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Summary 
The páramo grasslands of southern Ecuador is a source of continuous clean water supply for 

downstream communities and ecosystems all the way to the Amazonian rainforests or the Pacific 

coast. Still, knowledge about environmental processes and interactions in the páramo is limited. 

The dominating soils covering the páramo of south Ecuador are extremely organic volcanic ash 

soils that are characterized by low density and a strong water retaining ability. A deep understanding 

of the unique hydraulic properties of these soils is necessary for reliable modelling of the páramo 

hydrology. However, measurement of soil hydraulic properties is time-consuming, costly and im-

practical for large-scale modelling, and simple estimation of the necessary variables using pedo-
transfer functions (PTFs) often gives a good enough approximation of field conditions. In this 

thesis, PTFs for predicting six water retention points, available water capacity and saturated hy-

draulic conductivity were developed for Andosols and Histosols in the páramo of southern Ecua-

dor. In addition, a selection of existing PTFs were evaluated on the dataset of this thesis. Two 

statistical approaches were used for the PTF development, ordinary least squares linear regression 

(OLS) and random forest (RF). Possible predictor variables were bulk density, organic matter, soil 
depth, slope, vegetation cover and soil type. Predictive performances of the resulting PTFs were 

overall satisfactory, and both the OLS and RF approach achieved test RMSEs below 0.05 in the 

low soil-water suction range. Predictions in the high suction range were less accurate, but test 

RMSEs were still below 0.08. The RF models predicted a little more accurately than the corre-

sponding OLS models because of the ability of the RF approach at capturing complex interactions 

between variables, but the difference was not considerable. The test errors of the models predicting 

saturated hydraulic conductivity were not especially accurate, but they might be good enough as an 

alternative to field measurements.  After testing the reliability of the functions on new data sets, 

the PTFs can become useful tools for hydrological modelling that helps us to get a better under-

standing of environmental processes in the páramo.   
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1 Introduction 
The páramo is a neo-tropical high altitude grassland ecosystem, that in Ecuador ranges from the 

continuous tree line at about 3500 m above mean sea level (MAMSL) to the permanent snow line 

at about 5000 MAMSL (Hofstede et al., 2003). They are ecologically vulnerable areas of high bio-

logical and socioeconomical importance, providing a continuous flow of clean water to ecosystems 

and communities downstream. Large metropolitan areas in the Andes without easy access to 

groundwater resources, depend completely on the páramos for their water supply. The high stabil-

ity of water release from the páramo is due to the unique water retaining ability of the volcanic ash 

soils, Andosols. 

Very little historical data exists on the hydrology of the páramo (Crespo et al., 2011), hence any 

research of the area is valuable to improve the understanding of the ecosystem, regardless of the 

possible services the páramo may provide to the downstream communities. Various studies have 

shown that the drying of volcanic ash soils for agricultural purposes cause an irreversible reduction 

of the soils’ water retention capacity (Buytaert et al., 2002; Buytaert et al., 2004; Karube & Abe, 

1998; Nanzyo et al., 1993; Poulenard et al., 2001; Shoji et al., 1996). When extensive areas of the 

páramo are affected in this way, downstream communities are more vulnerable to dry periods or 

flooding and erosion during intense rainfall. In addition to agriculture, mining activity and climate 

change are all factors threatening the biodiversity and ecosystem services of the south Ecuadorian 

páramo. 

Knowledge about how water behaves in soil is crucial for understanding environmental processes 

and for modelling fluxes of water, contaminants and energy. Unfortunately, field measurement of 

soil water properties is time consuming and costly, and a simple estimation of these properties is 

often enough for practical uses or for large-scale hydrological modelling. Predictive models that 

estimate certain soil properties from other more easily accessible data, are commonly called pedo-
transfer functions (PTFs). There are many existing PTFs in the literature, but no generic function 

exists that applies to all the world’s soils. Hodnett and Tomasella (2002) found that their PTFs 

developed on tropical soils did not predict well for Andosols, and they identified a need of devel-

oping specific models for this soil group. In a recent review article on the challenges and perspec-

tives of soil PTFs, van Looy et al. (2017) state that there is a substantial knowledge gap for volcanic 

ash soils and peat soils. 
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The objectives of this thesis are as follows 

- To contribute to a better understanding of the relationships between soil hydraulic prop-

erties and other soil properties and environmental factors in the páramo of southern Ec-

uador 

- To develop a parallel set of pedotransfer functions using two different statistical ap-

proaches, for the prediction of six points on the water retention curve, available water ca-

pacity and saturated hydraulic conductivity of Andosols and Histosols  

- To evaluate the predictive performance of the developed functions on an independent data 

set and compare the two approaches used in the PTF development 

- To evaluate the predictive performance of a relevant existing PTFs on the same data set 

and compare with the performance of the developed PTFs 

- To fit the van Genuchten water retention curve on the observed and predicted water re-

tention values and evaluate the closeness of the prediction curves to the curves fitted on 

the observed data 
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2 Background 
2.1 Andosols and Histosols in the páramo 
Soils of the Ecuadorian páramo are greatly influenced by volcanic activity and deposits of volcanic 

ash, which is characteristic for the soil group Andosol (IUSS Working Group WRB, 2015). Shoji 

et al. (1996) give a thorough description of how soils with this unique parent material are developed, 

and their insight is summarized in the following paragraph; Volcanic ash is fine-textured, highly 

porous and permeable, which are all properties that speed up chemical weathering and elements 

are released at a higher rate than the formation of crystalline minerals. Hence, non-crystalline ma-

terial accumulates in the soil. In humid climates, this material is typically allophane and imogolite 

or Al-humus complexes, depending on the soil pH and OM characteristics. Al-humus complexes 

form in soils with a high content of organic matter and a pH of around 5 or less, where organic 

acids are the dominant proton donor. Allophane and imogolite form in soils with pH ranging from 

5 to 7 and with a low content of complexing organic compounds. Iron in Andosols are mostly 

found in ferrihydrite oxides rather than in less stable Fe-humus complexes. 

Andosols typically accumulate organic matter, and Shoji et al. (1996) cite a number of studies 

(Brahim, 1987; Tate & Theng, 1980; Tokashiki & Wada, 1975; Wada, 1977) giving partial explana-

tions to this phenomenon: Al-toxicity and P-deficiency for microorganisms; sorption of biodegrad-

ing enzymes to free aluminium and iron; and finally steric effects due to complexation and sorption 

that keep OM functional groups from reaching the microorganisms. The fact that the climate of 

the páramo in southern Ecuador is cold and wet, makes OM accumulation even more dominant. 

Organic matter is stabilized in organometallic complexation or by adsorbing to allophane, imogolite 

or iron oxides. Andosols generally have a low bulk density due of the formation of highly porous 

and stable aggregate structures that ensure that even the highly weathered soils have a considerable 

percentage of macro pores (Nanzyo et al., 1993). They retain phosphorus and water very strongly. 

On water-saturated valleys floors, organic matter is typically accumulated and form Histosols (IUSS 

Working Group WRB, 2015), peat soils with hardly any mineral material in the surface layers. The 

density and hydraulic properties of Histosols depend greatly on the degree of decomposition. 
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2.2 Soil hydraulic properties 
The main hydraulic properties of the soil are its water retention capacity and its hydraulic conduc-
tivity. Together, these two soil properties describe how water behaves in a soil, and knowledge of 

the two is crucial for the understanding of ecosystems and ecosystem services, for irrigation plan-

ning in agriculture and for addressing environmental impacts of climate change or human activity 

like construction, mining or agriculture. 

2.2.1 Water retention capacity 
A soil’s water retention capacity (WRC) is the moisture content, θ, as a function of the matric 

potential, or soil-water suction, ψ. The soil-water suction is a measure of how firmly the soil matrix 

holds on to the water as gravity, evapotranspiration and plant uptake want to transport it elsewhere. 

Suction is defined as a negative pressure potential, and common units are Pascal, bar or water 

column (head). In this thesis, I use the unit pF, defined as the negative logarithm of the matric 

potential given in hPa or cm water column. Soil WRC is often represented as a soil moisture char-
acteristics curve, where an increase in suction is associated with a decrease in water content. An 

example can be seen in figure 1. 

When the suction is zero (pF 0, or 0 kPa in the figure) the soil is saturated with water. For the loam 

soil in the example, this means that approximately 53 % of the volume of the soil is water. The 

volumetric water content θ at saturation or pF 0 is equal to the porosity of the soil. 

The water content at a matric potential of pF 2 - 2.5 (10 - 33 kPa) is traditionally called the field 
capacity of the soil, it is the moisture that remains in the soil a few days after a thorough wetting. 

At this point, gravity has drained out water that was stored in the largest pores, and the remaining 

water is retained in the soil by adsorptive and capillary forces acting between the water molecules 

and the soil particles. Water retention in the low-suction range (pF 0 - pF 2.5) depends mainly on 

the structure of the soil and the pore size distribution. 

The water content at around pF 4.2 (1500 kPa) is called the wilting point, defined traditionally as 

the lowest amount of soil moisture needed for plants to survive. At this point, water retained by 

capillary forces in the space between particles is mostly gone, and only strongly bound adsorbed 

water remains, which is not accessible for plant uptake. Hence, water retention at high soil-water 

suctions is highly influenced by the soil’s specific surface and sorption sites. 



5 
 

Available water is the difference in water contents at field capacity and wilting point, and is defined 

as the amount of water that is available for uptake by plant roots. We say that water at matric 

potentials close to field capacity is rapidly available and the water at suctions close to the wilting 

point is slowly available. These terms or categorizations are faulty, and it is important to keep in 

mind that natural systems are more dynamic (Hillel, 2003). However, for agricultural purposes, the 

simplification is useful. 

Some researchers have sought a universal analytical expression for describing the soil moisture 

characteristics curve, and well-known empirical expressions are the Brooks and Corey (1964), and 

the van Genuchten (1980) (VG). It is common practice to replace ݉ parameter from the original 

publication with ݉ = 1 − 1/݊, to get fewer independent parameters, and thus we get the following 

formulation of the VG model, ߠ(߰) = ௥ߠ + ௦ߠ − ௥[1ߠ + ߙ) ∙ ߰)௡]ଵିଵ/௡ 

where ߠ(߰) is the water content at matric potential ߰  ௦ are the residual and saturated waterߠ ௥ andߠ ,

contents respectively, and ߙ and ݊ are scale- and curve-shaping parameters. The van Genuchten 

model has become the most used mathematical expression for describing water retention in soils, 

even though it may not be applicable to all soil types (Dettmann et al., 2014; Vereecken et al., 2010). 

