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Abstract 

Few studies have used unmanned aerial systems (UASs) in forest inventory, and few studies 

have compared airborne laser scanning (ALS) and UASs. In the present study, a UAS was 

used in a forest inventory. Based on the UAS imagery, three-dimensional (3D) point clouds 

were derived from a combination of structure from motion (SfM) and photogrammetric 

algorithms. Ground control points (GCPs) were used to increase the accuracy of the point 

clouds. Height and density metrics were derived from these point clouds from 33 sample plots 

of 500 m2. These metrics and corresponding field measurements were used to fit linear 

regression models for dominant height (hdom), Lorey’s mean height (hL), volume (V), basal 

area (G) and stem number (N). Two sets of UAS models were created, one set included 

spectral variables while the other did not. A third set of models were fitted using ALS data. 

When comparing the UAS models with and without spectral variables, t-tests revealed that the 

differences were non-significant. This was also the case when the UAS models were 

compared to the ALS models. When compared to the ALS models, the UAS models showed a 

good fit in terms of adjusted R2 (R2
adj) for both hdom and hL (0.77 – 0.90). Good fits were also 

observed for V and G (0.73 – 0.86). With the exception of N, the relative RMSE was kept 

below 19.11% for all UAS models. Development class did not significantly affect the UAS 

models. Tree species composition indicated that the proportion of deciduous species 

significantly affected hL, while the proportion of spruce significantly affected hdom.  

The results indicate that UAS data can be used to produce rather accurate results when used in 

forest inventory. Improvements on the positioning systems on the UAS could potentially 

make GCPs unnecessary in the future. This leads to higher efficiency and less costs, which 

might make UAS a more attractive tool in forestry.     
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Sammendrag 

Få studier har brukt droner i skogtaksering, og få studier har sammenlignet flybåren 

laserscanning (FLS) og droner. I denne undersøkelsen ble en drone brukt til å taksere skog. 

Basert på bildene dronen tok ble tredimensjonale punktskyer dannet med en kombinasjon av 

structure from motion (SfM) og fotogrammetriske algoritmer. Passpunkt ble brukt for å øke 

nøyaktigheten til punktskyene. Høyde- og tetthetsvariabler ble utledet fra punktskyene av 33 

prøveflater på 500 m2. Disse variablene ble sammen med feltmålinger brukt til å lage lineære 

regresjonsmodeller for overhøyde (hdom), middelhøyde (hL), volum (V), grunnflate (G) og 

stammetall (N). To sett med dronemodeller ble laget, hvor et av settene også inneholdt 

fargevariabler. Et tredje sett med modeller ble laget på grunnlag av FLS-dataene. 

Da dronemodellene med og uten fargevariabler ble sammenlignet kom det fram ved t-tester at 

differansene ikke var signifikante. Dette var også tilfellet da dronemodellene ble 

sammenlignet med FLS-modellene. Sammenlignet med FLS-modellene viste dronemodellene 

en god tilpasning ved justert R2 (R2
adj) for både hdom og hL (0.77 – 0.90). Gode tilpasninger ble 

også observert for modellene V og G (0.73 – 0.86). Med unntak av N ble den relative RMSE 

holdt under 19.11% for alle dronemodellene. Hogstklasse hadde ikke noen signifikant effekt 

på dronemodellene. Treslagssammensetning indikerte at andelen lauvtrær hadde en 

signifikant effekt på modellen hL, mens andelen gran hadde en signifikant effekt på hdom. 

Resultatene indikerte at dronebilder kan bli brukt til å produsere nøyaktige resultat ved 

skogtaksering. Forbedringer på posisjoneringssystemene til dronene kan potensielt føre til at 

passpunkt blir unødvendig i fremtiden. Dette fører til større effektivitet og færre kostnader, 

som potensielt kan gjøre bruk av droner mer attraktivt i skogbruket. 
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1 Introduction 

1.1 Background 

In Norway, forest inventories have been ongoing for more than 100 years (Eid et al. 2002). 

The two main types of forest inventories are the national forest inventory (NFI) and the forest 

management inventory (FMI). The former aims to obtain data for country-level reporting and 

policymaking, whereas the latter aims to obtain data on forest resources at a local level for 

management purposes.  

The first NFI in Norway started in 1919 (Anon. 2012). In Norway, this type of forest 

inventory is a sample survey, and important forest parameters (such as timber volume) are 

estimated from the collected data. The methodology has developed over the years. It started 

by sampling along a 10 m wide corridor, and when this proved not to be effective, circular 

sample plots were measured along the corridor (or sampling line) instead. The size of the 

sample plots gradually changed, and currently a sample size of 250 m2 is used (Anon. 2012). 

Approximately 22 000 permanent sample plots are part of the NFI (Anon. 2013), and the 

sample plots are located all over the country. Every year one fifth of the sample plots are 

measured. In 2015, the 11th NFI started. As opposed to the NFI, FMIs are not carried out as 

often. 

