of species (Klanderud & Birks, 2003). In 2014, 57 species and 37,3% of the total number of species, exceeded their recorded altitudinal limits (Lid & Lid, 2005). When a large proportion of the species are found at unrecorded altitudes, it might indicate that little work has been done to register the species' altitudinal limits. The increase from 24,6 % to 37,3 % might however imply that species are migrating upwards at a faster rate than before. The average upward shift rate of species in Jotunheimen, has between 1930/31-1998 and 1998-2014 also increased from 12 m per decade (Klanderud & Birks, 2003) to 20,3 m per decade. The 20,3 m per decade rate is in line with upward shifts reported by Lenoir et al. (2008) (29 m per decade) and Parolo & Rossi (2008) (24 m per decade).

Change in species richness along the west-east gradient

In 1930/31 - 1998 the species richness increase was most pronounced in eastern Jotunheimen and less pronounced in the west (Klanderud, 2000). Between 1998 and 2014

this trend continues, and species richness increases more in eastern Jotunheimen than in western parts. Klanderud & Birks (2003) suggested that increased snowfall in western Jotunheimen, in combination with steep topography causing erosion events, could be causing low species increase in the west. The advance of Storbreen in western Jotunheimen (from 1988 to 1995) and the simultaneous retreat of Gråsubreen in the east were considered indicators of a winter precipitation gradient within the study area, possibly impacting vegetation along a west-east axis (Klanderud, 2000). After the 1998 sampling however, both Storbreen in the west and Gråsubreen in the east have experienced large mass balance losses (Hanssen-Bauer et al., 2015; Kjøllmoen et al., 2010; NVE, 2018a). Winter precipitation in western Jotunheimen has also decreased since 1998. The trend of stagnation in species richness in westernmost Jotunheimen has however continued. It therefore seems unlikely that the historic increase in winter precipitation in western Jotunheimen, can explain the west-east gradient in increase of species richness.

In Jotunheimen reindeer and sheep are found in both west and east. Heavy grazing by herbivores has been found to reduce species richness in nutrient-poor ecosystems (Proulx & Mazumder, 1998). Moderate to low grazing has been found to reduce species richness in snowbeds and heaths with low productivity in Scandinavian mountains , but might increase species richness in productive habitats (Austrheim & Eriksson, 2001). Assuming that most sites in Jotunheimen (high altitudes and nutrient poor) are low productive, increased grazing pressure in western parts could explain why species richness stagnates. However, there are no indications of heavier grazing pressure in western Jotunheimen. Since 1998, the number of reindeer and sheep has probably remained the same in western Jotunheimen (Graffer, 2016; Lom Landbrukskontor, 2017) and increased in eastern parts of Jotunheimen (Grev, 2017; Landbrukskontoret for Sel og Vågå, 2017). During the 2014 field work, signs of grazing and signs of herbivore presence were also more frequent in eastern areas.

The probable increase in grazing pressure in eastern Jotunheimen should in theory decrease species richness in the east. The increased species richness in eastern Jotunheimen however signals that grazing might not be an important driver of the observed changes.

Increase in species richness has been found to be closely linked to climate warming on European summits (Steinbauer et al., 2018). Because there is a west-east gradient in increase of species richness in Jotunheimen, a stronger warming trend could be expected in the east. However, the temperature increase has been consistent in both western and

eastern Jotunheimen in 1998-2014, with only slight differences that can probably not explain the west-east gradient in increase of species richness.

Changes in species groups with different climate optimum, along the altitudinal gradient

The possible decline at lower elevations of species in the Middlealpine, Middlealpine-Highalpine group (MAlp, MAlp-HAlp), is in line with predictions that these species are vulnerable to competition from lower-altitude species shifting upwards when temperature rises (Alexander et al., 2015; Klanderud & Birks, 2003; Steinbauer et al., 2018; Sætersdal & Birks, 1997; Vittoz et al., 2009). It is also a continuation of the tendency observed by Klanderud (2000) in 1998, when several high-altitude species were declining at lower altitudes. Many of the same species have continued to decline in 1998-2014, as for example *Beckwithia glacialis, Ranunculus pygmeus, Poa flexuosa, Saxifraga cernua, Erigeron uniflorus*, and *Cerastium alpinum*. Some high-altitude species which did not decline at lower elevations in 1930/31-1998 now seem to decline. These are *Cardamine bellidifolia, Luzula confusa, Deschampsia alpina, Harrinmanella hypnoides, Juncus biglumis* and *Draba fladnizensis*.

Guisan et al. (1998) suggested that the alpine sedge *Carex curvula ssp. curvula* (not present in Jotunheimen) is limited by the competition for light by more competitive taller plants. Competitive exclusion of alpine and low-growing species by shading has also been reported by Vittoz et al. (2009). Several of the high-altitude species that in 1998-2014 are declining at lower elevations in Jotunheimen, are indeed small-stature plants that could be vulnerable to light competition, such as *Cardamine bellidifolia*, *Ranunculus pygmeus*, *Saxifraga cernua*, *Harrimanella hypnoides*, *Juncus biglumis* and *Draba fladnizensis*. The concurrent increase in number of occurrences of species from lower elevations (MBor, Mbor-NBor and NBor, NBor-LAlp groups) indicates that light competition, or competition for other resources, might have occurred.

Although many species in the MAlp, MAlp-HAlp group seem to decline at lower altitudes, none show a significant overall decline. Significant declines in number of occurrences of high-altitude species were neither recorded by Pauli et al. (2007) in the Austrian Alps, nor by Klanderud & Birks (2003) in 1998.

The Southboreal, Southboreal-Middleboreal group (SBor, SBor-MBor), consisting of species associated with a milder climate, also seems to decline. This group has a low total

number of occurrences, and has like the MAlp, MAlp-HAlp group not been tested statistically. Therefore, too much weight should perhaps not be put on these results. However, species have in several studies been found to shift both upwards and downwards in elevation (Chen et al., 2009; Crimmins et al., 2011; Lenoir et al., 2008). Mechanisms that could make species shift downwards are for example changes in snow cover duration or drought (Lenoir et al., 2010). Warmer temperatures can cause early snow melt and increase risk of frost damage on plants (Lenoir et al., 2010).

Change in number of species according to initial species richness

Between 1998 and 2014 the sites with highest initial species richness experience species loss, while initially species poor sites experience increase in species richness. It is not surprising that species richness increases on the initially species poor sites, because these sites are generally found at high altitudes, where increase in species richness has already been observed in many studies (Grabherr et al., 1994; Jurasinski & Kreyling, 2007; Odland et al., 2010; Pauli et al., 2012; Steinbauer et al., 2018; Wipf et al., 2013). On species rich sites, which are generally found at lower altitudes, species richness has also been found to increase (Britton et al., 2009; Klanderud & Birks, 2003). A species decline has however been observed at the Tibetan Plateau, where experimental warming by open top champers caused species loss in plots with initially high species richness (Klein et al., 2004).

Between 1930/31 and 1998, species richness increases both on species-rich and species-poor sites, but five of the six most species-rich sites experienced species losses. This indicates that the first signs of what later occurred in 1998-2014 can possibly already be observed in 1930/31-1998.

Heavy herbivore grazing may have caused species loss (Proulx & Mazumder, 1998) on species-rich sites in 1998-2014. Very few signs of heavy grazing were however registered at the most species-rich sites. Reindeer herders and sheep owners have neither observed any change in grazing patterns since 1998 (Graffer, 2016; Grev, 2017; Landbrukskontoret for Sel og Vågå, 2017; Solbakken, 2017). However, the grass *Nardus stricta*, which can be a dominant species where grazing pressure is high (Bele & Norderhaug, 2008), increased from 0 to 14 sites in 1998- 2014 (Appendix 2), and has become dominant on several low-elevation sites (Appendix 1). Many other grass species also increased between 1998 and 2014 (Appendices 2 and 3), among them *Festuca ovina* which like *Nardus stricta* has been found

to benefit from high grazing pressure (Eskelinen & Oksanen, 2006). However, increased temperature has also been observed to increase abundance and cover of grasses (Elmendorf et al., 2012; Walker et al., 2006).

Studies have found that addition of nitrogen in grassland ecosystems has caused the dominance of nitrogen-demanding grass-species and declines in other species (Silvertown, 1980; Silvertown et al., 2006; Vitousek et al., 1997). In Jotunheimen grass species might have become dominant on species-rich sites, causing competitive exclusion of neighbour species. Nitrogen (N) deposition rates found to cause biodiversity losses in British habitats vary between 500 to 4000 mg N/m²year, according to Maskell et al. (2010). This is larger than the amounts deposited in Jotunheimen (253-469 mg N/m²year). The N deposition in Jotunheimen has neither changed substantially between the two decades prior to 1998 and the years prior to 2014. If N deposition was an important driver of the species loss species rich sites, a similar species loss could have been expected in both samplings. This has not occurred. However, N deposition has been shown to have a negative cumulative effect on species richness in heathlands and grasslands (De Schrijver et al., 2011).

On the other hand, N deposition on nutrient-poor sites in Jotunheimen might have contributed to the increase in species richness at species poor sites (higher altitudes sites). However, a higher increase in species richness would have been expected in western parts of Jotunheimen, because N deposition rates are higher in the west. Nevertheless, species richness increases more in the east.

An alternative explanation for the species increase at higher altitudes is climate warming. Jotunheimen has since 1998 experienced a warming tendency, which might have facilitated species' upward migration into habitats that until recently were too harsh to colonize. Climate warming is by most authors considered the main driver of recent increase in species richness on European summits (Grabherr et al., 1994; Odland et al., 2010; Pauli et al., 2012; Steinbauer et al., 2018; Walther et al., 2005; Wipf et al., 2013). The increase of species richness on European summits has also been observed to be positively correlated with climate warming (Steinbauer et al., 2018).

An alternative hypothesis for the species loss on the most species-rich sites in 1998-2014, is that climate warming is causing the species loss. This could occur through competive exclusion of high-altitude species, which has been discussed earlier. Slow growing and shade intolerant alpine species (Sætersdal & Birks, 1997) might be facing new

competition for light and nutrients from new colonizers or already existing neighbours (Alexander et al., 2015).

The 1998-2014 stagnation in species richness at lower altitudes in Jotunheimen can most likely be discussed in the same manner.

Change in number of species according to temperature indicator values

The change in species richness in Jotunheimen, both in 1930/31-1998 and 1998-2014, is related to microclimate on sites. In 1930/31-1998 sites with warmer microclimate experience a higher increase in species richness, and sites with colder microclimate experience a lower increase. In 1998-2014 the relationship has been reversed.

I had suspected that the sites with the warmest microclimate would experience species decline in 1998-2014, because high-altitude species on the warmest sites would be exposed to competition from lower-altitude species. However, no clear trend of reduced species richness on sites with warmer microclimate was observed.

Exposure is a proxy for temperature. However, because parameters such as altitude and slope inclination of sites are not included in the proxy, the exposure is probably an imprecise way of measuring temperature on sites, which might explain why the exposure results do not concur with the results from the Ellenberg T. indicator values. The tendency of higher species richness on warmer sites between 1930-31 and 1998 is however in line with results from the Ellenberg T. indicator values.

Thermophilization

Thermophilization is occurring both in 1930/31-1998 and 1998-2014, in line with the findings of Erschbamer et al. (2011) and Gottfried et al. (2012). Plant communities are hence becoming "warmer".

Thermophilization is occurring along the entire altitudinal gradient, both in 1930/31-1998 and 1998-2014. The stagnation in species richness on lower altitudes in 1998-2014 and the concurrent thermophilization suggest that warmer temperature-adapted species have become more common, while cold-adapted species have declined. However, no statistical tests have been conducted.

Thermophilization is also occurring along the entire west-east gradient in Jotunheimen, both in 1930/31-1998 and 1998-2014, according to the Ellenberg T. values.

However, both Nordic Indicator Values and Gottfried et al. (2012) values in 1930/31-1998 find higher thermophilization in western parts of Jotunheimen. In 1930/31-1998, it is therefore uncertain whether there has been a west-east gradient in thermophilization or not. Thermophilization has in any case occurred in the west, while species richness on the westernmost mountains seems to stagnate. This suggests that warmer temperature-adapted species have become more common, while cold-adapted species have declined.

One of the disadvantages with the Gottfried et al. (2012) indicator values is the lack of an indicator value for the species *Poa flexuosa*, a frequent high-altitude species in Jotunheimen. If *Poa flexuosa* is given the value 1 (the same value as *Poa flexuosa* is given by the other indicator values) and included in the analysis with the Gottfried values, the westeast thermophilization gradient detected by the Gottfried et al. (2012) values in 1930/31-1998, becomes insignificant. A downside with Nordic Indicator values is that many species are given the value 1. This means that almost all alpine species are given the same value, no matter whether they grow on the treeline or on the highest summits. The Ellenberg T. indicator values mostly give alpine species values from 1 to 3, and therefore offer more chances to detect changes within the alpine plant communities. However, many species lack an Ellenberg T. indicator value, so all indicator values have downsides. Nevertheless, the Ellenberg T. indicator values were considered the best alternative.

Possible drivers for the observed changes

Climate change

In Jotunheimen the regional values show that spring, summer and autumn temperature have increased since 1998, which makes it likely that less precipitation is falling as snow in spring and autumn, and that snowmelt is increasing (Räisänen, 2008). Since 1998 winter precipitation has also decreased in western Jotunheimen and remained stable in eastern Jotunheimen. The glaciers in Jotunheimen are losing mass balance (Hanssen-Bauer et al., 2015; Kjøllmoen et al., 2010; NVE, 2018a), and although there is no direct link between melting glaciers and snow cover, "the same climatic phenomena" causing melting glaciers "will also influence snowmelt" (Klanderud, 2000) and snow cover on the ground.

Higher temperatures and possibly fewer days with snow cover have most likely prolonged the growth season in Jotunheimen since 1998. Based on satellite data and

phenology data from birch, Karlsen et al. (2009) found that the Jotunheimen area has extended its growth season by between 1 and 3 weeks in the 1982 – 2016 period. A prolonged growth season has been demonstrated to influence plant communities in alpine and tundra ecosystems (Galen & Stanton, 1995; Henry & Molau, 1997).

Before the 1998 sampling there had been no temperature increase in summer or autumn in Jotunheimen. Much of the warming has therefore occurred after 1998, and has taken place both in the west and east. There are many signs of the recent warming. During the field work, numerous diminishing permanent snow fields were observed. The recent melting was evident because rocks revealed by the melting snow and ice, had not yet been colonized by lichens (Fig. 14). On several occasions site descriptions from Klanderud (2000) did not fit because permanent snow fields included in the site descriptions had disappeared.

Figure 14. The photo was taken on Galdhøpiggen, August 2. The grey areas around the snow fields have recently been deglaciated, and are barren and free from lichens. The black areas are black because of lichen growth.

Grazing

The sheep in Jotunheimen seldom browse above 1500 m (Landbrukskontoret for Sel og Vågå, 2017; Solbakken, 2017) where most sites are situated. During the summer of 2014, sheep were once observed to browse above 1500 m (personal observation). Sheep grazing

in the study area may therefore not be relevant to the general changes observed in this study.

The reindeer mostly browse between 1000 and 1500 m a.s.l. in Jotunheimen, according to Grev (2017). However, during warm days of the field work, at Søre Tjørnholet, hundreds of reindeer were observed on snow fields above 1900 m a.s.l. Smaller herds were also observed on Sikkildalshøa, Raslet and Rasletinden.

Reindeer on Hardangervidda have been found to show specific preference for fresh Salix herbacea leaves in the month of June (Gaare & Skogland, 1971). Increased grazing on S. herbacea should decrease, not increase the number of occurrences of this species. Yet S. herbacea increases significantly in Jotunheimen in 1998-2014 (Appendix 3). In July Avenella flexuosa was found to be one of the most important grazing plants for reindeer on Hardangervidda, along with Solidago virgaurea and Hieracium alpina (Gaare & Skogland, 1971). However, in Jotunheimen, Avenella flexuosa, Solidago virgaurea and Hieracium sect. subalpina have all increased their total number of occurrences between 1998 and 2014 (Appendix 2). There are therefore no indications of intensified grazing on preferred plants. Although severe grazing damage on Beckwithia glacialis specimens at high altitudes was observed during the field work, no decline in B. galcialis at high altitudes has been observed.

In spite of observations of substantial grazing damage on some high elevation sites, there were generally few signs of grazing on the majority of the sites in Jotunheimen.

Natural succession

According to Matthews (1992) mid-alpine areas above 1500 m a.s.l, around Storbreen in Jotunheimen, deglaciated for more than 220 years, experience a simple succession pattern: first-pioneer species are typically *Poa alpina*, *Cerastium alpinum* and *Cerastium cerastoides*, while typical late successional typical species are *Salix herbaceae* and *Bistorta vivipara*. Late successional species such as *Salix glauca*, *Salix lanata*, *Betula nana*, *Phyllodoce caerula* and *Empetrium nigrum* do not normally appear at such altitudes, due to the severe environmental conditions (Matthews, 1992). If the recent changes in Jotunheimen were caused by natural succession, it would therefore be difficult to explain the findings of *Betula pubescens* specimens above 1700 m a.s.l. (Glittertind and Sikkilsdalshøa), or findings of specimens of late successional species such as *Empetrum nigrum* (1965 m a.s.l.), *Salix glauca* (1950 m a.s.l.) and *Salix lanata* (1905 m a.s.l.) breaking previous altitudinal records.

According to the findings by Matthews (1992), the upward expansion of such species should be attributed to other factors than natural succession.

In Scandinavia, The Little Ice Age maxima has been dated to 1750 (Nesje & Dahl, 2003). The species in Jotunheimen therefore probably have had more than 200 years to recolonize areas lost during the Little Ice Age. If the recent increase in species richness at higher altitudes is caused by natural succession, it therefore seems unlikely that species have not colonized earlier.

Pseudoturnover

Species have most likely been overlooked during the fieldwork, especially on the most species-rich sites. Large species numbers combined with time pressure make it difficult not to overlook any species. This problem has however also been observed by Klanderud (personal communication) and Jørgensen (1932). It can be argued that the possible decline of high-altitude species ("MAlp, MAlp-HAlp" group) at lower elevations, is caused by such sampling errors. Several of the species in the "MAlp, MAlp-HAlp" group are small stature, and are easier overlooked than taller lower-altitude species. However, if a systematic overlooking of small stature high-altitude species was a pattern during the 2014 field work, it could be expected that other small stature species were also overlooked. However, *Epilobium anagallidifolium, Euphrasia wettsteinii, Gentiana nivalis, Omalotheca supina* and *Saxifraga stellaris* are examples of small stature species that in 1998-2014 have increased in number of occurrences at lower elevations in Jotunheimen.

Finding the correct sites was in some cases difficult. A few of the sites sampled in 1998 might in 2014 have been changed for similar sites nearby. This should however be of small importance to the general results. Klanderud (2000) states that: "as the historic and recent records are always compared within altitudinal bands rather than site-by-site, small sampling inaccuracies should be averaged out". Some sites, such as summits, where species richness has increased between 1998 and 2014, are however difficult to confuse with other sites, so there can be small doubt about the changes observed here.

Many of the species that are found at higher altitudes than previously recorded, such as *Betula pubescens*, *Salix glauca*, *Salix lanata* and *Empetrium nigrum*, are easy to detect, and should have been recorded if they were present in 1998.

Tourism

Tourism has probably increased within the study area since 1998. Most visited is Veslefjellet, where thousands of hikers pass each year on their way from Besseggen (Klanderud, 2000). Hikers can act as seed dispersal vectors (Mount & Pickering, 2009), but can also kill plants by repetitive trampling (Cole, 2004; Monz et al., 2010). Hiking disturbance might also create micro-sites apt for seed germination and can therefore have a positive effect on species richness (Klanderud, 2000). At the Veslefjellet summit, species richness increased from 6 to 20 species between 1998 and 2014 (Appendix 1), and disturbances from hiking might have had a positive effect on species richness. On other summit sites visited by hikers, such as Bukkhammaren and Sikkildalshøa, species richness has also increased from 1998 to 2014 (Appendix 1). However, species richness has also increased on summits where fewer people hike, such as Raslet, Svartdalspiggan and Spiterhøi and Hellstuguhøi among others. There is therefore no clear difference between summit sites frequently crossed by hikers and those that are not.

In Jotunheimen most tourists keep to the footpaths. During the 2014 field work, only a few hikers were observed outside marked paths. The majority of sites sampled in Jotunheimen are situated dozens or hundreds of meters away from the paths hikers usually frequent. Of the 254 sampled sites, only 18 are situated where hikers frequently cross. These are Veslefjellet (sites 2,6), Surtningssui (sites 14-17), Kyrkja (site 13), Bukkhammaren (sites 8,14), Sikkilsdalshøa (sites 5,6,9,10) and Glittertinden (sites 2,3,5,7,8) (Klanderud, 2000) (Appendix 1). It therefore seems unlikely that hiking disturbances can explain the general results of this study. However, hiking disturbances might have had effects on specific sites. To make further assessments more investigation is needed.

Conclusions

Major changes have occurred in Jotunheimen from 1998 to 2014. Species richness has increased at higher elevations, while species richness at lower elevations has stagnated. Cold-adapted species have possibly declined at lower elevations, while higher temperatureadapted species at lower elevations seem to increase in number of occurrences. The most likely driver of these changes is climate warming, and a strong warming tendency is observed in Jotunheimen between 1998 and 2014. More investigation is however needed to determine the impacts of large herbivore grazing and nitrogen deposition. It is unlikely that natural succession since the last Ice Age, pseudoturnover or tourism can explain the general results of this study.

Walther et al. (2005) states that "future studies should focus on the lower margins of alpine species' distribution", where a retreat in species' ranges can first be detected. Because high-altitude species are possibly declining at lower elevations in Jotunheimen, it is important that monitoring on the lower elevations continues. High-altitude species are still frequent in the lower altitude bands, but with unknown amounts of accumulated extinction debt (Dullinger et al., 2012a) and predicted climate warming, it is important to monitor for future changes. High-altitude species might still find suitable microhabitats on the colder north faces of the mountains in Jotunheimen (Scherrer & Koerner, 2010; Scherrer & Körner, 2011), which are scarcely represented in this study. Either way, monitoring of the lower range limits of high-altitude species should be intensified, so that changes do not occur unnoticed.

References

Aas, W. (2017). Nitrogennedfall i Jotunheimen-området (e-mail to Wenche Aas 08.12.2017).

Alexander, J. M., Diez, J. M. & Levine, J. M. (2015). Novel competitors shape species/'responses to climate change. *Nature*, 525 (7570): 515-518.