Figure 1. A typical soil moisture characteristics curve for a loam soil (figure 5.23 in Brady and Weil (2014)) 
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2.2.2 Saturated hydraulic conductivity 
The saturated hydraulic conductivity, Ksat, is a soil property that describes how easily a fluid, in this 

case water, moves through the soil. Knowledge about the Ksat of a porous medium is essential for 

hydrological modelling, and in the calculation of flow and flow velocities of water and contami-

nants in saturated soils. It relates to the fluid’s density, ߩ, and its viscosity, ߤ, as well as the soil 

permeability, ߢ, in the following way, ܭ௦௔௧ = ߢ ∙ ߩ ∙ ߤ݃  

where ݃ is the acceleration of gravity, approximately ݃ =  ଶ . The density and viscosity ofݏ/݉ 9.81

water are often simplified to ߩ௪ = 1 ݇݃/݉ଶ, and ߤ௪ = 1 ∙ 10ିଷܲܽ ∙  respectively, even though ݏ

both properties actually depend a little on temperature. This makes soil permeability the only vari-

able factor in the formula, and it is the property that differentiates Ksat between porous media. Soil 

permeability depends on the pore space in the soil and on the interconnectivity of the pores, which 

in turn depends on the composition of the soil, on the way soil particles are organized and on the 

degree of compaction. 

Ksat has the same SI unit as velocity, m/s, but it does not actually say anything about the flow 

velocity of water through the soil until it is considered together with the unitless factors hydraulic 
head gradient and the effective porosity (relative amount of interconnected pore space in the soil 

volume). 

2.3 Pedotransfer functions 
Water retention and hydraulic conductivity are both important soil properties that require a lot of 

time and resources to measure directly. This problem has since the beginning of the twentieth 

century made researchers look for quicker and cheaper ways of obtaining the needed information 

using more accessible information. There are plenty of examples of early studies estimating water 

retention from other soil properties (Briggs & McLane, 1907; Nielsen & Shaw, 1958; Riley, 1979; 

Salter & Williams, 1969; Veihmeyer & Hendrickson, 1927), and in the late 1980s the term pedo-
transfer function (PTF) was introduced describing a predictive model that translates data we have 
into what we need (Bouma & Lanen, 1987; Bouma, 1989). Soil properties like texture, geomor-

phology, horizon designations, organic matter content and bulk density all say something about the 

pore space and composition of the soil, and can possibly be linked to the way in which water 

behaves in the soil. Since the introduction of the PTFs, the interest in the idea of simply estimating 

soil moisture characteristics has increased with the increased use of computer modelling over large 

areas, where direct measurement becomes impractical. 
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Pedotransfer functions can be both continuous or categorical (Wösten et al., 1995), where the latter 

are based on groups with characteristics that influence hydraulic properties of the soil, like soil type, 

soil horizon, or textural class. Continuous PTFs give unique estimates  based on continuous nu-

merical data, like bulk density or percentages of clay, silt and sand in the soil. 

2.3.1 Point vs. parametric PTFs and VG model applicability on studied soils 
There are two approaches for the development of continuous PTFs for water retention, namely 

point and parametric. Point PTFs estimate water content at certain matric potentials, typically at 

saturation (pF 0), field capacity (pF ~ 2) and wilting point (pF ~ 4.2). The parametric PTFs predict 

the unknown parameters in an analytical equation to describe a continuous soil moisture charac-

teristics curve. Very often the parameters ߠ௥, ,௥ߠ ݊ and ߙ  in the van Genuchten model are estimated. 

Dettmann et al. (2014) questions the applicability of classical analytical expressions such as the van 

Genuchten equation on Histosols and other soils with a high organic matter content, since these 

expressions are mainly developed on mineral soils that have completely different soil water dynam-

ics. In addition, volcanic ash soils have very unique water retention properties, as confirmed by 

Hodnett and Tomasella (2002) who developed parametric PTFs to predict VG parameters on a 

variety of soils in the tropics. They found that the resulting PTFs were not reliable at all for An-

dosols, and recommended the development of specific parametric PTFs for these soils. This was 

done by Borja (2006) with acceptable results. Buytaert et al. (2005b) argues that a simple linear or 

semilogarithmic model might be better for describing the water retention curve in Andosols. De-

spite the difficulties, the VG expression has become a standard in most models describing flow in 

porous media (Vereecken et al., 2010), and an effort should be made to better understand how it 

relates to the special soils of this study. 

Parametric PTFs are often preferred because of their ability to be used directly in modelling soft-

ware that requires the parameters of an analytical equation. However, it is also possible to fit an 

analytical expression like the VG curve to water retention point estimates using software like 

SHYPFIT (Durner & Peters, 2009), RETC (Van Genuchten et al., 1991) or R (R Core Team, 2018). 

The parameters of the fitted curve can then be used as input in hydrological modelling software. 

Tomasella et al. (2003) compared the two approaches for obtaining a continuous soil moisture 

curve and found that using point PTFs and fitting a curve to the estimated points gave better results 

than directly estimating the analytical parameters. Water retention depends on different factors at 

different matric potentials, as mentioned in the previous section. This makes it difficult to estimate 

the curve parameters that apply for the curve in its totality, like ݊ and ߙ in the VG expression. 

Point PTFs involve the necessary predictors for explaining water retention at the different matric 

potentials. 
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2.3.2 Statistical methods for PTF development and evaluation 
2.3.2.1 PTF development 

PTF development was mainly ANOVA or linear regression analysis before modern tools for data 

mining became more common. Both methods requires a certain amount of a priori knowledge of 

the soil system and how properties are linked to obtain good predictive results. ANOVA-based 

class PTFs are normally based on soil texture class and/or soil type. They are simple, often in the 

form of look-up tables, and still widely applied, but they do not capture the dynamics inside each 

class. Moreover, the class predictions of soil water retention vary a lot between look-up tables, 

depending on the conditions of the soil used for the PTF development. Continuous PTFs based 

on linear regression are still simple and easy to interpret, but they capture more of the variation 

inside the categories if modelled well. A more thorough explanation of the regression method is 

given in a later paragraph. 

Modern data mining techniques are becoming more common in the development of pedotransfer 

functions, and they require no previous knowledge to work well. Data mining methods are good 

at finding hidden structures in the data so all available information can be used in producing more 

accurate predictions. They are usually based on an input-output black box system, were information 

on soil basic properties is fed to the model as an input, and the model analyses the data and returns 

the predicted response, or the output. This approach makes the resulting models difficult to inter-

pret compared to the more classical approaches. Data mining techniques that are commonly used 

for PTF development are artificial neural networks, group method of data handling, support vector 
machines, k-nearest neighbour-type algorithms, and regression-/classification trees and more so-

phisticated techniques based on regression-/classification trees, like bagging, random forest and 

boosted random forest. Breiman (2001), Pachepsky and Schaap (2004) and Nemes et al. (2006) 

explain the different PTF development methods in more detail, and the methods used in this thesis 

are described in the following paragraphs. 

The oordinary least squares linear regression (OLS) is a classical approach for predicting a quantita-

tive response from a given a set of predictor variables. It is frequently used for the development of 

pedotransfer functions, especially before the emerge of modern techniques, and the method gives 

simple, easily interpretable results. The linear regression model has the following form, 

ܻ = ଴ߚ + ෍ ௝ܺߚ௝௣
௝ୀଵ +  ߝ

where ܻ is the response variable, ߚ଴ is the intercept of the model, ଵܺ, ܺଶ, … , ௝ܺ are the predictor 

variables and ߚଵ, ,ଶߚ … ,  ௜ of aߚ ௝ are the coefficients of the predictor variables. The coefficientߚ
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predictor can be interpreted as the change in the expected value of ܻ  if the corresponding predictor 

shoul increase by 1 and all other predictors are held constant. 

The final model term ߝ, represents the random prediction error associated with trying to simplify 

the real world. In linear regression, the idea is to minimize the random error to an acceptable level, 

and this is most commonly done by using the ordinary least squares approach: the difference be-

tween the observed and the estimated response is squared and the aim is to find predictor coeffi-

cients that minimize the sum of all these squared error terms, or the residual sum of squares (RSS). 

Sometimes we want to include categorical data, for example gender or disease, as explanatory var-

iables in our regression analysis. In these cases, we can use dummy variables, where numeric values 

(usually 0 and 1) are assigned to all the observations according to whether or not they belong in a 

certain group. If dummy variables are included in the final model, the resulting coefficients are 

multiplied by the assigned number of the dummy variable, which gives different intercepts and/or 

slopes to the linear model, depending on the group affiliation. 

The rrandom forest approach was presented by Leo Breiman in 2001 and has been used a lot for 

PTF development in recent years (Akpa et al., 2016; Koestel & Jorda, 2014; Sequeira et al., 2014). 

The method is based on regression trees, an approach that finds clusters in the data related to the 

response and makes a branched “tree” that ultimately leads to grouped predictions of the response 

variable. Figure 2 shows an example of a regression tree for the estimation of the water content at 

pF 2.4. Long branches indicate important splits, so the first split with bulk density (BD) lower or 

higher than 0.525 is by far the most significant in the example. The numbers at the end of the 

branches represent the estimates of water content at field capacity. 

 
Figure 2. An example of a regression tree for the water content at pF 2.4 
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Regression trees are very intuitive and easy to interpret, and they can uncover non-linear structures 

and variable interactions in the data. However, they are not very accurate when used for prediction, 

compared to continuous approaches like regression (James et al., 2013). 

Bagging and random forest are methods designed for predictive purposes. Both methods build 

hundreds of regression trees, each time with a different training set, using bootstrapping. The idea 

of bootstrapping is to use the already existing training data to make new, equally large data sets by 

randomly sampling with replacement from the original observations. Hence, some of the observa-

tions in the bootstrapped data sets will be repeated. Because of the bootstrapping approach, the 

many regression trees built in the bagging and random forest method will give different estimates 

of the response for a given set of predictor values. The trees in the model are heavily branched, 

which gives low bias, but the variance of the estimates of a single tree is high. By taking the average 

of the estimates from all the individual trees, the variance is reduced and this improves the predic-

tive power of the model (James et al., 2013). 

The difference between bagging and random forest is that the bagging method considers all possi-

ble predictors at each branch split. If one predictor is very dominating, the trees in the bagged 

model could end up looking very similar to one another, and the potential contribution of other, 

moderately strong predictors is not exploited. In a random forest model, there is a new set of m 

randomly chosen predictors considered for each branch split. This procedure makes the trees less 

correlated and the average response prediction of the trees less variable (James et al., 2013). 

