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Abstract 

 

A wind turbine operating downwind of another will stand in the wake of the upstream turbine, 

resulting in decreased power generation and increased load fatigue. In order to keep wake losses 

at a minimum, wind farm designers rely on wake models to optimize the wind farm layout. 

Therefore, accurate wind turbine wake aerodynamic modelling is essential for developing cost 

efficient modern wind farms, that consists of a large number of wind turbines usually 

congregated in compact formation.  

Using large sets of SCADA data, which are, on-site measurements data from full scale wind 

turbines and meteorological data from a wind farm located in complex terrain in the northern 

part of Norway, the aim of this study was to perform a comparative analysis of the newly 

developed numerical wake model referred to as the actuator disc method (ACD), against the 

two most commonly known analytical wake models namely the Jensen- and Larsen model.  The 

simulations were performed in the state of the art Computational Fluid Dynamics (CFD) 

software, WindSim, which solves the Reynolds Averaged Navier-Stokes (RANS) equations for 

wind farm development purposes.  

Results of this study showed that the ACD and Larsen wake model outperformed the Jensen 

model for most single wake cases. For multiple wake cases, the ACD method was found to 

provide the most accurate results, by capturing wake-wake and wake-terrain effect. All three 

wake models overestimated the wake losses for the uncalibrated results in both single and 

multiple wake cases. However, Due to the poor quality in measurement data discovered during 

this study, no clear-cut conclusion can be drawn on to which wake model performed best. The 

main conclusion drawn in this study emphasises the necessity of high quality measurement data 

for wake model validation purposes. 

 

Keyword: Wind power, Onshore wind farm, Complex terrain, Analytical wake model, 

Numerical wake model, Actuator disc method (ACD), Computational fluid dynamics (CFD), 

WindSim. 
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1 Introduction 
 

 

1.1 Wind energy outlook 
As of October 2017, 30 wind power projects were built in Norway. In addition, 12 projects are 

under construction. During 2017 four wind farms were put into operation with a total installed 

capacity of 324 MW. The development in 2017 is thus the largest ever seen in Norwegian wind 

power. As of March 2018, the total installed capacity in Norway sums up to 1190 MW. Wind 

power development in Norway for 2018 is expected to increase even further. The Norwegian 

Water Resources and Energy Directorate (NVE) and the Ministry of Petroleum and Energy 

(OED) have granted licenses for approximately 7400 MW wind power, corresponding to an 

expected production around 26 TWh. Wind farm projects with a total installed power of 

approximately 1650 MW are currently under construction (Weir & Aksnes 2018). 

Europe installed 16.8 GW of additional wind power capacity in 2017, marking a record year on 

annual installations. Onshore wind power contributed with 12,484 MW new added power, 

3,154 MW for the offshore sector. WindEurope’s Central Scenario for 2020 provides a realistic 

estimate of the installed capacity in Europe for the next four years. The central scenario expects 

wind energy in Europe to reach 204 GW by 2020, with an average annual market of 12.6 GW 

(Ngheim et al. 2017). Although the offshore wind sector is showing a tendency of annual 

growth, onshore wind power still represents more than three-quarter of the installed capacity. 

Making onshore wind power by far the largest contributor to new renewable energy production. 

With more than 50 GW of new additions in the 2017-2020 period under the central scenario, 

Europe will represent slightly less than a quarter of global installations. China expects to install 

84 GW representing 38% of the total global wind power installation. Although Europe 

increasingly implements offshore wind power, the onshore sector stands undisputed in China, 

US and India accounting for well over 90% of the total expected installed capacity in 2020 as 

presented in Figure 1.1. Whilst uncertainty for the wind power market after 2020 is very high 

as most EU member states still do not have post-energy-plans in place, WindEurope’s analysis 

of the potential conditions determining wind energy deployment post-2020 provides several 

potential scenarios. According to the central scenario, 323 GW of cumulative wind energy 
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capacity would be installed in the EU by 2030. 

Onshore and offshore wind sector accounting 

for 253 GW and 70 GW respectively (Ngheim 

et al. 2017).  

The Global Wind Energy Council (GWEC) 

present’s in the 6௧௛ edition of the Global Wind 

Energy Outlook scenarios looking at the long-

term future of the wind industry, primarily out 

to 2020, 2030 and forecasting to 2050. The 

International Energy Agency’s (IEA) New 

Policies Scenario (NPS) is based on 

assessment of both national and international 

climate policy, commitment by governments 

i.e. G-8/G-20 and the Clean Energy 

Ministerial and various commitments to 

renewable energy and efficiency at national and regional level (IEA 2017). The NPS scenario 

project an increase to near 50 GW annually in the middle of next decade, gradually decreasing 

to a net of 43 GW annually by 2030. Thereafter, expecting an annual growth in the mid-30s in 

terms of GWs installed, remaining flat for the rest of the period out to 2050 in net terms. 

Consequently, cumulative installed capacity would reach 639 GW by 2020, and 1,260 GW by 

2030. By 2050, NPS foresees global wind installations reaching 2,870 GW. The GWEC’s 

moderate scenario (MS) resemble the NPS, considering all policy measures to support 

renewable energy either already enacted or in the planning stages on both national and 

international level. As well as assuming the implementation of the Paris agreement e.g. 

commitments for emissions reduction and keeping a global temperature rise this century well 

below two degrees Celsius. Moreover, MS takes into account existing and planned national and 

regional targets for wind energy development, the cost of wind energy continues to come down 

and governments beginning to respond to essential asks of national energy security and long-

term price stability offered by wind energy. The results predict annual market size reaching 80 

GW annually by 2020 for a total installed capacity of 797 GW. Furthermore, expecting robust 

growth in the period after 2020. By 2030 total installed capacity would reach nearly 1,676 GW. 

By 2050, MS foresees global wind power reaching 3,984 GW (Sawyer et al. 2016). 

 

Figure 1.1 Global wind installations in 2017-2020. 
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1.2 The wake effect 
The rotor of the wind turbine extract energy from the wind. This leads to a deceleration of the 

flow downstream of the wind turbine while the turbulence in the flow increases. As the air 

crosses the rotor, a sudden pressure drop occurs. In the region immediately downstream of the 

rotor, there are non-uniform deficits of pressure and axial velocity, which are associated with 

the axial thrust and to the torque of the turbine (Crespo et al. 1999). The region showing a wind 

speed deficit and an increased turbulence intensity is called the wake of the wind turbine. 

The flow field behind the turbine is characterized by strong wind shear, a high degree of 

turbulence and low wind speed (Magnusson & Smedman 1999). It is observed that the point of 

maximum velocity deficit is below the turbine axis due to the tower shadow, and the point of 

maximum turbulence intensity is above it. This is attributed to the shear velocity (Sanderse 

2009). 

Several other factors define the size and evolution of the wake structure such as wake added 

turbulence, geographical characteristics, turbine specifications e.g. the thrust coefficient of the 

turbine and the structure of the boundary-layer which is greatly depended on the thermal 

stratification (Rados et al. 2009) (Bechmann 2006) (Edokpa & Weli 2017). 

The atmospheric boundary layer is the part of the atmosphere, which is in direct contact with 

the surface of the earth. Most transport processes, e.g. of momentum and heat happen in this 

layer. During day-time, inland, with an upward heat flux from the ground, surface heating 

initiates large thermal motions which cause the stratification to be unstable. At night, the 

cooling of the surface results in the suppression of the turbulent scales. The stratification is said 

to be stable. Under strong winds or time intervals at which point, thermal exchange is absent, 

turbulence is mechanically generated by the wind gradient. The stratification becomes neutral. 

Stability influences the structure of turbulence. Due to cooling and heating of the air, turbulent 

scales experience strong diurnal variations (Bechmann 2006). Since wind turbines operate in 

the lowest part of the atmospheric boundary layer, calculation of the flow around them over 

complex terrain is severely complicated (Sanderse 2009). Atmospheric turbulence is developed 

as a function of surface roughness, atmospheric stability and distance above the ground 

(Barthelmie et al. 2015). 