- Aune, B. (1993). *Temperaturnormaler, normalperiode 1961-1990*. DNMI Klima. Oslo: The Norwegian Meteorological Institute.
- Austrheim, G. & Eriksson, O. (2001). Plant species diversity and grazing in the Scandinavian mountains-patterns and processes at different spatial scales. *Ecography*, 24 (6): 683-695.
- Bele, B. & Norderhaug, A. (2008). Bondens kulturmarksflora for Midt-Norge'. *Bioforsk* FOKUS, 3 (9): 1-121.
- Britton, A. J., Beale, C. M., Towers, W. & Hewison, R. L. (2009). Biodiversity gains and losses:
 evidence for homogenisation of Scottish alpine vegetation. *Biological conservation*, 142 (8): 1728-1739.
- Callaway, R. M., Brooker, R., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., Paolini, L., Pugnaire, F. I., Newingham, B. & Aschehoug, E. T. (2002). Positive interactions among alpine plants increase with stress. *Nature*, 417 (6891): 844-848.
- Chen, B., Zhang, X., Tao, J., Wu, J., Wang, J., Shi, P., Zhang, Y. & Yu, C. (2014). The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. *Agricultural and Forest Meteorology*, 189: 11-18.
- Chen, I.-C., Shiu, H.-J., Benedick, S., Holloway, J. D., Chey, V. K., Barlow, H. S., Hill, J. K. & Thomas, C. D. (2009). Elevation increases in moth assemblages over 42 years on a tropical mountain. *Proceedings of the National Academy of Sciences*, 106 (5): 1479-1483.
- Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. *Science*, 333 (6045): 1024-1026.
- Cole, D. N. (2004). Environmental impacts of outdoor recreation in wildlands. *Society and resource management: A summary of knowledge*: 107-116.

- Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R.
 (2011). Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. *Science*, 331 (6015): 324-327.
- De Schrijver, A., De Frenne, P., Ampoorter, E., Van Nevel, L., Demey, A., Wuyts, K. & Verheyen, K. (2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. *Global Ecology and Biogeography*, 20 (6): 803-816.
- Dolezal, J., Dvorsky, M., Kopecky, M., Liancourt, P., Hiiesalu, I., Macek, M., Altman, J., Chlumska, Z., Rehakova, K. & Capkova, K. (2016). Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. *Scientific reports*, 6: 24881.
- Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner,
 W., Plutzar, C., Leitner, M. & Mang, T. (2012a). Extinction debt of high-mountain
 plants under twenty-first-century climate change. *Nature Climate Change*, 2 (8): 619-622.
- Dullinger, S., Willner, W., Plutzar, C., Englisch, T., Schratt-Ehrendorfer, L., Moser, D., Ertl, S.,
 Essl, F. & Niklfeld, H. (2012b). Post-glacial migration lag restricts range filling of
 plants in the European Alps. *Global Ecology and Biogeography*, 21 (8): 829-840.
- Elmendorf, S. C., Henry, G. H., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. & Day, T. A. (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. *Ecology letters*, 15 (2): 164-175.
- Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araújo, M. B.,
 Pearman, P. B., Le Lay, G., Piedallu, C. & Albert, C. H. (2011). 21st century climate change threatens mountain flora unequally across Europe. *Global Change Biology*, 17 (7): 2330-2341.
- Erschbamer, B., Unterluggauer, P., Winkler, E. & Mallaun, M. (2011). Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). *Preslia*, 83 (3): 387.
- Eskelinen, A. & Oksanen, J. (2006). Changes in the abundance, composition and species richness of mountain vegetation in relation to summer grazing by reindeer. *Journal of Vegetation Science*, 17 (2): 245-254.

- Gaare, E. & Skogland, T. (1971). Villreinens næringsvaner. Hardangervidda: juli—desember 1970. Progresjonsrapport. V Utforskningen, Direktoratet for vilt og ferskvannsfisk. Trondheim: 383-387.
- Galen, C. & Stanton, M. L. (1995). Responses of snowbed plant species to changes in growing-season length. *Ecology*, 76 (5): 1546-1557.
- Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B. & Kazakis, G. (2012). Continent-wide response of mountain vegetation to climate change. *Nature Climate Change*, 2 (2): 111-115.
- Grabherr, G., Gottfried, M. & Pauli, H. (1994). CLIMATE EFFECTS ON MOUNTAIN PLANTS. *Nature*, 369 (6480): 448-448. doi: 10.1038/369448a0.
- Graffer, H. N. (2016). *Tamreindrifta i Jotunheimen* (e-mail to Hans Nørstnes Graffer 12.15.2016).
- Grev, P. (2017). *Interview with chairman at Vågå Tamreinlag, Pål Grev* (Telephone interview 13.10.2017).
- Guisan, A., Theurillat, J. P. & Kienast, F. (1998). Predicting the potential distribution of plant species in an alpine environment. *Journal of Vegetation Science*, 9 (1): 65-74.
- Hanssen-Bauer, I., Drange, H., Førland, E., Roald, L., Børsheim, K., Hisdal, H., Lawrence, D., Nesje, A., Sandven, S. & Sorteberg, A. (2015). *Klima i Norge 2100*. NCCS Report No. 2/2015. Available at: <u>https://cms.met.no/site/2/klimaservicesenteret/rapporter-og-</u> publikasjoner/ attachment/6616? ts=14ff3d4eeb8 (accessed: 04.12.2017).
- Haugum, S. V. (2016). The effect of grazing and hiking on the elevational range shift of vascular plant species in the Scandes during recent decades. Master' thesis. Bergen: University of Bergen. Available at: <u>http://dspace.uib.no/handle/1956/15830</u> (accessed: 11.11.2017).
- Helvik, I., Orbán, I., Aronsson, M. & Birks, J. (n.d.). *Climate "indicator values" for the native nordic flora a first attempt*. Unpublished manuscript.
- Henry, G. & Molau, U. (1997). Tundra plants and climate change: the International Tundra Experiment (ITEX). *Global Change Biology*, 3 (S1): 1-9.
- Jurasinski, G. & Kreyling, J. (2007). Upward shift of alpine plants increases floristic similarity of mountain summits. *Journal of Vegetation Science*, 18 (5): 711-718.
- Jørgensen, R. (1932). Karplantenes høidegrenser i Jotunheimen. *Nyt Magazin for Naturvidenskaberne* (72): 1-128.

- Karlsen, S. R., Høgda, K. A., Wielgolaski, F. E., Tolvanen, A., Tømmervik, H., Poikolainen, J. &
 Kubin, E. (2009). Growing-season trends in Fennoscandia 1982–2006, determined
 from satellite and phenology data. *Climate Research*, 39 (3): 275-286.
- Kjøllmoen, B., Andreassen, L. M., Elvehøy, H., Jackson, M. & Giesen, R. H. (2010). *Glaciological investigations in Norway in 2009*: NVE.
- Klanderud, K. (2000). *Recent changes in the altitudinal distribution of vascular plants in Jotunheimen, central south Norway*. Master's thesis. Bergen.
- Klanderud, K. & Birks, H. J. B. (2003). Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. *The Holocene*, 13 (1): 1-6.
- Klein, J. A., Harte, J. & Zhao, X. Q. (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. *Ecology Letters*, 7 (12): 1170-1179.
- Körner, C. & Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. *Journal of biogeography*, 31 (5): 713-732.
- Landbrukskontoret for Sel og Vågå. (2017). *Jotunheimen beitedyr* (e-mail to Bjørn Tore Karlstad at Landbrukskontoret for Sel og Vågå 12.05.2017).
- Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. *science*, 320 (5884): 1768-1771.
- Lenoir, J., Gégout, J. C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., Dullinger,
 S., Pauli, H., Willner, W. & Svenning, J. C. (2010). Going against the flow: potential
 mechanisms for unexpected downslope range shifts in a warming climate.
 Ecography, 33 (2): 295-303.
- Lesica, P. & McCune, B. (2004). Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. *Journal of Vegetation Science*, 15 (5): 679-690.
- Lid, J. & Lid, D. (2005). Norsk flora. 7th ed. Oslo: Det Norske Samlaget.
- Lom Landbrukskontor. (2017). *Beitedyr Jotunheimen* (E-mail to Lom Landbrukskontor 12.05.2017).
- Maskell, L. C., Smart, S. M., Bullock, J. M., Thompson, K. & Stevens, C. J. (2010). Nitrogen deposition causes widespread loss of species richness in British habitats. *Global Change Biology*, 16 (2): 671-679.

Matthews, J. A. (1992). *The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands*: Cambridge University Press.

- Monz, C. A., Cole, D. N., Leung, Y.-F. & Marion, J. L. (2010). Sustaining visitor use in protected areas: future opportunities in recreation ecology research based on the USA experience. *Environmental management*, 45 (3): 551-562.
- Mount, A. & Pickering, C. M. (2009). Testing the capacity of clothing to act as a vector for non-native seed in protected areas. *Journal of Environmental Management*, 91 (1): 168-179.
- Mølmen, Ø. (1975). Viltbiologiske forundersøkelser i Jotunheimen/Breheimen : fangst og jakt på villrein : (3) : Felt 8 : (en registrering av fornminner og andre opplysninger fra fangst og jakt på villrein i områdene mellom Tafjord, Valldal, Romsdalen, Lesja og Skjåk), vol. (3). Oslo: Norges vassdrags- og elektrisitetsvesen.
- Nesje, A. & Dahl, S. O. (2003). The 'Little Ice Age'–only temperature? *The Holocene*, 13 (1): 139-145.
- NVE. (2018a). *Klimaprodukter bre*. Available at: <u>http://glacier.nve.no/glacier/viewer/ci/no/</u> (accessed: 31.10.2018).
- NVE. (2018b). NVEs Breatlas. Available at: <u>https://gis3.nve.no/link/?link=breatlas&layer=8&field=BREID&value=2608&buffer=1</u> 0000 (accessed: 31.10.2018).
- Odland, A., Høitomt, T. & Olsen, S. L. (2010). Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. *Arctic, Antarctic, and Alpine Research*, 42 (4): 458-470.
- Parolo, G. & Rossi, G. (2008). Upward migration of vascular plants following a climate warming trend in the Alps. *Basic and Applied Ecology*, 9 (2): 100-107.
- Pauchard, A., Kueffer, C., Dietz, H., Daehler, C. C., Alexander, J., Edwards, P. J., Arévalo, J. R.,
 Cavieres, L. A., Guisan, A. & Haider, S. (2009). Ain't no mountain high enough: plant
 invasions reaching new elevations. *Frontiers in Ecology and the Environment*, 7 (9):
 479-486.
- Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr, G. (2007). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. *Global change biology*, 13 (1): 147-156.

- Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., Coldea,
 G., Dick, J., Erschbamer, B. & Calzado, R. F. (2012). Recent plant diversity changes on
 Europe's mountain summits. *Science*, 336 (6079): 353-355.
- Proulx, M. & Mazumder, A. (1998). Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. *Ecology*, 79 (8): 2581-2592.
- Rolland, C. (2003). Spatial and seasonal variations of air temperature lapse rates in Alpine regions. *Journal of Climate*, 16 (7): 1032-1046.
- Räisänen, J. (2008). Warmer climate: less or more snow? *Climate Dynamics*, 30 (2-3): 307-319.
- Scherrer, D. & Koerner, C. (2010). Infra-red thermometry of alpine landscapes challenges climatic warming projections. *Global Change Biology*, 16 (9): 2602-2613.
- Scherrer, D. & Körner, C. (2011). Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. *Journal of biogeography*, 38 (2): 406-416.
- Silvertown, J. (1980). The dynamics of a grassland ecosystem: botanical equilibrium in the Park Grass Experiment. *Journal of Applied Ecology*: 491-504.
- Silvertown, J., Poulton, P., Johnston, E., Edwards, G., Heard, M. & Biss, P. M. (2006). The
 Park Grass Experiment 1856–2006: its contribution to ecology. *Journal of Ecology*, 94 (4): 801-814.
- Snøtun, M. (2013). Vest-Jotunheimen villreinområde. Available at: <u>http://www.nasjonalparkstyre.no/Jotunheimen/Verneomrade/villrein/</u> (accessed: 10.12.2017).
- Solbakken, T. (2017). *Telephone interview with chairman in Lom Sau og Geit* (14.11.2017).
- Solem, R. (2017). *Telephone interview with Nature Inspector Rigmor Solem in Jotunheimen and Utladalen* (08.11.2017).
- Speed, J. D., Austrheim, G., Hester, A. J. & Mysterud, A. (2012). Elevational advance of alpine plant communities is buffered by herbivory. *Journal of Vegetation Science*, 23 (4): 617-625.
- Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C.,
 Winkler, M., Bardy-Durchhalter, M. & Barni, E. (2018). Accelerated increase in plant
 species richness on mountain summits is linked to warming. *Nature*, 556 (7700): 231.

- Sætersdal, M. & Birks, H. J. B. (1997). A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. *Journal of Biogeography*, 24 (2): 127-152.
- The Norwegian Meteorological Institute. (n.d.). *eKlima*. Available at: <u>http://sharki.oslo.dnmi.no/portal/page? pageid=73,39035,73 39049& dad=portal&</u> <u>schema=PORTAL</u> (accessed: 10.11.2017).
- The Norwegian Water Resources and Energy Directorate, Institute, T. N. M. & Kartverket. (n.d.). *Normal annual precipitation (1971-2000)*. Available at: <u>http://www.senorge.no/index.html?p=klima</u> (accessed: 10.12.2017).
- Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H. & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. *Ecological applications*, 7 (3): 737-750.
- Vittoz, P., Randin, C., Dutoit, A., Bonnet, F. & Hegg, O. (2009). Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. *Global Change Biology*, 15 (1): 209-220.
- Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V. & Carroll, A. B. (2006). Plant community responses to experimental warming across the tundra biome. *Proceedings of the National Academy of Sciences*, 103 (5): 1342-1346.
- Walther, G.-R., Beißner, S. & Burga, C. A. (2005). Trends in the upward shift of alpine plants. *Journal of Vegetation Science*, 16 (5): 541-548.
- Wipf, S., Stöckli, V., Herz, K. & Rixen, C. (2013). The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. *Plant Ecology & Diversity*, 6 (3-4): 447-455.

Appendix 1

Site descriptions and species list

Appendix 1 is a continuation of site descriptions and species lists from Klanderud (2000) and Jørgensen (1932). UTM-coordinates (Coordinates system WGS84, zone 32 V, standard) from all sites have been included in the appendix. New sites established in 2014, which were excluded from analysis, have been included and labelled "new site". Species abbreviations are explained in Appendix 2.

The species are as in 1998 (Klanderud, 2000) given a number on each site, indicating their abundance. 1 = one

specimen. 5 = two to several specimens. 10 = dominant/found everywhere or nearly everywhere.

Sikkilsdalshøa, 1778 m

13.07-15.07 2014

- 1. UTM: 0496358 6819153. 1440 m. The only course of a brook/soak found which runs in a southwest direction (250° SW). 11° slope.
- 2. UTM: 0496586 6819417. 1505 m. Course of a brook, moist soaks. 280° W, 10° slope.
- UTM: 0497012 6919524. 1600 m. In the steeper part of the slope (20°) towards the top-ridge. Moist patch of vegetation in between numerous small stones. 285° W.
- 4. UTM: 0497279 6819470. 1660 m. Same west facing slope (21°). Moist moss covered patch on the stony ground. Small brook surfaces among the stones.
- 7. UTM: 0497545 6819772. 1730 m. The first top plateau, even, dry plain with stones and mosses. 250° NW.
- 9. UTM: 0497782 6819171. 1750 m. In the northwest slope up towards the summit. Even, dry plain with small stones and mosses. Marked path crosses through the site.
- 10. UTM: 0498052 6818818. 1778 m. Summit. Stony and dry. Rocky outcrops give shelter. Marked path frequently used.
- UTM: 0498012 6818638. 1740 m. Down from the summit. Stony uneven slope (32°) facing 220° SSW. 20 m east of the path, patches of vegetation on the dry ground.
- 6. UTM: 0497985 6818607. 1720 m. Same slope, 28°. Close to a one meter high cairn of stones. Path crosses through the site. Stony and dry.
- 5. UTM: 0497996 6818521. 1690 m. Same stony slope. Grassy and moist. 5 m east of the path.

Site	1	2	3	4	5	6	7	8	9	10
M a.s.l.	1440	1505	1600	1660	1690	1720	1730	1737	1750	1778
Beck gla	5		5	10		1	5	1	5	5
Luz con						1	10	5	1	1
Poa fle		5			1		1			5
Sal her	10	5	10	10	5	5	5	5	5	
Sil aca	1	5	10	1	1	10		10	10	5
Eri uni	1	1	5		1	5		1	1	1
Cer alp		5	5		5	1	10	5	1	10
Car bel			5	5		5	5	1		1
Sib pro	10	5	10	5	1	5				
Tri spi		1	1		1	5		5	1	1
Fes viv			1	5	1	5	10	5		5
Rho ros	5	5	5		1	5		5		1
Sax opp								5		5

Avetela	-	1	-		-	1		F	F	-
Ant alp Bis viv	5 10	1 5	5 5	5	5 5	1 10		5 5	5	5
Sax cer	10	5	5	5	5	5		5		
	F	F				5				
Des alp	5	5	F		1					
Car big	10	10	5		1					
Cer cer	1	10	-	4						
Har hyp	5	1	5	1					_	
Min bif	1					1		_	5	_
Sax ces						_	_	5		5
Fes ovi	_		1		1	5	5	5		_
Pot cra	5	1	5	1	1	10		10		5
Emp nig	5	1		1	1			1		
Tarax	5	5			1	1		5		
Sau alp	10	5	5		5	1		5		5
Oxy dig	5	5		1	5	5		1		
Luz spi		1	5	5	1	5	1	5	1	1
Hie sub	5		5		1	1		5		
Ant nip	10	10			1	5				1
Agr mer		1	5			1		1		
Eup wet					5	5		5		
Oma sup			5			5		5		
Sax ste		5								
Tha alp	5	5			5					
Sol vir	5		1		1	1		1		
Ver alp	5	5				1				
Jun tri	5	1	10			5		5		
Ped lap	5	1								
Ped oed	5	5			1			5		
Phle alp		1								
Alch alp	1									
Poa alp	5	1				5		5	5	
Poa viv						5				
Bar alp	5	1				1				
Cam rot	5		5		5			5		
Car lac	5	5				1				
Car rup					1			5		1
Car vag	5	1			1					
Dra niv										1
Eri ang	5									
Gen niv						5				
Hup sel	5								1	
Phy cae	5		5	1				1		
Jun big				1	5					
Poa gla			1	5				1		5
Leo aut		5								
Pul ver			1		5					
Loi pro	1									
Luz mul	5	5								

Ran acr	1	5							
Ran pyg	1			5				5	
Sal gla	5	1			5		5		
Sal lan	5	1			1				
Sal lap	5	1							
Sal phy	1								
Sal ret					1		1		
Vac myr	5								
Vac vit	1								
Alc spp.	5								
Ant dio					1				
Bet nan	5	1							
Bet pub	5				1		1		
Dra fla									1
Epi ana		5							
Jun com					5				
Vis alp	5	1	1	1	5	1	5		5
Pin vul	1								
Poa pra		1							
Rum acsa		5							
Vac uli	1				1				
Ang arc	1								
Arc uva					5				
Lyc ann	1								
Equ arv		5							

Heimdalshøa, 1843 m

- 1. UTM: 0492938 6813614. 1495 m. Even, moist slopes towards the west.
- UTM: 0493128 6813624. 1560 m. Same slope. Green spot surrounded by boulder field. Wet soak towards west.
- 3. UTM: 0493267 6813623. 1600 m. Moist boulder field along a wet soak/small brook. 22° slope, 270° west.
- 4. UTM: 0493361 6813662. 1635 m. Moist, even plain facing west.
- 5. UTM: 0493449 6813842. 1660 m. Moist 12° slopes with small stones, pointing towards west.
- 6. UTM: 0493445 6813795. 1660 m. Course of a brook towards west.
- 9. UTM: 0493613 6813219. 1732 m. Top plateau. Even stony plain with mosses in between.
- 7. UTM: 0493802 6813658. 1700 m. Straight north of a small lake. Even, dry plain with soft moss cover.
- UTM: 0494122 6813692. 1720 m. Moist soak with bryophytes, slope 16°. Surrounded by boulder field, 300° NW.
- 10. UTM: 0494414 6813845. 1760 m. Moist soak in a steep (16°) stony slope. Small brook runs through site, 330° NW.
- 11. Not found in 1998.
- 12. Not found in 1998.
- 15. UTM: 0494784 6813410. 1843 m. The top plateau. Flat, even and stony. Dry.
- 14. UTM: 0494870 6813922. 1810 m. Downhill, straight north from the top point. 10° stony slope.
- 13. UTM: 0494783 6813963. 1800 m. Downhill, same aspect and slope as 14. Stony.

Site	1	2	3	4	5	6	7	8	9	10	13	14	15
M a.s.l.	1495	1560	1600	1635	1660	1660	1700	1720	1732	1760	1800	1810	1843
Beck gla		5	1	5	5	5	5	1	5	5	5	5	5
Luz con		5	5	1	1		10	5	10	1	5	5	5
Poa fle	5	1	5	5	5	5	5		5	1	5	5	5
Sal her	5	5	5	10	5	5	10	10	10	5		5	5
Sil aca	5	10	5	10	5	5			5				1
Eri uni	5				5	5							
Cer alp	1			5	5	5		5	5	5			
Car bel		5	5	5	1	5	5	5	5	5	5	5	5
Sib pro	10	5	5	10	1	5							
Tri spi	5			5	1	5							
Fes viv		5	1	10	5	10	5	10	5	5		5	1
Rho ros	1	1		1	5	5		5					
Ant alp	5	10	5	5	5	5				5			
Bis viv	10	5	1	5	1	5		5					
Sax cer										5			
Des alp	5			5	5	5	5	5		5	1		
Car big	10	5	1	5	5	5	5						
Cer cer	5									5			
Har hyp	1		5	1			5						
Min bif	5	5			5	5				1			
Sax ces								1		5			
Fes ovi				1			1						
Pot cra	1				5	5							
Emp nig	5	5		1	1	1							
Tarax	5			5	1	1							
Sau alp	5	5		5	5	5			5				
Oxy dig	5			5		1				1			
Luz spi	1	5	1	5	5	5	5	5	1				
Hie sub	1	5	5	5		1							
Ant nip	5	5	10	1									
Agr mer		5	5	1	1	5							
Eup wet		1		5									
Oma sup		5	5	1									
Tha alp	1			5									
Sol vir		5	1	5									
Ver alp	5	1	5	5									
Jun tri	1	10	5	5	1	1	5						
Ped oed				5									
Phle alp	1												
Alch alp	5												
Poa alp	5		1			5		5					
Poa viv								5					
Bar alp	5												
Cam rot	5												
	-												

Car vag	1	5							
Phy cae	1		1	5	1				
Jun big								5	5
Poa gla		1						1	
Leo aut	1								
Loi pro				1	1		1		
Luz mul	5								
Ran acr	10					1			
Poa arc								5	
Ran pyg	5				1	1			5
Sal gla								1	
Sal lap		1							
Sax riv								5	5
Vac vit	5	5	5						
Alc spp.	5								
Bet nan	1								
Bet pub		5							
Eri sch	5								
Jun com	1								
Vis alp		5		1					
Pyr min	1								
Rum acsa	1								
Tri eur	5								
Vac uli	1								
Sed vil							1		

Veslefjellet, 1743 m

- I started from Gjendesheim and walked towards Memurubu, the opposite way of Klanderud (1998).
- 1. UTM: 0489202 6819520. 1540 m. Mountain outcrops and sheltered corners on the way up from Gjendesheim. Dry, rich ground in between large stones and rocks. 220° S.
- 2. UTM: 0488917 6819544. 1605 m. Flat, stony plain in the rugged part of the eastern slope. Mountains outcrops. 2 m south of the path.
- 4. UTM: 0488438 6819311. 1640 m. In the eastern slope. Ledges facing southwest. Dry. Green ledges, mountain outcrops and boulder field of small stones.
- 5. UTM: 0488057 6819327. 1700 m. In the eastern slope on the way up to the summit. Green patches of vegetation surrounded by small and medium large stones. Dry.
- 6. UTM: 0486846 6819116. 1743 m. The top plateau, flat, even and stony. Path straight across. Many people pass.
- 3. UTM: 0485535 6818869. 1590 m. The western slope of Veslefjellet. Green ledges and mountain outcrops in the upper part of Besseggen. Dry. 190° S.