A random forest model is not as interpretable as a linear regression model, but it is possible to 

interpret to some degree by comparing the predictor variables’ importance in the model.  There 

are two common ways of calculating the importance of a variable: the mean decrease in accuracy 

and the mean decrease in node impurity. The decrease in accuracy of a variable is the decrease in 

mean squared error (MSE) of the predicted response if the variable in question was to take new 

random, but realistic values other than the original values. This can be simulated by shuffling the 

predictor variables randomly and running a random forest model on the “new” dataset. If a variable 

is important in the model, a change in its value will have a great effect on MSE of the model. If 

however a variable is unimportant, the effect on the response would be minor. The mean decrease 

in node impurity of a variable is a measure of how much the residual sum of squares (RSS) of each 

single tree in the model has decreased due to node splits over the variable. In other words, how 

much unexplained variance has been explained by the model after splitting over the variable in 

question. For both variable importance measures, larger values means that a variable is more im-

portant in the model. 
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2.3.2.2 PTF evaluation 

There are many ways to evaluate a PTF’s accuracy, i.e. the closeness of the model predictions to 

the real measurements. In most cases, there is an independent data set where the final models are 

tested. The prediction error on the test set can be expressed by the correlation coefficient (r) or the 

coefficient of determination (R2), which are intuitive and well known statistics that give insight in 

how measurements and predictions are related and how much of the variance between them is 

explained by the pedotransfer model. 

Another common statistic is the mean error (ME), which is the average prediction error, or the 

average difference between measured and predicted value. The ME is useful for detecting over- or 

underestimating of the response, as it will be either positive or negative. If the purpose is to find 

something like a standard deviance, it is common to use the root mean squared error (RMSE), 

given by the following formula, 

ܧܵܯܴ = ඩ1݊ ෍(߫ᇱ − ߫)ଶ௡
௜ୀଵ  

where ߫ᇱ − ߫ is the difference between the predicted (߫ᇱ) and the measured (߫) response and ݊ is 

the number of observations. The statistic is easy to interpret as it has the same unit as the predicted 

response, unless the response is log transformed, in which case it will be unitless. When the test 

RMSE of a predictive model is given, it is easier for the end user to know how much variation to 

expect from the model predictions. 

Sometimes we want to compare the performance of pedotransfer models on data originating from 

multiple sources with water retention measurements at different matric potentials. Or we want an 

idea of the validity of the model for predicting any point on the water retention curve. In these 

cases, it is useful to compare fitted WRC curves like the Van Genuchten curve discussed earlier. 

Tietje and Tapkenhinrichs (1993) defined a similar measure to the RMSE for comparing curves 

based on measured data and curves based on predictions; Instead of averaging a sum of squared 

prediction errors for given matric potentials, the root mean squared difference (RMSD) averages 

the integral of the squared errors over a defined range of matric potentials as follows, 

ܦܵܯܴ = ඨ 1ܾ − ܽ න (߫ᇱ − ߫)ଶ݀ℎ௕
௔  

where ܽ and ܾ are the matric potentials at the limits of the defined integral, i.e. the range that is 

tested. Using the matric potentials at saturation (pF 0) and at the wilting point (pF 4.2) as the 

integral limits ܽ and ܾ, worked well for Tietje and Tapkenhinrichs, as it gave results on a similar 
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scale. However, the two measures RMSE and RMSD cannot be compared to each other directly, 

and there is no simple way of converting one into another for comparison (Vereecken et al., 2010). 

After a PTF has been developed and validated using the same database, it is useful to address its 

reliability, i.e. evaluating the model’s predictive performance on a completely different database 

with soils from other locations or projects. 

2.3.3 Relevant existing PTFs 
There are many PTFs available in the literature, and it can be practical to use existing functions if 

they prove to apply for the study area. In recent years, many publications have focused on the 

evaluation and comparison of existing models with varied results (Chen & Payne, 2001; Givi et al., 

2004; Rawls et al., 2001). A widely used model is the Rosetta PTF software (G. Schaap et al., 2001), 

developed and validated on a large multinational database. Most of PTFs found in the literature, 

including Rosetta, are developed and tested in temperate climate regions. However, recent years 

have seen an increasing interest in the effects of land use change in the tropics on global climate, 

and a good understanding of the soil hydrology is key. Hodnett and Tomasella (2002) argues that 

the creation of a reliable universal PTF applicable to all soils worldwide, might not be possible due 

to the large regional variations in soil properties. They created a set of categorical and continuous 

PTFs for soils in tropical areas from the IGBP-DIS soil database, where 18 profiles were from 

Ecuador, and 27 profiles were Andosols. Their conclusion was that the texture class averages for 

bulk density and VG parameters in tropical regions were, in general, significantly different from 

the predictions that resulted when using class PTFs developed in temperate regions. The Andosols 

seemed to make things difficult for the tropical PTF development, with their exceptionally low 

bulk density, and the authors recommend separate PTFs for these soils. Batjes (1996) also found 

that Andosols and Histosols behaved differently in his generalisation of the hydraulic properties of 

the all the world’s soils, and were studied separately. 

Borja (2006) presented a set of PTFs on Andosols in Ecuador in his master’s thesis at Cuenca 

University. The 87 data points he used for the model development originated from both the north-

ern and the southern part of the Ecuadorian Andes, and the soil properties were quite different 

between the two regions. Soils from the north were more dense, they had coarser texture, less OM, 

lower WRC and higher Ksat. Borja used bulk density, soil texture and organic matter to develop 

point PTFs for six points on the soil moisture characteristics curve, parametric PTFs for the van 

Genuchten curve and saturated hydraulic conductivity. In some of the PTFs, he also included water 

contents at saturation (pF 0) or at high soil-water suctions (pF 3.48 and 4.18). He used both mul-

tiple linear regression and neural networks in the development of the models. Resulting PTFs were 
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validated on a test set of 13 observations, and test RMSE for the WRC point PTFs that did not 

include water contents as predictors, ranged from 0.094 to 0.122. When water contents were in-

cluded, the lowest test RMSE dropped to 0.050. He found that using neural networks did not 

notably improve the predictive power of the model compared to classical linear regression, but he 

thinks that this can be explained by the relatively small number of observations used in the model 

development and -testing. 
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3 Material and methods 
3.1 Study area 
For the development of the functions in this thesis I used soil data originating from the páramo 

south-west of Cuenca city in the Azuay province in Ecuador at 2° 56’ - 3° 06’ S, and 79° 08’ - 79° 

18’ W. The data was collected over a period of eight years (2008-2016), in four different projects 

at three locations in the Jubones and Paute river basins, namely Zhurucay, Soldados and Tutupali 
(figure 3). The altitude in the area ranges from 3400 to 4000 MAMSL, the mean annual temperature 

is 6 °C with an average relative humidity of about 90%. Annual rainfall is around 1300 mm, with 

30% occurring as low intensity rainfall (drizzle); only 12% of the days are completely dry (Padrón 

et al., 2015). 

Tussock grass (Calamagrostis intermedia) is the most common vegetation cover in the area, with 

moss and cushion bogs (Plantago rigida; Xenophyllum humile) in water saturated depressions. 

There are also occurring areas of the endemic woody Polylepis bushes (Polylepis reticulata) and 

pine tree plantations (Pinus patula and radiata). The photo in figure 4 shows the typical topography 

and natural vegetation in the study area. A pine tree plantation can be spotted on the hill on the 

left side. 

 
Figure 3. Study area with data point locations coloured after the respective vegetation cover on the site. 
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Figure 4. Private photo from the Zhurucay micro catchment. 

The geology of the area is dominated by late Miocene to Plio-Pleistoscene acidic pyroclastics from 

the high volcanic activity during the rise of the Andes mountains (Buytaert et al., 2005a; 

Hungerbühler et al., 2002) and the topography is characterised by glacier formed valleys and plains. 

The area lies in the border zone of an area covered by recent ash deposits from Holocene volcanic 

activity in central Ecuador (Buytaert et al., 2004) and Andosol is the dominating soil type. Ash 

deposits are not very deep, due to the large distance to the recently active volcanos, and this coupled 

with the wet and cold environment has created a highly weathered soil rich in organic matter. The 

Andosols in the study site low in allophane and very high in organometallic complexes. Histosols 

are found on the water-saturated valley floors. 

During the last decades, agricultural activity like controlled burnings, cattle grazing and establish-

ments of pine tree plantations, has intensified in the study area (Quichimbo et al., 2012). The Ca-

nadian mining company INV Metals have the last years been doing preliminary feasibility studies 

in the area for gold extraction. 

3.2 Projects and database 
The 345 data points used to develop the functions in this thesis originates from four different 

projects which have been named CT, AM, IM and TP. Relevant objectives and conclusions from 

each of the projects will be presented shortly in this section. Table 1 presents maximum/minimum 

and centre values for the data by site and project. 
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3.2.1 CT – 14 data points from 10 soil profiles (3 Histosols, 7 Andosols)  
Cajamarca and Tenorio (2008) did a descriptive study of the geomorphology and soils of the Quim-

sacocha páramo (Zhurucay area) for their undergraduate thesis at Cuenca University. They analysed 

water content at pF matric potentials 0, 1.57, 1.84, 2.04, 2.43, 2.73, 3.51 and 4.17. I have used their 

results from pFs 0, 1.57, 2.43, 3.51 and 4.17 for the development of the functions for the estimation 

of soil water contents at pFs 0, 1.5, 2.4, 3.4 and 4.2 respectively. Examples of dug soil profiles from 

the projects are given in figure 5.  

        
Figure 5. Soil examples from the CT project in Zhurucay. Left: Histosol; Centre and right: Andosol. Photos taken from appendix 
11 in the thesis of Cajamarca and Tenorio (2008). 

3.2.2 AM – 61 data points from 43 soil profiles (9 Histosols, 34 Andosols) 
Aucapiña and Marín (2014) studied how the landforms, categorized by the system in FAO’s Guide-
lines for soil description (FAO, 2006; FAO, 2009), affect the hydraulic properties of the soil in 

Zhurucay. They analysed for water retention at pFs 0, 0.5, 1.5, 2.3, 3.4 and 4.2. Their results of the 

water content at pF 2.3 was used to develop the pedotransfer models for the water content at field 

capacity (pF 2.4) in this thesis. 

The conclusions from their thesis was that the hydrophysical properties of the Zhurucay soil is 

strongly influenced by the landforms described in FAO (2006). They found a significant relation-

ship between OM, BD and water retention at pFs 0, 0.5 and 1.5. In addition, they concluded that 

soils from valley bottoms generally have high water retention in the low soil-water suction range 

and drops to quite low water retention at high suction range. Soils from slopes or at the hill tops 

have a smaller difference between water content at low and high suctions. They did not find a 

significant relationship between the FAO landforms and the saturated hydraulic conductivity. 
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3.2.3 IC – 50 data points from 41 soil profiles (8 Histosols, 33 Andosols) 
Irene Cárdenas (2014) did her undergraduate thesis work on the impact of pasture and pine plan-

tations on the soil properties in both Zhurucay and Soldados. In her project there are only water 

retention data for pF matric potentials 0, 2.3 and 4.2. The hydraulic properties of the few data 

points with pastural activity proved in her thesis to be significantly different from the natural grass-

land and are thus not included in the development of the PTFs in this thesis. 

In her thesis, Cárdenas found that the soils from pine tree plantations had a higher BD and Ksat 

than the natural grassland soils, and she believes this is due to the pine tree soils compacting, drying 

and cracking, as well as preferential subsurface flow along root systems. Cárdenas also found that 

the water content at field capacity was lower for pine tree soils than for the grassland soils. 