The first records of FMIs in Norway date back to the 1870-1880s (Eid et al. 2002), although 

forest inventory programs were uncommon until the 1950s (Næsset 2014). As described by 

Næsset (2014) the early stages of FMIs in Norway were ground-based surveys to all stands of 

interest, identified using aerial photographs. Generally, satellite imagery are considered too 

coarse to retrieve details at a fine scale (Næsset 2001). Thus, for forestry applications, aerial 

photographs have been typically more suitable. Initially, photo interpretation and field 

measurements were the input for the estimation of forest attributes. In the end of the 1970s it 

became more common to use stereo photogrammetry in FMIs, supported by geographical 

information systems (Næsset & Gobakken 2015). This method was used in FMIs in Norway 

for almost 15 years. In the 1990s, wall-to-wall management became popular thanks to state 

subsidies promoting integrated forest inventories between different forest owners (Næsset 

2014). This meant that large areas (i.e. entire municipalities), were inventoried as a whole. 

However, in 1997, digital photogrammetry was introduced to the forestry sector (Næsset 

2014; Næsset & Gobakken 2015). This enabled the automation of image matching as opposed 
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to analogue stereo photogrammetry done with stereo plotters. Airborne laser scanning (ALS) 

was introduced at approximately the same time. The laser scanner (LS) emit short pulses of 

infrared light (Vauhkonen et al. 2014), and these pulses hit objects on the ground before they 

are reflected back to the sensor. The sensor registers the distance between when the pulse is 

emitted and when the return-pulse is registered (Næsset 1997). These distances are then used 

in order to calculate the height of the vegetation or terrain. ALS became a major data source, 

and has been used in FMIs in Norway since 2002 (Næsset & Gobakken 2015). This led to the 

development of the area-based approach (ABA), which uses a combination of ground 

reference and remotely sensed data to predict forest biophysical properties. The ABA is 

defined by a two-stage procedure (Næsset 2002b; White et al. 2013). At first, the ALS data is 

acquired for the study area, resulting in three dimensional (3D) point cloud generation. Field 

measurements are conducted on sample plots, and models are made for the forest biophysical 

properties of interest. The data is clipped, so that the data correspond to the size of the sample 

plots, then metrics are derived and models are developed. In the next stage, grid cells 

corresponding to the size of the field sample plots are laid over the stand boundary map from 

photointerpretation, and ALS metrics are computed for each grid cell. In order to generate the 

forest biophysical properties of interest, the models from the previous stage are applied to the 

entire study area. Once the models have been applied to the whole area, one will have 

estimates for each grid cell that can then be summarized to stand level (White et al. 2013).  

Studies suggest that 3D data from image matching also can be used using the ABA 

(Gobakken et al. 2014; Næsset 2002a). Field data and remotely sensed data provide the 

necessary information to make a forestry plan. These forestry plans include information about 

the forest on the property, and the forest owner can base economic and silvicultural decisions 

on the information found in the forestry plan. Remotely sensed data have been widely used as 

auxiliary information to estimate forest biomass or volume, thanks to the ability to acquire 

continuous data for large areas. However, in some cases, covering small areas might also be 

of interest. This could be the case if one wanted to investigate an area after a storm, areas 

under power lines or areas pre- or post-harvest. Thus, unmanned aerial systems (UASs) could 

be a suitable tool in forestry, and one of the main advantages is that one gathers high-

resolution imagery at the time it is needed.  

UASs have been used in the military for quite some time, i.e. for surveying and warfare, but 

they are relatively new in other disciplines, such as forestry (Puliti et al. 2015). UAS imagery 

can be used in the same way as ALS. Like ALS, the point clouds characterize the canopy 
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structures and will therefore be useful for forest inventory purposes. Differently from ALS, 

which is characterized by the ability to penetrate the tree canopy and thereby enabling an 

accurate representation of the terrain as well as of the vegetation, UAS data will result in a 

model representing only the outer surface of an area (Wallace et al. 2016). However, UAS 

data is characterized by colour information, which can be useful when characterizing 

vegetation structure, such as tree species. UASs are typically optimal to map small areas, 

covering about 1-10 km2 (Puliti et al. 2015; Whitehead et al. 2014). They would be ideal to 

use when upgrading a forestry plan for a forest property, because they are flexible, give a 

detailed survey of a small area and provide results rapidly (Nex & Remondino 2014). 

A UAS is usually composed of a ground control system (GCS) and an unmanned aerial 

vehicle (UAV) (Watts et al. 2012). The GCS can be either stationary or transportable and 

consists of both software and hardware that are necessary to control the UAV (Colomina & 

Molina 2014). There are different types of UAVs, and the most common distinction between 

them is fixed wing, rotary wing or multirotor. They come in many different sizes, and there 

are many ways to classify them, often based on weight, flight endurance and altitude (Watts et 

al. 2012). Autopilot programs are common, although the UAV can be remotely operated if 

necessary. Typically, it also includes a receiver for a global navigational satellite system 

(GNSS) and an inertial measurement unit (IMU) (Dandois & Ellis 2010). Important factors to 

consider when choosing a sensor is the size and weight of it, because it will affect the UAV’s 

performance. A result of this is that if the UAV is small, so is the sensor. Various types of 

sensors exist, such as multispectral, hyperspectral, thermal cameras or LS (Shahbazi et al. 