Site	1	2	3	4	5	6
M a.s.l.	1540	1605	1590	1640	1700	1743
Beck gla	1	5		5	5	5
Luz con		5		10	10	5
Poa fle		5		5	5	5
Sal her	5	5		5	5	5

C:1	-	-			-	_
Sil aca	5	5			5	5
Cer alp	5	_		_		5
Car bel	5	5	1	5		
Sib pro		1				
Tri spi		5		1		5
Fes viv	5		5	1	5	5
Rho ros	5		5			
Ant alp	5	5	5			5
Bis viv	5					
Sax cer						5
Des alp				1		
Car big	5	1				
Har hyp		5		5		
Min bif	5	1				
Fes ovi	5	5	5	5		5
Pot cra	5					
Emp nig	10	5	10	5		1
Tarax	5					5
Sau alp	5		5			
Oxy dig	5			5		1
Luz spi	5	5	5	5		5
Hie sub	5	1	5			1
Ant nip	5					
Agr mer	5	1				
Eup wet	5					
Oma sup	5	5		1	5	
Sax ste		1				
Sol vir	1	1	5			
Jun tri	5	5	0			
Ped oed	5	0				
Alch alp	5		5	5		
Cam rot	5		5	5		1
Ave fle	5	1	5			1
Car vag	5	Ŧ				
Diph alp	5					
Dra niv	J					5
		5	1		5	J
Hup sel	-		T	F	5	
Phy cae	5	1		5	5	1
Poa gla	5					1
Pul ver	5					
Sal gla	5					
Vac myr	5		_			
Vac vit	5		5			1
Ant dio	1		_			
Jun com	5		5			
Sax cot			5			
Vac uli	5		5			
Ara pet			5			

Besshøi, 2258 m

- UTM: 0484559 6819465. 1525 m. Started from Gjendesheim. Walked the path over Veslefjellet and left the path from Bandet at 1500 m, and followed the altitude to the third ravine (course of a brook). Rich and steep slope. 170° S.
- UTM: 0484506 6819548. 1610 m. Follow the eastern ridge of the brook. Extreme steep climbing across a rocky area (1530-1580) and up to a gentler plateau along the brook, facing south. Stony. Moist patches close to the brook.
- 3. UTM: 0484477 6819632. 1655 m. Followed the ridge upwards. Green spot in the boulder field 10 m east-northeast of the brook. 190° S.
- 4. Deleted because of landslide on site, 2014.
- 5. Deleted due to uncertain site, in 2014.
- 6. UTM: 0484363 6819799. 1775 m. Followed a grassy, stony slope upwards. Cliffs in the boulder field. Dry, but some moisture coming down the cliffs.
- UTM: 0484268 6819877. 1850 m. Same direction upwards to a small plateau in the huge boulder field. Gravel. 180° S.
- 10. Snow covered in 1998.
- 11. Not found in 1998.
- 12. UTM: 0483924 6820059. 2070 m. New site. Gentler slope. Dry, facing SE.
- 13. UTM: 0483567 6820302. 2185 m. New site. Similar slope as on site 12, but 180° S and moist.
- 14. UTM: 0483389 6820520. 2258 m. New site. Summit area, stony.
- 9. UTM: 0484902 6821055. 1860 m. On the way down. Followed the marked path from the summit. Slope facing north-east. Neither moist nor dry. Close to a field of snow.
- 7. UTM: 0485124 6821069. 1795 m. Along the path downhill. Dry patch. 100° E.

<u> </u>	4	2		-	-		-	4.2	4.2	
Site	1	2	3	6	7	8	9	12	13	14
M a.s.l.	1525	1610	1655	1775	1795	1850	1860	2070	2185	2258
Beck gla	5	5	5	5	5	5	5	5	1	
Luz con	5	1			5					
Poa fle	1		1	5	5		5			
Sal her	5	5	5	5	5					
Sil aca	5	5	5							
Eri uni			5	5						
Cer alp	5		5							
Car bel	5	1								
Sib pro	5	5								
Tri spi	5	5	5	5						
Fes viv	5		10	5			1			
Rho ros	5	5	5							
Sax opp	5		10	5		1				
Ant alp	1	5	5		5					
Bis viv	5	5	5	5						
Des alp	5	5								
Har hyp	5	5	5	5	1	5				
Sax ces			5							
Fes ovi	5	5								
Pot cra	5	1	5							
Emp nig	10	5	5	5	5					
Tarax	5	5								
Sau alp	5		5							

Oxy dig	5	5		5	
Luz spi	1	5	5		1
Hie sub	5	5			
Ant nip	5	5	5		
Agr mer	5	5		5	
Eup wet	5				
Oma sup	5	5		5	5
Sax ste	5	5			
Sol vir	5	5		5	
Ver alp	5				
Jun tri	5	5	5	5	
Ped oed	5				
Alch alp	5	5			
Poa alp	5	5		5	
Poa viv	1				
Bar alp	5	5	5		
Cam rot	5	5	5		
Ave fle	5				
Car lac		5			
Dra niv			5		
Gen niv			5		
Hup sel		5	1	5	10
Phy cae	1	5			
Jun big	5				
Poa gla	1		5		
Leo aut				5	
Pul ver	1		1		
Loi pro	5				
Luz mul	5				
Sal gla	5		1	5	
Sal lan	5	1	5		
Sal lap	5	1			
Sal phy	1		1		
Sal ret	5				
Vac myr	5	5			
Vac vit	1		1	1	
Ca atra	5	5			
Ver fru			5		
Arc alp			5		
Bet nan	1				
Bet pub	5				
Ger syl	5				
Jun com					
Vis alp	5	5			
Pin vul	5				
Pyr min		5			
Sax cot	5				
Sax niv	1				
Tof pus	5				
Vac uli	5				

Bukkhammaren, 1910 m.

- 1. UTM: 0485906 6813566. 1500 m. Green, moist 22° slope, 100° E. Long belt of permanent snow situated above.
- 2. UTM: 0485790 6813889. 1510 m. Green, swampy plateau, 11° slope, 60° NE.
- 3. Deleted due to uncertain site, in 1998.
- 4. UTM: 0485137 6814456. 1620 m. Passed between the two Bukkhammartjørni and went for the greenest spots in the ascent to Bukkehammaren. Hillside with both dry and moist spots, rocks and stones, 190° S, straight above the smallest of the lakes.
- 5. Not found in 1998.
- 6. UTM: 0485106 6814572. 1710 m. Rock crevice running from just above 4 and upwards. Wet.
- 7. UTM: 0485009 6814702. 1760 m. Up above the crevice in 6, more open terrain. Green plain between bare rocks and stones, 230° S.
- 8. UTM: 0484932 6814807. 1810 m. Dry plain along the path towards the summit.
- 9. Not found in 1998.
- 10. UTM: 0484919 6814952. 1840 m. First top-point on the ridge. Uneven terrain with large blocks and rocks.
- 11. UTM: 0484681 6815066. 1855 m. Next top-point, same terrain as 10. Dry.
- 12. UTM: 0484531 6815065. 1860 m. Ledges and crevices close to large-stoned boulder field up towards the last top-point.
- 13. UTM: 0484483 6815087. 1880 m. Ledge in the steep mountain side. Surrounded by bare rocks, in the same boulder field as 12. Dry. 200° S.
- 14. UTM: 0484455 6815142. 1910 m. Top plateau in an uneven terrain. Dry between stones and gravel.

Site	1	2	4	6	7	8	10	11	12	13	14
M a.s.l.	1500	1510	1620	1710	1760	1810	1840	1855	1860	1880	1910
Beck gla		5		5	1	5	5	5	5		10
Luz con	5	5		1		5	5	5			5
Poa fle				5	5	5	5	5	5		5
Sal her	5	10	5	5	5	10	10	10		10	5
Sil aca	5	5	5	5	5	10	5	5	10	5	
Eri uni	5	1	5	5	5				5	5	
Cer alp	5	5	5	5	5	5		5	5	1	
Car bel						5	5	5	5		1
Sib pro	5	5	5			5					
Tri spi	5	5	5		5	5	5		1	5	
Fes viv	10	5	5	5	5	5	5	5	5	5	5
Rho ros	5	5	5	5	5			1	10	5	
Sax opp			5	5							
Ant alp	5	5	1	1	5	5		5	5	5	5
Bis viv	5	5	5	5	5					5	
Sax cer		5		5							
Des alp	5	5	5								
Car big	5	5	5							5	
Cer cer		5	5								
Har hyp	5	5									
Min bif			5								
Sax ces				5							
Fes ovi	5		1	1	5	5	1	5	1	5	1
Pot cra	5	5	1	5	5					5	
Emp nig	5	5	5			5					
Tarax	5	5	5	1	1						

	_	_	_	_	_	_	_	_	_	_	
Sau alp	5	5	5	5	5	5	5	5	5	5	
Oxy dig	-	5	5	5	-	-	-	-	1	5	-
Luz spi	5	5	5	5	5	5	5	5	5	5	5
Hie sub	5	5	5	5	5	5	1	5		5	
Ant nip	5		5		1					5	
Agr mer	5			1							
Eup wet	5		5	5	5				5	5	
Oma sup			5		5					5	
Sax ste		5	1								
Tha alp	5	5	5	5	5				5	5	
Sol vir			5	5	5		1			5	
Ver alp	5	1	5	1						5	
Jun tri	5	1	5	5	1			1			
Ped oed	5		5	1	5						
Phle alp	5	5	5								
Poa alp	5		5		1						
Poa viv						1					
Bar alp	5		5	5							
Cam rot	5		5	1	5				5	5	
Ave fle	5		5	1	-				-	5	
Car lac	5	5	0	-						0	
Car rup	0	0				5					
Car vag	5				5	5				1	
Dra niv	5			1	5					1	
Eri ang	5			T							
Gen niv	5										
	5		F								
Oma nor	-		5								
Hup sel	5		4	4							
Phy cae	5		1	1							
Jun big	1		5	_				_			
Poa gla	_			5				5	1	1	
Leo aut	5										
Pul ver	5		5	5		5				5	
Ran acr			5							5	
Sal gla	5		5	5	1	1		1			
Sal lan	5		1								
Sal lap	5	1									
Sal ret			5								
Sax riv		5									
Vac vit	5		1								
Ca atra	5		5	5						5	
Ver fru				5					1	5	
Alc spp.			5	5	1					5	
Arc alp	5										
Ast alp			5								
Dra fla				1							
Eri sch		5									
Ger syl		-	5								
20. 011			-								

Jun com	5		5					
Kob myo				5				
Vis alp			1		5			
Poa pra	5	5						
Pyr min	5							
Rum acsa	5		5					
Sal myrs			1					
Sax niv				5				
Vac uli	5							
Sed vil		5						
Epi lac			5					
Arc uva			5					
Equ arv	5	5						
Bot bor	5							

1

1

Søre Tjørnholet, 2145 m

- 1. UTM: 0483115 6810021. 1500 m. Straight west of Tjernhulsbekken. Steep green slope with bare rocks and stones, 140° SE.
- UTM: 0482874 6810023. 1560 m. Up and westwards in the same slope passing a small height. Bare rocks and stones, 140° SE.
- 3. UTM: 0482846 6810136. 1590 m. Same slope straight above a small plain. Grass between stones and bare rocks, trickling water, 150° SE.
- UTM: 0482773 6810188. 1625 m. Up and northwest. 22° slope along a stream running 230° southwest. 180° S.
- 5. UTM: 0482649 6810257. 1675 m. Green ledges in the steep rock face. Large stones, bare rocks, moist.
- 6. UTM: 0482566 6810268. 1700 m. Northwest up from 5, green ledge between bare rock and stone, 160° S.
- 7. UTM: 0482617 6810375. 1730 m. Small height with a cairn of stones before the next ascent. Bare rocks, large stones, bryophytes on the ground.
- UTM: 0482357 6810484. 1760 m. In the direction straight towards the summit. Gentle, stony 10° slopes, 220° SW. Stream nearby.
- 9. UTM: 0482073 6810597. 1820 m. Same plain and aspect as 8. Between bare rocks and stones. Moss cover, 15° slope, 160° S.
- 10. UTM: 0481926 6810706. 1850 m. Before the pass before the summit. Gentle slope with gravel and stones, 160° S.
- 12. UTM: 0481715 6810800. 1910 m. Even, stony plateau on the dry ridge. Look straight down on a small glacier to the west.
- 11. UTM: 0481606 6810707. 1885 m. Downhill. Steep, grassy slope with gravel in the middle of the boulder field.

Site	1	2	3	4	5	6	7	8	9	10	11	12
M a.s.l.	1500	1560	1590	1625	1675	1700	1730	1760	1820	1850	1885	1910
Beck gla				5			5	5		5	5	5
Luz con				5			5	10	5	5	5	5
Poa fle							5	1	5	5	5	5
Sal her	5	10	5	5	5	10	5	10	10	10	5	10
Sil aca		5	5	5	5	1	5	5	5	5	10	5
Eri uni		5			5	5	1		5		5	
Cer alp					5	5	5	5			5	5

Car bel							5	5				5
Sib pro	1	5	5	1	5	5	J	J		5	5	J
Tri spi	1	5	5	-	5	5	1	1	5	5	5	5
Fes viv	1		5	5	5	5	5	5	10	5	5	10
Rho ros	5	5	5	5	10	5	5	5	10	5	1	10
Ant alp	5	5	5	5	5	5	5	5	5		10	
Bis viv	5	5	5	5	5	5	5	5	5		5	
Sax cer	-	-	-	-	-	-			-		-	
Des alp	5		5	5	5	1						
Car big	5	5	5	5	5	5	5	5	5	5	5	5
Cer cer						5						
Har hyp		1				1						
Min bif			5		5		5					
Fes ovi	1	1		5			5		5			
Pot cra	1	5		5	5	5					5	
Emp nig	5	10	5	5		5	5					
Tarax	1	5	5	1	5	5					5	
Sau alp	5	5	5	5	5	5		5	5		5	
Oxy dig		1	1		5	5						
Luz spi	1	5	5	5	5	1	5	5	5	5	5	5
Hie sub	5	5	5	5	5	5	5	1				
Ant nip	5	5	5	5	5	5	5					
Agr mer	5	5		5	5	1						
Eup wet	5	5	5	5	5	5						
Oma sup	5	5	1	5	5	5				5		
Sax ste		5	5		5							
Tha alp			5	5	5	5			1			
Sol vir	5	5										
Ver alp	5	5	5		5	5						
Jun tri	5	5	5	5	5		5	5				
Ped lap												
Ped oed	1		5		5	1						
Phle alp	5		5		5	5						
Poa alp		1	5			5						
Poa viv											5	
Bar alp	5	5	5	5	5	5						
Cam rot	1	5		5			5	5	1			
Ave fle	5	5	5	1		_						
Car lac						5	_				_	_
Car rup	-	-	-	-			5				5	5
Car vag	5	5	5	5								
Diph alp		5	5	-								
Eri ang	1		-	5	F	F						
Gen niv	1		5	1	5	5						
Hie hie	E	1	E		5	F						
Oma nor	5 1	1	5		Э	5 5						
Hup sel Phy cae	1 5	1	5	5		5 5						
rily Cae	J	т	J	J		J						

Jun big			5							
Leo aut	1		5							
Pul ver		1		1						
Loi pro				1						
Luz mul	1		5							
Ran acr	5		5							
Sal gla	5	1		1						
Sal lan					1					
Sal lap	1	1								
Sal phy	1									
Vac myr	10	5	5	5						
Vac vit	5	5		5			5	5		
Nar str	5		10							
Car sax			5	10						
Vahl atr			5			5				
Alc spp.	5		5		5	5				
Ant dio	1	5	5							
Dra fla									5	1
Epi ana	5		5		5	5				
Eri sch										
Ger syl	5		5							
Jun com	5	5	5	5	1					
Vis alp		1								
Pyr min		5	5							
Rum acsa	5	5	5		5					
Sax niv					5					
Tri eur	5									
Vac uli	5	5	5	5						
Ath dis			5			5				
Cha ang	1	5								
Car arc							5			
Gym dry		5								

Raslet, 1854 m

23.07

- 1. UTM: 0487695 6807332. 1500 m. Even, stony land, sloping 16° in 80° NE direction. View straight down at the two northernmost "Fisketjerni".
- UTM: 0487469 6807162. 1525 m. Kept the elevation towards Rasletjern, to the top of the only small hill observed in the area. Dry.
- 3. UTM: 0487457 6807147. 1520 m. In the south-exposed slope of 2. Dry in spite of stream 30 m. to the south.
- 4. UTM: 0487167 6806658. 1570 m. South westwards through a boulder field until the 1560 elevation is reached. 22° dry slope down towards Rasletjern, 160° SE.

5. Not found in 1998.

- 6. UTM: 0486999 6806335. 1570 m. In the steepest part of the southeast-wall, 140° SE. Stones and gravel in a 21° slope, a small boulder field within the site, with the northern end of Rasletjern in a straight line below.
- 7. UTM: 0486963 6806330. 1600 m. Continue straight up from 6 in the same exposition. Ledges and crevices, gentle water flows from snowmelt.
- 8. Not found in 1998.

9. Not found in 1998.

- 10. UTM: 0486843 6806293. 1675 m. To the southwest across a field of permanent snow in the southeast wall of Raslet. Green ledges in a grey rock face, 140° S. Incredible view!
- 11. Not found in 1998.
- 13. UTM: 0485974 6805487. 1740 m. Transversed the last part of the southeast wall across another large field of permanent snow, to reach the south slope of the peak. Large stones and gravel.
- 15. UTM: 0486122 6805912. 1850 m. Top point. Boulder field in an even terrain.
- 14. UTM: 0486623 6806595. 1760 m. Downhill and northeast from the top. Sandy ground with gravel and stones, 360° N.
- 12. UTM: 0486767 6806724. 1730 m. Continue downwards in the northeast direction. Ridge with bryophytes, stones and gravel, 18° slope to the northeast. Moist.

Site	1	2	3	4	6	7	10	12	13	14	15
M a.s.l.	1500	1525	1520	1570	1570	1600	1675	1730	1740	1760	1850
Beck gla	5	5	5		1		5	5	5	5	5
Luz con	5	5	5	1	1	5	5	10	5	5	5
Poa fle		5	5			5	1	5	5	5	5
Sal her	5	5	5	10	5	5	5	5	10	10	
Sil aca	5	5	5	5				5	5	5	
Eri uni				5			1				
Cer alp				5	5	5	1				
Car bel	5				5	1		1		5	
Sib pro	5		5	5	5	5	5				
Tri spi	5	1	5	5		5	5			1	
Fes viv			1	5	5	5			1	1	
Rho ros				5	5	5	5				
Ant alp				5	5		5				
Bis viv	5			5	5	5					
Sax cer							10				
Des alp				5	5			5		5	
Car big	5		5	5	5				5		5
Cer cer							5				
Har hyp	5		5	5							
Min bif						5	5				
Sax ces							1				
Fes ovi		5	5	1	5	5					
Pot cra				5	1						
Emp nig	5	5	5	5		1					
Tarax				5	5	5	5				
Sau alp				5	5	1					
Oxy dig					5		5				
Luz spi	5	5	5	5	5	5	1		5		1
Hie sub	5	5	5	5	5	5					
Ant nip	10	1	5	5	5	5	5				
Agr mer	5			5		5					
Eup wet				5							
Oma sup	5		5	5	5		5				
Sax ste						5	5				
Sol vir						5					

Ver alp				5			5		
Jun tri	10	10	10	5	1	5	1	5	
Ped lap					1				
Ped oed				5	1				
Phle alp				1			5		
Poa alp							10		
Poa viv			5			5	5		
Bar alp				5	1				
Cam rot		5		5	5				
Ave fle	5			5	5	1			
Car lac					5	5	5		1
Diph alp				1					
Hie hie					5				
Oma nor					5		5		
Hup sel				5					5
Phy cae				5	5				
Pul ver		1	5						
Luz mul				5	1				
Ran acr					5				
Ran pyg							5		
Sal gla					1				
Sal lan					1				
Vac myr					5				
Vac vit	5	5	5	5					
Vahl atr	5			1	5	5			
Arc alp	5								
Epi ana					5		5		
Jun com	1				1				
Vis alp	5				5	5			
Pyr min					5				
Rum acsa	5				5	5			
Sil dio					5				
Vac uli		5		1	5				
Sed vil		5							
Cha ang					5				

Raudhamrane og Rasletinden, 2105 m

- 1. UTM: 0486443 6809154. 1495 m. Grassy 22° slope surrounded by bare rocks, trickling water in the northern border. 120° E.
- UTM: 0486308 6809015. 1540 m. Rock face south of a stream, small ledges with gravel, stones and mosses. Mostly moist, 100° E.
- 3. UTM: 0486229 6809015. 1570 m. Straight up and east from 2. Stony, dry snow-bed, 120° E.
- 4. Not found in 1998.
- 5. UTM: 0486211 6808924. 1590 m. Continued southwards from 3 following the same elevation, then uphill from a depression in the terrain. Dry little ridge, 60° NE.
- 6. Not found in 1998.

7. Not found in 1998.

- 8. UTM: 0486080 6808795. 1650 m. Continue southwest up to a flat ground with bare rocks, stones and mosses.
- 9. UTM: 0485793 6808808. 1750 m. At the southern foot of "1787", north of the small lake and before the ascent towards "2010". Gently, dry ground with stones and a green patch, 200° S.
- 10. UTM: 0485574 6808455. 1805 m. In the ascent to "2010". Small, stony and rocky spot with mosses. 20° NE.
- 10a. UTM: 0485485 6808269. 1830 m. Dry stony plain.
- 11. UTM: 0485103 6807302. 2000 m. At the 2000 m altitude close to the height "2010". Boulder field.
- 12. Not found in 1998.
- 13. UTM: 0484217 6806668. 2050 m. New site. Dry little plain in middle of boulder field. Southexposed. An elk is observed on a permanent snow field close to site.
- 14. UTM: 0483946 6806837. 2105 m. New site. Top plateau of Rasletind. Crevices in the rocks.