The rotating wake of the horizontal axis wind turbine is usually divided into two separate 

regions: near wake and far wake (Hashemi-Tari et al. 2014). As the air move downstream, the 

cylindrical shear layer expands, due to the difference in velocity between the air inside and 
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outside the wake (Sanderse 2009).  The pressure increases and the velocity inside the wake 

decrease until ambient pressure is reached. As the length of the expansion region reaches about 

one rotor diameter, turbulent diffusion of momentum becomes the main mechanism. The end 

of the near-wake region is reached at about two to five turbine diameters after the turbulence 

diffusion causes the shear layer thickness to increase until it reaches the wake axis (Crespo et 

al. 1999). The near wake flow field is influenced by the rotor angular velocity and the geometry 

of the blade (Hashemi-Tari et al. 2014). 

As the air flow proceed further downstream in a cylindrical expanding manner, the flow enters 

the far wake region. In the far wake, the velocity deficit gradually decays downstream of the 

turbine, and the wake is fully developed. Consequently, axis-symmetry and thus a self-similar 

wake structure can be assumed (Chacón et al. 1996). The two main mechanism determining 

flow conditions in the far wake are convection i.e. heat transfer due to bulk movement of air 

molecules and turbulent diffusion (Vermeer et al. 2003).  

 

 

1.3 Objective and scope 
For large-scale exploitation of wind energy, wind turbines are put together in clusters or 

windfarm, as a result of geographical restriction, meteorological dependencies, and foremost 

economic constraints. The grouping of turbines in such farms introduces two major issues: a 

wind turbine operating downstream of another will stand in the wake of headwind turbines, 

consequently producing less power. Moreover, the increased turbulence intensity shortens the 

lifetime of the rotors (Cleijne 1993).  It has been shown that wind turbine wakes may account 

for a decrease on average of 10 % to 20 % of the annual power production of large wind farms 

in complex terrain and offshore, resulting in a considerable benefit in improving wake and wind 

farm modelling (Barthelmie et al. 2014). 

The tendency towards ever growing windfarms introduces the necessity of accurate wind flow 

modelling of wind turbine wakes for layout optimization purposes. Furthermore, the impact of 

wind turbine wakes are of critical importance to the wind energy industry because they directly 

impact both the power output and the turbulence level that determines the turbine lifetime.  

Flow in complex terrain displays different characteristics compared to flow over flat and 

homogeneous terrain e.g. offshore wind farms. This is caused by local distortion effects, which 

affects both the flow field and the local turbulence. Moreover, turbine positions located in 
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complex terrain are distributed in irregular patterns with different hub height. The flow is, 

therefore, more difficult to predict than flow over flat terrain since the local distortion effects 

are highly site dependent (Lange et al. 2017). Installing wind turbines in complex terrain 

increases the degree of complexity further due to wake effects, and the power production is 

difficult to correlate to single point wind speed measurements. More research is needed to 

improve the existing wind farm prediction models for use in complex terrain, and such 

improvements require validation through field measurements (Hansen et al. 2016). 

Approaches in estimating the wake losses go from simple theoretical or empirical laws to full 

rotor aerodynamic calculations. The aim of this research is to compare the results of the new 

actuator disc method i.e. numerical wake model based on CFD, originally described by Crasto 

et al. (2012) and further developed and implemented by developed by Simisiroglou et al. 

(2017), against the two most commonly known analytical wake models i.e. the Larsen and 

Jensen wake model and to evaluate the methods against real measurement data from a wind 

farm located in complex terrain. The study is partially a continuation of the work performed by 

Seim et al. (2017), where three kinematic wake models were validated against the same site and 

production data at Nygaardsfjellet. This study will emphasize the implementation of the new 

Actuator Disc Method (ACD) for a specific selection of wake cases. Firstly, on single wake 

cases, secondly, on multiple wake cases. Using a wind farm located in complex terrain, this 

study will evaluate the performance accuracy of wake-terrain effects as well as wake-wake 

interaction present in the multiple wake cases. 
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2 Analytical wake models 
 

 

2.1 The Jensen wake model 
The Jensen (1983) wake model is one of the most commonly used among engineering 

applications due to its simplicity, practicality and robustness. The model presented here is a 

further developed wake model by Katic (1986). It is based on the description of a single wake 

in terms of an initial velocity deficit, and a wake decay coefficient. Distinct characteristic differs 

the Jensen model from most similar wake models. By letting the wind velocity inside the wake 

be constant, the wake velocity profile is described in a very idealized way. Actual characteristics 

of the turbine can be incorporated in the model and average yearly output of a wind farm can 

be estimated if a sufficiently map of the area around the wind farm is available and if the 

frequency distribution of the wind in eight direction sectors is known. The model assumes the 

wake behind the turbine to spread linearly as a function of downwind distance.   

Here the normalized wind velocity deficit, δV =  ୙ಮି୚୙ಮ   , at distance ݔ behind a single wind 

turbine with a thrust coefficient ்ܥ is found by 

                                                       δV = 1−ඥ1−ܶܥቀ1+2݇ܦݔ ቁ2                                                            (2.1) 

 

Where ݇ is the wake expansion coefficient, ܦ the rotor diameter of the wind turbine and ܸ the 

wind velocity in the wake at position ݔ. 

 



7 
 

 

Figure 2.1  The Jensen wake model (Simisiroglou et al. 2018). 

 the downstream distance of the ݔ ,is the rotor diameter, ܷஶ the undisturbed wind velocity ܦ 

wake from the rotor, ܸ the velocity within the wake and ݇ the wake expansion coefficient. 

One of the subcomponents of wake modelling is the wake superposition concept. In order to 

include the effects of all upstream turbine to the total wind deficit i.e. in multiple wake cases, 4 

different approaches are mainly used. These are, geometric sum, linear sum, energy balance 

and quadratic sum (Göçmen et al. 2016). 

 

 

Figure 2.2 Schematic representation of the Jensen wake model (model 1) expansion of one single wind turbine on flat terrain 
in WindSim. 
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2.2 The Larsen wake model 
The Larsen model is based on turbulent boundary equations and a similarity assumption. By 

neglecting different terms in the governing equations, two different versions of the model are 

presented in (Larsen 1988). The wake expands in a non-uniform manner, by differing radially 

in the cross-section of the wake due to the dependency of the radial distance ݎ௫. 

Here we will be using the first order wake model in which the normalized velocity deficit is 

given by the equation 

                          δV = ൫஼೅஺ೣషమ൯భయଽ ቈݎ௫యమ(3ܿଵଶܣ்ܥ௫)ିభమ − ଷହଶగ యభబ ൫3ܿଵଶ൯ିభఱ቉ଶ
                   (2.2) 

 

Were ݎ௫ is the radial distance at a position ݔ downstream of the rotor and ்ܥ is a constant, ܣ is 

the swept area of the turbine and ܿଵ is the Prandtl mixing length. 

 

Figure 2.3 Schematic representation of the Larsen wake model (model 2) expansion of one single wind turbine on flat terrain 
in WindSim. 

 

 

The multiple wake model implemented into WindSim for the analytical models and used in this 

study is based on the sum of squares. When multiple wakes influence the velocity at a position, 

the total normalized velocity deficit ୲ܸ୭୲., is found by  

                                                  δ ௧ܸ௢௧. = ට∑ δ ௝ܸଶ                                                            (2.3) 

 Where δ ௝ܸ is the normalised wind velocity deficit from the j-th wind turbine. 
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3 Numerical wake model based on CFD 
 

 

Computational Fluid Dynamics (CFD) with the increase of computational resources has 

become a typical way to model wind turbines as well as wind turbine wakes. Although CFD 

has numerous advantages e.g. control over inflow conditions, whole flow field data of relevant 

parameters and other, CFD results are sensitive to the knowledge and experience of the CFD 

code user and to numerous computational parameters involved in the computation 

(Simisiroglou, N. et al. 2016). The following section presents the ACD method based on CFD 

and the theory behind. 

 

3.1 One dimensional (1D) momentum theory 
The base for the actuator disc method (ACD) developed and implemented in the CFD code 

PHOENICS (Spalding 1981), is based on the simple model of the one dimensional (1D) 

momentum theory first presented in the work of Rankine (1865) developed for marine 

propellers. A development came in the form of Froud’s blade element momentum theory 

(1878). Betz (1921) provided an approximate correction to momentum “Rankine-Froude 

actuator disk” theory to account for the sudden rotation imparted to the flow by the actuator 

disc. Furthermore, including the maximum possible efficiency of a ground rotor or wind 

turbine. It may be used to estimate the thrust of an ideal wind turbine on the flow, the effects of 

the wind on the flow and the power of an ideal wind turbine (Simisiroglou, N. et al. 2016). 