2014). The aim of the survey determines which type of sensor to use. 

Because of their low flying altitude (< 120 m), they are good at capturing details in the 

environment at a high spatial scale compared to the more conventional remote sensing 

equipment being used today (Whitehead & Hugenholtz 2014). This makes it possible to 

observe features that are too small to see from satellite or manned aircrafts (Whitehead et al. 

2014). Natural disaster management, research on wildlife and aquatic ecosystems and 

precision agriculture are some of many applications for UASs (Shahbazi et al. 2014). A 

review by Colomina and Molina (2014) found that UASs can also be used for monitoring 

streams and rivers, coastal mapping, forest fire monitoring and tree classification. These 

reviews, amongst other studies, indicates the potential of using UASs for forestry 

applications.  
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1.2 Unmanned aerial systems in forestry 

For forestry applications, LS and digital cameras are the most relevant UAS sensors. In 

several studies UAS-LS have been used in order to characterize tree or vegetation structure 

(Jaakkola et al. 2010; Nagai et al. 2008; Wallace et al. 2012). Due to flight regulations and 

battery capacity, the size and weight of the UAV are important factors to consider when 

planning a flight-mission. The UAVs equipped with LS are often large and heavy so that they 

are able to carry the necessary equipment. Nagai et al. (2008) used a large UAV (i.e. the take-

off weight was about 330 kg) with multiple sensors (two cameras and one laser scanner) and 

the aim of the study was to create a high-resolution digital surface model (DSM). In a Finnish 

study Jaakkola et al. (2010) used UAS-LS for tree measurements. In their study, they found 

that some of the metrics derived from the 3D geometry were measured with higher precision 

than traditional ALS, because of the point cloud’s high density. Wallace et al. (2012) also 

used UAS-LS to derive high-resolution point clouds for forest inventory purposes. The 

measurements had a high accuracy, because the increased sampling density made it more 

likely that the top of the tree was sampled. In another study Wallace et al. (2014) used a UAS-

LS to detect the necessity of pruning of individual stems of eucalyptus in Australia. These 

studies indicate that UAS-LS is a suitable data source for forest inventory purposes. However, 

due to the weight of the equipment, it can only fly for a few minutes. Also, the power of the 

lasers are low, so that the vehicle has to be flown at low altitudes (Puliti et al. 2015). It also 

requires high technical expertise to process laser data, which in the end makes it unsuitable 

for forest inventory purposes. In the light of these limitations, a reasonable alternative to LS is 

digital cameras for 3D reconstruction through a combination of structure from motion (SfM) 

and photogrammetric algorithms.  

Computer vision SfM and photogrammetric algorithms enable 3D point cloud generation 

from digital imagery (Sperlich et al. 2014). The SfM algorithms are used to derive camera 

locations given overlapping yet unordered images, and photogrammetric algorithms 

automatically locates keypoints in one image and find matches to these keypoints in other 

images (Dandois & Ellis 2010). Thus, the 3D geometry is generated and can be used to 

generate high-resolution digital surface models (DSM) (Gini et al. 2012). The flight altitude, 

the degree of slope in the terrain and the settings on the digital camera are some of the factors 

that will affect the resolution of the DSM. When subtracting an accurate ALS digital terrain 

model (DTM) from a high resolution UAS point cloud this results in a high resolution DSM. 

UAS point clouds can be used similarly to ALS point clouds. 
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Studies by Dandois and Ellis (2010) and Dandois and Ellis (2013) used UAS imagery and 

SfM to predict dominant tree height, and Lisein et al. (2013) did the same. All of these studies 

indicated that UAS could be used to predict tree height, and thereby there might be a potential 

to predict other forest biophysical properties as well. Puliti et al. (2015) used a UAS to carry 

out a forest inventory in Norway. SfM and photogrammetric algorithms generated point 

clouds from which height and density metrics were extracted. Then, these metrics were used 

in an ABA as independent variables to fit models for the forest biophysical properties of 

interest. A recent study compared UAS-LS and SfM to assess the forest structure in 

Tasmania, Australia (Wallace et al. 2016). The comparison indicated that UASs did not 

capture all variation in the understorey due to large trees that covered the small ones. 

Nevertheless, when using SfM most of the treetops on the test site were identified. Thus, the 

study demonstrated that UASs are capable of detailed 3D surveys of forests. These studies 

indicate that SfM is a reasonable alternative to UAS-LS, because it is possible to create high-

resolution models that can be rather accurate. Less expertise is needed to operate the UAV 

and to process the data, compared to UAS-LS. For the mentioned reasons, SfM and 

photogrammetric algorithms were chosen for the current study. 