Site	1	2	3	5	8	9	10	10a	11	13	14
M a.s.l.	1495	1540	1570	1590	1650	1750	1805	1830	2000	2050	2105
Beck gla		5		5	5	5	10	5	-	5	
Luz con		5		5	5	1	5	5			
Poa fle				5	5		5	5			
Sal her	10	5	10	5	10	10	5	10			
Sil aca		5	5	5	5	5		5			
Eri uni		5	5			5					
Cer alp			5	5	5						
Car bel				5	5	5	1				
Sib pro	5	5		5	5						
Tri spi			5	5	5						
Fes viv				5	5	5				1	
Rho ros		5	5	5		5					
Sax opp		-									
Ant alp		5	5	5	5	5					
Bis viv	5	5	5	5		5					
Des alp	5	5									
Car big	5	5		5							
Cer cer	5										
Har hyp	1	5	5	5							
Min bif		5	5								
Sax ces											
Fes ovi		5	5	5		1					
Pot cra		5	5	5		1					
Emp nig	5	5	5	5							
Tarax	1	5	5								
Sau alp		5	5	5		5					
Oxy dig		5			5						
Luz spi		5	5	5	5	5					
Hie sub	5	5	5	5		5					
Ant nip	10	5	10			5					
Agr mer		5	5	5	1			1			
Eup wet			5			5					
Oma sup	10		5		5						
Sax ste	5	5									

Tha alp		5	5	5			
Sol vir	5	-	-	-			
Ver alp	5	5	5				
Jun tri	5	5	5	5	1	5	
Ped oed		5	5				
Phle alp	5	5					
Alch alp	5	-					
Poa alp	-	5	5		5		
Poa viv		5	-	1	1		
Bar alp		-	5				
Cam rot			5	5		5	
Ave fle	5		5	-		-	
Car lac	5	5	-		5		1
Car rup	-	-		5	-		_
Car vag	5	5	5	-			
Diph alp	5	0	•				
Dry oct	5		10				
Eri ang	5	5	10				
Gen niv	5	1					
Oma nor	5	-					
Hup sel	5	1	5	5			1
Phy cae	5	5	10	1			-
Jun big	5	5	10	-			
Poa gla		5		5		5	
Leo aut	1	5		5		5	
Pul ver	T	5	5	1		5	
Loi pro	1	1	5	T		5	
Luz mul	T	T	5	5			
Sal ret			5	J			
Sax riv		1	5				
Vac myr	5	1	5				
Vac niyi Vac vit	J	T	5	5		5	
		E	5	5		5	
Ca atra Nar str	10	5	Э				
Vahl atr	10	5					
Ant dio	10	5	F				
		-	5				
Ast alp	1	5					
Epi ana Eri sch	1 5	5					
Jun com	5					1	
			5			1	
Pyr min	F		5				
Rum acsa Sax niv	5	E					
Vac uli	E	5 1	E	5		1	
Sel sel	5	5	5 5	J		1	
		J	J	1			
Arc uva		1		1			
Ath dis		1				5	
Car arc						J	

Tjørnholstinden, 2330 m

26.07

- UTM: 0483615 6810367. 1520 m. About 3 km on the path from Svarthammarbui, crossing uphill a little to the northwest, in the direction of Tjørnholsbekken. 22° slopes with grasses and dwarfshrubs. Medium large stones scattered. 180° S.
- 2. UTM: 0483448 6910509. 1595 m. Further up and slightly to the northwest. Stony and grassy downhill towards Tjørnholsbekken. View straight down to the Tjørnholsbekken outlet, 180° S from site.
- 3. UTM: 0483248 6810697. 1670 m. Straight up and a little westwards from 2. Course of a brook, 190°S.
- 4. UTM: 0483276 6810941. 1705 m. Continue uphill in the more gentle terrain. Moist plain with mosses and sedges, dryer at the borders.
- UTM: 0483278 6811001. 1715 m. 10 m up northwest, in the direction towards a green spot above. Stony 12° slopes flushed with melt-water from snow further up. One brook on each side of site, 170°S.
- 6. UTM: 0483212 6811145. 1760 m. Straight up from 5. Snow-bed just beyond field of permanent snow.

7. Not found in 1998.

- 8. UTM: 0482931 6811373. 1850 m. Green spot in the southwest slope. Stones and gravel.
- 9. UTM: 0482764 6811425. 1880 m. Moist, stony slope in the ascent towards the ridge which has a huge field of permanent snow in the eastern side (visible on the map).
- 10. UTM: 0482600 6811615. 1950 m. Green, dry spot with gravel and stones in a surrounding steep boulder field with large stones, 190° S.
- 11. UTM: 0482462 6811783. 2010 m. Further up and northwest in the same steep boulder field. Stones and gravel, 210° S.
- 12. UTM: 0482175 6811996. 2050 m. The entire flat ridge towards Tjørnholstinden.
- 13. UTM: 0481690 6812150. 2080 m. Between huge stones in the beginning of the last ascent towards the peak. Southwest exposed.
- 14. UTM: 0481717 6812179. 2090 m. Same as 13 but further up. Dry.
- 15. UTM: 0481651 6812238. 2130 m. Further up towards the summit. Steep, dry boulder field with large blocks. South exposed.

Site	1	2	3	4	5	6	8	9	10	11	12	13	14	15
M a.s.l.	1520	1595	1670	1705	1715	1760	1850	1880	1950	2010	2050	2080	2090	2130
Beck gla			1	5	5	1	5	1	5	5	5	10	10	10
Luz con				5	5			5	5	5	1		1	
Poa fle			1	1	1	5	5	5	5	5	5	10	10	5
Sal her		5	5	5	10	5	10	5	10	10	5	10	5	5
Sil aca	5	5	5	5	5	5	5	5	10	1				5
Eri uni		5	5			5	1		5					
Cer alp		5	5						5		5			
Car bel			1		5			1						1
Sib pro		5	5	5		5	5	5	5	5		5		
Tri spi			5				5	5	5	5	5	5		
Fes viv		5		5	5	5	5	10	5	10	5	1		
Rho ros	5	5	5	5		5	5	5	5					
Sax opp		5						5						
Ant alp	5	5	5	5	5	10	5		5	5				5
Bis viv	5	5	5	5	5	5	5	5	5					
Sax cer														
Des alp		5	1	5	5	5	5	5		5	5			
Car big	5	5	5	5	5	5	5	5						
Cer cer			5											
Har hyp		5			5									
Min bif		5			5		5	5	5					

Fes ovi	5	1	5	1							
Pot cra	5	5	5			1					
Emp nig	5	10	1	5	5						
Tarax	5	5	5	5		5	5	5			
Sau alp	5	5	5	5	5	5	5	5	5		
Oxy dig	5	5	5	1		5		5			
Luz spi	5	5	5	5	5	5	5	5	5	1	5
Hie sub	5	5		5	5	5				1	
Ant nip	5	5	5	5		5	1				
Agr mer	5	5	5	5	1	1	5				
Eup wet	5	5	5			5					
Oma sup		5	5	5		5	5			5	
Sax ste		5	5	5	5		1	5			
Tha alp	5	5	5	5		5		5			
Sol vir		5									
Ver alp	1	5	1	1		5	5				
Jun tri	5	5	5	5		1					
Ped oed	5	5	5			5		5			
Phle alp	5										
Poa alp	5	5	5			5	1				
Poa viv							5				
Bar alp	5	5				5					
Cam rot	5	5	5	5		5			1		
Ave fle	5	5									
Car lac		1	5	5	1		5				
Car rup									5		
Car vag	5	5	5	5							
Diph alp				5							
Eri ang				5	5						
Eri vag				5							
Gen niv	5	5		1							
Oma nor	1	5									
Hup sel		5	1	5	5						
Phy cae	5	5									
Jun big				5							
Leo aut	5	5	1								
Pul ver	5					5					
Loi pro	5										
Luz mul	5	5			5						
Ran acr	5	5									
Poa arc								5			
Sal gla	5	5									
Sal lan	5	5									
Sal lap	5										
Sal phy	1										
Sal ret	5										
Sax riv		1									
Vac myr	5	5									

Vac vit	5			5	
Ca atra	5	5			
Nar str	10				
Vahl atr		10	5	5	1
Alc spp.	5	5			
Ant dio	5				
Ast alp	5				
Bet nan	5				
Car cap	5				
Epi ana	1	5			
Ger syl	1				
Jun com	5	5			
Pyr min		5			
Rum acsa	1				
Vac uli	5	5			
Sel sel	5				
Arc uva	1				
Coe vir	1				

Rauhamrane/Surtningssui, 2368 m

- UTM: 0476521 6819139. 1515 m. Left the path in Memurudalen when the terrain flattened out. Crossed the valley slope towards the south slope of Rauhamrane. Rugged, rich slope with medium large stones and several small brooks. 210° S.
- 2. UTM: 0476507 6819200. 1560 m. Higher up in the same slope.
- UTM: 0475687 6819614. 1620 m. Followed the elevation westwards. Along a brook. Cliffs and large stones. 240° SW.
- 4. UTM: 0475755 6819685. 1670 m. Small hill (rock) just northwest of 3. A stream just beneath ending in Memurudalen. Dry.
- 5. UTM: 0475806 6819722. 1700 m. Just above 4. Rich ledge before a rock wall. A brook east of site, running to Memurudalen. 210° S.
- 7. UTM: 0475773 6819864. 1750 m. Followed the stream further up to plateau. Fields of permanent snow that are melting away. Stony slope, neither moist nor dry. 200° S.
- 9. UTM: 0476151 6819729. 1770 m. Mountain outcrop in the boulder field. Ledges and clefts in the rock wall facing south. Stones and gravel. 200° S.
- 10. UTM: 0476153 6819773. 1790 m. Just above 9. Same aspect.
- 11. UTM: 0475991 6820441. 1830 m. Even top plateau by the Rauhamrane. Bare rocks and small stones.
- 6. UTM: 0475505 6821646. 1720 m. Followed the path from Memurubu to Surtningssui. Moist snowbed with mosses and small stones, crossed by the path. 240° SW.
- UTM: 0475647 6821714. 1760 m. Followed the path uphill. Boulder field and rocks by the ascent of Surtningssui. 280° W.
- 12. Not found in 1998.
- 13. UTM: 0475935 6821813. 1890 m. Course of a brook along the path. Small green plateau surrounded by the boulder field. 290° W.
- 14. UTM: 0476004 6821809. 1930 m. Along the path at the steepest part of the climb to Surtingssui. Moist snow-bed facing southwest.
- 15. UTM: 0476019 6821840. 1950 m. Along the path. Green patch of vegetation on gravel ground. Steep slopes.
- 16. UTM: 0476031 6821869. 1970 m. Along the path. Rocky outcrop with ledges and crevices. Gravel on the ground beneath.

- 17. UTM: 0476061 6821877. 1990 m. A rich belt along the path (continues up to 2010), loose gravel. Rich patches occur outside the path as well.
- 18. UTM: 0476118 6821935. 2040 m. Above the steepest climb. Even ascent. Green patch 20 m. north from large stones. Extensive browsing damages.
- 19. UTM: 0476157 6821939. 2050 m. Small green patches along the path. Extensive browsing damages.
- 20. UTM: 0476216 6821982. 2070 m. South facing snow-bed along the path. Almost all vascular plants have been heavily browsed.
- 21. UTM: 0476407 6822107. 2130 m. Last observed specimens of *B. glacialis* and *Saxifraga oppositifolia*.

Site	1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17	18	19	20	21
M a.s.l.	1515	1560	1620	1670	1700	1720	1750	1760	1770	1790	1830	1890	1930	1950	1970	1990	2040	2050	2070	2130
Beck gla		5	5	1	10	5		5	5	5	5	5	5	5	5	5	5	10	5	1
Luz con			5		5	5		5	5	5	5	5	5	5	5	5	5			
Poa fle				5		5			5	5	5	5	5	5	5	5	5	5	5	
Sal her	5	5	5		5	10	5	10	5	5	5	10	5	5	5	5				
Sil aca	5	5	5	5	10		10	5	5	5	5						5			
Eri uni	5	1	1	5	5		5	5	5	5						1				
Cer alp	5	5		5			5		5	5					5	5				
Car bel			1		5	5		5			5	5	5							
Sib pro		5	5		5		5	5	5	5				1	1					
Tri spi			1	1	1		10	5	5	5		5	5	5	5	5				
Fes viv		5	5	5	5	5	5	5	5	5	5	10	5	10	5	5	5			
Rho ros	5	5	5	1			1	5	5	5		5				5				
Sax opp		5	5	5			5	5	5	5		5			5	5				1
Ant alp	5	1	5	5	5	5	5	5	5	5	5	5			5	5				
Bis viv	5	5	5	5	5		5	5	5	5										
Des alp		1	5					5				5								
Car big	5		5	5						5	5									
Cer cer																				
Har hyp			5		5	5	5	5		5										
Min bif	5						5	5	5	5										
Sax ces							5								5	5				
Fes ovi	5	5	1	5																
Pot cra	5	5	5	5			5	5		5										
Emp nig	1	5	5	5	5		1		1	5										
Tarax	5	5	5		5		5	5	5	5										
Sau alp	5	5	5	5	5		5	5		5		5								
Oxy dig	5	1	5	1	1			5	5	5			5			1				
Luz spi	5	1	5	5	5	5	5	5	5	5	5	5			5					
Hie sub	5	5		5	5		1	5												
Ant nip	5	5	5	5	5			5												
Agr mer	5	5			5	5		5		5										
Eup wet	5	5		5	5			5		5										
Oma sup		5	5		5	5	5	5	5		5			5						
Sax ste		1	5			5								5						
Tha alp	5	5	5	5			5			5										
Sol vir	5	5						5												
Ver alp	1	1	5		5		5	5												
Jun tri	5	10	5	5	5		5	1	5	5										

Ped oed		5	5	5	5					5						
	F	5	5	5	5					5						
Phle alp	5															
Alch alp	5								_							
Ara alp	_		_				_	_	5	_						
Poa alp	5		5				5	5	5	5		1				
Poa viv									5	1						
Bar alp	5	5	5													
Cam rot	10	5		5			1	1		5						
Ave fle	5	5			1											
Car lac			5						5	5						
Car rup				5			5								5	
Car vag	5	5	5	5												
Diph alp										5						
Dra niv							1									
Dry oct				10												
Gen niv	5	5	5				5	5		5						
Hie hie	1															
Oma nor	5	5														
Hup sel			5	5		5	5	5	1							
Phy cae	5	5	5	5		5	5			1	1			1		
Jun big	-	-	5	-		-	-									
Poa gla	1		1	5			1			5				5	5	
Leo aut	5	1	-	0			-			0				0	0	
Pul ver	5	1		5	5		5									
Loi pro	5	-	1	5	5		5									
Luz mul	5	5	1	5												
Ran acr	1	5														
Sal gla	5	5	5				1		5				1			
Sal lan	5	5	5				1		5				Т			
		J	1				T									
Sal phy	5		1 5	5			1									
Sal ret	-	-	5	5			1									
Vac myr	5	5		-												
Vac vit		5	_	5	_		_	_	_	_						
Ca atra	1		5	5	5		5	5	5	5						
Ver fru	5															
Nar str	10	10														
Alc spp.	5	5														
Ant dio	5	5		5												
Arc alp				5												
Car cap				5												
Ger syl	5	10														
Jun com	5	5	1	5					1							
Kob myo				5												
Vis alp							5									
Pin vul	5	5	5	1												
Pyr min	5	5														
Rum acsa	5	5														
Sal myrs			5													

Sax cot		5					
Sax niv						1	1
Sil dio	5	5					
Tof pus			5	5	1		
Tri eur		5					
Vac uli	5	5	5	5			
Sel sel	5	5		5			1
Epi lac	5	1					
Ang arc	5						
Arc uva				5			
Ath dis	1						
Bot lun	5				5		
Cir het	5						
Par pal	5	1		5			
Pol lon	1						

Svartdalspiggan, 2137 m

30.07

- UTM: 0473172 6811367. 1495 m. Near the foot of a steep rock face, 65° NE. Green ledge or ridge in a small boulder field.
- 2. UTM: 0473108 6811293. 1550 m. Moist ledge in the rock, 90° E.
- 3. UTM: 0473116 6811127. 1615 m. On the plateau, snow-bed in the cleft. Moist soak, 40° NE.
- 4. UTM: 0473149 6811012. 1640 m. Snow bed close to a small path (not very much used) and little cairn of stones marking the way to the summit. Large stones, mosses and bare soil, 40° NE.
- 5. UTM: 0473131 6810735. 1710 m. Most plain close to the same path as in 4. Bare rocks, stones and trickling water, 320° NW.
- 7. UTM: 0473248 6810477. 1785 m. Wet plain with ledges, large stones mosses and lichens. Both the path and a stream cross the site. 320° NW.

8. UTM: 0473422 – 6810465. 1840 m. Ridges with mosses in a boulder field, just above a stream, 320°NW.

- 10. Not found in 1998.
- 17. UTM: 0473799 6809879. 2137 m. The top. Rocky and uneven with blocks and crevices.
- 16. UTM: 0473773 6809853. 2125 m. Downhill, in a rock crevice towards the south.
- 15. Not found in 1998.
- 14. UTM: 0473736 6809736. 2050 m. Downhill. Ledge in the rock face. Stones and gravel.
- 13. UTM: 0473744 6809639. 2010 m. Downhill. Crevice in the rock. Moist, 260° SW.
- 12. Not found in 1998.
- UTM: 0473700 6809522. 1950 m. Moist ledge in the western rock face. Gravel, bare rocks and trickling water, 270° V.
- 9. UTM: 0473622 6809468 1880 m. Moist slope in the rock face with trickling water. 250° W. Steep terrain, so do not walk directly towards site 6, but around.
- 6. UTM: 0473477 6809457. 1765 m. Steep, moist slope with gravel and bare rocks in the west-facing mountain slope.

Site	1	2	3	4	5	6	7	8	9	11	13	14	16	17
M a.s.l.	1495	1550	1615	1640	1710	1765	1785	1840	1880	1950	2010	2050	2125	2137
Beck gla	5	5	5	10	5	5	5		5	5	5	5	5	
Luz con	5	5	5	5	5		10	5	5	5				1
Poa fle		5	5	5	5	1	5	5	5	5	5	5	5	
Sal her	10	10	5	10	10	10	10	5	10	10	5	5	5	5

Sil aca Eri uni	1	5				5 5						5 5
Cer alp												5
Car bel		5	5	5	5		5		5	5	1	5
Sib pro			5	5		5				5		
Tri spi		5		5		5			5	5		10
Fes viv	5	5		5	5	5			5	5		5
Rho ros		5				10						
Sax opp												5
Ant alp				5								5
Bis viv	5	5		5		10			5	5		
Sax cer												5
Des alp			5		5	5	1	5	5	5	5	5
Car big	5		5	5		5	10					
Cer cer												5
Har hyp	5	5	5	5								
Min bif				5								
Fes ovi		5										
Pot cra						5						
Emp nig	1	5										
Tarax						5				5		5
Sau alp		10				10			10	5		
Oxy dig	5	5		1		5			5	5		1
Luz spi	5	5	5	5		5			5	5		
Hie sub				1		5				1		
Ant nip						10						
Agr mer		5	5			5						
Oma sup		1	5	5		5			5	5	5	5
Sax ste	5	5	5	5	5	5			1	5	5	
Tha alp		5				5						
Ver alp									5			
Jun tri		5	5									
Ped oed		5				5						
Phle alp		1										
Poa viv		5								1		5
Car lac	5	•	1	5					5	5		5
Car vag	•			-		5			-	-		-
Hup sel		5		5	5	5	5					
Jun big	5	1	1	5	5	1	5		5			
Ran pyg	5	-	-	5		-			5	5		5
Sal gla		1		5					1	5		5
Sax riv		-		5					-			5
Ca atra				5		5						5
Sax niv		5				5						
Sel sel		5				5						
JCI 3CI						5						

"Knutsholstinden", 2341 m

- 1. UTM: 0475164 6810623. 1550 m. Ravine-ridge, dry, stony ground. Moist between the ridges, 260°SW.
- 2. Not found in 1998.
- 3. UTM: 0475303 6810897. 1680 m. Ledge in the rock face surrounded by large-stoned boulder field. Straight line from a stream and a green spot in the boulder field below. 210° S.
- 4. UTM: 0475583 6810891. 1760 m. Snow-bed boulder field with small stones and bare rocks. Wet from melting snow just above. 230° SW.
- 5. 6. (Recorded together). Deleted due to uncertain site, in 2014.
- 7. UTM: 0475817 6810904. 1880 m. Spot of lush vegetation 30 m south of boulder field, towards the pass. Bare rocks above. 230° SSW.
- 10. UTM: 0475879 6810931. 1930 m. Further up towards the pass. By the foot of moist rock crevice, rock crevice surrounded by boulder field. 260° W.
- 11. UTM: 0475943 6810977. 1995 m. Straight up from 10, same aspect. Moist ledges beneath a small mountain outcrop.
- 12. Not found in 1998.
- 13. Not found in 1998.
- 14. UTM: 0476123 6811084. 2135 m. The last slope towards the first top, "2185". Crevice in the rock, but the two species recorded here are also spread evenly up to about 2160 m.
- 15. Not found in 1998.
- 16. UTM: 0476288 6811227. 2185 m. The summit "2185".
- 8. Not found in 2014
- 9. Not found in 2014

Site	1	3	4	7	10	11	14	16
M a.s.l.	1550	1680	1760	1880	1930	1995	2135	2185
Beck gla	5		5	5	5	5	5	5
Luz con	5	5	5					
Poa fle		5		1	5	5	1	5
Sal her	5	5	10	5	5	5		
Sil aca	5	5		5		5		
Eri uni	5			5	5			
Cer alp		5						
Car bel		1	5		5	5		
Sib pro	5		5	5		1		
Tri spi		1	5	5	5	5		
Fes viv	5	10		5	5	5		
Rho ros	5	5	5	5	1			
Ant alp	5	5		5				
Bis viv	10	5	10	5	5	5		
Sax cer					5	5		
Des alp			5	5	5			
Car big	5	5						
Cer cer			5		1	5		
Min bif		5						
Fes ovi	5	1						
Pot cra	5	5		5				
Emp nig	5	1						
Tarax	5		10	5	5	1		
Sau alp	5	5		10				
Oxy dig			5		10	5		

Luz spi	5	5		5	1	5
Hie sub	5	5				
Ant nip	5	5			1	
Agr mer	5	5		5		
Eup wet	5	1				
Oma sup			5		5	5
Sax ste			5	5	5	1
Tha alp	5	5		5		
Sol vir		5				
Ver alp	5		5	5	5	
Jun tri	10	10				
Ped oed	5	5	1	5		
Phle alp			1			
Poa viv			5	5	5	5
Bar alp	5	5	5			
Cam rot	5	5	5			
Ave fle	5					
Car lac			5	5	5	5
Car rup		5				
Car vag	5					
Diph alp						5
Oma nor	5		5			
Phy cae		1				
Jun big			5	5	1	
Pul ver	5	5				
Poa arc				1		
Ran pyg			5		5	5
Sal gla		5				
Sax riv					5	1
Vac myr	5					
Vac vit	5	5				
Ca atra		1				
Epi ana			5			
Jun com		1				
Pyr min	5					
Sax niv					5	1
Vac uli	5					
Sil wahl				5		
Ath dis			5			

Galdhøpiggen, 2469 m

- 1. UTM: 0467175 6832949. 1570 m. 50 m north of the marked path to Galdhøpiggen. Rich, uneven grassy slope (20°). Medium large stones scattered, moist. 120° ESE. Sheep grazing close by.
- 2. UTM: 0467159 6833078. 1625 m. Continued straight uphill. More stones (large and medium large) in the steep slope of grazed grass heaths. Heather and Salix on the ridges. Moist. 130° E. Sheep on site.
- 3. UTM: 0466801 6833103. 1720 m. Gentle slope facing east/southeast. Rocky plateau and large stones give many good microhabitats. Permanent snow in the surroundings.
- 4. UTM: 0466754 6833251. 1780 m. Small, hill with stones, gravel and bryophytes on the ground. The only green spot in the area. Moist. 160° S.
- 5. Snow covered in 1998.
- 6. UTM: 0466135 6833346. 1905 m. Large, even plain with gravel, small stones and moist soaks, north of the path. Slight slope 160° S.
- 9 14. Not found in 1998.
- 15 16. Snow covered in 1998.
- 8. UTM: 0465101 6833328. 2125 m. On the way down, south east of Svellnosi. The only green patch between huge stones in the slope.
- 7. UTM: 0465225 6833178. 2050 m. Further down from 8. Steep ridge with huge stones. Just west and above a steep field of permanent snow.