3.2.4 TP – 220 data points from 110 soil profiles (110 Andosols) 
The thesis work by Tapia and Pacheco (2015) was part of a still ongoing forest management project 

coordinated by The University of Cuenca’s Department of Water Resources and Environmental 
Sciences (iDRHICA). They studied the effect of pine tree vegetation on properties of the andic 

surface horizon at two different depths. In addition to the data analysed in the mentioned thesis, 

some relevant available data points from the ongoing forest management project have been in-

cluded in this thesis. 

162 of the data points from this project are from six pine plantations established around 20 years 

ago; two in Soldados, three in Tutupali and one in Zhurucay. The soil around three representative 

trees in five 24 x 24 m blocks were studied for each plantation, except for one in Tutupali where 

data from only 2 blocks were included in this thesis because of altitude and vegetation differences. 

Originally, samples were taken at distances of 50 and 150 cm from the trees, but there were no 

statistically significant differences in relevant soil properties between the two distances (un-

published work from the ongoing project) and soil data for the two have been averaged for the 

PTF development in this thesis to avoid dependencies. The remaining 58 data points are control 

soils from the natural grasslands near the plantations. Soil samples were taken at two depths, 0-10 

cm and 10-25 cm. 

Tapia y Pacheco did not find significant differences in water retention between pine plantations 

and natural grasslands on an 0.05 = ߙ significance level, but the average Ksat proved to be signifi-

cantly higher on the pine plantations, which they explain by preferential flow along the root sys-

tems.  
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3.3 Field and laboratory methods 
Since the database origins from different projects, there is some variation in methodology, which 

is explained in the following sections of this chapter. More detailed information on procedures in 

each project can be found in the respective theses referenced in the previous section (all written in 

Spanish). 

3.3.1 Soil sampling and profile description 
Representative sites were chosen in all four projects for their respective objectives. Projects CT, 

AM and IC did a soil profile description for all data points, while project TP chose some repre-

sentative sites for a full profile description. All profiles were described according to FAO’s Guide-
lines for soil description (FAO, 2006; FAO, 2009). Undisturbed soil samples were collected using 

100 cm3 Kopecky cylinders (300 cm3 cylinders in project CT) in the centre of all horizons for 

projects CT, AM and IC, and at depths 0-10 cm and 10-25 cm in project TP. Bags with disturbed 

soil were sampled to determine organic matter/carbon content and water contents at high soil-

water suctions. In the TP project, only one disturbed soil sample was collected from each plantation 

block. Soil types were decided according to the characteristics described in FAO’s second edition 

World reference base for soil resources (IUSS Working Group WRB, 2006). 

3.3.2 Saturated hydraulic conductivity 
All projects used the same methods to determine the saturated hydraulic conductivities at the stud-

ied soil depths and horizons. Three repetitions were done in the centre of all studied soil layers and 

the average values are used in this thesis. 

In water-saturated horizons, the auger-hole method was used as described in detail by van Beers 

(1970) and Oosterbaan and Nijland (1994). The principle of the method is to excavate a hole down 

to the centre of the respective soil horizons using an auger. Then part of the water is removed and 

the rate at which the water rises is the hole is registered. The saturated hydraulic conductivity, Ksat, 

is calculated using the following equation, 

Ksat = C
∆H
∆t

 

where Ksat is the saturated hydraulic conductivity, ∆t  is the elapsed time between the first meas-

urement of water level to the last measurement, ∆H  is the change in water level during the time 

of measurement and C is a dimensionless geometry factor that depends on the depth of the hole 

below the water table and the distance from the hole bottom to a deeper, impermeable layer. 

For unsaturated soil horizons, the inversed auger-hole method (also known as the Porchet method) 

was used as described by Oosterbaan and Nijland (1994). An auger is used to excavate a hole to 
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the depth of the centre of the soil horizon in question. Roots are cut, and the hole walls cleaned 

with a brush. Water is added in the hole until the surrounding soil is close to saturated, and the 

infiltration rate has stabilized. Then the hole is saturated with water up to the horizon limit and the 

rate at which the water sinks is registered. The saturated hydraulic conductivity is calculated using 

Darcy’s law, ܳ = ݒ  ∗  is set equal to ܣ is set equal to Ksat  and the area ݒ where the flow velocity ,ܣ

the area of the hole sidewalls and bottom, ܣ = ℎݎߨ2 + -ଶ. Further transformation gives the folݎߨ

lowing equation (see Oosterbaan and Nijland (1994) for details on the mathematical procedure,), 

Ksat = 1.15r 
log(h0 + 0.5r) - log(ht + 0.5r)

∆t
 

where r is the radius of the auger-hole, h0 is the water level in the hole at measurement start and ht 

is the water level in the whole at time t. 

3.3.3 Water retention capacity 
In projects IC, AM and TP, the water content at saturation (pF 0) was obtained by leaving the 

undisturbed cylinder samples with a bandage and rubber band in a tray of water for approximately 

four weeks until they were completely saturated. The weights of the samples were registered.  

Water retention at matric potentials pF 0.5 and pF 1.5 was analysed using the sandbox method in 

projects AM and TP. For this procedure, the saturated cylinder samples were transferred to a tray 

with water saturated sand. A suction of pF 0.5 (3.16 cm water column) was applied to the bottom 

of the sandbox for a week and the weight of the sample was registered. The cylinders were then 

returned to the sandbox and a suction of pF 1.5 (31.6 cm water column) was applied for another 

week before the sample was weighed again. 

For the determination of water retention at field capacity, ceramic pressure plates were used in 

projects IC, AM and TP. The bandages and rubber bands were removed, and the cylinders placed 

on water saturated ceramic plates in a pressure chamber, making sure to obtain a good contact 

between the samples and the ceramic plates. Pressures of pF 2.52 (0.333 bar) in project TP, or pF 

2.3 (0.2 bar) in projects AM and IC, were applied for a week and the weights were registered. 

Finally, the cylinders were oven dried at 105 ℃ for 24 hours and the dry weigh of the soil samples 

were registered. The volumetric water contents at the different matric potentials were calculated 

dividing the weight differences between wet and dry samples, by the volume of the ring Vring = 100 

cm3, assuming water has a density of 1 g cm-3 and considering the weight of the cylinders, the 

bandages and the rubber bands. 
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In project CT, the multistep outflow method was applied for the determination of water contents 

at suction higher than pF 3.4 (3 bar), as described by van Dam et al. (1994). In this method, an 

undisturbed cylinder soil sample (300 cm3) is placed on a ceramic plate in a pressure cell and the 

sample is water saturated from below. Pressure is applied to the cell, while keeping the ceramic 

plate saturated, and this induces an unsaturated water flow through the soil. The water outflows 

and respective pressures are registered at given intervals as the pressure is increased. Finally, the 

samples were oven dried at 105 ℃ for 24 hours. The data was used as input to the program SHYP-

FIT (Durner & Peters, 2009) that estimates the parameters of the van Genuchten equation and 

gives both water retention and hydraulic conductivity predictions. 

All the projects used the same method for the determination of the water contents at matric po-

tentials pF 3.4 and pF 4.2. A sub sample of the disturbed soil is sieved through a 2 mm sieve to 

remove roots and other coarse items; only the smallest particles are important for water retention 

in the high soil-water suction range. The purely organic soils were not sieved, but roots were re-

moved. Water was mixed in with the sieved soil to make a shining paste, and the mix was covered 

and stored for 24 – 48 hours. Assigned rubber cylinders were placed on water saturated ceramic 

plates and they were filled with the soil mix and marked. The ceramic plates were placed in pressure 

chambers and suctions of pF 3.4 (3 bar) and pF 4.2 (15 bar) were applied in their respective cham-

bers. After a week, the samples were taken out and weighed, before they were oven dried at 105 

℃ for 24 hours and weighed again. The gravimetric water content of each sample was calculated 

dividing the weight difference of the wet and dry sample, by the weight of the dry sample. The 

volumetric water content was then determined multiplying the gravimetric water content by the 

bulk density of the soil, assuming a water density of 1 g cm-3. 

3.3.4 Bulk density and organic matter content 
To determine bulk density of the soil horizons, undisturbed cylinder samples were oven dried at 

105 °C for 24 hours and then the dry samples were cooled and weighed. The dry bulk density is 

equal to the weight of the dry soil sample divided by the volume of the ring, V = 100 cm3. 

Organic matter was determined using the ignition method in the AM project. Disturbed sub sam-

ples from the mineral horizons were sieved through a 2 mm sieve and roots were removed for the 

organic horizons, but not sieved. The sub samples were oven dried on aluminium foil at 105 °C 

for 24 hours. 6 to 10 grams of the sub sample were put in a previously weighed and coded crucible 

and the weights of the crucible and the soil were registered. The crucibles with the soil was ignited 

at 430 °C for four hours before they were taken out to cool and weighed again (crucible and soil). 
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The organic matter fraction of the soil was determined by dividing the weight loss on ignition by 

the weight of the dry soil sample. 

The rest of the data points have information on the carbon content, which in the acid soils of the 

study area is almost exclusively organic carbon. A classic factor of 1.724 has been applied in their 

respective analyses to convert the organic carbon content to organic matter content. However, 

Pribyl (2010) argues that this factor is too low in most cases, and that a factor of 2 is more accurate 

for almost all of the 24 studies of soils from all over the world. In the TP project, organic matter 

content was measured with the ignition method in the representative soil profiles. This data was 

compared to the carbon content measured from the same blocks and depths and the conversion 

factor turned out to be 2.098 (R2 = 69 %). Since data from multiple projects are used in the PTF 

development, and the AM project used the ignition method, a conversion factor of 2 has been 

applied to the carbon data in the other projects to get a more accurate estimate of the organic 

matter contents. 

3.4 Data analysis and PTF development 
Data points originated from three different projects at three locations, which could lead to un-

wanted noise in the models, because of possible systematic differences in methods between the 

projects or geographical variation. Including random effects in a model can in many cases account 

for this kind of variance. This was tried in all models, but the random effects turned out to be 

insignificant and they were left out for simplicity. 

Observations deeper than 100 cm or with soil types other than Andosols and Histosols were de-

leted due to scarcity of data. The hydraulic conductivity was log-transformed to achieve a more 

normal distribution of the observations. The natural logarithm was used, and the variable is de-

noted logKsat. The data set was divided in two parts; a training set with 75 % of the data for model 

development, and a test set with the remaining observations for model validation. The training set 

was again divided into ten subsets for cross validation. When using data from multiple sources to 

build predictive functions, Jorda et al. (2015) recommend using the different sources as subsets for 

cross validation to ensure an unbiased and more realistic model building. However, the distribution 

of the data points between the projects in this thesis was not even enough to perform a source-

wise cross validation. Instead, the training-/test sets and the ten cross-validation subsets was bal-

anced with respect to project and site to ensure a fair generalization of the data. 