This linear momentum theory in which the wind turbine is modelled, consist of an actuator disc, 

i.e. with an infinite number of blades. The flow before and after the actuator disc is considered 

to be steady, incompressible, homogeneous, isotropic, asymmetric with constant pressure 

profile, non-turbulent, inviscid and neutrally stable. No rotation of the stream due to the action 

of the wind turbine torque is considered. Also, the thrust is assumed to be uniformly distributed 

over the disc area, and the velocity through the disc is considered to be constant (Göçmen et al. 

2016). 
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Assuming a steady flow and a control volume as shown in Figure 3.1, the conservation of mass ∮ ܃ߩ ∙ ஼௏ ۯ݀  dictates that the mass flow rate, ṁ, is then equal at every cross section in the control 

volume  

                                              ṁ = ଴(ܷܣߩ)  = ஽(ܷܣߩ)  =  ଷ                                                 (3.1)(ܷܣߩ) 

 

Where A is the area of the cross-section, ߩ the density of the air, and U velocities. 

 

Figure 3.1 One dimensional (1 D) momentum theory. 

 

By considering conservation of linear momentum, the thrust ܶ applied on to the wind turbine 

is equal to the opposite of the change of momentum, and is given as: 

                                                      ܶ =  ଴ܷ(ܷܣߩ)଴ −  ଷܷ(ܷܣߩ)ଷ.                                       (3.2) 

By introducing the axial induction factor 

                                                                  ܽ =  ௎బି ௎భ௎భ ,                                                       (3.3) 

and by applying Bernoulli’s equation in the region before and after the disc separately, with the 

assumption that the axial velocity is constant when passing through the disc ( ଵܷ = ଶܷ) and that 

the pressure far upstream is equal to the pressure far downstream ( ଴ܲ = ଷܲ), the expression for 

the wind turbine thrust and power extraction can be found. 

                                                      ܶ =  ଵଶ ஽ܣߩ ଴ܷଶ4ܽ(1 − ܽ),                                                        (3.4) 

                                                      ܲ =  ଵଶ ஽ܣߩ ଴ܷଷ4ܽ(1 − ܽ)ଶ.                                                  (3.5)  
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With the introduction of the thrust and power coefficients, the maximum possible efficiency of 

a ground rotor or wind turbine is given by  

்ܥ                                                = ܦܣ02ܷߩ12் = 4ܽ(1 − ܽ).                                                         (3.6) 

௉ܥ                                                = ௉12ܦܣ02ܷߩ = 4ܽ(1 − ܽ)ଶ.                                                       (3.7) 

The maximum obtainable power extraction from the flow is presented as the Betz limit. The 

maximum power coefficient ܥ௉௠௔௫, thus is 

௉௠௔௫ܥ                                           = 16 27ൗ       with    ܽ =  ଵଷ.                                             (3.8) 

 

3.2 Actuator disc method (ACD) 
The actuator disc method (ACD) is a way to represent the wind turbine’s effect on the wind 

flow in a simulation. For the ACD method presented in Simisiroglou et al. (2017b) the thrust 

force ܶ at each cell of the disc is calculated from 

 

                                               ܶ = ൫்ܥ ଵܷ,௜൯ ଵଶ ߩ ቀ ቁଶ݅ߙ−1݅,1ܷ ௜ܣ                                                       (3.9)  

Where ଵܷ,௜ is the velocity of the flow at i-th cell of the disc, ߙ௜ is the axial induction factor 

calculated for each individual cell of the disc, ܣ௜ is the surface area of the cell facing the 

undisturbed wind flow direction and ்ܥ ( ଵܷ,௜) is a modified thrust coefficient dependent on the 

velocity at the disc ଵܷ,௜ and ρ is the air density. In most cases wind turbine manufacturers offer ்ܥ as a function of ܷஶ, the undistributed wind velocity. This ்ܥ is reasonable for the first wind 

turbine of the row but not for the downstream wind turbines were the flow has been disturbed. 

For downstream turbines, a new thrust curve which is a function of ଵܷ can be established from 

the 1D momentum theory by combining the definition of the trust coefficient ்ܥ and the axial 

induction factor α 

்ܥ                                                         = 1)ߙ4 −  (3.10)                                                               (ߙ

                                                        ଵܷ = (1 −  ஶ                                                              (3.11)ܷ(ߙ
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Hence from Eq. 3.10 and Eq. 3.11 the following is obtained 

                                               ଵܷ = ܷஶ ቂ1 − ଵଶ ቀ1 − ඥ1 −  ቁቃ                                        (3.12)(ஶܷ)்ܥ

The power production is estimated by finding the average induction factor over the disc as     ā = ∑ ܽ௜, and then for each velocity ଵܷ.௜ over the disc an undisturbed wind velocity ܷஶ,௜ is 

found using the following equation:  

                                                            ܷஶ,௜ =  ௎భ,೔ଵିā                                                       (3.13) 

For each undisturbed wind velocity, a power is found using the power curve and then they are 

averaged over the disc. Figure 3.2 shows a representation of the wake expansion of the ACD 

model of one single turbine operating on flat terrain and in free stream conditions.  

 

Figure 3.2 Schematic representation of wind deficit of the ACD model on flat terrain in WindSim. 

 

3.3 Implementation of the new Actuator disc method (ACD)  
In previous work from Crasto et al. (2012), an ACD method is introduced for modelling wake 

effects in the wind farm development software (WindSim 2018), herein referred as the old ACD 

method. More recently, Simisiroglou, N.  et al. (2016) developed a new ACD method, herein 

referred as the new ACD method. The newly developed ACD method was validated against 

three different wind tunnel test cases.   

The main differences between the new  ACD model and the old method, is that the latter utilizes 

a uniform thrust distribution instead of calculating the thrust at each cell. Moreover, the power 

production of the wind turbine is assessed solely from ଵܷ at hub height instead of the entire 

rotor. Allowing the computational demands to stay at a reasonable level, providing a more user-

friendly model for industrial users.  
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4 Materials and methodology 
 

 

4.1 Wind farm site description 
Nygaardsfjellet wind farm is located in the northern part of Norway (68°30’N 17°52’E) right 

south of E10 on Skitdalshøgda, which is about 30 km north-east of Narvik. The wind farm 

consists of 14 wind turbines of type Siemens SWT-2.3-93. The wind farm was established in 

two stages. The first three turbines (T1, T2 and T3) were put into operation in 2006, while stage 

two occurred in 2011 when the remaining 11 turbines were installed. Each turbine has an 

installed capacity of 2.3 MW and hence, the 

wind farm have total installed capacity of 32.2 

MW. All turbines have a hub height of 80 m 

and rotor diameter (D) of 93 m. Average 

annual production of the wind farm is 

estimated to 105 GWh, equivalent to annual 

electricity consumption of about 5200 

Norwegian households. The wind farm layout 

is shown in Figure 4.1. 

The turbines are located in complex terrain 

situated between 380 m and 420 m above sea 

level and within an area of about 1.5 km2. 

Two lakes, which are Lake Nedre and Øvre 

Jernvatnet, partially surrounds the farm in the 

south, and Lake Skitdalsvatnet is located 

inside the wind farm.  They are oriented in the 

north-south direction and can be described as 

three nonparallel rows (as can be seen in 

Figure 4.2), with eastward “in-row” distances 

of more than 3D between the turbines. The 

distances between the turbines in the west-

east direction varies from approximately 4.5D 

to 10D.   

Figure 4.1 Wind farm layout. 

Figure 4.2 Wind farm map (hoydedata.no). 
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Wind measurements recorded from the met mast at the site shows strong, but steady winds with 

an annual mean wind speed of 6,5 m/s at the height of 40 m. The prevailing wind direction at 

the site is from East, as seen in Figure 4.3, accounting for over 50 % of the total wind frequency 

distribution. However, there is also wind flow from the west direction present at the site which 

contributes for about 30 % of the frequency distribution. A seasonal pattern exists with winds 

from the east direction, which is more frequent during the winter season and vice versa. In 

addition, wind speeds are higher during the winter season than in summer season. Furthermore, 

few periods of extreme wind speed are observed at this site. The turbine specifications and 

power curve are presented in Table 4.1 and Figure 4.4 respectively.  