Site	1	2	3	4	6	7	8
M a.s.l.	1570	1625	1720	1780	1905	2050	2125
Beck gla			5	5	5	5	
Luz con		5	5	5	5		
Poa fle			5	5	5	5	
Sal her	10	5	5	5	5	10	10
Sil aca	5						
Eri uni	5						
Cer alp	5	5	5	5	5		
Car bel			5	1	5		
Sib pro	5	5					
Tri spi	5		5	5			
Fes viv	1	5		5	5		
Rho ros	5	5					
Ant alp	5	5	5	5			
Bis viv	5	5					
Des alp	1						
Car big	5	5					
Har hyp	5	1	5				
Sax ces						5	
Fes ovi	5	5					
Pot cra	5						
Emp nig	5	5	5				
Tarax	5	5	5				
Sau alp	5	5					
Oxy dig	1						
Luz spi	5	5	5	5			
Hie sub	5	5		1			
Ant nip	10	10					
Agr mer	5						
Eup wet	5	5					

Oma sup	5	5	5		5
Sax ste		5			
Tha alp	5				
Sol vir			5		
Ver alp	5	5			
Jun tri	5		5		
Ped oed		5			
Phle alp	5				
Poa alp	5			5	
Poa viv					5
Bar alp	5	1			
Cam rot	5	5			
Ave fle	5	5			
Car lac	1				
Car vag		5			
Diph alp	5				
Gen niv	1				
Oma nor	5				
Hup sel		5			
Phy cae	5	5	5		
Loi pro	5				
Luz mul	5	5			
Sal gla			5		
Sal lap		5			
Sal ret	5				
Vac myr	5	5			
Vac vit	5	5			
Vio pal		5			
Nar str	10				
Ant dio	5				
Epi ana	5				
Ger syl	5				
Jun com	5				
Pyr min	1	5			
Rum acsa	1				
Tri eur		5			
Vac uli	5	5			
Sel sel	5				
Ste bor	5				
Agr cap	1				
Lyc ann			1		

Tverråtindan, 2302 m

- 1. UTM: 0465726 6831185. 1510 m. South of the path to Svellnosbreen, by the ascent of the ridge towards Tverråtindan. Stony slope covered by bryophytes. Patches of vascular plants. Moist. 150° SE.
- 2. UTM: 0465544 6831167. 1570 m. Rocky slope with ledges and sheltered corners. Stony and moist. 150° SE.
- 3. UTM: 0465515 6831209. 1600 m. Steeper slope with medium large stones and bare rocks. Bryophytes. 150° SE.
- 4. UTM: 0465438 6831242. 1650 m. Very rich slope. No brook, but moist soaks come from the rocks above. 150° SE.
- 5. Not found in 1998.
- 7. UTM: 0465301 6831335. 1760 m. Open stony ridge with bryophytes in the mountain slope. Flatter prior to the boulder field further up. 150° SE.
- 10. UTM: 0464943 6831414. 1885 m. In the boulder field between large stones. Dry.
- 12. UTM: 0464818 6831428. 1950 m. Ledges in the steep rock wall by the end of the ridge.
- 13. UTM: 0464823 6831459. 1960 m. Ledge in the rock wall facing 60° NE. UTM coordinates may be inaccurate because of what seems like GPS signal disturbance caused by the rock walls.
- UTM: 0464749 6831345. 1910 m. On the way down and southwards. Moist patches along the steep rock wall facing south. Sprinkling water from above. Same GPS signal problems as on 13.
- 9. Not found in 1998.
- 8. UTM: 0464646 6831181. 1850 m. Stony ledge just beneath the steep wall. Moist from above. Same signal problems as on 13 and 11.
- 6. UTM: 0464631 6831106. 1790 m. Steep stony slope. Rich and moist. The steep rock wall just above.

Site	1	2	3	4	6	7	8	10	11	12	13
M a.s.l.	1510	1570	1600	1650	1790	1760	1850	1885	1910	1950	1960
Beck gla	5	5		5	1	5		5	5	5	5
Luz con	5		1	1		5		1			5
Poa fle	5			5		5		5	5	5	5
Sal her	5	5		5	5	5		1	10	5	
Sil aca	5	5		5		5			5	5	5
Eri uni	5	5				5	1		5	5	
Cer alp					1		5				
Car bel	1	5				1			5	5	5
Sib pro	5	5			5	5			10	5	
Tri spi	5				5	5	1		10	5	5
Fes viv	5	5	5	5	1	10			5	5	1
Rho ros		5	5	5	5		5		5	5	
Sax opp		5		5						5	5
Ant alp	5	5	1	5	5	5	5		5	5	
Bis viv	5	5	5	5	5	5	5		5	5	
Sax cer							5				
Des alp					5		5		5	5	
Cer cer							5		5	5	
Har hyp	5							1			
Min bif				5	1		5		5	5	
Sax ces										5	
Fes ovi	5	5	5	5		5					
Pot cra	5	5		5	5				5		
Emp nig	5	10	10	10		5					
Tarax	1	5			5		5		5	5	
Sau alp	5	5	5	5	5	5	5		5		

Oxy dig	5				5		10		5	5
Luz spi	5	5		5	5	5			5	5
Hie sub	5	5	5	5	5	5			5	5
Ant nip	5	5	1		5				1	
Agr mer	5	5	5	5						
Eup wet		5	5	1					5	
Oma sup	5	5			5		5		5	5
Sax ste	5	5	1	5			5	1		5
Tha alp		5	5	5						
Sol vir	1	5	1						1	
Ver alp		5			5		5		5	1
Jun tri	5	5			-	5	-		1	_
Ped oed	5	5	5	5	5	5			5	
Phle alp	5	5	5	5	5		5		5	
										F
Ara alp					5		5		5	5
Poa alp					5		5		5	1
Poa viv							5		5	5
Bar alp	5	5	5	5	5	5				
Cam rot	5	5	5	5	5	5	5		5	
Ave fle	5	5			5					
Car lac							5		1	1
Car rup				5						
Car vag		1	5	1		5				
Diph alp	5									
Gen niv					5					
Oma nor		5			5		5		5	
Phy cae	5	1	5							
Poa gla			5		5				5	
Pul ver		5	1	5		5				
Ran pyg							1			5
Sal gla	5	1	5	5	5	1			5	
Sal lan		5		1						
Sal phy		1								
Sal ret		5	5	1	5					
Sax riv		0	0	-	0				5	
Vac myr		5							5	
Vac vit		5	5	5		5				
Ca atra	1	5	5	5	5	J			5	
	T	5	5	5	5				5	
Ver fru							10			
Alc spp.			_		5		10			
Ant dio			5							
Cry cri									1	
Epi ana							5		5	
Jun com		5	5	10		5				
Kob myo				5						
Poa pra					5					
Pyr min		5								
Rum					5		10			

acsa							
Sil dio					5		5
Vac uli	5	1	5	5			
Epi lac					5		
Arc uva		1		10		1	
Ath dis					1		1

Spiterhøi, 2033 m

- 1. UTM: 0468910 6831466. 1505 m. Left the path about 1 km from Spiterstulen, up the west slope towards Spiterhøi. Rich, steep slope. Moist with small stones. 300° W.
- UTM: 0468975 6831465. 1555 m. Same slope further up. A small depression in the terrain within site. 340° N.
- 3. Not found in 1998.
- 4. Deleted due to uncertain site, in 2014.
- 5. Deleted due to uncertain site, in 1998.
- 6. Not found in 1998.
- 7. Not found in 1998.
- 8. UTM: 0469246 6831588. 1750 m. Steep mountain slope towards south west, just before the boulder field above. Moist. UTM coordinates may be inaccurate due to GPS signal problems.
- 9. Deleted due to uncertain site, in 1998.
- 10. Deleted due to uncertain site, in 1998.
- 11. UTM: 0469566 6831056. 1965 m. Various small patches of vegetation in the gentle stony south west slope. Fantastic view!
- 12. UTM: 0470216 6831158. 2033 m. Dry and even top plateau. Some large stones giving shelter.

Site	1	2	8	11	12
M a.s.l.	1505	1555	1750	1965	2033
Beck gla	5	1	5	10	5
Luz con	5			10	5
Poa fle			5	5	5
Sal her	5	5	5	5	5
Sil aca	5	5			
Eri uni	5	5	5		
Cer alp	5	5	5		
Tri spi	5	5	10		
Fes viv	5	5	5	5	
Rho ros	5	5	5		
Sax opp	1	5			
Ant alp	5	5	1		
Bis viv	5	5	5		
Des alp			1		
Car big	5				
Cer cer			5		
Fes ovi	10	5			
Pot cra	5	5			
Emp nig	5	1			
Tarax		1	5		

Sau alp	10	10	
Oxy dig	5	5	10
Luz spi	5	5	5
Hie sub	5	5	
Ant nip	5	5	
Agr mer	5	5	
Eup wet	5		
Sax ste		1	
Tha alp	5	5	
Sol vir			1
Ver alp	1		
Ped oed	5	1	1
Ara alp		5	5
Poa alp	1	5	5 5
Poa viv			5
Bar alp	5		
Cam rot	5	5	
Car lac		5	
Hup sel	5		
Phy cae	5	5	
Poa gla	1	5	
Luz mul	5		
Ran pyg			5
Sal gla	5	5	
Sal lan	5	10	
Sal ret	5		
Sax riv		5	1
Vac vit	5	5	
Ca atra	1		
Jun com	1		
Poa pra		5	5
Vac uli	10	1	

Skauthøi, 1993 m

- 1. UTM: 0470428 6834174. 1545 m. The first plateau from the northeast ascent. Stony plain with rocks and lots of mosses and lichens. 2 ° slope, 30° NE.
- 2. UTM: 0470376 6834008. 1565 m. Plain ridge in the north slope. Even terrain with lichens and medium large stones.
- 3. UTM: 0470412 6833614. 1690 m. Dry slope with rocks and medium large stones. 340° N.
- 4. Deleted due to uncertain site, in 1998.
- 5. Not found in 1998.
- UTM: 0470195 6833256. 1745 m. Small barren ridge with bryophytes surrounded by a boulder field of medium large stones. 320° NW.
- 10. UTM: 0470267 6833187. 1795 m. Small patches of vegetation in the even boulder field. Bryophytes, gravel and stones. 340° N.
- 13. UTM: 0470438 6832952. 1895 m. Black, stony plain in the northwest facing slope, covered by lichens.
- 15. UTM: 0470504 6832861. 1920 m. Even plain with small and medium large stones. Easy to walk on. 340° N.

- 18. UTM: 0470561 6832508. 1980 m. In the west slope. Small patches of vegetation.
- 19. UTM: 0470668 6832524. 1992 m. Even stony plateau. Some rocks and large stones.
- 17. UTM: 0470606 6832439. 1965 m. Downwards, dry south slope just beneath the summit.
- 16. UTM: 0470526 6832373. 1930 m. Uneven slope with large and medium stones, some patches with bryophytes. 200° S.
- 14. UTM: 0470322 6832399. 1905 m. Steep part of the southwest slope down from the summit. Dry.
- 12. UTM: 0470268 6832335. 1880 m. Same slope as 14, further towards southwest. Boulder field. 210° SW.
- 11. UTM: 0470151 6832337. 1850 m. Same aspect as 12, but further to the southwest. Slope in a rugged terrain.
- 9. UTM: 0469807 6832395. 1760 m. Along the only coarse of a brook observed. 240° SW.
- UTM: 0469798 6832455. 1770 m. Blocks, clefts and ledges. North of the cleft where the glacier might have ended in 1931. 340° N.
- 7. Deleted due to uncertain site, in 1998.

Ma.s.l. 1545 1565 1690 1745 1770 1760 1795 1850 1890 1905 1920 1930 1965 1980 1992 Beckgla S 5 5 1 5 1 5 5 10 5 10 5 10 5 10 5 10 10 5 10 10 5 10 10 5 <td< th=""><th>Site</th><th>1</th><th>2</th><th>3</th><th>6</th><th>8</th><th>9</th><th>10</th><th>11</th><th>12</th><th>13</th><th>14</th><th>15</th><th>16</th><th>17</th><th>18</th><th>19</th></td<>	Site	1	2	3	6	8	9	10	11	12	13	14	15	16	17	18	19
Luzon5110 <th>M a.s.l.</th> <th>1545</th> <th>1565</th> <th>1690</th> <th>1745</th> <th>1770</th> <th>1760</th> <th>1795</th> <th>1850</th> <th>1880</th> <th>1895</th> <th>1905</th> <th>1920</th> <th>1930</th> <th>1965</th> <th>1980</th> <th>1992</th>	M a.s.l.	1545	1565	1690	1745	1770	1760	1795	1850	1880	1895	1905	1920	1930	1965	1980	1992
Poafle5555555551Salher101010105510105101055Silaca551010555Silaca55 </td <td>Beck gla</td> <td></td> <td>5</td> <td>5</td> <td>5</td> <td>1</td> <td>5</td> <td>1</td> <td>5</td> <td>5</td> <td>10</td> <td>5</td> <td>10</td> <td>5</td> <td></td> <td>5</td> <td>10</td>	Beck gla		5	5	5	1	5	1	5	5	10	5	10	5		5	10
Sal her1010101051010101051010105Si laca5555515511051Car bel51555110551Fes viv1055555515515Sax op1555555511Ant alp555-555555511Bisviv55<	Luz con	5	1	10	10	10	5	10	10	10	10	10	5	10	10	5	5
Silaca CarbelSSSSS1SPes vi10555515Pes vi10555515Saxop10555511Antalp5555111Antalp5555111Bisviv5555511Antalp5555511Antalp5555551Bisviv5555555Antalp5555555Antalp5555555Bisviv5555555Antalp5555555Antalp5555555Antalp5555555Antalp5555555Antalp5555555Antalp5555555Antalp5555555Antalp5555555Antalp555 <t< td=""><td>Poa fle</td><td></td><td></td><td>5</td><td>5</td><td>5</td><td>5</td><td>1</td><td>10</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>5</td><td>1</td></t<>	Poa fle			5	5	5	5	1	10	5	5	5	5	5	5	5	1
Car belS5151515Fes viv105555515Rhoros5555511Saxopp15511Antalp5555511Bis viv5555511Car big105105555Har hyp5555555Potca10555555Potca10555555Saualp5555555Iuzspi5555555Agree6555555Iuzspi5555555Iuzspi5555555Agree6555555Iuzspi5555555Iuzspi5555555Iuzspi5555555Iuzspi5555555Iuzspi5555555Iuzspi55 <td>Sal her</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td> <td>5</td> <td>5</td> <td>10</td> <td>10</td> <td>10</td> <td>5</td> <td>10</td> <td></td> <td>10</td> <td>10</td> <td></td> <td>5</td>	Sal her	10	10	10	10	5	5	10	10	10	5	10		10	10		5
Fes viv10555Rhoros5511Saxopp1551Antalp5551Bis viv5551Carbig105105Harhyp5551Pot ca155Pot ca155Luz spi551Harhyp555Pot ca15Luz spi551Harhyp555Luz spi555Hiesub555Harhyp555Harhyp555Juntri55	Sil aca	5	5														
RhorosSSSS1Saxopo15511AntaloSS55Bisviv5055Carbig10S105HarhypSS55Min bif5S55Pot cra1-5Pot cra1-5Luz spiSS1AgrimeSS-5HaisubSS-5Luz spiSSHaisubSSHaisubSSHaisubSSJun triSS	Car bel					5	1	5	5	5		1		5			
Sax opp11Ant alp555Bis viv55Car big10510Car big1055Har hyp55Min bif55Pot cra105Pot cra105Saualp55Luz spi5Agr me5Eup wet1Thaalp5Sun tra5Luz spi5Sun tra5Luz spi5Sun tra5Luz spi5Sun tra5Luz spi5Sun tra5Sun tra<	Fes viv	10	5	5					5								
Ant alp555Bis viv55Gar big105Car big1010Sur big510Fes ovi105Pot cra105Binding55Fes ovi105Pot cra105Big5Big5 <t< td=""><td>Rho ros</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Rho ros	5															
Bis vir55Car big105105Har hyp555Min bif55Pes ovi1055Pot cra15Sau alp55Luz spi55Hie sub55Agrmer15Fundamer5Jun tri5Jun tri5	Sax opp	1															1
Car big105105Har hyp555Min bif55Fes ovi1055Pot cra15Emp nig55Sau alp55Luz spi55Hie sub55Agr mer65Tha alp55Jun tri5Su5	Ant alp	5	5	5						5							
Har hyp55Min bif55Fes ovi1055Pot cra15Emp nig55Sau alp55Luz spi55Hie sub55Agr me5Luz hyme1Jun tri5Sub5	Bis viv	5	5														
Min bif55Fes ovi1055Pot cra15Emp nig551Sau alp555Luz spi55Hie sub55Agr me55Eup vet15Jun tri55	Car big	10	5	10					5								
Fes ovi1055Pot cra1-Emp nig551Sau alp55Luz spi55Hie sub55Agr mer5-Fup wet1-Tha alp5-Jun tri55	Har hyp	5	5			5											
Pot cra1Emp nig555Sau alp555Luz spi555Hie sub555Agr mer655Eup wet155Tha alp555Jun tri555	Min bif	5	5														
Emp nig555Sau alp555Luz spi555Hie sub555Agr mer555Eup wet155Tha alp555Jun tri55	Fes ovi	10	5						5								
Sau alp55Luz spi55Hie sub55Agr mer55Eup wet1-Tha alp55Jun tri55	Pot cra	1															
Luz spi55Hie sub55Agr mer55Eup wet15Tha alp55Jun tri55	Emp nig	5	5	5		1											
Hie sub55Agr mer5-Eup wet1-Tha alp5-Jun tri55	Sau alp	5	5							5							
Agr mer5Eup wet1Tha alp5Jun tri5	Luz spi	5	5														
Eup wet1Tha alp5Jun tri5	Hie sub	5	5														
Tha alp 5 Jun tri 5 5	Agr mer	5															
Jun tri 5 5	Eup wet	1															
	Tha alp	5															
Ped lap 5	Jun tri	5	5														
	Ped lap		5														
Ped oed 5 1	Ped oed	5	1														
Cam rot 5 5	Cam rot	5	5														
Car lac 5	Car lac	5															
Car rup 5	Car rup		5														
Car vag 5		5															
Dry oct 5	Dry oct		5														
Gen niv 5	Gen niv	5															
Hup sel 5 5 5	Hup sel	5		5								5					
Phy cae 5 5 5 1 5 1	Phy cae	5		5				5		1		5				1	

Loi pro	5	5	1	
Sal gla	1			1
Vac vit	5	5		
Arc alp	1	5		
Bet nan	5	5		
Tof pus	5			
Vac uli	5	5		
Sed vil			5	
Car arc		1		

Hellstuguhøi, 2072 m

- UTM: 0468727 6827789. 1500 m. Leave the path by the bridge crossing Heillstuguåi, crossing the west facing slope up towards 1500 m. Steep, uneven slope. Boulder fields, large stones scattered. Green patches in between. Moist. Soaks and small courses of brooks. Bare rocks. 320° NW.
- 2. UTM: 0468846 6827617. 1610 m. Continue up towards a mountain outcrop, same aspect as 1. Bare rocks, crevices and ledges covered by bryophytes and lichens. Gravel on the ground.
- 3. UTM: 0468944 6827453. 1695 m. Up and southwards. Steep boulder field with green, stony slopes in between. Lichens and bryophytes. 300° W.
- UTM: 0469103 6827369. 1850 m. Steep rock face on the top of a pass, moist ledges and crevices. Block field and loose gravel beneath. 270° W.
- 5. UTM: 0469130 6827280. 1920 m. Up above the rocks to a huge boulder field of large stones. Huge boulder field above site. 310° W.
- 6. UTM: 0469169 6827215. 1930 m. Moist rock cleft at the transition to the more gentle part of the mountain. 280° W. UTM coordinates can be inaccurate because of GPS signal problems.
- 7. UTM: 0469199 6827075. 1995 m. Gentle plain. Small stones, lichens and bryophytes. 345° N.
- UTM: 0469237 6826908. 2050 m. Gentle plain. Gravel and lichens in between numerous small stones. Small patches of vegetation. 320° NW.
- 9. UTM: 0469470 6826926. 2070 m. Even and stony top plateau. *Ranunculus glacialis* and *Luzula confusa* evenly scattered.