 

1.3 Research objectives 

Few studies have used UASs to carry out a forest inventory and evaluated the differences 

between UASs and ALS. The objectives of this study were to assess the accuracy of using a 

UAS in forest inventory. The forest biophysical properties of interest were dominant height 

(hdom), Lorey’s mean height (hL), volume (V), basal area (G) and stem number (N). Because of 

the advantage of collecting colour information when using a digital camera as a data source, 

the study also evaluated the relevance of the spectral variables. The models with and without 

spectral variables were compared to each other. The models fitted using UAS data were 

compared to models fitted using ALS data. Finally, to address whether development class and 

tree species composition significantly affected the UAS models, dummy variables were 

created. 
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2 Materials and methods 

2.1 Study area 

The study area was in the municipality of Gran, in Oppland County. The elevation on the plot 

locations varied between approximately 130 - 570 m above sea level. The forested area 

consisted of mostly Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris (L.)) 

and deciduous species. In most cases, spruce was observed on sites with high productivity, 

while pine was observed on sites with poor productivity. In the present study, Norwegian 

forest development classes III, IV and V were of main interest. A map of the study area is 

presented in Figure 1. 

 

Figure 1. The map on the left show the plot locations in the study area while the map to the right indicate the location of the 
study area in Norway.  

 

2.2 Field measurements   

The field measurements were done during the end of August and in September 2015. Before 

going into the field, 33 sample plots had been placed in the study area using the geographical 

information system QGIS (Anon. 2016b) according to a systematic design. The sample plots 

were circular with a size of 500 m2 and 1 000 m2. The 500 m2 plots were used for 
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development class III, and if the tree-density was subjectively assessed to be more than 2 000 

trees per hectare. The plots of 1 000 m2 were used for development classes IV and V. The 

development classes were assigned based on prior information available. Tree species was 

registered at each plot. The diameter at breast height (dbh) and tree position were measured 

on all living trees within the plot that had a dbh ≥ 4 cm. Tree heights were measured on 

sample trees, based on a probability proportional to stem basal area. Each plot had 10 sample 

trees. The tree height was measured using a Vertex hypsometer. The singletree volumes were 

estimated aided by empirical correction factors (ratio estimators), since height measurements 

only were available for the sample trees (both height and dbh are required in the volume 

equations). First a so-called base height was calculated for every tree using a base height 

model (Fitje & Vestjordet 1977). By means of the measured dbh and the base height, a “base 

volume” was calculated for each tree. In addition, for the sample trees a “true” volume was 

also calculated using the measured height. For each sample tree, the ratio between “true” 

volume and the corresponding base volume was calculated. Then, plot- and tree species-wise 

mean ratios (R1) were calculated. A second set of mean ratios (R2) were calculated 

irrespective of plot, however they were specific for tree species and three forest development 

classes. The plot- and species-wise mean ratios (R1) were multiplied with the base volume of 

each calliper tree on each respective plot to obtain an estimate of “true” volumes. However, if 

there were less than three sample trees of a particular species on a plot, we considered the 

database for the plot- and species wise mean ratio to be too small, so the species- and 

development class specific ratios (R2) were applied instead. Dominant height (hdom) was 

calculated as the arithmetic mean height of the 100 largest trees per hectare according to 

diameter, which is a commonly used definition (Tveite 1977). Thus, hdom on each plot (500 

m2) was computed as the arithmetic mean height of the five largest trees according to 

diameter. For each plot, Lorey’s mean height (hL) was computed as the mean height weighted 

by basal area. Total plot volume (V) was computed as the sum of the individual tree volumes, 

and these values were divided by the size of the plot in order to get volume per hectare. Basal 

area (G) was computed as basal area per hectare from the stem breast height diameter 

measurements. Stem number was computed as number of stems per hectare (N). A summary 

of the ground reference data are presented in Table 1. 
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Table 1 Summary of the ground reference data. 

Characteristic* Minimum Maximum Mean 
hdom (m) 12.2  21.9 17.39 
hL (m) 10.8 19.9 15.59 
V (m3/ha) 60.3 441.4 223.13 
G (m2/ha) 9.5 53.9 29.08 
N (stems/ha) 640.0 2900.0 1609.09 

* hdom = dominant height, hL = Lorey’s mean height, V = volume, G = basal area, N = stem number 

 

2.3 Remotely sensed data acquisition 

ALS data was acquired in May and June 2015 as part of a large-scale acquisition covering 

Gran and two neighbouring municipalities. The data was collected with a Leica ALS70 

sensor, which resulted in a point density of 7.45 points/m2. The contractor (TerraTec AS, 

Norway) carried out the pre-processing of the ALS data. The computations included 

planimetric coordinates, ellipsoid height values and point cloud classification into ground and 

non-ground echoes according to the proprietary algorithm implemented in the TerraScan 

software (Anon. 2015c). A triangulated irregular network (TIN) surface was created by linear 

interpolation from the ground-classified points. The ALS heights were calculated above the 

ground.  