3.4.1 Choosing appropriate predictors 
Soil texture is the most commonly used predictor in pedotransfer models, but it was not included 

in the PTFs of this thesis. While information about texture might be readily available from soil 
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databases in many countries or regions, this is not the case for the páramos of Ecuador. A particle 

size distribution analysis is time consuming, and as the purpose of pedotransfer models is to save 

time and resources, it does not make much sense to include texture in the models for this study 

area. Moreover, texture analysis of Andosols has proven to be problematic and texture data must 

be treated with caution, as the volcanic ash in combination with organic matter creates extra stable 

aggregates that are not easily dispersed (Buurman et al., 1997; Mizota & Van Reeuwijk, 1989). Ac-

cording to Nanzyo et al. (1993), the right way of dispersing non-crystalline clays after removing 

organic matter with hot H2O2 is to pass the sample through an ultrasonic treatment, adjust the pH 

and wash repeatedly with deionized water. In addition to the mentioned difficulties, the data on 

soil texture was far from complete in the database used in this thesis. 

Information on bulk density, vegetation cover, soil type, slope and depth was complete in the data 

set, and these properties are linked to the pore size distribution, structure and composition of the 

soil, deciding its hydraulic functions. They are easy to measure or readily available and relevant for 

hydrological modelling on a larger scale using geographical information systems. These five men-

tioned properties were thus the chosen variables for the development of the pedotransfer models 

in this thesis. Vegetation cover was grouped in the following way, based on intuition and a quick 

look at the data: 

1. Grassland or Polylepis (dominating natural vegetation cover in study area) 

2. Moss or cushion plants (found in water saturated areas) 

3. Pine tree plantations 

The data for the organic matter content (OM) was incomplete, but the property was still used as a 

predictor in some models were it significantly improved the predictive power. 

3.4.2 PTF development and evaluation 
All data analysis was done in R, version 3.4.4 (R Core Team, 2018). Two modelling approaches 

were selected for the development of the PTFs in this thesis: ordinary least squares linear regression 

and random forest. 

In the oordinary least squares model development, the categorical variables vegetation and soil type 

were converted to dummy variables. The R package glmulti was used to fit all possible linear 

models using the chosen predictors and their two-way interactions. A best model subset was pro-

duced based on the models’ Bayesian information criterion (BIC), given by the following formula, 

ܥܫܤ = 1݊ (ܴܵܵ + log(݊)  (ොଶߪ݀
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where n is the number of observations, the RSS is the residual sum of squares, or random error, d 

is the number of predictors and ߪොଶ is an estimate of the variance of measurement error of the 

response. The BIC is closely related to the Akaike information criterion (AIC) and Mallow’s Cp, 

and is a good measure for finding a model that explains the data well without it being too complex, 

the BIC increases as the number of predictors d increases. A ten-fold cross validation was per-

formed on the 50 models with the lowest BIC, and the average test RMSE was computed for all 

the models. Of the models with the lowest cross validation RMSE, the simplest one was chosen, it 

was fitted again to the whole training set, and the model assumptions were checked graphically. 

Finally, the model was used to predict the response on the separated test set and the final test 

RMSE was calculated. 

In the rrandom forest model development, it was not necessary to use dummy variables when in-

cluding the categorical variables, as the method is based on regression trees, which is a grouping 

approach. The R package randomForest was used for the development of the RF models. A 

ten-fold cross validation was performed with each possible value of m predictors, to find the value 

that best exploited the information in the data without correlating the trees. The m value that gave 

the lowest cross validation RMSE after fitting 500 trees, was chosen for the final RF model, that 

was fitted on the whole training set. The m predictors are chosen randomly at each branch in every 

tree, so the R function set.seed()was used to ensure that the same results could be reproduced 

when running the script multiple times. The model was finally used to predict the response from 

the variable in the test set and the final test RMSE was calculated. 

The predictive performance of the two approaches was evaluated and compared by the RMSE of 

the final model predictions on the test set. In the cases where dummy variables were included in 

an OLS model, total test RMSE was accompanied by separate RMSEs calculated using only the 

data in the test set belonging to the dummy variable category. 

3.4.3 van Genuchten WRC curves 

I chose not to develop parametric pedotransfer models that directly estimate the parameters ߠ௥, ߠ௥, ݊ and ߙ in the Van Genuchten equation, because of the difficulties mentioned in section 2.3.1. 

Instead, the R package soilphysics was used with point values for water retention to fit con-

tinuous curves and retrieve the associated VG parameters. If curves had problems converging, it 

was possible to manually adjust the initial parameter values which helped in some cases. Three 

curves were fitted for each set of observations in the test set, one from the measured water reten-

tion data, one from the RF estimates and one from the OLS estimates. The curve-fitting perfor-

mance of the two methods was evaluated by comparing their average RMSD. 
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3.5 Evaluation of existing pedotransfer functions on test set 
After an extensive search in the published literature, I did not manage to find any PTFs predicting 

soil hydraulic properties that did not involve soil texture, nor any other variable that was unavailable 

in the database used in this thesis. Most of the Ecuadorian PTFs developed by Borja (2006) in-

cluded soil texture, but there was one that only included bulk density and some that included other 

water retention points. A relative selection of these are presented in table 2. Borja Ramón also 

developed PTFs using the artificial neural network (ANN) data mining approach with the same 

variables, but these functions were not available for evaluation. The published test RMSE of both 

approaches is presented in the table, to get an idea of the ANN models’ performance compared to 

the linear regression models. 

We see that the ANN PTFs did not perform better that the linear regression for water contents at 

pF1.98 an pF4.18, but they did better for both pF3.48 models. Borja Ramón developed his func-

tions on a limited data set, using only 87 observations for development and 13 for validation. And 

observations were from both northern and southern Ecuador, were the soil properties were differ-

ent. This may explain the relatively high test RMSEs for both methods in his publications. 

The PTFs from table 2 were evaluated on the test set in this thesis, and their new test RMSEs were 

compared with RMSEs obtained from the developed functions. I have chosen not to include water 

retention points as predictor variables, but it is still interesting to see how well already existing PTFs 

perform on a new data set. 

Table 1. Relevant PTFs developed by Borja Ramón on Ecuadorian Andosols and their performances in the publication 

Code Pedotransfer function Test RMSE Test RMSE ANN equivalent 

MRLM2a ߠ௣ி଴..ହ  = 0.97984 −  - 0.1054 ܦܤ 0.38024 

MRLM2b ߠ௣ிଵ.ଽ଼ = −0.15691 − + ܯܱ 0.00214   ௣ி଴ 0.0499 0.0592 (MRNA2b)ߠ 1.12902 

MRLM4e ߠ௣ிଷ.ସ଼ = 0.06799 +  ௣ிସ.ଵ଼ 0.0608 0.0461 (MRNA4e)ߠ 0.98129 

MRLM4f ߠ௣ிସ.ଵ଼ = 0.00990 − ܦܤ 0.03696  +  ௣ிଷ.ସ଼ 0.0588 0.0681 (MRNA4f)ߠ 0.862956
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4 Results and discussion 
4.1 Preliminary analysis of data in training set 
Figure 6 presents the linear relationships between the variables in the training set (N=260), with 

Pearson correlation coefficients on the upper panel and scatterplots on the lower. Data points are 

coloured by the sampling site. 

Bulk density is the predictor with the strongest correlation with water contents in the low suction 

range. The negative relationship changes as suction increases, until a positive correlation is estab-

lished for very low BD. We see the same pattern with water retention and organic matter, where a 

positive correlation exists for OM contents below 50%. However, for higher OM contents, the 

curve flattens, and it even drops for high soil-water suctions. The available water capacity correlates 

with BD and OM and seems to increase exponentially for soils with very low BD. 

From the figure, slope does not seem to have very strong linear relationships with any of the soil 

hydraulic variables, but are best correlated with water contents at high soil-water suctions, AWC 

and logKsat. Soil depth has a negative linear relationship with water retention at high soil-water 

suction, while AWC increases with depth. The saturated hydraulic conductivity is the most corre-

lated to soil depth, with a clear negative relationship. 

The boxplots in figure 7 show the trends of the soil hydraulic properties in the training set for every 

level of the categorical variables vegetation cover and soil type. We see that Histosol is the soil type 

Figure 6. Training set scatterplots coloured by site and Pearson correlation coefficients between the chosen numeric variables. 
Grey histograms on diagonal show the frequency distribution of observations. α-significance levels: * 0.05  ** 0.01  *** 0.001 
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with the highest average water retention in the low suction range, while the water content drops 

below that of Andosols in the high soil-water suction range. The Andosol observations are many 

and quite scattered, but the average trend is that the difference between water content at saturation 

(pF 0) and water content at the wilting point (pF 4.2), is small compared to the Histosols, or to the 

loam soil example in figure 1. Hence, Andosols have a lower AWC, reflected in the boxplot figure 

b. It is hard to say something general about how the trends in Ksat differ between soil types, other 

than the observations are more scattered for Andosols than for Histosols. 

Many of the observations with moss and cushion plant vegetation coincide with the Histosol ob-

servations, thus the two groups show similar tendencies in both water retention and hydraulic con-

ductivity. Grassland/Polylepis observations are scattered, but the patterns are comparable to those 

of Andosols. The same can be said of the pine tree data, although it is much less scattered, at least 

for water retention. The average water content at field capacity (pF 2.4) is lowest in soils from pine 

tree plantations. Saturated hydraulic conductivity varies more for these soils than the soils belong-

ing to the two other vegetation classes. 

 
Figure 7. Boxplots showing trends on a: water retention, b: available water capacity and c: logKsat depending on soil type (yel-
low and orange plots) or the vegetation cover (red, green and black plots). The dots represent the training set observations. 

b. 

c. 

a. 
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4.2 Resulting pedotransfer functions and variable importance 
4.2.1 OLS linear regression functions 
The resulting OLS are presented in table 3. For some of the matric potentials, the models per-

formed best when using dummy variables to create separate functions for Histosols or soils from 

pine plantations. The functions are coded with a parenthesis with a capital letter at the end: (H) for 

Histosols, (P) for pine tree soils and (R) for the rest of the cases. The dummy variable functions 

are part of the same linear model, but they are written out as separate functions for the sake of 

interpretability.  

Organic matter content was an important predictor for water content at high suctions and for the 

AWC. OM was however not important enough to include in the models in the lower suction range. 

The effect of an increase of BD alone is negative in all cases except for Ksat on the pine plantations. 

Soil depth was a significant predictor for logKsat and for water retention at pF1.5, field capacity 

(pF 2.4) and for AWC. For water retention at both pF1.5, pF2.4 and AWC, Histosols proved to 

be a significant dummy variable, and are separated in a PTF apart. The Pine dummy variable was 

significant in all models except the low suction water retention models. 