  

Table 4.1 Turbine specifications of operating turbines at 
Nygaardsfjellet. 

  Manufacturer Siemens 
  Product name SWT-2.3-93 

  Blade diameter 93 m 
  Hub height 80 m 
  Nominal Power  2.300 kW 
  Cut-in wind speed  4 m/s 
  Nominal power at 13-14 m/s 
  Cut-out wind speed at 25 m/s 

  

 

 

Figure 4.4 Power curve of turbine Siemens SWT-2.3-93 operating 
under undisturbed conditions. 

 

Figure 4.3 Wind rose with ten-degree bins from the 
met mast for the entire year. 
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4.2 Raw data sorting & filtering  
One-year SCADA data, from 1 January to 31 December 2013, are collected from the 

Nygaardsfjellet wind farm and, used in this analysis. The data comprises production data from 

all the fourteen turbines and the meteorological mast, each data set containing 10 min-average 

data. Data recordings from each turbine include wind direction, wind speed from the two 

anemometers positioned on the turbine hub height and blade pitch, ambient temperature, yaw 

position, air density and power production. Records from the meteorological mast give 

information regarding wind direction, wind speed, and temperature. The wind speed is recorded 

for three different heights (20m, 30 m, and 40m), whereas the direction is recorded at 20 m and 

40 m.  

All the datasets contain some periods with no recordings, possibly due to errors with the 

SCADA recording system.  In order to produce credible results, which are not influenced by 

recording errors and icy conditions, all dataset went through a filtering process. In an earlier 

study performed by Seim et al. (2017) at Nygaardsfjellet, these data sets were filtered using 

Windographer software to remove the invalid data points. Each turbine data went through 

several filtering processes. All recordings with power production < 0 was removed which are 

associated with data points where the turbine is at standstill. Furthermore, manual removal of 

data points that deviate largely from the power curve was performed.  Meteorological data was 

filtered by removing data points where the anemometer recorded less than 0.4 m/s (NULL-

value) for four consecutive recordings. It should be mentioned, that due to a problem with the 

anemometers at both 20 m and 30 m in the meteorological mast, only wind data recorded at 40 

m was used in the present work.  

 

4.3 Wake influence study 
In selection of wind turbine wake cases, a significant complication in retrieving non- affected 

meteorological data occur due to the location of the met mast. The met mast is located within 

the wind farm, causing the recorded data to be wake influenced by surrounding turbines. Based 

on the wind farm layout (see Figure 4.1) it is highly likely that the met mast is wake influenced 

by turbine 11 (T11) for easterly winds. Similarly, for westerly wind condition, wake influence 

caused by turbine 7 (T7) is plausible.  

In order to select wake cases with highest quality of the measurement data i.e. minimal wake 

influence, a wake influence study is performed. Using the kinematic wake model presented by 
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Larsen (1988), implemented in the CFD software WindSim, wake expansion is modelled. Initial 

conditions and settings of the simulations are presented in Table 4.2. The analytical wake model 

was selected for this sub-study based on it’s the simplicity of use and low computational 

demands. 

Table 4.2 Simulation parameters and initial conditions for the wake influence study. 

Original grid resolution  40 x 40 km 
Total number of cells 1 496 040 
Sector run 24 
Convergence criteria 0.005 
Number of iterations sector 90° (E) 367 
Number of iterations sector 270° (W) 368 
Height of boundary layer height  500 m 
Air density  1.225 kg/m3 
Turbulence model  Standard K-epsilon 
CFD solver GCV 

 

 

 

Figure 4.5 Horizontal grid showing the refinement area. 

 

Figure 4.5 display the grid resolution at ground level of the actual grid. Body fitted coordinates 

(BFC) are used in the grid generation. The refinement allows for a greater accuracy in 

computation over the wind farm area.  
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Results from the simulations show that wake cases with easterly winds would lead to non-

credible results. The wake created by T11 positioned less than one rotor diameter (1D) upwind 

from the met mast, expand directly into the met mast location. As can be observed from Figure 

4.6 the met mast, represented as a grey cone, is located in the epicenter of the wake expansion 

of T11. The region of maximum wake influence results in a wind speed deficit of 1.58 m/s.  

The simulation results for westerly winds (270 degrees), shows that wake influence on the met 

mast is significantly reduced compared to easterly winds, as shown in Figure 4.7. A wind deficit 

of 0.7 m/s at met mast location is estimated. Moreover, for North-West wind direction (280 

degrees or more), wake influence is nearly absent. Based on this knowledge, exclusively wake 

cases with westerly winds is selected for this study. A schematic representation of the wake 

expansion of the Larsen and Jensen model for inflow wind direction of 285° is available in 

Appendix A.  

 

Figure 4.6 Wake development over wind farm with easterly wind direction of 90 degrees, with met mast location. 

 

Figure 4.7 Wake development over wind farm with westerly wind direction of 270 degrees, with met mast location. 
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4.4 Case study set-up 
As mentioned in Section 4.2, records from the wind turbines’ SCADA system are available for 

10 minutes periods. The power production of each wind turbine per inflow direction and 

undisturbed wind speed is thus available. Due to data availability limitations, the power 

production data are binned based on inflow directions and wind velocity measurements. The 

directional bins are ±2.5° wide and the velocity bins are ±0.5 m/s wide. 

Based on the quantity of the SCADA measurement and wind farm layout the wake cases 

selected for this study are presented as follow:  

(i) Five pairs of wind turbines aligned in eastward direction are used for single wake 

cases, with turbine 4 (T4), turbine 1 (T1), turbine 2 (T2), turbine 3 (T3) and turbine 

9 (T9) operate in free stream wind conditions and are referred as the upwind turbine 

in each respective single wake cases. Turbine 14 (T14), turbine 5 (T5), turbine 6 

(T6), turbine 7 (T7) and turbine 10 (T10) are the turbines operating in wake 

influenced conditions, characterized by region experiencing wind speed deficit and 

increased turbulence caused by the upwind turbine in each respective case. Figure 

4.8 and Table 4.3 show the inflow angle for each single wake cases. 

 

 

Figure 4.8 Single wake cases and inflow directions. 
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Table 4.3 Single wake cases with inflow wind speed above boundary layer height. 

 Upwind turbine Turbine in wake Inflow direction Inflow wind speed 

Case #1 T4 T14 274.2° 10 m/s 
Case #2 T1 T5 271.23° 10 m/s 
Case #3 T2 T6 279.33° 10 m/s 
Case #4 T3 T7 285.3° 10 m/s 
Case #5 T9 T10 275.16° 10 m/s 

 

(ii) Two groups of three turbines, aligned in eastward direction are selected for the 

multiple wake case study. Turbine 1 (T1) and turbine 2 (T2) operates in free stream 

conditions. Turbine 5 (T5) and turbine 6 (T6) operates in the wake of T1 and T2 

respectively. Turbine 13 (T13) and turbine T12 (12) operate under multiple wake 

conditions affected by the turbines positioned upstream as represented in Figure 4.9 

and Table 4.4. 

 

Figure 4.9 Multiple wake cases and inflow directions. 

Table 4.4 Multiple wake cases with inflow wind speed above boundary layer height. 

 Upwind turbine Turbine in wake Inflow direction Inflow wind speed 

Case #6 T1 T5, T13 273.64° 10 m/s 

Case #7 T2 T6, T12 276.17° 10 m/s 
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4.5 Computational technique 
The simulations are performed in the commercial software WindSim version 9.0.0. This 

software uses the general purpose CFD code PHOENICS developed by CHAM Ltd. 

(Concentration Heat and Momentum Limited) commercially available since 1981 (Spalding 

1981) to solve the Reynolds Averaged Navier-Stokes (RANS) equations in an iterative way.  