Site	1	2	3	4	5	6	7	8	9
M a.s.l.	1500	1610	1695	1850	1920	1930	1995	2050	2070
Beck gla	5		5	5	5	5	10	10	10
Luz con	5		5	5	10	5	10	5	5
Poa fle		5	5	5	10	5	5	5	5
Sal her	10	10	10	5	5	5	5		
Sil aca	5	5	1	5					
Eri uni	5	5	5	5					
Cer alp		5	5	5	5				
Car bel	1		5	5	5	1			
Sib pro	5								
Tri spi	5	5	5	5	5		5		5
Fes viv	5	10	10	10	5	5	5	1	5
Rho ros	5	5	5	10					
Sax opp	5	5	5	5					
Ant alp	5	5	5	5	5				
Bis viv	5	5	5	5					

Sax cer			5			
Des alp	5				5	
Car big	5					
Cer cer			1	1		
Har hyp	5					
Min bif			1	5		
Sax ces			5	5	5	
Fes ovi	5	1			1	
Pot cra	5	5	5	5		
Emp nig	1	5	1			
Tarax	5	5	5			
Sau alp	5	5	5	5	1	
Oxy dig	5	5	5	5		
Luz spi	5	5	5	5	5	
Hie sub	5	5	1			
Ant nip	5	5	_			
Agr mer	5	Ū.	1			
Eup wet	5		-			
Oma sup	5	5				
Sax ste	1	5				
Tha alp	5	5				
Ver alp	5	1				
Jun tri	5	-				
Ped lap	5					
Ped lap Ped oed	5	5	5	5		
Ara alp	5	5	5	5		
Poa alp		5	5			
	F	Э				
Bar alp	5	-		1		
Cam rot	5	5		1		
Ave fle	5		-			
Car lac	5		5			
Car vag	5					
Hup sel	1					
Phy cae	5					
Luz mul	1					
Ran pyg			5			
Sal gla	1	5	5	5		
Sal lan	5	5	5			
Sal lap			1			
Sal ret		5	5			
Sax riv			5		10	5
Vac myr	5					
Vac vit	5	5				
Ca atra	5					
Pyr min	1					
Vac uli		1				

Glittertinden, 2472 m

- 1. UTM: 0472529 6834134. 1500 m. Gentle, green plain with small brooks crossing. Some large and medium large stones around. Alternating between dry and moist. 260° W.
- 2. UTM: 0472817 6834621. 1585 m. Concave terrain close to the path. Dry and stony, but also moist patches. 280° W.
- 3. UTM: 0472997 6834687. 1605 m. The south slope in the same terrain. Rocks and stones close to the path. Alternating dry and moist. 250° SW.
- 4. UTM: 0474003 6834963. 1735 m. In the beginning of the steep boulder field. Stones in all sizes. Rocks. Patches of vegetation. Dry. 280° W.
- 5. UTM: 0474077 6834993. 1765 m. 3 m south of the path. Ledge and sheltered corner between rocks and stones.
- UTM: 0474124 6835049. 1790 m. 5 m north of the path. Ledge beneath a steep rock wall. Just above the boulder field. 280° W.
- 8. UTM: 0474184 6835085. 1830 m. 2 m north of the path. Rocks. Dry ledge facing west.
- 11. UTM: 0474242 6835051. 1875 m. Dry ledge. Same aspect as 8.
- 14. UTM: 0474413 6835079. 1965 m. Reaching the plateau. The terrain becomes gentler and less stony. Snow-bed in the boulder field. Several small patches of vegetation.
- 16. UTM: 0474519 6835124. 2015 m. Follow the ridge. Snow-bed close to the path.
- 17. Not found in 1998.
- 20. UTM: 0474811 6835138. 2110 m. Follow the path. Snow-bed just south of boulder field.
- 19. UTM: 0474655 6835517. 2095 m. Cross the remnants (melting away) of field of permanent snow northwestwards towards Glitteroksli. Snow-bed north of the snowfield. 240° SW.
- UTM: 0474507 6835487. 2050 m. On the way down. Towards the southern slope of Glitteroksli. Patches of vegetation.
- 15. UTM: 0474369 6835402. 2000 m. Further down towards the pass between Glitteroksli and Glittertind. Gentle stony slope.
- 13. Not found in 1998.
- 12. Deleted due to uncertain site, in 2014.
- 10. UTM: 0474102 6835268. 1880 m. Steep south facing slope on the way down the southern slope of Glitteroksli.
- 9. UTM: 0474060 6835223. 1840 m. Further down the same slope as 10.
- 6. UTM: 0473723 6835096. 1745 m. Further down, in the last rock cleft before the path to Spiterstulen. Moist.

Site	1	2	3	4	5	6	7	8	9	10	11	14	15	16	18	19	20
M a.s.l.	1500	1585	1605	1735	1765	1745	1790	1830	1840	1880	1875	1965	2000	2015	2050	2095	2110
Beck gla	5	5	5	5	5	5	5	5	1	5	5	5	5	5	10	5	5
Luz con			1			1					5	5	5		5		
Poa fle				1	5	1	5	1		5	5	5	5	5	10	5	
Sal her	10	10	10	10	10	5	10	10	10	5	5	10	10	10	5		
Sil aca	5	5	10	5	5	5	5	5	5	10	1						
Eri uni		5	5	1	5	5			5	5							
Cer alp				5	5			5		5	5						
Car bel				1			5	5			5	5					
Sib pro	5	5	5						5				5				
Tri spi		5	5		5		5	1	5	5	1	5	5		5		
Fes viv		5		5	5	5	10	10	1	10	5	5	5				
Rho ros	5	5	5	5		5			5	5							
Sax opp								5		5	5	5					
Ant alp	5	5	5	5	5	5	5		5	5	5		5				
Bis viv	5	5	5	5	5	5	5	5	5	5							
Des alp		5							5								
Car big	5	5	5						5								

Cer cer									1					
Har hyp	5	5	5						5			5	1	
Min bif				5	5	5	5			5	1			
Sax ces								5						
Fes ovi	5	5	5	5	5	5	1		5	5				
Pot cra	1	5	5	5	5	5			5					
Emp nig	5	10	5	1					1			1		
Tarax		5	5		1	5	1		5				5	
Sau alp		5	5	5	5	10	10	5	5	10				
Oxy dig	5		5			5	5	5	5	5				
Luz spi	5	5	5	5	5	5	5	5	5	5	5		5	
Hie sub	5	1	5	5	5	5	1			5				
Ant nip	5	5	5	5	10	5			10	5				
Agr mer	5	5	5	1		5			5					
Eup wet		5	5	5		5			5	5				
Oma sup		5	5		1	5	1		5				5	5
Sax ste	5	1												
Tha alp		5	5			5			5	5				
Sol vir	1			5		5							1	
Ver alp						5			5				5	
Jun tri	5	5	10	5	5	5			5					
Ped oed		5		5		5			5	5				
Phle alp									5					
Poa alp		1			1				5	5				
Bar alp	5	5		5	5	5			5	5				
Cam rot	5	5	5	5	5	10			5	5				
Ave fle	5		5	5		5			5					
Car lac	5	5							5	5			5	
Car rup				5		5		5		5				
Car vag	1		5	5		5				1				
Gen niv						5			5					
Oma nor						5			1					
Hup sel	5	1	5	5			5					5		
Phy cae	5	5	1	5	1	5						1		
Jun big		5												
Poa gla				5						5				
Leo aut		5												
Pul ver	_	5		5	1									
Loi pro	5	5	1											
Luz mul	5						1		_					
Ran pyg	_			_		_	5		5					
Sal gla	5			5		5				1				
Sal lap	5													
Sal ret	1					1	_		1	1				
Sax riv	_						5							
Vac myr	5	_	_	_	_									
Vac vit	5	5	5	5	5	_			_	_				
Ca atra	1	5	5	5		5			5	5				

Car sax	5	5						
Alc spp.					5			
Ant dio	5	5		5				
Arc alp		1						
Bet nan	10	5	5					
Bet pub				1				
Ger syl					10			
Jun com	1	1	1					
Poa pra						5		
Vac uli	1	5		5				
Sel sel		5			1			
Arc uva				5			1	
Sax ten								5
Lyc ann		1						

Surtningstinden, 1997 m

- 1. UTM: 0456330 6821490. 1500 m. Just above a boulder field which starts at about 1300 m. Rich green ground, 30° slopes, with some medium large stones and bare rocks. Wet soaks from the mountain behind. 180° S.
- 2. UTM: 0456397 6821558. 1535 m. Uphill and a bit eastwards. Rich 35° slopes, with a few large stones on the ground. Wet soaks from rock faces above. 160° S.
- UTM: 0456348 6821601. 1580 m. Further up in the same slope. More small and medium stones, still moist from wet slope of bare rock above.
- 4. Deleted due to uncertain site, in 2014.
- 5. UTM: 0456165 6821727. 1740 m. Up and westwards from 4. Rich ledge beyond a rock face. Moist. 180° S.
- 6. UTM: 0456014 6821780. 1770 m. Further west from 5. Rich spots in the boulder field. Bare rock above. 180° S.
- UTM: 0455779 6821870. 1845 m. The last piece of vegetation before only bare rocks are visible. Steep crevice and ledges in the rock. Moist. 160° S.
- 8. UTM: 0455779 6821886. 1870 m. Small plateau, snow-bed, just before ascent to the highest ridge. 160 °S. UTM-coordinates may be inaccurate because of GPS signal problems.
- 9. Not found in 1998.

Site	1	2	3	5	6	7	8
M a.s.l.	1500	1535	1580	1740	1770	1845	1870
Beck gla	5	1	5	5	5	5	5
Luz con			5	5		5	5
Poa fle				5	5	5	5
Sal her	5	5	5	10	10	10	10
Sil aca	5				5		
Eri uni				5			
Car bel			1	1		5	
Sib pro	5	5	5	5	10	5	5
Tri spi							5
Fes viv	5	5	5	5	5	10	5
Rho ros	5	5	5	5	5		

					-	-	4
Ant alp	4		-	1	5	5	1
Bis viv	1 5	1	5	5	5	F	1
Des alp	5	1	-	5	5	5	10
Car big	-	5	5	1			-
Har hyp	5	5	1	1			5
Fes ovi	1	10	-	4			
Emp nig	5	10	5	1	-		
Tarax	5	_	4.0	5	5		_
Sau alp	5	5	10	10	5		5
Oxy dig	5		_	5	5	_	_
Luz spi	_	_	5	5	5	5	5
Hie sub	5	5	5	1	5		_
Ant nip	10	5	10	10	5		5
Agr mer	5	5		5	5		5
Eup wet	5	5	5				
Oma sup	5	5	5	5	5	1	10
Sax ste		5	1	5	5	1	
Sol vir	10	10	10	5	5	5	5
Ver alp	5	5	5	5	5		5
Jun tri	5	5	5			5	
Ped lap		1	5				
Ped oed	5			5			
Phle alp			5	5	5		
Alch alp	5	5	5	1			
Poa alp				1	5		
Poa viv					5	1	5
Bar alp	5	5	5	5	5		
Cam rot	5	5	5				
Ave fle	10	10	10	1	5		5
Car lac				5	5		
Car vag	5		5				
Diph alp	5	5	5				1
Oma nor	5	5	5	5	5		
Hup sel			5	5			
Phy cae	5	5	5	5			
Jun big				5			
Leo aut	5	5			1		
Luz mul		5					
Ran pyg				1			
Sal gla	5						
Sal lan	5						
Sal lap	1						
Vac myr	10	5	5				
Vac vit		5	5				
Ca atra	5			5	5		
Vio pal	5	5	5				
Nar str	5	10	5				
Car sax	5	5	-				5
	-	-					-

Ant dio	5	5			5
Cry cri					5
Epi ana				5	
Ger syl	5	5			
Jun com	1	1	5		
Pin vul	5	5			
Pyr min	5		5		
Rum					
acsa	5	5	5		1
Vac uli	5	5	5		
Sel sel	5				
Epi lac	5				5
Ath dis	5		1		5
Cir het		5	5		
Coe vir	1				
Tri ces		1			
Agr cap		5	10		
Des ces			5		

Kyrkja, 2032 m

- 1. UTM: 0460821 6822475. 1520 m. The ridge between Leirvatn and Høgvagltjern. Gentle stony plain with both dry and moist patches. Marked path crosses straight through the site.
- 2. UTM: 0461259 6822362. 1570 m. Gentle, rugged slope with bare rocks and large stones. Course of a brook, but only some trickling water observed. 200° S.
- 3. UTM: 0461480 6822334. 1630 m. Steep slope with large stones and bare rocks. Look straight down at Høgvagltjern. Both dry and moist spots. 220° SW.
- 4. UTM: 0461580 6822404. 1690 m. Swampy, gentle slope with *Sphagnum*. Bare rocks and large stones. Drier spots in between. 210° SW.
- 5. UTM: 0462222 6822435. 1810 m. Plateau south of Kyrkja, close to the hill "1843". Flat and dry.
- UTM: 0462400 6822974. 1790 m. In the southeast ascent of Kyrkja, straight east from the path. First green spot in the steep mountain side. Stony, bare rocks and gravel. 140° SE.
- 7. UTM: 0462374 6823056. 1850 m. Same aspect. Steep stony slope with bare rocks. Dry and moist vegetation covered patches. Bryophytes in between.
- 8. UTM: 0462370 6823100. 1880 m. Same exposition. Steep, huge boulder-field with more stones than in 7. Bare rock-faces and scattered patches of vegetation in between.
- UTM: 0462355 6823138. 1915 m. Slope in the same exposition as 8. Ledge prior to the south-facing edge. Dry and stony. 140° SE.
- 10. UTM: 0462330 6823252. 1990 m. Crossed the south edge and then uphill. Steep stony slope. Ledges in the rock. Moist. 230° SW. UTM-coordinates may be inaccurate due to GPS signal problems.
- UTM: 0462340 6823329. 2005 m. Same exposition. Clefts and ledges. Moist. Same signal problems as on 10.
- 12. UTM: 0462360 6823294. 2020 m. Moist mountain cleft facing 220° SSW.
- 13. UTM: 0462376 6823296. 2032 m. Summit. Stony and rocky. Small plateau with gravel on the ground, frequently trampled by tourists.

Site	1	2	3	4	5	6	7	8	9	10	11	12	13
M a.s.l.	1520	1570	1630	1690	1810	1790	1850	1880	1915	1990	2005	2020	2032
Beck gla	5	5	1	5	5	5	5		1	5	5	5	
Luz con	5	5	5	5	10				5				

Poa fle Sal her	5 10	1 10	10	5 10	5 10	5 10	10	5 10	5 10	5 5	5 5	5	5
Sil aca	10	10	1	5	10	10	5	5	10	5	5	1	
Eri uni				1		5	5	5	1	5	5		
Cer alp						1	-	5	5	5	5	10	5
Car bel	5				5			-	-	-	-	-	-
Sib pro	5	5	5	5	-	5	5	5	5		5		
Tri spi			1	5		10	10	5	5	5	5	5	5
Fes viv			5	5	1	5	5	5	5	5	1	-	1
Rho ros		5	5	5		10	10	10	5	10	5		
Sax opp								5	5	5	5	5	5
Ant alp		5	5	5		5	5	5	-	5	-	-	-
Bis viv	1	5	5	5		5	5	5					
Sax cer		-	-	-		-	-	-		5	5		
Des alp	5	5	5	5			5						
Car big	5	5	5	5									
Cer cer				1		1							
Har hyp	5			1									
Min bif										5			
Sax ces										5	5	5	5
Fes ovi			1										
Pot cra								5		5			
Emp nig	1	1											
Tarax		5	5	5		5	5	5					
Sau alp		5	5	5		5	5	5		5	5		
Oxy dig		5	5			5	5			5	5	5	1
Luz spi			1	5		1	5			5	5		
Hie sub		5	5			5	1	5					
Ant nip		5	10			5							
Agr mer	5	5	5	5									
Eup wet			5					1					
Oma sup	5	5	5	5		5	5	5	5				
Sax ste	5		5										
Tha alp			5										
Sol vir		5	5				1						
Ver alp		5	5	5		5	5	5					
Jun tri		5	5	5									
Ped lap		5											
Ped oed		5					1						
Phle alp			5										
Poa alp		5				5	5	5					
Poa viv	5	5		5		5	5	5		5	5	5	5
Bar alp		5	5			5	5	5					
Cam rot			5			1		5					
Ave fle		5	10	5			5						
Car lac	5	5		5		5							
Car vag			5										
Diph alp			5	5									

Oma nor		5	5			5					
Hup sel										5	
Phy cae	1	5	5		1						
Jun big				5							
Poa gla								5			
Sal gla		1	5								
Sax riv										5	5
Vac myr			5								
Vac vit			5	5							
Ca atra			5				5				
Car sax	5										
Vahl atr		10		5							
Dra fla									5		
Epi ana		5									
Ger syl			5								
Poa pra	5										
Pyr min			1								
Rum acsa			5								
Vac uli			1								
Ath dis		5									
Gym dry						1					

Tverbotnhorn, 2084 m

- 1. UTM: 0460002 6824391. 1415 m. The terrain just north of Leirvassbu, before the hills further northwest. Stony, gently plains, slightly falling , 160° S. Moist.
- 2. UTM: 0460007 6825273. 1475 m. In the lee-side southeast to the hills called "Presten" (map). Grass slopes with many large stones. Alternating dry and wet (snow-beds). 170° S.
- 3. UTM: 0460432 6825211. 1555 m. At the start of the ascent to the mountain, greenest parts of the south-facing slopes. Bare rocks and small stones. Dry. The exposition is directly towards Leirvassbu, 200° S.
- 4. UTM: 0460532 6825250. 1610 m. Same aspect as 3, but further east. Rich green slope with wet soaks and stones in between. Concave terrain.
- 5. UTM: 0460556 6825305. 1660 m. Uphill in the same slope as 5. Large stones and water from a mountain outcrop. UTM-coordinates may be inaccurate due to GPS signal problems.
- UTM: 0460722 6825301. 1705 m. Uphill and eastwards across a small pass. Drier, but still moist. Bryophytes and lichens on the ground, medium large stones and bare rocks. 190° S. Same GPS signal problems as on 5 (steep mountain slopes/precipices).
- 7. UTM: 0460832 6825366. 1785 m. Steep cleft with both wet and dry patches. Stony ground. 180° S.
- UTM: 0460853 6825423. 1830 m. Broad ledge by the foot of a slope of bare rock. Moist and stony. 200° S. Same signal problems as on 5 and 6.
- 9. UTM: 0460792 6825512. 1890 m. Sheltered ledge. Dry. Bare rocks and many small and medium stones. 190° S.
- 10. UTM: 0460656 6825608. 1905 m. Large, broad cleft in the mountain. Moist. Bare rocks and small stones on the ground. 180° S.
- 11. UTM: 0460694 6825643. 1950 m. Same cleft as 10. Ledges in the rock. Moist.
- 12. Not found in 2014.
- 13. Not found in 2014.
- 14. Not found in 2014.
- 15. UTM: 0461074 6825671. 2050 m. Downhill, south of the summit. First patch of vegetation found. Snow-bed beyond the field of permanent snow that was once covering the summit.

Site	1	2	3	4	5	6	7	8	9	10	11	15
M a.s.l.	1415	1475	1555	1610	1660	1705	1785	1830	1890	1905	1950	2050
Beck gla		5					5	5	5	5	5	5
Luz con												5
Poa fle					1		5	5	5	5	5	10
Sal her	10	5		5	5	5	10	10	10	5	10	10
Sil aca	5	5	1			5	5		5	1		
Eri uni							5	5	5	5		
Cer alp									5		5	
Car bel								5				
Sib pro	5	5		5	5	1	5	5	5	5	5	5
Tri spi		1			1		5	5	5	5	5	
Fes viv	1	5		1	5	5	5	5	5	1	5	10
Rho ros	5	5	5	5	5	5	5	5	5	5	5	
Ant alp		5				5	5	5	5	5	5	
Bis viv	5	5	5	5	5	5	5	5	5	5	5	
Sax cer										1		
Des alp	5	5		10	10		10	10		10	5	5
Car big	5	5	5	5	5							
Cer cer				1	5		5	5			5	
Har hyp	5	5										
Min bif				5	5		5	1	5	5		
Fes ovi		5	5	1	5	5						
Pot cra		5	5		5	1	5					
Emp nig	10	5	5									
Tarax	5	5	5	5	5		5	5	5	5	5	
Sau alp		5	5	5	5	5	5	5	5	5	5	
Oxy dig	5	5		5	5		5	5	5	5	5	
Luz spi	5	5	5	5	5	5	5	5	5	5	1	1
Hie sub	5	5	5			5	1	5	5			
Ant nip	5	5	10	10		5	5	5				
Agr mer	5	5	5	5	5	5	5	5			5	
Eup wet	5	5	5	5	5	5						
Oma sup	5	5	1	5	5	1	5	5	5	5	5	1
Sax ste	5	1	5	5	5		5	5		5	5	
Tha alp		5	5		5	1						
Ver alp	5	5	5	5	5	1	5	5	5	5	5	
Jun tri	5	5	5		5	5						
Ped oed		5	5			5	5	1	5			
Phle alp		5		10	10		5					
Poa alp		5			1			1	5			
Poa viv					5		5	5	5	5	5	5
Bar alp	5	5	5	5	5	1	5					
Cam rot	-'	5	5	5	5	5	5		5			
Ave fle	5	5	5	5	5	5	5		-			
Car lac	5	-	-	-	5	-	1	5		5	5	1
Car vag	-	5			-	5	-	-		-	-	-
		2				2						

Diph alp		5										
Eri ang	5	_		_			_					
Gen niv		5		5			5					
Hie hie				_	_	1	_	_				
Oma nor	_	1		5	5		5	5		1	1	
Hup sel	5	5	_				1	5				
Phy cae	5	5	5									
Jun big					1							
Leo aut	10	10	_			_	_					
Pul ver	_		5			5	5		1			
Loi pro	5											
Luz mul		1	5		5							
Ran acr		5	5	5	5							
Poa arc											5	
Ran pyg		1								5		
Sal gla		1	5	1	5	5	5	1				
Sal lan			10	5	5		1			1		
Sal lap	5											
Sal ret			5	5			5					
Sax riv										1	1	
Vac myr	5	5	5			5						
Vac vit	1		5			5						
Ca atra			1		5							
Nar str	1	5										
Car sax	5	5										
Vahl atr	10	10										
Alc spp.		5	5	10	10		5					
Ant dio			5			5						
Epi ana	5	5		5	5		5	5		5	1	
Eri sch	5											5
Ger syl			5	10	5							
Jun com						5						
Vis alp			5		5		1	5		1		
Pin vul			5									
Poa pra				5	5							
Pyr min		5										
Rum acsa		5	1	5	5							
Sil dio				5								
Tof pus			5									
Vac uli		5	5									
Sel sel		5	5			1						
Epi lac				5								
Ath dis		5		1	1	1						
Coe vir			5									
Equ arv	5											

Steindalsnosi, 1936 m

- 1. UTM: 0439214 6820493. 1435 m. In the upper part of the plateau just before the ascent to Steindalsnosi. Rich slopes surrounded by boulder field. Dry, 190° S.
- 2. UTM: 0439248 6820573. 1475 m. Next plateau. Stony ground with bare rocks. Moist and dry areas. 220° SW.
- 3. UTM: 0439685 6820695. 1645 m. Getting steeper. Green spot or ledge in the boulder field of small
- and medium large stones. UTM-coordinates may be inaccurate due to GPS signal problems.
 UTM: 0439666 6820857. 1700 m. Sheltered plateau/corner. Mountain outcrops, medium large
- stones, snow-bed. 220° SW.
- 5. UTM: 0439706 6820889. 1735 m. The only spot of vegetation visible in the huge boulder field. 210°SW.
- 6. UTM: 0439755 6820918. 1775 m. Rock crevice and ledges. 170° S.
- 7. UTM: 0439833 6820961. 1845 m. Gentle stony slopes in the boulder field. Patches of mosses, gravel. 210° SW.
- 8. Deleted due to uncertain site, in 2014.
- 9. UTM: 0440213 6821255. 1936 m. Flat, stony top plateau.