Table 2. OLS pedotransfer functions for estimating points on the water retention curve, available water capacity and the log of 
saturated hydraulic conductivity. H: Histosol; P: soil from pine plantation; R: not Histosol nor soil from pine plantation 

Code Pedotransfer function 

OLS0 ߠ௣ி଴.ହ = 0.93849 −  ܦܤ 0.34568

OLS0.5 ߠ௣ி଴.ହ = 0.93265 −  ܦܤ 0.35262

OLS1.5(H) ߠ௣ிଵ.ହ = 0.81660 − ܦܤ 0.37152 + ℎݐ݌݁ܦ 0.13370 +  ݁݌݋݈ܵ 0.08460

OLS1.5(R) ߠ௣ிଵ.ହ = 0.86537 − ܦܤ 0.37152 + ℎݐ݌݁ܦ 0.13370 +  ݁݌݋݈ܵ 0.08460

OLS2.4(H) ߠ௣ிଶ.ସ = 0.78319 − ܦܤ 0.08317 −  ℎݐ݌݁ܦ 0.12070

OLS2.4(P) ߠ௣ிଶ.ସ = 0.75665 − ܦܤ 0.37555 +  ℎݐ݌݁ܦ 0.26297

OLS2.4(R) ߠ௣ிଶ.ସ = 0.78766 − ܦܤ 0.37555 +  ℎݐ݌݁ܦ 0.26297

OLS3.4(P) ߠ௣ிଷ.ସ = 0.61299 − ܦܤ 0.25920 − ݁݌݋݈ܵ 0.14891 − ܯܱ 0.75548 + ܦܤ 1.25525 ∙ ܯܱ + ݁݌݋݈ܵ 0.75056 ∙  ܯܱ

OLS3.4(R) ߠ௣ிଷ.ସ = 0.45504 − ܦܤ 0.12088 − ݁݌݋݈ܵ 0.14890 − ܯܱ 0.36857 + ܦܤ 1.25525 ∙ ܯܱ + ݁݌݋݈ܵ 0.75056 ∙  ܯܱ

OLS4.2(H) ߠ௣ிସ.ଶ = 0.26177 − ܦܤ 0.12330 − ܯܱ 0.22864 + ܦܤ 1.44139 ∙  ܯܱ

OLS4.2(P) ߠ௣ிସ.ଶ = 0.55066 − ܦܤ 0.30454 − ܯܱ 0.62947 + ܦܤ 144139 ∙  ܯܱ

OLS4.2(R) ߠ௣ிସ.ଶ = 0.34754 − ܦܤ 0.12330 − ܯܱ 0.22864 + ܦܤ 1.44139 ∙  ܯܱ

OLSAW(H) ܥܹܣ = 0.76580 − ܦܤ 0.39703 − ℎݐ݌݁ܦ 0.10580 − ܯܱ 0.12835 − ܦܤ 0.85848 ∙  ܯܱ

OLSAW(P) ܥܹܣ = 0.21722 − ܦܤ 0.13322 + ℎݐ݌݁ܦ 0.22571 + ܯܱ 0.42841 − ܦܤ 0.85848 ∙  ܯܱ

OLSAW(R) ܥܹܣ = 0.56363 − ܦܤ 0.39703 + ℎݐ݌݁ܦ 0.22571 − ܯܱ 0.12835 − ܦܤ 0.85848 ∙  ܯܱ

OLSK(P) ݈ݐܽݏܭ݃݋ = 2.11771 + ܦܤ 1.38330 − ݁݌݋݈ܵ 0.28621 −  ℎݐ݌݁ܦ 15.28815

OLSK(R) ݈ݐܽݏܭ݃݋ = 0.07337 − ܦܤ 0.85962 ݁݌݋݈ܵ 1.40465+ −  ℎݐ݌݁ܦ 0.73158
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Slope was significant in the models predicting water retention at pF1.5, pF3.4 and logKsat. In the 

PTF for water retention at pF3.4, the interaction term between slope and OM was significant. 

Surprisingly, slope was significant in the model predicting water content at pF1.5, even though the 

correlation between the two was almost zero.  

4.2.2 Random forest models 

The black box random forest models are more difficult to interpret that the OLS models, but 

measures of variable importance can help us understand what goes on in the model building. One 

approach is to measure which variables that on average reduce the residual error the most when 

chosen for a regression tree node split, or the mean decrease in node impurity (section 2.3.2.1 or 

James et al. (2013) for theory). Variance importance plots are presented for all RF models in figure 

8. 

As we can see from the figure, the random forest models follow the same patterns of variable 

importance as the linear models; bulk density is by far the most important variable for determining 

water retention in the low suction range, and is still important for higher suctions as well as for 

AWC and Ksat. The first three models for water retention close to saturation have pretty similar 

variable importance patterns. Slope and soil depth are slightly more important for water content at 

pF1.5 than for conditions closer to saturation, matching the variables included in the corresponding 

OLS PTF.  

Compared to the low suction water retention models, vegetation seems to have more relative im-

portance for predicting water retention at field capacity and higher suctions, as well as logKsat. 

However, depth and slope are still more important in all models. Soil type is not very important in 

any model, but it had some importance in the RF4.2 and RFAW model, coinciding with the very 

different trends of the water retention curve and thus the available water, as seen in the boxplots 

in figure 7. Soil type was not even included in the logKsat model because of close to zero importance. 

Organic matter is the dominant explanatory variable for water retention at pF3.4, and is also im-

portant for the wilting point, together with bulk density. 

4.3 PTF fits and test performances 
The fit of all the models on the training set and their predictive performance on the test set are 

presented in table 4 by train- and test RMSE. In the cases where the OLS models include dummy 

variables creating separate functions, group-specific RMSEs were calculated (Split train RMSE and 

Split test RMSE in the table) to evaluate and compare the prediction error for either Histosols (H), 

soils from pine plantations (P) or other soils (R). The RMSE for the models’ predictions on the 

whole test set is given in the table as the total test RMSE). 
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Generally, the OLS models had a better fit than the RF models on the training set. The only ex-

ceptions are water retention at pFs 2.4, 3.4, 4.2 and AWC for pine plantation soils, and logKsat for 

other soils. The training set RMSEs were generally low for the pine plantation soils. While the OLS 

models fitted the training set best, the RF predicted better than the OLS models on the total test 

set and also the groups in the test set, for all of the predicted hydraulic properties. All the RF 

models’ test error is lower than the training error, while the OLS models have lower training error 

than test error in around half the cases. 

Predictions of water retention were especially accurate in the low suction range. As suction in-

creases, predictions decrease in accuracy. Even though other variables like OM content, slope, 

depth and vegetation cover were more important in these functions, the obtained test RMSEs 

prove that there is still a lot of unexplained variance in the predictions. The greatest differences in 

predictive performance between the two modelling approaches, was for the models predicting His-

tosol water retention at field capacity, wilting point and AWC. RFK test error was much lower than 

the OLSK test error, even though model variables were the same. 

Figure 8. Variable importance plots for the random forest models, based on mean decrease in node impurity 
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A graphical comparison of the test performances of the two modelling methods can be seen in 

figure 9, where the observed water contents from the test set are plotted against the predicted 

values. Point predictions from all the models are presented in the same figure, and the symbol 

indicates the model. Both models have close fits to the 1:1 line between predicted and observed 

water contents. However, the random forest models clearly gave the most accurate predictions. 

From the figure it would seem that the water content at pF3.4 was the most difficult to predict for 

both the RF and the OLS models. This is confirmed by the high total test RMSEs of 0.0721 and 

0.0760 respectively. Predictions of water retention at wilting point are more accurate, but RMSEs 

for water content at lower suctions are less variable. Predictions were more accurate on soils from 

Soldados and Tutupali than soils from Zhurucay. 

The test set prediction accuracies of AWC models and logKsat models are compared graphically 

in figure 10. AWC predictions were more scattered in the Zhurucay soils, while they were more 

concentrated and accurate for the Soldados and Tutupali soils. Again, the RF model has the tightest 

fit, but the RMSEs were higher than 0.05 for both the OLS and RF model. The OLS model for 

predicting logKsat behaved almost like a class PTF, with predictions grouped together. The RF 

model has the better fit in this case as well, with only a few very inaccurate predictions. 

Table 3. Comparison of model fit and test performances for both methods. H.: Histosol; P: Pine vegetation cover; R: not Histosol 
nor pine vegetation cover.  

 

 N PTF code Split train RMSE Total test RMSE Split test RMSE 

 train test OLS RF OLS RF OLS RF OLS RF 

θpF0  260 85 OLS0 RF0 0.0324 0.0351 0.0333 0.0302 0.0333 0.0302 

θpF0.5  221 72 OLS0.5 RF0.5 0.0267 0.0275 0.0277 0.0241 0.0277 0.0241 

θpF1.5 
H 20 5 OLS1.5(H) 

RF1.5 
0.0634 0.0714 

0.0361 0.0348 
0.0502 0.0478 

R 211 71 OLS1.5(R) 0.0391 0.0391 0.0349 0.0337 

θpF2.4 

H 29 6 OLS.2.4(H) 

RF2.4 

0.1279 0.1381 

0.0581 0.0481 

0.1151 0.0654 

P 131 43 OLS2.4(P) 0.0538 0.0428 0.0478 0.0417 

R 100 36 OLS2.4(R) 0.0511 0.0527 0.0552 0.0518 

θpF3.4 P 87 42 OLS3.4(P) 
RF3.4 

0.0371 0.0335 
0.0760 0.0721 

0.0400 0.0340 

 R 120 26 OLS3.4(R) 0.1022 0.1099 0.1120 0.1082 

θpF4.2 H 29 5 OLS4.2(H) 

RF4.2 

0.0865 0.1108 

0.0575 0.0557 

0.0641 0.0478 

 P 129 43 OLS4.2(P) 0.0419 0.0368 0.0428 0.0427 

 R 79 27 OLS4.2(R) 0.0984 0.1080 0.0743 0.0727 

AWC 

H 29 5 OLSAW(H) 

RFAW 

0.1475 0.1621 

0.0747 0.0642 

0.1171 0.0636 

P 129 43 OLSAW(P) 0.0537 0.0506 0.0446 0.0429 

R 79 27 OLSAW(R) 0.0969 0.1056 0.0990 0.0882 

logKsat 
P 131 43 OLSK(P) 

RFK 
0.7169 0.7225 

0.9313 0.7535 
0.8464 0.6701 

R 128 42 OLSK(R) 0.8882 0.8490 1.0109 0.8303 
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Figure 9. Predicted vs. measured values for water retention at all matric potentials evaluated in this thesis. Points are coloured 
after site. OLS models on the left and RF models on the right. Diagonal dotted line is the 1:1 relationship. 