To obtain the RANS equations, the unsteady turbulent flow field is averaged. This result in a 

set of flow equations that may have steady solutions (Wackers & Koren 2007). The flow 

variable solved are namely pressure, three velocity components, turbulent kinetic energy and 

turbulent dissipation rate. Different turbulent closures are available in WindSim and they are 

(i) standard ݇ − ݇ modified (ii) ,ߝ − ݇ (iii) ,ߝ − ݇ with YAP correction, (iv) RNG ߝ −  and (v) ߝ

the ݇ − ߱ wilcox turbulence model. In this thesis, the default setting in WindSim, standard ݇   .turbulence model is used ߝ−

 

4.5.1 Digital terrain model 

WindSim software is a module-based software. First, the terrain and roughness data are used as 

input. The original file i.e. “.gws grid file”, contains data from a 40 km by 40 km area with a 

20.3 m grid resolution. For each single wake cases and multiple wake cases, the grid file is 

rotated in an anti-clockwise manner equivalent to the angle difference between the aligned 

turbines and west direction i.e. 270°, as can be seen in Table 4.5. Thus, all wake cases will 

represent a grid with two parallel west-east aligned turbines. For example, for single wake case 

T4-T14 (turbine 14 in wake of turbine 4) anti-clockwise rotation of 4.2° is performed, resulting 

in a digital terrain model where the two turbines are aligned at the exact direction of 270°. An 

extension of the digital terrain model is thereafter performed in order to reduce the number of 

cells and the computational efforts. The model is cropped into a 10 km by 8 km grid.  

Table 4.5 Grid rotation for both single and multiple wake cases. 

 Inflow angle         
(original grid) 

Grid rotation            
(anti-clockwise) 

Inflow angle          
(Digital terrain model) 

Single wake cases    
Case #1 274.2° 4.2° 270° 
Case #2 271.23° 1.23° 270° 
Case #3 279.33° 9.33° 270° 
Case #4 285.3° 15.3° 270° 
Case #5 275.16 5.16° 270° 
Multiple wake cases    
Case #6 273.64° 3.64° 270° 
Case #7 276.17° 6.17° 270° 
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Table 4.6 Terrain extension parameter for all wake cases for both the numerical and analytical model set-up. 

 X-range (m) Y-range (m) Terrain extension 
Single wake cases    
Case #1 17000-27000 19000-27000 10 x 8 km 
Case #2  15000-25000 17000-24000 10 x 8 km 
Case #3  20500-30500 22000-30000 10 x 8 km 
Case #4  24000-34000 25000-33000 10 x 8 km 
Case #5  17500-27500 19000-27000 10 x 8 km 
Multiple wake cases    
Case #6  17000-27000 18000-26000 10 x 8 km 
Case #7  18000-28000 20000-28000 10 x 8 km 

 
 

 

Figure 4.10 Terrain elevation (m) (left) and roughness (m) (right). 

The terrain extension and range of each local grid are presented in Table 4.6 for all wake cases. 

The digital terrain model established for Case #1, containing elevation and roughness data for 

the area is given is presented in Figure 4.10 and Figure 4.11. The complexity at the site depends 

on the changes in elevation and roughness. Elevation complexity can be visualized by the 

inclination angles which is a derived quantity expressing the first order derivatives of the 

elevation. 
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Figure 4.11 Terrain inclination (deg) (left) and logarithmic roughness (m) (right). 

 

4.5.2 Grid independence evaluation 

Dimensions of the computational domain established, is selected with basis in grid sensitivity 

study performed on the actuator disc by Crasto et al. (2012). A grid resolution with negligible 

discretization errors was achieved with a spacing of D/16௧௛ (where D is the rotor diameter of 

the wind turbine). This is, the default setting in WindSim for the actuator disc refinement type. 

Moreover, the grid sensitivity study performed by Seim et al. (2017) on Nygaardsfjellet, 

concluded a grid independent solution achieved at 1.3 million cells. In this study, a grid 

independent solution is therefore assumed with high degree of confidence for simulation 

performed with resolution of D/16௧௛ and total number of cells exceeding 1.3 million. 

 

4.5.3 Implementation of the porous discs  

By means of simple trigonometry and mathematics, new turbine coordinates corresponding to 

their original position was successfully retrieved for the rotated grid.   

In accordance with the rule of procedure for the actuator disc, the two turbines are introduced 

in the module referred as the “object module” creating the porous discs i.e. “.bws blocking file”, 

representing the turbines. The object module holds the turbine specifications i.e. turbine 

coordinate, hub height, rotor diameter and the power curve introduced as the “.pws file” 

(Siemens_23_93SV.pws).  

A refinement of the grid is defined for the domain containing the actuator discs, while outside 

the equidistant region the resolution expands. The terrain data is also smoothened in order to 
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reduce the risk of divergence in the wind field simulation. The equidistant region is 

automatically defined by the software after the wind turbine locations are selected. In this study 

grid resolution of D/16௧௛ is achieved in the equidistant region in both the vertical and horizontal 

directions. The grid resolution at turbine position for northward and eastward direction is either 

5.7 m or 5.8 m and increases with increased distance from the turbine location as shown in 

Table 4.7. 

The refinement file created in the numerical simulation is then applied to the analytical 

simulation by introducing the “.bws blocking file” created for each numerical wake case 

simulation. 

Table 4.7 Grid spacing and total number of cells of all wake cases 

 Grid spacing (m) Total number of cells 
(grid resolution)  Eastward  Northward  

Single wake cases:    
Case #1 5.8 – 179.2 5.8 – 160.5 1 995 432 
Case #2 5.8 - 174.1 5.7 - 163.0 1 381 955 
Case #3 5.8 – 173.8 5.8 – 160.1 1 473 150 
Case #4 5.8 – 181.4 5.8 – 167.3 1 381 955 
Case #5 5.7 – 181.0 5.7 – 157.4 1 669 570 
Multiple wake cases:    
Case #6 5.8 – 167.9 5.7 – 168.2 2 255 292 
Case #7 5.7 – 180.6 5.7 – 155.9  2 280 729 

 

Elevation and roughness data defined in the previous step is used to define the ground level of 

a three-dimensional domain divided into cells with a variable horizontal and vertical resolution. 

The grid is generated and optimized from the digital terrain model, as seen in Figure 4.12. 

 

Figure 4.12 Three-dimensional grid resolution (left) and schematic view of the vertical grid resolution (right) 
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 The grid extends   6346 m above the point in the terrain with the highest elevation. The grid is 

refined towards the ground. The left and right columns in Table 4.8 present the distribution at 

the position with maximum and minimum elevation respectively. The nodes, where results from 

the simulations are available, are situated in the cell centers indicated by dots. 

Table 4.8 Distribution of the first 10 nodes in z-direction, relative to the ground, at the position with maximum and minimum 
elevation 

 1 2 3 4 5 6 7 8 9 10 
z-dist. max (m) 2.8 8.4 14.0 19.5 25.1 30.7 36.4 42.2 48.0 53.8 
z-dist. min (m) 2.8 8.4 14.0 19.5 25.1 30.7 36.4 42.2 48.0 53.8 

 

 

4.5.4 Simulations  

A numerical wind database, which is used to transfer the wind conditions from the measurement 

point to the wind turbine hub positions, is established by CFD simulations. This section 

describes how the numerical model is set up, simulated and validated. 

The lower representation in 

Figure 4.13 represents the 

simulation of the ACD method. 

Where, ܷ஻௅  stand for wind speed 

above the boundary layer height 

and ܷ௠௘௧ ௠௔௦௧ is the wind speed at 

met mast position at 40 m height. 

The numerical simulation (ACD 

method), uses wind speed above 

boundary layer as input value for 

wind fields calculation, contrary to 

the analytical model which uses ܷ௠௘௧ ௠௔௦௧. Since the turbines are 

introduced as porous discs into the 

wind field calculations, wind speed 

deficit caused by wake effects are 

directly integrated into the simulations. Whereas, the analytical model only introduce the 

turbines after the CFD simulations. Therefore, the met mast is not influenced by the turbine’s 

wake as shown in the upper schematic of Figure 4.13. In order to recreate the same initial 

Figure 4.13 Schematic representation of the analytical simulations (over) and 
numerical simulations (under). 
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conditions between the numerical and analytical simulations, calibration of the model is 

necessary. Vertical profile from the met mast is extracted from the analytical model i.e. not 

wake influenced. By means of linear interpolation, wind speed at 40 m is calculated. The 

meteorological data introduced as the “climatology file” (.wws file) is adjusted to the wind 

speed at 40 m previously found. As a result, input value for the numerical model ( ܷ஻௅) is equal 

to the input value of the analytical model (ܷ௠௘௧ ௠௔௦௧). For all single (Case #1, #2, #3, #4 and 

#5) and multiple wake cases (Case #6 and #7), calibration of the models is performed. The 

simulations are therefore executed in following order 

(i) The numerical model is run for all wake cases. 