Site	1	2	3	4	5	6	7	9
M a.s.l.	1435	1475	1645	1700	1735	1775	1845	1936
Beck gla		5	5	5	5	5	5	5
Luz con		5		5	5	5	5	
Poa fle		5	5	5	5	5	5	5
Sal her	5	5	10	10	10	5	10	1
Sil aca		5						
Eri uni						1		
Car bel			5	5		5		
Sib pro	5	5	5	5		5	5	
Tri spi			5	5	5	5		
Fes viv	5	5	5	5	5	5	10	5
Rho ros	5		5					
Ant alp	5			5	1	5		
Bis viv	5	5	5					
Des alp			5	5		5	5	
Car big	5	5						
Cer cer						5		
Har hyp		5			1			
Emp nig	5	5						
Tarax	5		1			5		
Sau alp			5			5		
Oxy dig			5					
Luz spi	5	5	5	5		1		5
Hie sub	5	5		1				
Ant nip	5	5	5					
Agr mer	5	5	5					
Eup wet	5							
Oma sup	5	5	10	5		5		
Sax ste	1		5					
Sol vir	5		5					
Ver alp			5			5		
Jun tri	5	10		5				
Ped lap	5							

Ped oed	5					
Alch alp	5					
Poa viv			5			5
Bar alp	1					
Cam rot	5	1			1	
Ave fle	10	5	1			
Car lac		5	1			5
Diph alp		5				
Oma nor	5		5			
Hup sel		5				
Phy cae	5	5		1		
Poa gla				1		
Leo aut	5					
Loi pro		5				
Luz mul	5					
Ran pyg						5
Sal gla	1					1
Sal lap	5					
Sax riv						5
Vac myr	10	5				
Vac vit		5				
Vio pal	5					
Nar str	5					
Vahl atr		5	5			
Bet pub	1	1				
Cry cri			5			
Epi ana			5			
Ger syl	5					
Jun com	5					
Vis alp	1	1				
Pyr min Rum	5					
acsa	5					
Vac uli	5	5				
Ath dis	5		5			
Car bru		1				

Fannaråki, 2068 m

- 1. UTM: 0442220 6819851. 1485 m. Left the path Turtagrø- Skogadalsbøen prior to Illvatnet. Rich slope just above the mid-point of the water. Small and medium large stones, trickling water from the rocks above. 180° S.
- 2. UTM: 0442341 6819918. 1535 m. Same aspect but further to the east. Concave terrain with large stones, drier than 1. UTM-coordinates may be inaccurate because of GPS signal problems.
- 3. UTM: 0442450 6820099. 1680 m. Further to the east. Stony and rocky. Moist. 180° S.
- 4. UTM: 0442149 6820219. 1765 m. Further to the west, same aspect as 3, but somewhat steeper. Bare rocks and stones. Moist. 180° S.
- 5. UTM: 0441848 6820222. 1830 m. Westwards and towards the summit. Just above the outlet of Illvatnet. Before a mountain outcrop facing south. Ledges in the rocks, moist site. GPS signal problems as on 2.
- 6. UTM: 0441869 6820295. 1895 m. In the upper part of the bare rocks, just in front of the large boulder field towards the summit. Small mountain clefts, stony. 140° SE.
- 7. Not found in 1998.
- 8. Not found in 1998.
- 9. UTM: 0441645 6820458. 1995 m. Terrain is gentler. Snow-bed facing southwest, surrounded by the large boulder field covering the summit. Just east of path.
- 10. UTM: 0441836 6820772. 2050 m. New site. Stony plain north and west of DNT's Fannaråkhytta. No vascular plants found.

Site	1	2	3	4	5	6	9	10
M a.s.l.	1485	1535	1680	1765	1830	1895	1995	2050
Beck gla			5	1	5	5	5	
Luz con				5	5	5		
Poa fle			5	5	5	5	5	
Sal her	5	5	10	10	5	10	5	
Eri uni		1						
Cer alp					5			
Car bel			5		5			
Sib pro	5	5	5	5	5	5		
Fes viv		5	5	5	5	5	5	
Rho ros	5	5			5	1		
Ant alp					5			
Bis viv	5	5	5	5	5			
Des alp	5	5	5	5	5	5	5	
Car big	5	5	5	10	5			
Cer cer				5	5	5		
Har hyp			1					
Emp nig			5					
Tarax	5	5			5			
Sau alp	5				5			
Oxy dig	5	5				5		
Luz spi	1	5	5	5	5	5	5	
Hie sub	1	1	5	1				
Ant nip	5	10	1	1				
Agr mer	1	5						
Eup wet	5	5						
Oma sup	5	5	5	5	5	5		
Sax ste	5		5	5	5			
Sol vir	5							

Ver alp	1	5			5	1	
Phle alp	1	5					
Poa alp		5					
Poa viv	1			5	5	5	5
Bar alp	5	1					
Cam rot	5	5					
Ave fle	5	5	5				
Car lac	5	5	5	5	5	5	
Oma nor	5	5		5			
Hup sel			5				
Leo aut	5						
Luz mul	1						
Ran acr	5	5					
Ran pyg					5		
Sal gla	5	5			1		
Sal lan	5	1					
Sax riv					5	5	
Vac myr	5						
Vio pal	5	5					
Alc spp.	5	5					
Epi ana	5	5			5		
Eri sch				5			
Ger syl	5	5					
Jun com	1						
Pyr min	5						
Rum	-	-					
acsa	5	5					
Vac uli	5	-					
Epi lac	-	5					
Ath dis	5	5					
Cal pur	5	5					
Cir het	5	5					
Cha ang	5	5					
Myu dec		1					
Phe con		5					

This is a continuation of Appendix 2 from Klanderud (2000). It contains species names, total number of observations per species in 1930/31, 1998 and 2014, and the difference in number of observations between 1998 and 2014. It also shows each species' highest altitude observation in 1998 and 2014, and compares with the Norwegian altitudinal limits in Lid & Lid (2005). Where new altitudinal limits have been registered in 2014, altitude is written in bold numbers, and the site is mentioned.

Spe	cies names		al numb oservatio		Diff	observ	hest vations n)	Altitudinal limit (m) (Lid and Lid, 2005)	Site of new altitudinal limit
		1931	1998	2014	1998-2014	1998	2014		
Agr cap	Agrostis capillaris	0	0	3	3	-	1580	1340	Surtningstinden (3)
Agr mer	Agrostis mertensii	2	27	87	60	1840	<i>1950</i>	1600	Tverbotnhorn (11)
Alc alp	Alchemilla alpina	5	13	14	1	1610	1740	1760	
Alc spp	Alchemilla spp.	21	23	24	1	1790	1880	-	
Ang arc	Angelica Archangelica	3	3	2	-1	1560	1515	1600	
Ant alp	Antennaria alpina	110	121	138	17	2050	2130	2240	
Ant dio	Antennaria dioica	14	25	20	-5	1770	1770	2000	
Ant nip	Anthoxanthum nipponicum	67	77	93	16	1880	1930	2130	
Ara alp	Arabis alpina	9	11	8	-3	1950	1950	1980	
Ara pet	Arabidopsis petraea	1	0	1	1	-	1590	1730	
Arc alp	Arctous alpinus	11	11	7	-4	1790	1670	1620	Surtingssue/Rau (4)
Arc uva	Arctostaphylos uva ursi	18	16	11	-5	1850	1880	1840	Glittertinden (10)
Asp vir	Asplenium viride	0	1	0	-1	1560	-	1700	
Ast alp	Astragalus alpinus	2	5	3	-2	1700	1620	1775	
Ath dis	Athyrium distentifolium	3	13	19	6	1790	1850	1870	
Ave fle	Avenella flexuosa	27	48	57	9	1950	1880	1900	
Bar alp	Bartsia alpina	40	53	65	12	1915	1880	1960	
Beck gla	Beckwithia glacialis	204	208	204	-4	2185	2185	2370	
Bet nan	Betula nana	5	8	10	2	1745	1605	1570	Glittertinden (3)
Bet pub	Betula pubescens	0	1	8	7	1540	1740	1580	Sikkildalshøa (8)
Bis viv	Bistorta vivipara	108	126	133	7	2010	1995	2280	
Bot bor	Botrychium boreale	0	1	1	0	1525	1500	1690	
Bot lun	Botrychium lunaria	0	1	2	1	1650	1750	1650	Surtingssui/Rau (7)
Cal pur	Calamagrostis purpurea	2	1	2	1	1485	1535	1430	Fanaråken (2)
Cam rot	Campanula rotundifolia	59	56	87	31	2050	1950	2060	
Car bel	Cardamine bellidifolia	71	87	102	15	2050	2130	2200	
Car arc	Carex arctogena	0	2	3	1	1730	1750	1720	Rasletinden/Rau (9)
Ca atra	Carex atrata	25	26	42	16	1910	1910	1920	
Ca atro	Carex atrofusca	3	2	0	-2	1560	-	1880	
Car big	Carex bigelowii	65	89	88	-1	1880	1910	1950	
Car bru	Carex brunnescens	0	0	1	1	-	1475	1550	
Car cap	Carex capillaris	0	1	2	1	1560	1670	1570	Surtingssui/Rau (4)
Car dio	Carex dioica	0	2	0	-2	1560	-	1500	

Car lac	Carex lachenalii	47	50	69	19	2010	2050	2000	Svartdalspiggan (14)
Car rup	Carex rupestris	13	51	19	-32	2020	1990	2100	
Car sax	Carex saxatilis	4	6	10	4	1620	1870	1750	Surtningstinden (8)
Car vag	Carex vaginata	20	57	43	-14	1880	1880	1830	Bukkhammaren (13)
Cer alp	Cerastium alpinum	109	103	84	-19	2032	2050	2220	
Cer cer	Cerastium cerastoides	28	28	32	4	2010	2050	2040	Svartdalspiggan (14)
Cha ang	Chamerion angustifolium	15	9	5	-4	1675	1571	1780	
Cir het	Cirsium heterophyllum	3	4	5	1	1580	1580	1680	
Coe vir	Coeloglossum viride	2	6	3	-3	1740	1555	1740	
Cry cri	Cryptogramma crispa	1	2	3	1	1485	1910	1660	Tverråtindan (11)
Cys fra	Cystopteris fragilis	1	2	0	-2	1700	-	1700	
Des alp	Deschampsia alpina	50	93	93	0	2050	2050	2230	
Des ces	Deschampsia cespitosa	0	0	1	1	-	1580	1470	Surtningstinden (3)
Diph alp	Diphasiastrum alpinum	12	21	18	-3	1625	1995	1740	Knutsholstinden (11)
Dra fla	Draba fladnizensis	14	12	5	-7	1930	2005	2300	
Dra niv	Draba nivalis	5	2	5	3	1880	1778	2100	
Dra nor	Draba norvegica	1	5	0	-5	1760	-	2020	
Dry oct	Dryas octopetala	6	6	3	-3	1775	1670	1830	
Emp nig	Empetrum nigrum	9	68	91	23	1845	1965	1770	Glittertinden (14)
Epi ana	Epilobium anagallidifolium	5	5	29	24	1785	1950	1840	Tverbotnhorn (11)
Epi lac	Epilobium lactiflorum	0	0	8	8	-	1790	1660	Tverråtindan (6)
Equ arv	Equisetum arvense	1	6	4	-2	1585	1510	1600	
Eri uni	Erigeron uniflorus	111	82	86	4	2020	2050	2120	
Eri ang	Eriophorum angustifolium	0	9	8	-1	1830	1715	1700	Tjørnholstinden (5)
Eri sch	Eriophorum scheuchzeri	2	3	6	3	1540	2050	1840	Tverbotnhorn (15)
Eri vag	Eriophorum vaginata	2	3	1	-2	1710	1705	1720	
Eup wet	Euphrasia wettsteinii	10	23	63	40	1850	1910	1800	Tverråtindan (11) Nordre
Fes ovi	Festuca ovina	50	64	80	16	1880	1920	1900	Hellstuguhøi (5)
Fes viv	Festuca vivipara	110	160	179	19	2095	2080	2300	
Gen niv	Gentiana nivalis	5	7	26	19	1830	1840	1880	
Ger syl	Geranium sylvaticum	15	17	18	1	1675	1745	1750	
Gym con	Gymnadenia conopsea	0	1	0	-1	1560	-	1560	
Gym dry	Gymnocarpium dryopteris	0	1	2	1	1620	1790	1600	Tverråtindan (6)
Har hyp	Harrimanella hypnoides	33	65	66	1	1880	2000	1870	Glittertinden (15)
Hie sub	Hieracium sect. subalpina	80	90	111	21	1915	2010	-	
Hie hie	Hieracium sect. hieracium	1	3	3	0	1560	1705	-	
Hup sel	Huperzia selago	44	61	55	-6	2020	2020	1940	Kyrkja (12)
Jun big	Juncus biglumis	23	26	24	-2	1760	1930	1970	
Jun tri	Juncus trifidus	58	88	94	6	1860	1910	1850	Tverråtindan (11)
Jun com	Juniperus communis	30	34	38	4	1760	1880	1730	Bukkhammaren (13)
Kob myo	Kobresia myosuroides	0	3	3	0	1760	1710	1960	
Leo aut	Leontodon autumnalis	1	1	21	20	1495	1775	1600	Besshø (6)
Loi pro	Loiseleuria procumbens	20	20	20	0	1765	1700	1920	
Luz con	Luzula confusa	151	165	149	-16	2095	2137	2250	
Luz mul	Luzula multiflora	17	24	27	3	1740	1790	1800	
Luz par	Luzula parviflora	4	1	0	-1	1735	-	1750	
Luz spi	Luzula spicata	82	154	170	16	2050	2080	2220	

Lyc ann	Lycopodium annotium	1	7	3	-4	1765	1720	1600	Galdhøpiggen (3)
Min bif	Minuartia biflora	31	56	52	-4	2010	1990	2210	
Myo dec	Myosotis decumbens	0	1	1	0	1485	1535	1550	
Nar str	Nardus stricta	0	0	14	14	-	1590	1750	
Oma nor	Omalotheca norvegica	18	31	42	11	1910	1950	1780	Tverbotnhorn (11)
Oma sup	Omalotheca supina	32	87	116	29	2010	2050	2000	Svartdalspiggan (14)
Oxy dig	Oxyria digyna	100	86	99	13	2032	2050	2160	
Par pal	Parnassia palustris	0	2	3	1	1560	1670	1750	
Ped lap	Pedicularis lapponica	10	12	9	-3	1610	1580	1700	
Ped oed	Pedicularis oederi	60	77	67	-10	1950	1910	2050	
Pet fri	Petasites frigidus	2	2	0	-2	1555	-	1960	
Phe con	Phegopteris connectilis	0	0	1	1	-	1535	1560	
Phle alp	Phleum alpinum	22	26	32	6	1790	<i>1910</i>	1800	Tverråtindan (11)
Phy cae	Phyllodoce caerulea	43	68	76	8	1880	1980	1850	Skauthøi (18)
Pin vul	Pinguicula vulgaris	2	10	9	-1	1700	1670	1570	Surtingssui/Rau (4)
Poa alp	Poa alpina var. alpina	25	41	59	18	2005	1950	2000	
Poa viv	Poa alpina var. vivipara	7	7	53	46	1990	2050	2140	
Poa arc	Poa arctica	5	0	4	4	-	1950	2050	
Poa fle	Poa flexuosa	178	167	176	9	2135	2185	2350	
Poa gla	Poa glauca	13	13	32	19	2005	1990	2160	
Poa pra	Poa pratensis	3	3	10	7	1650	1840	1950	
PoaXjem	Poa x jemtlandica	1	0	0	0	-	-	1760	
Pol lon	Polystichum lonchitis	0	1	1	0	1515	1515	1500	Surtningssui/Rau (1)
Pseu sta	Pseudorchis staminea	3	3	0	-3	1560	-	1800	
Pot cra	Potentilla crantzii	70	76	75	-1	2005	1990	2000	
Pot niv	Potentilla nivea	1	4	3	-1	1790	1790	1700	Tverråtindan (6)
Pul ver	Pulsatilla vernalis	38	45	37	-8	1880	1890	1840	Tverbotnhorn (9)
Pyr min	Pyrola minor	7	21	21	0	1660	<i>1630</i>	1620	Kyrkja (3)
Ran acr	Ranunculus acris ssp. pumilus	11	18	19	1	1720	1880	1870	Bukkhammaren (13)
		38	35	25	-10	2010	2050	2230	Bukkilaninalen (15)
Ran pyg Rho ros	Ranunculus pygmeaeus Rhodiola rosea	123	132	121	-10 -11	2010	2050	2280	
Rum acla	Rumex acetocella	0	132	0	-11	1525	-	1840	
Rum acsa	Rumex acetosa	24	31	30	-1	1790	- 1850	1840	
Sal gla	Salix glauca	13	29	50 65	-1 36	1790	1850 1950	1900	Surtningssui/Rau(15)
Sal her	Salix herbacea	185	29 198	219	21	2125	2137	2170	Sul thingssul/ Rau(15)
Sal Ian	Salix lanata	10	138	30	17	1660	1905	1750	Tverbotnhorn (10)
Sal lap	Salix lapponum	16	37	16	-21	1790	1695	1750	
Sal myrs	Salix myrsinites	5	7	2	-21	1670	1620	1750	
Sal phy	Salix phylicifolia	6	33	8	-25	2000	1655	1760	
Sal ret	Salix reticulata	20	27	24	-3	1905	1880	1940	
Sau alp	Saussurea alpina	110	141	125	-16	2095	2005	2130	
Sau aip Sax aiz	Saxifraga aizoides	2	2	0	-10	1560	-	1700	
Sax aiz	Saxifraga cernua	25	20	15	-2	2020	- 2050	2350	
Sax ces	Saxifraga cespitosa	52	42	20	-22	2020	2050	2350	
Sax ces	Saxifraga cotyledon	0	42	3	-22	1590	2030 1590	1490	Veslefjellet (3)
Sax cot Sax niv	Saxifraga nivalis	25	22	9	-13	2060	1995	2250	vesicijeliet (5)
Sax niv Sax opp	Saxifraga oppositifolia	31	56	9 44	-13 -12	2000	2130	2250	
Sur opp	sanji aga oppositijona	31	50		12	2032	2100	2330	

Sax riv	Saxifraga rivularis	23	19	23	4	2000	2050	2350	
Sax ste	Saxifraga stellaris	45	38	70	32	1950	2010	1970	Svartdalspiggan (13)
Sax ten	Saxifraga tenuis	0	0	1	1	-	2015	2250	
Sed vil	Sedum villosum	0	0	4	4	-	1700	1880	
Sel sel	Selaginella selaginoides	0	0	15	15	-	1790	1520	Surtningssui/Rau(10)
Sib pro	Sibbaldia procumbens	97	117	116	-1	2010	2080	2130	
Sil aca	Silene acaulis	117	138	131	-7	2032	2130	2210	
Sil wahl	Silene wahlbergella	6	3	1	-2	1850	1880	1970	
Sil dio	Silene dioica	9	11	6	-5	1790	1850	1780	Tverråtindan (8)
Sol vir	Solidago virgaurea	30	47	51	4	1880	2000	1800	Glittertinden (15)
Ste bor	Stellaria borealis	0	0	1	1	-	1570	550	Galdhøpiggen (1)
Tarax	Taraxacum spp.	56	89	101	12	2010	2050	-	
Tha alp	Thalictrum alpinum	36	62	56	-6	1880	1880	1920	
Tof pus	Tofieldia pusilla	2	12	6	-6	1700	1750	1700	Surtningssui/Rau (7)
Tri ces	Trichophorum cespitosum	0	3	1	-2	1605	1535	1600	
Tri eur	Trientalis europaea	3	11	4	-7	1625	1625	1600	Galdhøpiggen (2)
Tri spi	Trisetum spicatum	124	106	126	20	2032	2080	2220	
Vac myr	Vaccinium myrtillus	18	35	33	-2	1700	1705	1700	Tverbotnhorn (6)
Vac uli	Vaccinium uliginosum	13	45	49	4	1765	1750	1730	Rasletinden/Rau (9)
Vac vit	Vaccinium vitis-idaea	40	62	55	-7	1855	1775	1800	
Vah atr	Vahlodea atropurpurea	0	0	18	18	-	1715	1600	Tjørnholstinden (5)
Val sam	Valeriana sambucifolia	1	0	0	0	-	-	1540	
Ver alp	Veronica alpina	52	74	82	8	1910	2000	1920	Glittertinden (15)
Ver fru	Veronica fruticans	10	5	6	1	1850	1880	1800	Bukkhammaren (13)
Vio pal	Viola palustris	7	16	7	-9	1680	1625	1750	
Vis alp	Viscaria alpina	28	26	27	1	1890	1905	1900	Tverbotnhorn (10)
Total num	per of species	125	138	140					

The table shows the results of the randomization test, with species names, p-values and change in number of observations between 1998 and 2014. Bold letters and numbers indicate significant changes.