 

 
Figure 10. Predicted vs. measured available water capacity (AWC) and logKsat, coloured by site 



 
 

34 
 

4.3.1 Van Genuchten water retention curves 
Figure 11 presents some examples of the fitted Van Genuchten curves on the test set, were the red 

points represent the measured water retention values and the blue and green points the estimates 

from the RF and OLS models respectively. The fitted functions from the estimates were close to 

the red line fitted from the measured data in most cases from all the four projects. Sometimes it 

was necessary to adjust initial values to fit a curve and other times it was not possible to fit a curve, 

even with adjusted initial values. Nine of the observations from the IC project had only three 

available water retention points which is fewer than the amount needed to fit a curve from the VG 

expression that has four unknown parameters. Where organic matter data was missing, no predic-

tions of water retention at pFs 3.4 and 4.2 were available, which gave convergence problems as 

well. Even on the six observations that lacked only one water retention data point, the curve was 

not fitted. Of the 62 rows in the data set where enough water retention points were present, both 

observed and predicted, three fitted curves were obtained in 49 of the cases.  

The RMSD was calculated using only observations from the rows in the test set were all the three 

curves were fitted successfully. Results showed that the distance from the red curve to the curves 

fitted from the WRC predictions of the two modelling methods were quite similar; the OLS had 

an RMSD of 0.0332, while the RF had a slightly better RMSD of 0.0305 

4.4 Borja PTF performance on test set 
The predictive performance of the selected functions developed by Borja (2006) on the test set of 

this thesis is presented in table 5 and the corresponding RMSEs of the PTFs developed in this 

thesis is shown in the adjacent grey table. Borja’s PTFs obtained a smaller test error with the data 

in this thesis than in the original publication (table 2). In the low suction range, Borja’s PTFs did 

not do a better job at predicting the water content than the PTFs developed in this thesis. However, 

Borja’s functions predicted mostly better than the PTFs of this thesis in the high suction range. 

Table 4. Prediction error of the PTFs developed by Borja (2006) on the test set of this thesis. H: Histosols; P: pine plantation soils; 
R: not Histosols nor pine plantation soils. Grey table on the right shows RMSEs of corresponding PTFs developed in this thesis. 

 Code  N Total test RMSE Split test RMSE     Split RMSE OLS Split RMSE RF 

θpF0 MRLM2a  85 0.0418 0.0418     0.0333 0.0302 

θpF1.5 MRLM2b 
H 6 

0.0378 
0.0487     0.0502 0.0478 

R 71 0.0368     0.0349 0.0337 

θpF3.4 MRLM4e 
P 43 

0.0424 
0.0338     0.0400 0.0340 

R 41 0.0565     0.1120 0.1082 

θpF4.2 MRLM4f 

H 5 

0.0466 

0.0860     0.0641 0.0478 

P 42 0.0402     0.0428 0.0427 

R 29 0.0482     0.0743 0.0727 
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Figure 11. Fitted Van Genuchten curves on fifteen selected rows of the test set. Red, blue and green points represent measured 
values, RF estimates and OLS estimates respectively, and the continuous lines the VG curves fitted from the points. 
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5 Discussion 
5.1 Selected predictors and their interactions with soil hydraulic properties 
In the models developed in this thesis, bulk density was by far the most important variable for 

predicting water retention in both the low and the high suction range. BD is a strong indicator of 

the soil structure and pore size distribution, properties that determine water retention at matric 

potentials close to saturation. Soil organic matter content basically tells the same story, and it did 

not provide enough additional information to be included in the low-suction PTFs. A soil’s pore 

sizes are reduced as OM decomposes, hence the pore size distribution of equally organic soils can 

be quite different (Rezanezhad et al., 2016). Grover and Baldock (2013) studied the relationship 

between peat hydrology and its chemical composition. They measured the proportions of carbo-
hydrates, protein, lignin, lipids, carbonyl and char in the peat, which change as the OM decom-

poses, and linked it to Ksat and soil water retention in the low suction range. Their results showed 

that the chemical composition of the OM explained much more of the variation in hydraulic prop-

erties than bulk density. In this thesis however, BD was the best of the available explanatory vari-

ables at indicating OM chemical composition from decomposition, which explains its importance 

in both the water retention models and the Ksat models. OLSK(P) is the only regression model that 

has included a positive BD term, which is unexpected. Some of the pine observations had very 

high saturated hydraulic conductivity compared to the rest of the dataset, probably because of 

preferential flow along roots, which may have had an effect in the model.  

The importance of OM content on water retention at high suctions is somewhat discussed in the 

literature (Rawls et al., 2004). OM is known to compete with clay minerals and thus reduce water 

retention in fine-textured soils (Christensen, 1996). However, Rawls et al. (2003) conclude in their 

study that the effect of organic carbon on water retention is always positive for soils with an organic 

carbon higher than 5%,  i.e. an OM content higher than 10%, using the conversion factor suggested 

by Pribyl (2010). This claim does not hold for the extremely organic soils studied in this thesis with 

a mean OM content of 33%. In the scatterplot in figure 6 we see that there is threshold at approx-

imately 50% OM content where water retention in the high suction range goes from a positive 

correlation with OM to being negatively affected by an increase in OM content. However, the 

negative trend is very scattered, and this is where the interaction between BD and OM becomes 

important. Organic soils that contain high amounts of poorly decomposed OM have less specific 

surface for adsorption than soils consisting of more decomposed or compressed OM, and water 

retention at high suctions will increase as BD increases. A positive OM:BD interaction term is 

included in the high suction OLS models, making sure that the originally negative effect of 
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increasing BD becomes positive in highly organic soil. The interaction term is negative for in the 

OLSAW model, since a higher water retention at wilting point means less available water. 

The importance of  soil depth in the models OLS1.5, OLS2.4, OLSAW and OLSK, is probably 

related to the vertical variation of the degree of compaction and OM decomposition affecting pore 

space distribution. Hoag and Price (1995) found that Ksat in the peat of their study dropped by 

several orders of magnitude from the surface to deeper, more humified layers. While soil depth is 

relatively important in the RF models at high suctions (figure 8), it has not been included in the 

corresponding OLS models. This is probably due to the OM:BD interaction explaining most of 

the information on the degree of OM decomposition relevant in this suction range. Most Andosol 

samples were taken in the top 25 cm of the soil, while Histosols dominate the deepest soil samples 

in the database, and have been separated out with dummy variables in the OLS models that include 

soil depth. Care must be taken to avoid extrapolation and using the PTFs developed in this thesis 

to predict hydraulic properties in deep layers of Andosols. 

Slope is significant in the OLS1.5, OLS3.4 and OLSK models, and relatively important in RF mod-

els for higher suctions than saturation. Topography provides useful information about where fine 

soil particles are more likely to be transported from and to by erosion and also about the drainage 

conditions deciding OM decomposition and weathering of the soil (Romano & Chirico, 2004). The 

slope effect is negative in the OLS3.4 model, where micropores and specific surface is important 

for water retention, and slightly positive in the OLS1.5 model, where large pores are important. 

The effect in the logKsat model for the natural soils is positive. This indicates that pore space and 

-interconnectivity increase with the steepness of the slope. When slope is close to zero, water re-

tention is mainly explained by the other model variables. The Histosol dummy variable included in 

OLS1.5 and the slope:OM interaction term included in the OLS3.4 model both account for differ-

ences in OM accumulation between slope bottoms with almost water saturated conditions and 

dryer hill tops, which may have the same slope gradient. 

According to the RF variance importance plots in figure 8, the categorical variables soil type and 

vegetation cover were not particularly useful for explaining the soil water dynamics in the study 

area. However, the Pine and Histosol dummy variable were important enough to include in many 

of the OLS water retention models. Pine plantation soils had less organic matter than the average, 

and Histosols had more than the average. Using the dummy variables is an efficient way of dis-

criminating these different OM levels in the linear regression approach. Practically all soils belong-

ing to the vegetation group moss and cushion plants, coincide with the Histosol observations, thus 

this category did not  provide any more information on soil water dynamics. Vegetation was most 
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important for the discrimination of pine tree soils in the Ksat models. Jorda et al. (2015) studied 

hydraulic conductivity in areas of natural vegetation and agricultural land with different tillage prac-

tices and found that bulk density and land use were the most important factors in determining Ksat. 

There was no arable land in the study area of this thesis, but the pine plantation soils had, on 

average, higher saturated hydraulic conductivity than the other soils. This may be explained by 

preferential flow along the roots of pine trees, and it may also be attributed to differences in the 

OM composition developed during the last 20 years since the establishment of the pine plantations. 

5.2 PTF fits and test performances 
While the linear regression models generally had lower train RMSE than the random forest models, 

training set variation in high suction water retention for pine plantation soils, and logKsat for other 

soils, was better explained by the RF models. The mean organic matter content of the pine planta-

tion observations in the training set was 23%, thus soil texture is probably a more influencing factor 

for water retention at high suctions in these soils. As soil texture was not included in the model 

development, other variables that correlate to soil texture and their interactions become important. 

Approaches based on regression trees and other data mining techniques, have an extraordinary 

ability to detect non-linear structures in the data and utilise all available information (Pachepsky & 

Schaap, 2004), while it would seem that the OLS method is not as good at capturing the complex 

relationships between texture-dependent hydraulic properties and the available predictors in the 

case of the less organic soils. The train RMSE was generally low for the pine plantation soils, which 

could indicate a biased model. However, we see from the boxplot in figure 7 that these were also 

the soils with least variation in water retention, thus a tighter model fit is to be expected. Saturated 

hydraulic conductivity is also linked to soil texture, but only because texture is an indicator of the 

interconnected pore space of the soil. It does not depend on the soils adsorptive strength like water 

retention in the high suction range. While the OLSK has a lower train RMSE for the pine plantation 

soils, the RFK model does a better job at capturing the relationship between interconnected pore 

space and the available predictors in the highly variable soils with natural vegetation cover. 

A look at the models’ test RMSE paints a different picture of the two modelling approaches. The 

RF models predicted better than OLS models in every case. This indicates that the OLS models 

are slightly overfitted, a problem the random forest approach theoretically does not have, due to 

the Law of Large Numbers (Breiman, 2001; James et al., 2013). The fact that the test error is lower 

than the training error for the majority of RF models, proves that they have accomplished a good 

data generalization. The OLS models have lower training error than test error in around half the 

cases, which is still pretty good, as the training error is normally lower than test error when pre-

dicting on a dataset that has not been used in the model development. Total test RMSEs of all the 
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developed water retention models are well inside the RMSE range of 0.02 – 0.11 m3 m-3 reported 

in the literature (Donatelli et al., 2004; Wösten et al., 2001). 

Generally, the test error of the OLS models is not much higher than the corresponding RF model 

test error. Some exceptions are the test RMSEs of the models predicting Histosol water retention 

at field capacity, wilting point and AWC. The large RMSE differences could be random, as the test 

set has very few Histosol observations. However, it could also be attributed to slope not being 

included in the OLS functions predicting these water retention points. From the variable im-

portance plots in figure 8, we see that slope is relatively important for field capacity, wilting point 

and AWC, and this importance is captured in the RF models. The test error difference between 

OLSK and RWK was also considerable, even though the included model variables were the same. 