(ii) Wind speed at met mast location at 40 m height is extracted and implemented in the 

analytical model for all wake cases. 

(iii) The analytical model is run for all wake cases. 

 

The power production for the numerical model is manually extracted from the WindSim code. 

Power production for the analytical model is calculated in the “energy” module.  

 

Table 4.9 wind speed value at met mast locations for input value 10 m/s above boundary layer height. 

 Wind speed at met mast location, 40 m height 

Single wake cases  
Case #1 8.024 m/s 
Case #2 7.566 m/s 
Case #3 8.139 m/s 
Case #4  7.485 m/s 
Case #5  7.921 m/s 
Multiple wake cases  
Case #6  8,021 m/s 
Case #7 8,156 m/s 

 

Table 4.9 shows the wind speed extracted for all wake cases in the numerical simulations at met 

mast location and 40 m height, using input value of 10 m/s above boundary layer height. 
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The convergence of the wind field simulations is evaluated by inspection of the spot and 

residual values for the velocity components (U1, V1, W1), the turbulent kinetic energy (KE) 

and its dissipation rate (EP). The convergence criteria are set as default value of 0.005. When 

the residual value of the iterations falls below 0.005, the solution is said to be converged and is 

displayed with a (C). In case of divergence, a (D) is displayed. For all wake cases, convergence 

criteria have been reached as shown in Table 4.10. The residual and spot values for the 

numerical simulations of case #1 is presented in Figure 4.14. For the remaining plot, refer to 

Appendix C and Appendix D.  

 

Figure 4.14 Residuals (left) and spot values (right) for the numerical simulations of case #1, sector 270. 

Table 4.10 Number of iterations for sector 270 and convergence status, where C, stands for reached convergence criteria. 

 Actuator disc Analytical 
Single wake cases sector Simulation time  iterations status Simulation time iterations status 
Case #1  270 01:43:60 230 C 01:29:40 230 C 
Case #2  270 01:06:46 201 C 00:57:27 202 C 
Case #3 270 01:09:02 194 C 01:01:22 195 C 
Case #4 270 00:57:12 169 C 00:52:42 169 C 
Case #5 270 01:22:51 202 C 01:08:42 202 C 
Multiple wake 
cases 

       

Case #6 270 02:22:59 253 C 02:08:55 252 C 
Case #7 270 09:27:12 236 C 02:17:58 236 C 

 

 

4.5.5 Case #8 

An additional case (Case #8) is performed in order to evaluate the wind speed deficit at met 

mast location caused by the upwind turbines. Turbines T2 and T6, which are the two turbines 

also operating upwind in Case #4 in addition to the original turbines T3 and T7 are implemented 

into the original numerical model of Case #4. The wind field simulation was restarted before 

extracting wind speed at met mast position as described in chapter 4.5.5. All other initial, 
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boundary and simulation conditions are identical to the previous cases. Case #8 showed wind 

speed of 7.029 m/s at 40 m at met mast location representing wind deficit of 0.456 m/s compared 

to single wake case #4. The schematic representation of case #8 in Figure 4.15, show how the 

wake-terrain and wake-wake effects affect the expansion of the wake implemented in the ACD 

model.   

 

 

Figure 4.15 wake expansion of wake case #8 with met mast position 
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5 Results 
 

 

Results of the comparative analysis is presented in this Chapter. Due to the non-disclosure 

agreement with Nordkraft Vind AS, all results are presented in normalized form. The 

normalization is done by dividing the power production of each wind turbine from the 

simulations with the measured power production of the upwind turbine of each wake cases. The 

reported error bar range is equal to the normalized standard deviation of the measured power 

production of each wind turbine. Normalized power production of all three wake models are 

presented with specified symbol in the figure legend, providing good visualization of the 

performance accuracy of the different methods. 

 

5.1 Calibrated results 
In this section, calibrated results from both single and multiple wake cases, which are wake 

Case #1 to Case #7 are presented, along with the calibrated performance of each wake model. 

The calibration is performed in order to evaluate the accuracy in predicting the wake influence 

performance independent of the mismatch in power production for free stream conditions 

(upstream turbine). Calibration is done by setting production value of the upstream turbine from 

the wake model, equal to the power production data of that same turbine. As the wind speed 

ratio upstream and downstream a wind turbine is expected to be constant for minor changes in 

inflow wind speeds. The wake loss percentage for the calibrated results is set equal to the wake 

losses originally calculated.  Figure 5.1 to Figure 5.5 presents the calibrated results from the 

five single wake cases. Figure 5.6 and Figure 5.7 presents the calibrated results from the two 

multiple wake cases. Table 5.1 to Table 5.3 presents, in percentage, (i) the wake losses 

calculated from the production data (ii) the wake losses estimated in the analytical and 

numerical wake models, for the single wake cases. Table 5.4 and Table 5.5 present the wake 

losses for the multiple wake models.  
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Figure 5.2 Calibrated results of single wake case #2. 

      

Table 5.1 Wake losses values from production data and wake models for single wake case #1 (left) and single wake case #2 
(right). 

 

 

Table 5.2 Wake losses values from production data and wake models for single wake case #3 (left) and single wake case #4 
(right). 
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Figure 5.1 Calibrated results of single wake case #1. 
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Figure 5.3 Calibrated results of single wake case #3. Figure 5.4 Calibrated results of single wake case #4. 
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Figure 5.5 Calibrated results of single wake case #5. 

 

Table 5.3 Wake losses values from production data and wake models for single wake case #5. 

 Wake loss % 
Production data 46.88 % 
Jensen 52.60 % 
Larsen 25.44% 
ACD 42.41 % 
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Figure 5.6 Calibrated results of multiple wake model #6. 

 

Table 5.4 Wake losses values from production data and wake models for multiple wake case #6. 

 Wake loss first turbine % Wake loss second turbine % 
Production data 55.01 % 33.74 % 
Jensen 73.70 % 54.23 % 
Larsen 42.41 % 22.20 % 
ACD 58.89 % 32.95 % 

 

 
Figure 5.7 Calibrated results of multiple wake model #7. 

 

Table 5.5 Wake losses values from production data and wake models for multiple wake case #7. 

 Wake loss first turbine % Wake loss second turbine % 
Production data 52.76 % 24.18 % 
Jensen 71.70 % 65.19 % 
Larsen 42.87 % 37.75 % 
ACD 57.48 % 46.14 % 
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5.2  Uncalibrated results 
Figure 5.8 to Figure 5.12 presents the results from the five single wake cases. Table 5.6 to Table 

5.8 presents the value of normalized power production from measurement data, the two 

analytical wake models and the numerical model (ACD model) for the single wakes. 

Normalized power production of the production data from the upstream turbine (left) is 

displayed as a black dot equal to 1.0 for each case. For the wake influenced turbine (right) i.e. 

downstream turbine, production data show decrease in the power production as expected. 

        

                                                                                                       

 
Table 5.6  Normalized power production values for single wake case #1 (left) case #2 (right). 

 

 Upwind 
Turbine 

Turbine in 
wake 

Production data 1.00 0.39 
Jensen 0.82 0.20 
Larsen 0.82 0.41 
ACD 0.85 0.27 

 Upwind 
Turbine 

Turbine in 
wake 

Production data 1.00 0.89 
Jensen 0.69 0.45 
Larsen 0.69 0.62 
ACD 0.70 0.52 

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

No
rm

al
ize

d 
po

w
er

T4                    T14
Production data Jensen Larsen ACD

Figure 5.8 Single wake case #1. 
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Figure 5.9 Single wake case #2. 
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Table 5.7 Normalized power production values for single wake case #3 (left) case #4 (right). 