The UAS imagery was acquired mainly in August 2015. However, some of the plots had to be 

re-flown at a later occasion and these flights were conducted in the middle of October and 

November. Table 2 show the flight acquisition dates and the plots that were flown on the 

specific dates. In the present study a fixed wing UAV, a senseFly eBee (Anon. 2015a), was 

used for the data acquisition. The UAV is fully autonomous. The eBee is a lightweight UAV, 

as it weighs less than 1 kg including digital camera, and it has a wingspan of 96 cm. It can be 

up in the air for about 50 minutes. However, wind and cold temperatures will reduce the 

battery capacity and thereby reduce the flight duration. In order to provide positioning the 

UAV had a GNSS onboard. In the current study, a Canon IXUS/ELPH multispectral digital 

camera was used. The camera had a focal length of 24 mm. The sensor produced three 16-

megapixel images in red, green and blue wavelengths, and the resulting images had an image 

size of 4608 × 3456 pixels. The aspect ratio was 4:3. 
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Table 2 Overview of the flight acquisition dates, and the corresponding plots that were flown. 

Date of flight Plot ID 
03.08.2015 2 
06.08.2015 1, 26 
07.08.2015 5, 6 
11.08.2015 7 
12.08.2015 8 
13.08.2015 10, 11, 13 
14.08.2015 12, 14 
18.08.2015 15, 16, 17 
19.08.2015 20, 22 
20.08.2015 21, 23, 25 
24.08.2015 18, 19 
07.09.2015 3, 9 
14.10.2015 27, 28, 29, 30, 32, 33, 34 
15.10.2015 4 
12.11.2015 24 

 

The aviation regulations in Norway prevents a UAV lighter than 2.5 kg from being flown 

more than 125 m above ground, and a visual line of sight (VLOS) need to be obtained at all 

times (i.e. a radius of 600 m around the operator has to be upheld). The flight plans were 

made before going into the field using the software eMotion (Anon. 2015b). The flight 

altitude and amount of image overlap were the main parameters established in the planning. 

The altitude was set to 120 m, which resulted in a ground sampling distance of approximately 

0.04 m. The low altitude results in distortions in the images, and because of these distortions a 

large amount of overlap is needed to correct for this (Lisein et al. 2013; Puliti et al. 2015). The 

image overlap was set to 90% longitudinal and 80% lateral.  

In the current study, GCPs were used to georeference the point clouds. The centre of each 

GCP was measured in August 2015, and the total number of measured GCPs were 165. They 

were placed in open areas, so that they would be clearly visible from the air. Their positions 

were measured by differential global positioning systems (GPS) and global navigation 

satellite systems (GLONASS). A Topcon Legacy-E+ 40-channel dual-frequency receiver 

observing pseudorange and carrier phase of both GPS and GLONASS was used. The logging 

rate was of 2-seconds, and the centre of every GCP was measured for approximately 15 

minutes. The GCPs were made of black and white checkerboard patterns, about 50 × 50 cm. 

Because of the time-consuming task of re-collecting these black and white checkerboards, the 

GCPs were eventually marked on the ground with spray paint or material available at the site. 

When the GCPs had been measured, the flight were carried out. The images were triggered 

automatically according to the pre-defined flight plan, and the eBee turned off the engine in 
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order to increase the stability when capturing the images. Images were captured every 3 – 4 

seconds. At the end of each flight mission, the geotagged images were downloaded to the 

computer. 

 

2.4 Photogrammetric processing 

Agisoft PhotoScan Professional Edition 1.1.0 (64 bit) (Anon. 2014) was used to generate 3D 

point clouds for each of the 33 plots. The process started by importing the images. An image 

alignment was carried out, and the software matched keypoints in the images using SfM and 

photogrammetric algorithms. The GCP coordinates were imported and these were used to 

optimize the camera orientation. The GCPs were located manually on the images according to 

the markers placed on the ground. A result of this was a more accurate camera positioning, 

which was later used for accurate dense matching. Sparse point clouds were constructed, but 

as these are not useful in forestry this is followed by a dense reconstruction of the point 

clouds. Outliers were removed by using a mild depth filtering, reducing the level of noise in 

the point clouds. The dense point clouds were exported to ASCII files, with x, y, z coordinates 

and colour information. To obtain height above ground level, the TIN model made by the 

ALS data was subtracted from each point’s height value.  

 

2.5 Statistical analysis 

The calculations of the statistical models were based on the 33 sample plots. For each plot, 

density variables (d1, …, d10), height percentiles (p10, …, p100) and coefficients of variation 

(cv) were calculated, for a total of 22 independent variables for both the UAS and the ALS 

data. When calculating the height percentiles, all points below two meters were removed from 

the data in order to remove rocks and underbrush from the computations. The density 

variables were calculated as ten equally spaced vertical layers. Six spectral variables were 

extracted from the plots for the UAS data. These included the mean values of the red, green 

and blue bands (Rm, Gm and Bm), as well as the coefficients of variation for each colour band 

(Rcv, Gcv and Bcv). Development class was assigned based on the previous operational forest 

inventory in the area. The forest was classified as development class III if it was young 

productive forest (i.e. mean height larger than approximately 7 m), class IV if mature 

productive forest and class V if it was old, mature forest. Tree species composition was 
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calculated as a percentage of the total volume of spruce, pine or deciduous species at each 

plot.  