Depth was the most important variable in the logKsat models, thus the clustering of OLSK pre-

dictions seen in figure 10 is probably due to the fact that most of the observation were sampled at 

soil depths 10 and 20 cm. There are complex interactions between soil properties and environmen-

tal factors that determine the permeability of a soil and thus its saturated hydraulic conductivity. 

By choosing between a limited set of m random predictors of the total set of predictors at each 

node split, the RF models are better at capturing all information available in the data set. 

Predictions of water retention were especially accurate in the low suction range, were bulk density 

alone explained most of the variance. As soil-water suction increases, and the soil’s adsorptive 

properties determines water retention, the lack of soil texture and OM composition as explanatory 

variables in the PTFs is reflected in less accurate predictions, both for OLS and RF models. Test 

RMSEs for the less organic pine plantation soils were below 0.05 for all water retention models, 

while the other more organic soils had high RMSEs in the high suction range. This could indicate 

that textural variation is well explained by other predictors and that OM composition is mainly 

responsible for the variation in soil hydraulic properties. It would also explain why the models 

predict Ksat better in the pine plantation soils than in the other soils. Moreover, Hemond and 

Goldman (1985) argue that the auger-hole methods used to determine field Ksat in this thesis, do 

not give reliable measurements in compressible soils, due to alterations of the soil matrix near the 

auger hole, or compression by the people making the measurements. If this is the case for the soils 

of the study area, measurements from the very organic grassland or peat soils would not be as 

reliable as the less organic pine plantation soils. Measurement error would affect both train and test 

RMSE. Most of the pine plantation soils were sampled in Tutupali and Soldados, hence the tight 

fit of these observations in the predicted vs. measured plots in figures 9 and 10. The majority of 

the grassland data and all the peat data were from Zhurucay, explaining why the green points are 

more scattered in the plots. This was also the only site that was studied in all the four projects 
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providing the database of this thesis, and systematic differences in methodology may have led to 

more variance. 

5.2.1 van Genuchten water retention curves 
VG curves were fitted successfully on both measured and predicted water retention points in 49 

of the 62 cases in the test set where enough data was available. Of the 13 remaining cases that had 

enough water retention data, but did not manage to converge all three curves, five were from the 

TP project (one from Soldados and four from Tutupali) and the last eight were from the AM 

project in Zhurucay. Convergence was achieved with the observed data in only three of the 13 

cases, and on the predicted data from both methods in five of the cases. The convergence problems 

are possibly attributed to measurement or prediction error, but it could also be explained by inap-

plicability of the VG expression in describing the very unique water retention properties of An-

dosols and Histosols (Dettmann et al., 2014; Vereecken et al., 2010). 

The root mean squared differences between the curves fitted on the predicted data and the corre-

sponding curve fitted on observed data was very low, with RMSDs below 0.035 for obtained for 

both the OLS and RF curve fits. In their study on Brazilian soils, Tomasella et al. (2003) achieved 

an RMSD of 0.087. Ahuja et al. (1985) obtained an RMSD of 0.05. However, the results from this 

thesis might be a little misleading, as only the 49 rows in the data sets where all curves were fitted, 

were used in the RMSD calculation. If a curve were to be adjusted to best describe the remaining 

problematic cases, mean RMSD for the whole test set would most probably increase. Regardless 

of the true RMSD of the test set, the RMSDs obtained from the 49 cases are useful for comparing 

the two modelling methods. It would seem that, provided that convergence is achieved, both the 

OLS method and the RF method are useful for obtaining relatively accurate VG equation param-

eters through PTF predictions of water retention at pFs 0, 0.5, 1.5, 2.4, 3.4 and 4.2. 

5.3 Borja PTF evaluation and performance on test set 
In his PTF development in 2006, Borja included some samples from northern Ecuador in addition 

to soils close to the study area of this thesis. The Andosols in northern Ecuador are younger, 

coarser and contain less organic matter, thus the hydraulic properties are naturally different. In 

addition, the northern soils of his study were more affected by agricultural activity. He found that 

the accuracy of his PTFs was higher in the soils from the south and that predictions of water 

contents at matric potentials close to saturation tended to be overestimated in the northern soils. 

This is probably the reason why the prediction errors obtained with the test set of this thesis were 

so much lower than the corresponding errors of the original publication (table 2). 
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Even though Borja’s PTFs were developed using only Andosol data, the MRLM2b model including 

OM and θpF0 as predictor variables, predicted better than the OLS1.5 model on the Histosol ob-

servations. However, the PTFs developed in this thesis of did a better job at predicting Andosol 

water content at pF1.5 and water content at saturation. The MRLM4f model including θpF3.4 as a 

predictor variable did not predict Histosol wilting point water retention as well as the PTFs of this 

thesis, and the test RMSEs for high suction water retention in pine plantation soils were similar in 

all three cases. However, Borja’s high suction PTFs predicted much more accurately on Andosols 

with natural vegetation cover. Hence, Borja’s functions can be used to improve prediction accuracy 

in these soils. Borja also developed functions using artificial neural network analysis, and the model 

predicting water retention at pF3.48 performed even better than the MRLM4e function in the 

original publication (table 2). If this model is available, it may be an even better choice for improv-

ing prediction. 

Avoiding the cost and impracticalities of measuring water retention is the main idea behind PTF 

development, thus the necessity of improved prediction has to be assessed before using Borja’s 

functions. However, analysis of high suction water retention points does not require bringing steel 

ring equipment out in the field for sampling undisturbed samples, and it is not especially time 

consuming. If samples are taken anyway to analyse soil BD and OM for the PTF inputs, it might 

not end up too costly doing a parallel pressure chamber analysis of one high suction water retention 

point, if the necessary equipment is already available. 

5.4 Study limitations 
The number of peat observations in the dataset used for the development of the PTFs in this thesis 

was very limited, with 29 and 6 Histosols represented in the training- and test set respectively. It 

was not ideal that all Histosol observations were from only one of the projects at one site. In 

addition, 19 of the 35 Histosol observations were taken from soil depths of 40 cm or deeper, and 

some Histosol samples are from the C horizon which is much lower in organic matter. Hence, a 

reliable picture of peat soil water dynamics in the Ecuadorian páramo might not be captured in the 

developed PTFs. 

Another limitation of this study is the difference in methodology between the different projects. 

While the authors in the AM, IC and TP projects used the sandbox and pressure chamber methods 

to analyse water retention, the authors of the CT project used the multistep outflow method, which 

may have given systematic differences in the measurements. The procedures of organic matter 

analysis were not the same between the methods. While organic matter content in the AM, CT and 

IC projects was determined from samples taken in the same soil profile as the ring samples, organic 

matter in the many pine plantation observations in the TP project was analysed on only one sample 
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in each of the two depths for every 24x24 blocks. This means that there are three different sets of 

water retention observations from each block that all are linked to the same organic matter content. 

Most of the organic matter observations were conversions from organic carbon contents, while 

organic matter in the AM project was measured directly. I proposed a carbon to OM conversion 

factor of 2 instead of the classic 1.72, which may also have had an effect on the results of this 

thesis. 

The number of observations in the different projects and at the different sites were not the same, 

and the fact that random effects were excluded in the PTF development may have led to a subop-

timal generalization of the data and possible bias in the functions’ predictions. The reliability of the 

functions on other data sets remains to be studied in future research in the area. 
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6 Future research 
To improve pedotransfer functions for predicting hydraulic properties of highly organic páramo 

soils, information on the degree of OM decomposition is recommended. Either using the simple 

and well-known Von Post scale (von Post & Granlund, 1926) in the field, or by measuring the 

chemical composition of the OM, as done very successfully by Grover and Baldock (2013). 

The mineralogy of the soil is also known to affect its structure and pore size distribution (Bruand, 

2004; K. & J., 2005), and thus the water retention in the low suction range and Ksat. The way in 

which clay minerals are arranged in the soil, the minerals’ size and surface charges are variables that 

become increasingly important for high suction water retention (Quirk, 1994). In the case of An-

dosols, the interaction between pH and Andosol mineralogy could be a significant explanatory 

variable (Shoji et al., 1996). Buytaert et al. (2005a) showed that the properties of Ecuadorian soils 

linked to the volcanic ash content vary with the distance to the still active volcanoes Tungurahua 

and Sangay in central Ecuador. Hence, a geostatistical modelling approach may be appropriate to 

improve the prediction of more texture dependent soil hydraulic variables in the páramo of south-

ern Ecuador. 

To address the reliability of the PTFs, it is important to evaluate their predictive performance using 

other databases than the ones used for the PTF development. If they turn out to be reliable for 

similar soils, the pedotransfer functions developed in this thesis can be a useful tool for hydrological 

modelling on a large scale in the very vulnerable, important and precious páramo of southern Ec-

uador.  
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7 Conclusions and recommendations 
The purpose of this thesis was to contribute to the understanding of the variables affecting soil 

hydrology in the Ecuadorian páramo ecosystem. This was done by developing pedotransfer func-

tions to predict points on the water retention curve and saturated hydraulic conductivity for non-

allophanic Andosols and Histosols. Soil texture was not included in the analysis, but bulk density, 

soil organic matter, slope, soil depth, vegetation cover and soil type were used as explanatory vari-

ables in the development of both linear regression models and random forest models. Bulk density 

was by far the most important variable for predicting soil hydraulic properties in the study area. 

Organic matter content and its interaction with bulk density was important at high soil-water suc-

tions. Soil depth was the most important variable for the saturated hydraulic conductivity models. 

The random forest models obtained lower prediction error (RMSE) than the corresponding linear 

regression models for all the studied soil hydraulic properties. Linear regression predictions of sat-

urated hydraulic conductivity had a high RMSE of 0.9313, while the corresponding random forest 

performed better, with a RMSE of 0.7535. Predictions of water retention in the low soil-water 

suction range were satisfactory; both the linear regression models and the random forest models 

obtained RMSE values below 0.05 for water contents at suctions lower than field capacity. Model 

predictions of water retention at higher soil-water suctions gave RMSE values between 0.05 and 

0.08. The random forest models had stronger predictive power than the linear regression models 

in this thesis, but the difference between the two approaches was not dramatic. When fitting the 

van Genuchten curve on the predicted water retention points, both approaches gave good gener-

alizations of soil moisture characteristics. In many practical situations, the simpler, more interpret-

able linear regression model will often be preferred. 

For better predictions of water retention in the high suction range, the functions developed by 

Borja Ramón that include water retention information as explanatory variables can be used, or new 

functions can be developed that include other explanatory variables. Soils in the páramo of south-

ern Ecuador are highly organic, hence the chemical composition of the organic matter is a viable 

predictor candidate for further improvement of PTFs in the area. The incorporation of soil min-

eralogy coupled with pH and/or geostatistical analysis, could also yield better results. 
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