 
 

 

 

 

 

 

 

 
Table 5.8 Normalized power production values for single wake case #5. 
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 Upwind 
Turbine 

Turbine in 
wake 

Production data 1.00 0.76 
Jensen 0.79 0.22 
Larsen 0.79 0.40 
ACD 0.79 0.35 

 Upwind 
Turbine 

Turbine in 
wake 

Production data 1.00 0.73 
Jensen 0.78 0.20 
Larsen 0.78 0.37 
ACD 0.79 0.26 

 Upwind 
Turbine 

Turbine in 
wake 

Production data 1.00 0.53 
Jensen 0.82 0.39 
Larsen 0.82 0.61 
ACD 0.82 0.47 
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Figure 5.11  Single wake case #4. Figure 5.10 Single wake case #3. 
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Figure 5.12 Single wake case #5. 
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Figure 5.13 and Figure 5.14 presents the results of the two multiple wake cases. Upstream 

turbines are represented by T1 and T2, second turbine influenced by the single upstream turbine 

are T5 and T6. The third turbine, which is wake influenced by the wake interaction of the two 

upstream turbines are T13 and T12 for Case #6 and Case #7 respectively. Table 5.9 and Table 

5.10 presents the value of normalized power production from measurement data, the two 

analytical wake models and the numerical model (ACD model) for the multiple wake cases.    

 

 
Figure 5.13 Multiple wake case #6. 

Table 5.9 Normalized power production values for multiple wake case #6. 

Case #1 T1 T5 
T13 

Upwind 
Turbine 

Turbine in single 
wake 

Turbine in multiple 
wake 

Production data 1.00 0.45 0.66 
Jensen 0.79 0.21 0.36 
Larsen 0.79 0.45 0.61 
ACD 0.82 0.33 0.55 
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Figure 5.14 Multiple wake case #7. 

Table 5.10 Normalized power values for multiple wake case #7. 

Case #1 T1 T5 
T13 

Upwind 
Turbine 

Turbine in single 
wake 

Turbine in multiple 
wake 

Production data 1.00 0.47 0.76 
Jensen 0.66 0.19 0.23 
Larsen 0.66 0.38 0.41 
ACD 0.66 0.28 0.35 
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6 Discussion 
 

 

The aim of this study was to provide a comprehensive analysis of analytical and numerical 

wake models using a large set of production data from a wind farm located in complex terrain. 

A set of test cases were performed to test the accuracy of the wake models and to evaluate their 

performance in reproducing wake-terrain and wake-wake effects. Large differences in the wake 

model’s estimation of the energy loss in the wake was found. 

From the results section presented in Chapter 5 without the correction, both the analytical and 

numerical wake models underestimated the power production for all single wake cases, in the 

range of 0.15 to 0.30 (expressed as normalized power production) for the upwind turbine 

operating in free stream conditions. For multiple wake cases, the models underestimated the 

energy production within a range of 0.18 to 0.34. The Jensen and Larsen model predicted exact 

same power production for all upwind turbines in both single and multiple wake cases. 

However, the ACD model differed minimally from the analytical models in a range of 0.1 to 

0.3 for three of the single wake cases and one multiple case. The ACD modelled exact same 

value as the analytical models for the remaining three cases. Both the analytical and numerical 

wake models have previously proven to predict accurate results (Gaumond et al. 2012), 

especially for single turbine operating in free stream conditions. It is therefore highly unlikely 

that these results are caused by incorrect models and simulations. Several factors can explain 

the observed deviation:  

(i) Wake influence on the meteorological mast: 

 Results from the wake influence study, support the hypothesis that measurement data recorded 

from the meteorological mast contains affected values caused by wake effects of surrounding 

turbines. The study provided good understanding of the flow fields within the windfarm 

enabling to select the most suitable cases. However, regarding the selected wake cases, turbine 

pairs with the most westerly wind direction (closest to 270°) exert highest wake influence on 

the meteorological mast. The higher the inflow wind direction (angle) difference from direct 

west, the lower the wake influence on the met mast. For single wake cases, cases with highest 

to lowest wake influence are expected to be as follow: Case #2 with a deviation of 1.23°, Case 

#1, Case #5, Case #3 and finally case #4 with a deviation of 4.72°, 5.16°, 9.33° and 15.3° 
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respectively. However, results from the power production deficit do not correlate with direction 

deviation, meaning that wake influence only partially explains the production gap between the 

wake models and the measurement data. Results from Case #8 performed to evaluate the wake 

influence on one specific case (case #4) showed a wind speed of 7.029 m/s at met mast location 

(40 m height), resulting in wind speed deficit of 0.456 m/s compared to the original case #4, 

which was simulated analytically i.e. not including wake effects.   

Former validation study performed on Nygaardsfjellet support the conclusion of wake influence 

of the meteorological SCADA data drawn in this study. In the work of (Seim et al. 2017), high 

value of standard deviation from the production data with easterly wind direction correlates 

well with the wake influence effects. In the work of (Jiayi 2017), the analytical wake model 

underestimated significantly the energy production compared to the real measurement.  

(ii) Quality of SCADA data: 

 Quality of the measurement data complicated considerably filtration and validation of the 

model. The aim of this study was to recreate very specific wake cases under narrow specific 

conditions. Therefore, high quality of the measurement data in the extracted segment is 

necessary. Uncertainty in the measurements, as is the nature of field data, complicated the 

validation due to the fact of nature which is not at steady state contrary to the simulations. 

Results from the single and multiple wake cases showed that cases with highest quality of 

SCADA data i.e. shortest range-bar representing standard deviations, provides the best 

prediction of power production. For single wake cases, Case #2 provided the most accurate 

results with a standard deviation of 0.286 m/s for upwind turbine and 0.110 m/s for the turbine 

in wake. For multiple wake cases, Case #6 predicted best results with standard deviation of 

0.302 m/s for upwind turbine, 0.146 m/s for first turbine in wake and 0.193 m/s for second 

turbine. The high values of standard deviations support the conclusion of poor quality of the 

measurement data. The evaluated cases analyze the power production of the turbines in one 

single wind direction with velocity bin of 1m/s. Therefore, the interval of power production is 

expected to stay at a minimum. Theoretically, by using the power curve of the operating 

turbines at Nygaardsfjellet wind farm, the expected standard deviation can be calculated. At 

wind speed of 8m/s ± 0.5m/s, the power production data range within the interval of 0.83-1.217, 

where 1.0 is the normalized power production of 941 kW at 8m/s. Turbine 5 (T5) and turbine 

13 (T3), are the only two turbines providing measurements data to fall within this range. It 

should be mentioned that due to selection of sector bins, production data of high quality would 
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still exceed these values, nonetheless minimally. Moreover, manufacturer’s power curve does 

not realistically represent the operation parameters as they are affected by local conditions.  

(iii) General issues regarding complex terrain: 

Former validation studies also mentioned the difficulty in the verification of flow model in 

complex terrain. In the study of Barthelmie et al. (2011), several influencing factors are 

mentioned. These factors include difficulty due to interpretation of terrain effect, irregular 

location of wind turbines, short data period and poor data quality. The fact that wind farm 

developer at any time strive to avoid wake effects, wind turbines are positioned in such a manner 

that prevailing wind directions avert turbine rows. Therefore, when filtrating measurement data 

for two or more aligned wind turbine pairs from most wind farms, short available period of data 

is highly likely.     