Species	P-value	Change	Carex saxatilis	0.392	4
		number of	Carex vaginata	0.034	-14
		observations 1998 – 2014	Cerastium alpinum	0.034	-19
		1990 2014	Cerastium cerastoides	0.632	4
Agrostis capillaris	0.255	3	Chamerion angustifolium	0.282	-4
Agrostis mertensii	0.001	60	Cirsium heterophyllum	1	1
Alchemilla spp.	1	1	Coeloglossum viride	0.364	-3
Alchemilla alpina	1	1	Cryptogramma crispa	1	1
Angelica Archangelica	1	-1	Cystopteris fragilis	0.468	-2
Antennaria alpina	0.056	17	Deschampsia alpina	1	0
Antennaria dioica	0.382	-5	Deschampsia cespitosa	1	1
Anthoxanthum			Diphasiastrum alpinum	0.635	-3
nipponicum	0.016	16	Draba fladnizensis	0.066	-7
Arabis alpina	0.435	-3	Draba nivalis	0.373	3
Arabidopsis petraea	1	1	Draba norvegica	0.066	-5
Arctous alpinus	0.452	-4	Dryas octopetala	0.483	-3
Arctostaphylos uva ursi	0.376	-5	Empetrum nigrum	0.001	23
Asplenium viride	1	-1	Epilobium	0.001	24
Astragalus alpinus	0.712	-2	anagallidifolium Epilobium lactiflorum	0.001	24 8
Athyrium distentifolium	0.259	6		0.632	-2
Avenella flexuosa	0.15	9	Equisetum arvense	0.052	-2 -1
Bartsia alpina	0.037	12	Eriophorum angustifolium Eriophorum scheuchzeri	0.478	-1 3
Beckwithia glacialis	0.644	-4		0.686	4
Betula nana	0.617	2	Erigeron uniflorus	0.624	-2
Betula pubescens	0.056	7	Eriophorum vaginata Europrocia wottetoinii	0.824 0.001	-2 40
Bistorta vivipara	0.281	7	Euphrasia wettsteinii Fostusa ovina	0.001	40
Botrychium boreale	1	0	Festuca ovina	0.019	
Botrychium Iunaria	1	1	Festuca vivipara		19
Calamagrostis purpurea	1	1	Gentiana nivalis	0.001	19
Campanula rotundifolia	0.001	31	Geranium sylvaticum	1	1
Carex arctogena	1	1	Gymnadenia conopsea	1	-1
Carex atrata	0.006	16	Gymnocarpium dryopteris Harrimanella hypnoides	1	1
Carex atrofusca	0.525	-2		1	1
Cardamine bellidifolia	0.093	15	Hieracium sect. hieracium	1 0.005	0
Carex bigelowii	1	1	Hieracium sect. subalpina		21
Carex brunnescens	1	1	Huperzia selago	0.516	-6
Carex capillaris	1	1	Juncus biglumis	0.858	-2
Carex dioica	0.509	-2	Juniperus communis	0.61	4
Carex lachenalii	0.02	19	Juncus trifidus	0.42	6
Carex rupestris	0.001	-32	Kobresia myosuroides	1	0

Leontodon autumnalis	0.001	20	Salix lapponum	0.001	-21
Loiseleuria procumbens	1	0	Salix myrsinites	0.118	-5
Luzula confusa	0.056	-16	Salix phylicifolia	0.001	-25
Luzula multiflora	0.72	3	Salix reticulata	0.731	-3
Luzula parviflora	1	-1	Saussurea alpina	0.034	-16
Luzula spicata	0.043	16	Saxifraga aizoides	0.494	-2
Lycopodium annotium	0.328	-4	Saxifraga cernua	0.404	-5
Minuartia biflora	0.654	-4	Saxifraga cespitosa	0.001	-22
Myosotis decumbens	1	0	Saxifraga cotyledon	1	1
Nardus stricta	0.001	14	Saxifraga nivalis	0.005	-13
Omalotheca norvegica	0.044	11	Saxifraga oppositifolia	0.083	-12
Omalotheca supina	0.002	29	Saxifraga rivularis	0.584	4
Oxyria digyna	0.132	13	Saxifraga stellaris	0.001	32
Parnassia palustris	1	1	Saxifraga tenuis	1	1
Pedicularis lapponica	0.532	-3	Sedum villosum	0.132	4
Pedicularis oederi	0.136	-10	Selaginella selaginoides	0.001	15
Petasites frigidus	0.498	-2	Sibbaldia procumbens	1	-1
Phegopteris connectilis	1	1	Silene acaulis	0.399	-7
Phleum alpinum	0.332	6	Silene dioica	0.171	-5
Phyllodoce caerulea	0.331	8	Silene wahlbergella	0.625	-2
Pinguicula vulgaris	1	-1	Solidago virgaurea	0.673	4
Poa alpina var. alpina	0.019	18	Stellaria borealis	1	1
Poa arctica	0.12	4	Taraxacum spp.	0.138	12
Poa flexuosa	0.333	9	Thalictrum alpinum	0.37	-6
Poa glauca	0.004	19	Tofieldia pusilla	0.134	-6
Poa pratensis	0.042	7	Trichophorum cespitosum	0.624	-2
Poa alpina var. vivipara	0.001	46	Trientalis europaea	0.029	-7
Poa x jemtlandica	1	0	Trisetum spicatum	0.039	20
Polystichum lonchitis	1	0	Vaccinium myrtillus	0.833	-2
Potentilla crantzii	1	-1	Vaccinium uliginosum	0.606	4
Potentilla nivea	1	-1	Vaccinium vitis-idaea	0.388	-7
Pseudorchis staminea	0.274	-3	Vahlodea atropurpurea	0.001	18
Pulsatilla vernalis	0.271	-8	Valeriana sambucifolia	1	0
Pyrola minor	1	0	Veronica alpina	0.365	8
Ranunculus acris ssp. pumilus	1	1	Veronica fruticans	1	1
Ranunculus pygmeaeus	0.149	-10	Viola palustris	0.01	-9
Rhodiola rosea	0.098	-10	Viscaria alpina	1	1
Rumex acetocella	0.098	-11 -1			
Rumex acetosa	1	-1			
Salix glauca	0.001	- <u>-</u> 36			
Salix herbacea	0.001	21			
Salix lanata	0.002	17			
SullA Iuliulu	0.001	17			

The three indicator values: values from Gottfried et al. (2012), Nordic Indicator values and Ellenberg Temperature indicator values. The "x" means that an indicator value does not exist or has not been found.

Species	Gottfried et al. 2012	Nordic Indicator values	Ellenberg Temperature values
Agrostis capillaris	6	5	x
Agrostis mertensii	3	2	х
Alchemilla alpina	5	1	2
Alchemilla spp.	x	x	x
Angelica archangelica	х	5	6
Antennaria alpina	3	2	x
Antennaria dioica	5	5	x
Anthoxanthum nipponicum	x	2	3
Arabidopsis petraea	x	1	2
Arabis alpina	4	1	3
Arctostaphylos uvaursi	5	4	x
Arctous alpinus	4	1	2
Asplenium viride	x	4	4
Astragalus alpinus	4	1	2
Athyrium distentifolium	x	1	3
Avenella flexuosa	5	5	x
Bartsia alpina	4	1	3
Beckwithia glacialis	1	1	1
Betula nana	5	2	3
Betula pubescens	6	5	x
Bistorta vivpara	4	2	2
Botrychium boreale	x	2	x
Botrychium lunaria	5	5	x
Calamagrostis purpurea	6	4	4
Campanula rotundifolia	6	5	5
Cardamine bellidifolia	2	1	1
Carex arctogena	x	1	4
Carex atrata	4	2	2
Carex atrofusca	x	1	x
Carex bigelowii	2	1	3
Carex brunnescens	х	4	2
Carex capillaris	4	2	1
Carex dioica	x	2	4
Carex lachenalii	x	1	x
Carex rupestris	3	1	2
Carex saxatilis	х	1	х
Carex vaginata	х	2	3
Cerastium alpinum	x	1	1
Cerastium cerastoides	x	1	1
Chamerion angustifolium	6	5	x
Cirsium heterophyllum	x	4	4
Coeloglossum viride	5	4	x

Cryptogramma crispa	х		4	3
Cystopteris fragilis	x		3	x
Deschampsia alpina	x		2	x
Deschampsia cespitosa	x		3	x
Diphasiastrum alpinum		4	1	3
Draba fladnizensis		2	1	2
Draba nivalis	х	_	2	x
Draba norvegica	x		1	x
Dryas octopetala		3	1	2
Empetrum nigrum		5	2	x
Epilobium anagallidifolium	х		1	2
Epilobium lactiflorum	x		2	×
Equisetum arvense	x		3	x
Erigeron uniflorus		2	x	1
Eriophorum angustifolium	х	_	3	x
Eriophorum scheuchzeri	x		2	2
Eriophorum vaginata	x		2	X
Euphrasia wettsteinii		5	1	3
Festuca ovina		5	5	x
Festuca vivipara		3	2	x
Gentiana nivalis	х	5	1	1
		6	4	4
Geranium sylvaticum		6	5	
Gymadenia conopsea		0	5	x 4
Gymnocarpium dryopteris	Х	2	2	
Harrimanella hypnoides		2		X
Hieracium sect. hieracium Hieracium sect. subalpina	X		X	X
	Х	4	x 2	x 3
Huperzia selago		4 3	1	
Juncus biglumis				x 2
Juncus trifidus Juniperus communis		3 5	5	
		2		x
Kobresia myosuroides		2	1	2
Leontodon autumnalis	X	A		x
Loiseleuria procumbens		4	1	2
Luzula confusa		2	X	1
Luzula multiflora		5	3	X
Luzula parviflora	X	2	2	x
Luzula spicata		2	1	2
Lycopodium annotinum	X	2	2	4
Minuartia biflora		2	1	X
Myosotis decumbens	X	-	2	3
Nardus stricta		5	5	x
Omalotheca norvegica	X	2	1	3
Omalotheca supina		3	1	2
Oxyria digyna		3	1	2
Parnassia palustris		5	5	x
Pedicularis lapponica		4	2	x
Pedicularis oederi		3	2	2
Petasites frigidus	Х	_	2	X
Phegopteris connectilis	Х	_	5	4
Phleum alpinum		4	2	3

Phyllodoce caerulea		4	1	х
Pinguicula vulgaris	x		4	х
Poa alpina		3	1	3
Poa alpina var. vivipara		3	1	3
Poa arctica	x		x	х
Poa flexuosa	x		1	1
Poa glauca	x		2	х
Poa pratensis	x		x	x
, Poa X jemtlandica	x		x	x
Polystichum lonchitis	x		4	4
Potentilla crantzii		4	2	2
Potentilla nivea	х		1	x
Pseudorchis albida		5	4	4
Pulsatilla vernalis		3	5	x
Pyrola minor		5	4	x
Ranunculus acris	х		x	x
Ranunculus pygmaeus	x		2	1
Rhodiola rosea		4	1	4
Rumex acetosa		6	5	x
Rumex acetosella	х	0	6	5
Salix glauca	x		4	x
Salix herbacea	^	3	1	2
Salix lanata		5	1	X
	v	J	2	x
Salix lapponum Salix myrsinites	X		1	x
	X	5	2	
Salix phylicifolia Salix reticulata		3	1	x 2
		3	1	1
Saussurea alpina		5	1	3
Saxifraga aizoides		5		
Saxifraga cernua	X	2	1	X
Saxifraga cespitosa		2		X 2
Saxifraga cotyledon	X		4	3
Saxifraga nivalis	X	1		X
Saxifraga oppositifolia		1	1	2
Saxifraga rivularis	X		1	X
Saxifraga stellaris	X		1	3
Saxifraga tenuis	X		2	x
Sedum villosum	X		2	5
Selaginella selaginoides		4	4	3
Sibbaldia procumbens		3	1	2
Silene acaulis		2	1	1
Silene dioica	Х		5	X
Silene wahlbergella	Х		2	x
Solidago virgaurea		5	5	X
Stellaria borealis	Х		4	X
Taraxacum spp.	Х		x	X
Thalictrum alpinum		3	1	X
Tofieldia pusilla		4	1	2
Trichophorum cespitosum	Х		4	4
Trientalis europaea		6	4	5
Trisetum spicatum		2	1	1

Vaccinium myrtillus	6	4	x
Vaccinium uliginosum	5	2	x
Vaccinium vitis-idaea	5	2	x
Vahlodea atropurpurea	х	2	x
Valeriana sambucifolia	х	5	6
Veronica alpina	2	1	2
Veronica fruticans	4	1	2
Viola palustris	x	5	х
Viscaria alpina	x	2	х

The species with their lower and upper distribution in vegetation zones in Norway (Lid & Lid, 2005). "Species range" is the vegetation zones where a species can be found, and "Species optimum" is the median of "Species range". Zones: Nem = 1, BNem = 2, SBor = 3, MBor = 4, NBor = 5, LAlp = 6, MAlp = 7, HAlp = 8.

Species	Lower zone	Upper zone	Species range	Species optimum
Agrostis capillaris	Nem	Nbor	1,2,3,4,5	3
Agrostis mertensii	NBor	MAlp	5,6,7	6
Alchemilla alpina	MBor	MAlp	4,5,6,7	5,5
Alchemilla spp.				
Angelica archangelica	MBor	MAlp	4,5,6,7	5,5
Antennaria alpina	NBor	HAlp	5,6,7,8	6,5
Antennaria dioica	Nem	HAlp	1,2,3,4,5,6,7,8	4,5
Anthoxanthum nipponicum	NBor	MAlp	5,6,7	6
Arabidopsis petraea	MBor	Lalp	4,5,6	5
Arabis alpina	NBor	HAlp	5,6,7,8	6,5
Arctostaphylos uvaursi	Nem	MAlp	1,2,3,4,5,6,7	4
Arctous alpinus	Nbor	MAlp	5,6,7	6
Asplenium viride	BNem	MAlp	2,3,4,5,6,7	4,5
Astragalus alpinus	Nbor	MAlp	5,6,7	6
Athyrium distentifolium	NBor	MAlp	5,6,7	6
Avenella flexuosa	Nem	MAlp	1,2,3,4,5,6,7	4
Bartsia alpina	Mbor	Malp	4,5,6,7	5,5
Beckwithia glacialis	MAlp	HAlp	7,8	7,5
Betula nana	SBor	LAIp	3,4,5,6	4,5
Betula pubescens	Nem	MBor	1,2,3,4	2,5
Bistorta vivpara	BNem	HAlp	2,3,4,5,6,7,8	5
Botrychium boreale	MBor	LAlp	4,5,6	5
Botrychium lunaria	Nem	MAlp	1,2,3,4,5,6,7	4
Calamagrostis purpurea	Nem	LAlp	1,2,3,4,5,6	3,5
Campanula rotundifolia	Nem	MAlp	1,2,3,4,5,6,7	4
Cardamine bellidifolia	LAIp	HAlp	6,7,8	7
Carex arctogena	LAIp	MAlp	6,7	6,5
Carex atrata	NBor	MAlp	5,6,7	6
Carex atrofusca	NBor	MAlp	5,6,7	6
Carex bigelowii	NBor	HAlp	5,6,7,8	6,5
Carex brunnescens	BNem	MAlp	2,3,4,5,6,7	4,5
Carex capillaris	SBor	MAlp	3,4,5,6,7	5
Carex dioica	Nem	LAIp	1,2,3,4,5,6	3,5
Carex lachenalii	NBor	HAlp	5,6,7,8	6,5
Carex rupestris	NBor	HAlp	5,6,7,8	6,5
Carex saxatilis	NBor	MAlp	5,6,7	6
Carex vaginata	NBor	Malp	5,6,7	6
Cerastium alpinum	NBor	HAlp	5,6,7,8	6,5

Cerastium cerastoides	NBor	MAlp	5,6,7	6
Chamerion angustifolium	Nem	LAlp	1,2,3,4,5,6	3,5
Cirsium heterophyllum	Nem	LAlp	1,2,3,4,5,6	3,5
Coeloglossum viride	BNem	MAlp	2,3,4,5,6,7	4,5
Cryptogramma crispa	Mbor	MAlp	4,5,6,7	5 <i>,</i> 5
Cystopteris fragilis	Nem	LAlp	1,2,3,4,5,6	3,5
Deschampsia alpina	LAIp	HAlp	6,7,8	7
Deschampsia cespitosa	Nem	LAlp	1,2,3,4,5,6	3,5
Diphasiastrum alpinum	NBor	MAlp	5,6,7	6
Draba fladnizensis	LAIp	HAlp	6,7,8	7
Draba nivalis	LAIp	HAlp	6,7,8	7
Draba norvegica	NBor	MAlp	5,6,7	6
Dryas octopetala	Mbor	MAlp	4,5,6,7	5,5
Empetrum nigrum	Mbor	MAlp	4,5,6,7	5,5
Epilobium anagallidifolium	NBor	MAlp	5,6,7	6
Epilobium lactiflorum	MBor	LAlp	4,5,6	5
Equisetum arvense	LAIp	MAlp	6,7	6,5
Erigeron uniflorus	LAIp	HAlp	6,7,8	7
Eriophorum angustifolium	Nem	MAlp	1,2,3,4,5,6,7	4
Eriophorum scheuchzeri	NBor	HAlp	5,6,7,8	6,5
Eriophorum vaginata	Nem	MAlp	1,2,3,4,5,6,7	4
Euphrasia wettsteinii	Mbor	MAlp	4,5,6,7	5,5
Festuca ovina	Nem	HAlp	1,2,3,4,5,6,7,8	4,5
Festuca vivipara	Sbor	HALp	3,4,5,6,7,8	5,5
Gentiana nivalis	NBor	Malp	5,6,7	6
Geranium sylvaticum	Nem	Lalp	1,2,3,4,5,6	3,5
Gymadenia conopsea	Nem	LAlp	1,2,3,4,5,6	3,5
Gymnocarpium dryopteris	Nem	LAIp	1,2,3,4,5,6	3,5
Harrimanella hypnoides	LAIp	HAlp	6,7,8	7
Hieracium sect. hieracium				
Hieracium sect. subalpina				
Huperzia selago	Mbor	Malp	4,5,6,7	5,5
Juncus biglumis	LAIp	HAlp	6,7,8	7
Juncus trifidus	NBor	MAlp	5,6,7	6
Juniperus communis ssp.	NDor	MAIn	F 6 7	c
alpina Kabrosia muasuraidas	NBor	MAlp	5,6,7	6
Kobresia myosuroides Leontodon autumnalis	NBor	MAlp	5,6,7	6
	NBor NBor	MAlp	5,6,7	6 6 5
Loiseleuria procumbens		HAlp HAlp	5,6,7,8	6,5
Luzula confusa	MAlp		7,8	7,5 6
Luzula multiflora	NBor	MAlp	5,6,7	
Luzula parviflora	NBor	MAlp	5,6,7	6
Luzula spicata	NBor	HAlp	5,6,7,8	6,5
Lycopodium annotinum	NBor	MAlp	5,6,7	6
Minuartia biflora	NBor	HAlp	5,6,7,8	6,5
Myosotis decumbens	MBor	LAIp	4,5,6	5
Nardus stricta	Nem	MAlp	1,2,3,4,5,6,7	4
Omalotheca norvegica	MBor	MAlp	4,5,6,7	5,5

Omalotheca supina	NBor	HAlp	5,6,7,8	6,5
Oxyria digyna	NBor	HAlp	5,6,7,8	6,5
Parnassia palustris	Nem	MAlp	1,2,3,4,5,6,7	4
Pedicularis lapponica	NBor	MAlp	5,6,7	6
Pedicularis oederi	NBor	MAlp	5,6,7	6
Petasites frigidus	NBor	MAlp	5,6,7	6
Phegopteris connectilis	Nem	LAIp	1,2,3,4,5,6	3,5
Phleum alpinum	MBor	Malp	4,5,6,7	5,5
Phyllodoce caerulea	NBor	HAlp	5,6,7,8	6,5
Pinguicula vulgaris	Nem	MAlp	1,2,3,4,5,6,7	4
Poa alpina	BNem	HAlp	2,3,4,5,6,7,8	5
Poa alpina var. vivipara	LAIp	HAlp	6,7,8	7
Poa arctica	NBor	HAlp	5,6,7,8	6,5
Poa flexuosa	MAlp	HAlp	7,8	7,5
Poa glauca	MBor	HAlp	4,5,6,7,8	6
Poa pratensis	Mbor	Malp	4,5,6,7	5,5
Poa X jemtlandica	MAlp	MAlp	7	7
Polystichum lonchitis	Nem	Lalp	1,2,3,4,5,6	3,5
Potentilla crantzii	BNem	MAlp	2,3,4,5,6,7	4,5
Potentilla nivea	LAIp	MAlp	6,7	6,5
Pseudorchis staminea	NBor	Malp	5,6,7	6
Pulsatilla vernalis	SBor	Malp	3,4,5,6,7	5
Pyrola minor	Nem	LAIp	1,2,3,4,5,6	3,5
Ranunculus acris ssp. pumilus	LAIp	HAlp	6,7,8	7
Ranunculus pygmaeus	LAIp	HAlp	6,7,8	7
Rhodiola rosea	NBor	HAlp	5,6,7,8	6,5
Rumex acetosa	MBor	LAIp	4,5,6	5
Rumex acetosella	Nem	LAIp	1,2,3,4,5,6	3,5
Salix glauca	MBor	Malp	4,5,6,7	5,5
Salix herbacea	NBor	HAlp	5,6,7,8	6,5
Salix lanata	MBor	Lalp	4,5,6	5
Salix lapponum	MBor	MAlp	4,5,6,7	5,5
Salix myrsinites	MBor	Lalp	4,5,6	5
Salix phylicifolia	MBor	Lalp	4,5,6	5
Salix reticulata	NBor	HAlp	5,6,7,8	6,5
Saussurea alpina	MBor	HAlp	4,5,6,7,8	6
Saxifraga aizoides	NBor	MAlp	5,6,7	6
Saxifraga cernua	LAIp	HAlp	6,7,8	7
Saxifraga cespitosa	NBor	HAlp	5,6,7,8	6,5
Saxifraga cotyledon	SBor	LAIp	3,4,5,6	4,5
Saxifraga nivalis	NBor	HAlp	5,6,7,8	6,5
Saxifraga oppositifolia	NBor	HAlp	5,6,7,8	6,5
Saxifraga rivularis	LAIp	HAlp	6,7,8	7
Saxifraga stellaris	NBor	MAlp	5,6,7	6
Saxifraga tenuis	LAIp	HAlp	6,7,8	7
Sedum villosum	NBor	Lalp	5,6	5,5
Selaginella selaginoides	BNem	MAlp	2,3,4,5,6,7	4,5
Sibbaldia procumbens	NBor	MAlp	5,6,7	6

Silene acaulis	NBor	HAlp	5,6,7,8	6,5
Silene dioica	Nem	Lalp	1,2,3,4,5,6	3,5
Silene wahlbergella	LAIp	MAlp	6,7	6,5
Solidago virgaurea	NBor	MAlp	5,6,7	6
Stellaria borealis	MBor	LAIp	4,5,6	5
Taraxacum spp.				
Thalictrum alpinum	MBor	MAlp	4,5,6,7	5,5
Tofieldia pusilla	SBor	MAlp	3,4,5,6,7	5
Trichophorum cespitosum	Nem	Lalp	1,2,3,4,5,6	3,5
Trientalis europaea	Nem	LAIp	1,2,3,4,5,6	3,5
Trisetum spicatum	NBor	HAlp	5,6,7,8	6,5
Vaccinium myrtillus	Nem	MAlp	1,2,3,4,5,6,7	4
Vaccinium uliginosum	Nem	MAlp	1,2,3,4,5,6,7	4
Vaccinium vitis-idaea	Nem	MAlp	1,2,3,4,5,6,7	4
Vahlodea atropurpurea	NBor	MAlp	5,6,7	6
Valeriana sambucifolia	Nem	LAIp	1,2,3,4,5,6	3,5
Veronica alpina	NBor	HAlp	5,6,7,8	6,5
Veronica fruticans	NBor	Malp	5,6,7	6
Viola palustris	Nem	MAlp	1,2,3,4,5,6,7	4
Viscaria alpina	NBor	MAlp	5,6,7	6

Norges miljø- og biovitenskapelige universitet Noregs miljø- og biovitskapelege universitet Norwegian University of Life Sciences Postboks 5003 NO-1432 Ås Norway