Multiple linear regression models were fitted for each of the forest biophysical properties of 

interest. Three sets of models were made for hdom, hL, V, G and N. Two different sets were 

fitted from the data collected by the UAS; one which included height and density variables, 

while the other one also included spectral variables. The third set was based on the height and 

density variables from the ALS data. Log-log transformations were used for all dependent and 

independent variables, which has been done in other studies using ALS (Næsset 2002b; 

Næsset 2004; Næsset 2007). In order to reduce the number of variables in each model, a 

search for the best subset was carried out using the R package leaps (Lumley & Miller 2009). 

Due to highly correlated variables, the variable selection was restricted to searching for 

models with a maximum of three variables. The reason for the strict requirement was a trial 

and error approach which indicated that models including more than three variables would 

have issues with multicollinearity. In order to avoid collinearity, the variance inflation factor 

(VIF) was used with a threshold of VIF < 5. This meant all variables in a model should have a 

VIF-value below five; otherwise, the model would be rejected. The Bayesian Information 

Criterion (BIC) was used to do the final variable selection. The method penalises models that 

include many variables. Models with the lowest BIC value were selected. A bias correction 

factor was used in the back-transformation of the logarithmic variables. The goodness of fit 

was evaluated by the adjusted R2 (R2
adj). The model assumptions that the error terms were 

normally distributed, had a mean equal to zero and a constant variance were checked using 

Shapiro-Wilkinson, t-Student and Breusch-Pagan tests, respectively. 

The effects of development class and tree species composition were evaluated using t-tests. 

Two dummy variables were created for development class. Both were coded as zero for 

development class III and one for development class V. Development class IV were coded as 

zero for the first dummy variable and one for the second. Tree species composition was 

treated as a continuous variable, and three variables were created. These variables were 

expressed by the volume proportions of spruce, pine and deciduous species (VPs, VPp and 

VPd). To get an indication of collinearity among the new variables added to the models, the 

Pearson correlation coefficients were calculated. Highly correlated variables were discarded 

from the models. Because the aim was to investigate whether development class and/or tree 

species composition had a significant effect on the UAS models, the dummy variables for 

development class and tree species composition were removed from the models as soon as 



12 
 

this was investigated. Further calculations only included the original variables (height, density 

and spectral variables). 

Leave-one-out cross validation (LOOCV) was used to evaluate the models. Each plot acted as 

one observation. One plot was left out of the calculations iteratively, while the remaining 

plots were used to fit the models. The model’s parameters were then used to predict on the left 

out plot. Mean differences ( ) and root mean square errors (RMSE) were calculated for each 

plot using the equations below:  

 

 

where y indicates the response variable of interest,  indicate the predicted value, i indicates 

the plot and n is the number of sample plots. For comparison purposes, the relative values of 

 and RMSE were calculated as a percentage of the mean observed value.  

Paired t-tests on the residuals of the spectral and non-spectral models were carried out to 

determine whether there was a significant difference between the corresponding models. 

Paired t-tests were also used to test for a statistically significant difference between the 

models made from the UAS data and the models made from the ALS data. All tests were 

conducted at a 95% significance level. 
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3 Results 

3.1 Multiple linear regression modelling 

Linear models were fitted for hdom, hL, V, G and N, using either UAS data (i.e. with and 

without spectral variables) or ALS data. Most of the models included only two variables. For 

the UAS models without spectral variables the R2
adj values for hdom, hL, V, G and N were of 

0.88, 077, 0.84, 0.73 and 0.45, respectively. Including spectral variables in the models gave a 

slight increase in R2
adj for all models (0.02, 0.04, 0.02 and 0) except for N, which had a slight 

decrease (0.01). For the ALS models the R2
adj were of 0.87, 0.79, 0.91, 0.86 and 0.56 for hdom, 

hL, V, G and N, respectively. The ALS models gave larger values for R2
adj when modelling V, 

G and N compared to the UAS models.  

Height percentiles were present in all models except for N, which included two density 

variables instead. Only one model included the variable cv, which was the model hdom made 

from the ALS data. Density variables were present in all models except hdom and hL which 

included spectral variables. Different spectral variables were included in the models. Gm was 

preferred for hdom and hL, while Bcv was preferred for modelling V and G. Rm was included in 

the model for N. A summary of the predictive models are presented in Table 3.   

Table 3 Summary of the linear regression models for the three different datasets: UAS excluding spectral variables, UAS 
including spectral variables and ALS. Logarithmic transformations were used for all dependent and independent variables. 
The values reported for RMSE, relative RMSE (%),  and relative (%) are from the leave-one-out cross validation after 
back transformation.  