The calibrated results provide an overview of the performance accuracy between the different 

wake models for the wake influenced turbine in each wake cases. The actuator disc approach 

provided good agreement with the measurements of highest quality. For all wake cases, the 

Larsen model predicted the highest energy production. The second analytical wake model, 

Jensen model, predicted lowest energy production in all cases i.e. overestimating most the wake 

losses. While the numerical wake model (ACD method) predicted power production, ranging 

between the production of the two analytical models. The same pattern was observed for the 

multiple wake cases. In single wake Case #1, the Larsen model predicted the most accurately 

with wake loss of 10.65% compared to 10.56% for the production data. The ACD model 

performed best in two of the single wake cases with wake loss of 68.62% for Case # 2 and 

42.41% for Case #5 compared to 61.45% and 46.88% of the production data respectively. For 

the last two single wake cases, all wake models underestimated the energy production, Larsen 

model being the least far off with wake loss prediction difference of nearly 25% for both Case 

#4 and Case #5. (Gaumond et al. 2012) found the Larsen model to underestimating the power 

deficit in single-wake cases at both Horns Rev- and Lillgrund wind farm. In the study of 

Duckworth & Barthelmie (2008), using measurement data from two onshore wind farms, both 

the Larsen- and Jensen model showed varying performance. The ACD method is more 

computationally demanding than the analytical simulations and is expected to treat wake-wake 

and wake-terrain effects with more precision. Wind tunnel tests have shown that the ACD 

method proves accurate results for far-wake conditions (Kalvig et al. 2012). In the 

implementation of the new ACD method performed by Simisiroglou et al. (2017) in wind tunnel 

experiment, the results showed satisfactory agreement between the simulations and the 
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measurements for set-up with both one single turbine and with two in-line wind turbines. 

Considering the simplicity and computational needs of the method.  In the recent work of 

Simisiroglou et al. (2018) on Lillgrund wind farm, the new ACD method and Larsen model 

outperformed the other wake models. 

The ACD method performed best in multiple wake Case #6 with wake loss of 58.89% for T5 

and 32.95% for T13 compared to 55.01% and 33.74% for the production data respectively. 

Resulting in prediction accuracy of 93% for T5 and 98% for T13. For the last multiple wake 

Case #7, the ACD performed best for T6 with wake loss of 57.48% against 52.76% in 

measurements data. For T12, all wake model overestimated the wake losses, Larsen being the 

least far off with wake loss of 36.75% compared to 24.18% of the production data. Moreover, 

an increase in production is observed for the second turbine in wake (T12 and T13) for both 

multiple wake models. This phenomenon can be explained from the terrain effects as presented 

in Appendix D. T12 and T13 are located on the east side of lake Skitdalsvatnet creating a speed 

up effect right before reaching the turbines location, under westerly wind direction as used in 

this study. Resulting in a higher energy production compared to the turbine operating 

downstream of the first turbine in each case.   

Looking at the distances between each turbine pairs a pattern in the wake prediction can be 

observed. T4 and T14 from Case #1 are the two turbines separated with the highest distance, 

equivalent to 9.97D, D being the rotor diameter. Correlating well with the fact that Case #1 

causes the lowest wake losses on the downstream turbine. The turbines in Case #2, Case #3 and 

Case #4 are separated by approximately same distances (4.5D, 5.31D and 4.48D respectively). 

All three wake models predicted relative identical wake loss between each case. In all three 

cases, the Jensen model predicted wake loss of 72% to 75%, The Larsen model 48% to 52% 

and finally the ACD predicting wake loss of 56% to 68%. On the other hand, measurement 

from the production data does not provide the same picture. Wake losses in Case #2 represent 

over 61% against 27% and 24% for Case #3 and Case #4 respectively. From this analysis, the 

gap in wake losses provided by the measurement data in these three observed cases again put 

into question the reliability and quality of the data.  

Comparing the results from the wake influence study against wake Case #8, the difference in 

interpreting the terrain effects between the analytical and numerical model is shown. The Larsen 

model used in the wake influence study disregard on a much higher level the terrain effects, 

causing the wake to expand independently from the ground. Whereas, the ACD method which 
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directly implements the turbines in the wind field simulations, enables the model to include the 

interactions of wake and terrain effects as shown in Figure 4.15. 

It should be mentioned that several aspects has not been taking into consideration throughout 

this study and that the limitations set could have a significant impact on the findings. The 

restricting factors runs as follow:  

(i) CFD simulations. 

Complex terrain has always been a challenge for the wind energy industry. CFD models, plays 

a key role as they should be capable of accurately describing the wind field over complex 

terrain. The new ACD method provides an improvement regarding the computational demand 

decreasing the need for computer capacity. But it still needs adequate amount of data and 

knowledge regarding the input parameters. CFD modelling requires a lot of expertise and 

experience.  

(ii) Manufacturer’s power curve is used. 

As previously mentioned the power curve at local conditions are affected by environmental 

conditions, e.g. air temperature, turbulence intensity or air density. In reality, the turbines 

operate in a range of power curves.   

(iii) Directional selection of wake cases. 

For single wake cases, the study only exanimates cases where the wind direction is in-line to 

the row of the wind turbine. For multiple wake cases, the study only examines cases where the 

wind direction is in-line with the first and third turbine. Resulting in a misalignment of the 

centered turbine.   

(iv) Only the ݇ −  .turbulence model is used ߝ

The CFD model assumes a neutral stratification of the atmosphere, a non-realistic assumption 

in many cases, especially in complex terrain conditions. As mentioned in the introduction it 

must be expected that the stratification is at stable state conditions during the winter season. 

Resulting in varying wake losses between the seasons. 

(v) The directional uncertainty as presented by (Gaumond et al. 2013) has not been 

considered.  

(vi) The data has not been filtered for stability. 

(vii) Yaw misalignment errors are only corrected for T6. 
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7 Conclusions & future work  
 

 

Significant differences in the prediction capabilities of the numerical and analytical wake 

models were found. Overall, findings showed that the ACD and Larsen model outperformed 

the Jensen model for most single wake cases. In some cases, all three wake models showed a 

tendency to overestimate the wake losses. Results presented in the work of (Seim et al. 2017), 

concluded likewise, the Larsen model performed better than the Jensen model at 

Nygaardsfjellet. The ACD model outperformed the two analytical wake models for multiple 

wake cases, indicating that the ACD managed to interpret wake-terrain and wake-wake effects 

on a higher level than the kinematic models. For the uncalibrated results, all three wake models 

overpredicted the wake losses. However, due to the lack of quality in the meteorological 

SCADA data discovered during this study, no clear-cut conclusions can be drawn on the which 

model performed best. Findings reveal the importance of meticulously selecting met mast 

locations when developing wind farms, and the impact of wake effects on the data. The study 

shows the necessity of high-quality data for validation purposes and the challenges involved in 

extracting such information. Validation studies in complex terrain should be performed using 

more than one measurement point. (Politis et al. 2011) emphasized the need for “multi-mast 

campaigns” in such terrain, enabling to capture and measure the wind shear and atmospheric 

stability at different heights. Over more, findings reveal the improvement in the new ACD 

model, regarding the computational demands and its simplicity of use.  

Future work would include caring out the proposed method for wind farms, that holds sets of 

high-quality SCADA data. Furthermore, as stability has an impact on wake development it is 

important to explore wind farm cases in which the data has been filtered for stability and to 

evaluate the wake model’s performance using different stability parameter on wind farms 

located in complex terrain.  

In the field of wind industry and energy sector in general, the significance of this study is 

primarily aimed towards wind farm developers, and to which extent, decision making in 

implementing meteorological masts in operating wind farms could affect the course of wake 

model’s improvements, which in turn entails in optimization of wind farm layouts and their 

profitability.   
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Appendix A: Wake influence study 
The figures below provide a good visualization and understanding of the wake development of 

the Larsen (upper) and Jensen (lower) wake model over the wind farm with westerly wind 

direction of 285°. The cone representing the met mast location.  
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Appendix B: CFD simulations of ACD model 
Residuals (left) and spot values (right) for the ACD model of sector 270 for both single and 

multiple wake cases. Starting with Case #1 ending with Case #7. 

 

 

 

 
 

 
 



48 
 

 
 

 
 

 
 

 
 
 
 
 



49 
 

Appendix C: CFD simulations of analytical model 
Residuals (left) and spot values (right) for the analytical wake models of sector 270 for both 

single and multiple wake cases. Starting with Case #1 ending with Case #7. 
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Appendix D: Wind speeds at 80 m height 
Visualization of wake Case #1 and Case #6 performed in WindSim using the ACD and 

analytical models at 80 m height and wind direction of 274.2° and 273.64° respectively. The 

cone represents the turbine locations. Terrain heights are also represented for the two selected 

cases. 
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Appendix E: Wake expansion of the ACD, Jensen and 

Larsen wake model 
Appendix E provides a visual representation of the wake expansion for the ACD model, Jensen 

and Larsen model for single wake case #1 performed in WindSim.  

 

 

 

 

 

 



 

 

 