Data Dependent  
variable * 

Predictive 
model R2

adj RMSE RMSE (%)      (%) 

UAS 
excluding 
spectral 
variables 

hdom (m) d1 + p90 0.88  1.02 5.85 -0.03 -0.15 
hL (m) d5+p90 0.77 1.24 7.93 -0.03 -0.20 
V (m3/ha) d2+p70 0.84 42.66 19.11 -0.67 -0.30 
G (m2/ha) d1+p70 0.73 5.54 19.03 -0.04 -0.14 
N (stems/ha) d1+d10 0.45 491.65 30.55 4.58 0.28 

UAS  
including 
spectral 
variables 

hdom (m) Gm+p80 0.90 0.97 5.58 -0.03 -0.15 
hL (m) Gm+p80 0.81 1.13 7.24 -0.02 -0.10 
V (m3/ha) Bcv+d1+p70 0.86 40.65 18.22 -1.32 -0.60 
G (m2/ha) Bcv+d2+p70 0.73 5.56 19.11 -0.18 -0.61 
N (stems/ha) Rm+d1+d9 0.44 498.70 30.99 4.63 0.29 

ALS 

hdom (m) cv+d5+p20 0.87 1.05 6.03 -0.05 -0.31 
hL (m) d10+p90 0.79 1.17 7.49 -0.03 -0.21 
V (m3/ha) d1+p60 0.91 32.68 14.51 -1.18 -0.53 
G (m2/ha) d1+p50 0.86 4.02 13.82 -0.11 -0.38 
N (stems/ha) d1+d9 0.57 478.74 29.75 -1.59 -0.10 

* hdom = dominant height, hL = Lorey’s mean height, V = volume, G = basal area, N = stem number 
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T-tests revealed that development class had no significant effect on either of the UAS models. 

However, tree species composition did have a significant effect on the models hdom and hL. 

The Pearson correlation coefficient matrix led to the removal of the VPp in all models, 

because Norway spruce and Scots pine had a large correlation coefficient (0.956). For the 

non-spectral UAS models VPs had a significant effect on hdom (p = 0.003), while the VPd had 

a significant effect on hL (p = 0.001). When the spectral variables were included in the model, 

the VPs had a significant effect on hdom (p = 0.009), while the VPd had a significant effect on 

hL (p = 0.002). An increase of one unit of VPs led to an increase in hdom, while an increase of 

one unit of VPd led to a decrease in hL.  

 

3.2 Leave-One-Out Cross Validation 

The LOOCV showed similar results for the UAS and ALS models. The RMSE values after 

back transformation for hdom, hL, V, G and N modelled from the UAS data without spectral 

variables were 1.02 m (5.85%), 1.24 m (7.93%), 42.66 m3/ha (19.11%), 5.54 m2/ha (19.03%) 

and 491.65 stems/ha (30.55%), respectively. Adding spectral variables to the models gave a 

slight decrease in relative RMSE of 0.27%, 0.69% and 0.89 % for hdom, hL and V, 

respectively. Both G and N had a slight increase in relative RMSE (0.08% and 0.44%, 

respectively) when spectral variables were included in the models. The RMSE values for the 

ALS models were 1.05 m (6.03%), 1.17 m (7.49%), 32.68 m3/ha (14.51%), 4.02 m2/ha 

(13.82%) and 478.74 stems/ha (29.75%) for hdom, hL, V, G and N, respectively. The largest 

errors were observed when predicting N, while the smallest errors were observed when 

predicting hdom. 

None of the s were statistically significant at a 95% confidence level for either UAS or ALS 

models. For the UAS models, all s reported had negative signs except for N, which had 

positive signs for the models both with and without spectral variables. The largest s were 

reported for V and G for the UAS models including the spectral variables, which were -0.61% 

and -0.60% of the ground reference values. Small relative s were observed for hdom and hL in 

both sets of UAS models, ranging between -0.10% and -0.20%. The relative s for the ALS 

models had negative signs for all models, and were in the range of -0.53 - -10%. The largest 

s were observed for the models V and G, similar to the UAS models. In contrast to the UAS 

models, the smallest  was found for the model N. Scatterplots of the predicted values versus 
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ground reference values of the forest biophysical properties of interest are found in Figure 2 

and Figure 3 for UAS- and ALS models, respectively. 

Paired t-tests revealed that there were no significant differences between the UAS models 

with and without spectral variables, and there were no significant differences when comparing 

the ALS models to the UAS models. At log-scale, the residual analysis revealed that none of 

the model assumptions were violated at a 95% significance level. The error terms were 

normally distributed (p ≥ 0.071), had a mean equal to zero (p = 1) and they had a constant 

variance (p ≥ 0.279). 
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Figure 2 Scatterplots showing the predicted versus ground reference values for the forest biophysical properties of interest. 
The plots are based on the cross validated values from the UAS data without spectra variables. 
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Figure 3 Scatterplots showing the predicted versus ground reference values for the forest biophysical properties of interest, 
based on the cross-validated ALS data 
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4 Discussion 

4.1 Accuracy assessment  

Density variables (d1, d2, d5 and d10) were present in all UAS models without spectral 

variables. For the models including spectral variables, density variables (d1, d2 and d9) were 

present in the models V, G and N. In both cases, N included two density variables. In the study 

by Puliti et al. (2015), the density variables were either small (d0) or large (d7 and d9). 

Similarly, two density variables were selected for the model N (d0 and d9). In the current 

study, height percentiles were present in all UAS models, except for N. The height percentiles 

present were all high, namely p70, p80 and p90. Puliti et al. (2015) reported a wider range of 

height percentiles (p20, p30, p50, p80 and p100) than the current study. In the models hdom and hL, 

the density variables were replaced with the spectral variable Gm, similar in both studies. 

Unlike the current study, neither the blue nor the red bands were represented in the models 

reported in Puliti et al. (2015). This might be due to the time when the imagery was acquired. 

In their study, the imagery was acquired in a couple of days in November and December, 

while the present study acquired the imagery mainly in August.  

Except for N, all models showed a rather good fit as the R2
adj ranged from 0.73 – 0.88 for the 

UAS models without spectral variables and 0.73 – 0.90 when including spectral variables. For 

hdom and hL, the R2
adj was similar for both sets of UAS models. For the models without 

spectral variables, Puliti et al. (2015) reported R2
adj of 0.96, 0.68, 085, 0.60 and 0.57 for hdom, 

hL, V, G and N, respectively. When spectral variables were included in the models, the R2
adj 

reported were 0.97, 0.71 and 0.60 for hdom, hL and N, respectively. They revealed larger R2
adj 

when predicting hdom and N, but the other values were in the same range as the current study. 

The study was conducted in boreal coniferous forests, similar to the present study. However, 

it should be noted that in the current study log-log transformations were used on all variables, 

as opposed to their study that used log-log transformations on hL, V and N exclusively. 

Previous research have used UAS data to model hdom. A study conducted by Dandois and Ellis 

(2010) revealed an R2
adj of 0.80 and 0.53 for their two study sites. Another study conducted 

by Dandois and Ellis (2013) revealed an R2 varying between 0.07 and 0.84. The R2 reported 

in these two studies are consistently smaller than the values reported in the present study. 

Lisein et al. (2013) also used UAS data to predict hdom, and reported an R2
adj of 0.82 at stand 

level. At the individual tree level, their results revealed an R2
adj of 0.91. These results are 

similar to the present study. However, in their studies Dandois and Ellis (2010); Dandois and 



19 
 

Ellis (2013) and Lisein et al. (2013) used different flight altitude, cameras and camera 

settings, differing number of GCPs and various software to process the data.  

The ALS models also showed a good fit, as the R2
adj were in the range of 0.79 – 0.91 

(excluding N). The hdom model revealed a smaller R2
adj than the corresponding UAS models (a 

difference of 0.03 and 0.01 with and without spectral variables, respectively). Both V and G 

had larger R2
adj when using ALS data. The differences in R2

adj were 0.13 for the model G and 

0.07 and 0.05 for non-spectral and spectral V-models, respectively. When modelling N, the 

ALS model had a larger R2
adj (0.57) than the corresponding UAS models (0.45 and 0.44). 

Numerous studies have used ALS to predict forest biophysical properties in coniferous 

forests. Næsset (2002b) used a stratification that divided the forested areas into strata based on 

age and site productivity. The study revealed R2 ranging from 0.65 – 0.86 in mature forest on 

poor sites and 0.50 – 0.85 in mature forest on good sites. Another study conducted by Næsset 

(2004) reported R2 ranging from 0.77 – 0.91 for mature forest on poor sites and 0.60 – 0.85 

for mature forest on good sites. The R2 values reported in these two studies are in the same 

range as the R2
adj reported for the UAS models in the current study. However, Næsset’s 

studies revealed larger values when predicting N (0.50 – 0.68 and 0.60 – 0.81). Gobakken et 

al. (2014) compared image matching and ALS. They modelled hdom, hL, V, G and N for 

mature forest on poor and good sites. For mature forest on poor sites, Gobakken et al. (2014) 

reported R2 of approximately 0.70 – 0.90, and for mature forest on good sites the R2 were 

approximately 0.60 – 0.90 when using ALS data. In the current study, the UAS model N had a 

smaller R2
adj than the corresponding ALS model.  

With the exception of N, the errors in terms of relative RMSE were kept below 19.11% for all 

UAS models. Hdom proved to be the most accurate model. For the model without spectral 

variables the RMSE was 1.02 m (5.85%) and including spectral variables the RMSE was 0.97 

m (5.58%). Puliti et al. (2015) revealed more accurate models for hdom. Their study reported a 

RMSE of 0.72 m (3.64%) without spectral variables and 0.69 m (3.48%) including spectral 

variables. In contrast to the current study, which used two independent variables in the 

models, Puliti et al. (2015) used three and four independent variables in the models. When 

predicting hdom, both studies by Dandois and Ellis reported larger RMSEs than the current 

study. Dandois and Ellis (2010) reported RMSEs of 2.9 m and 4.2 m for their two study sites, 

while Dandois and Ellis (2013) revealed RMSEs varying between 3.2 and 6.8 m. Lisein et al. 

(2013) reported a RMSE of 1.65 m (8.4%) at a stand level. However, they reported a RMSE 

of 1.04 m (4.7%) at an individual tree level, similar to the results in the current study. For the 
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model hL, the current study reported smaller values for RMSE (1.24 m and 1.13 m) and 

relative RMSE (7.93% and 7.24%), than Puliti et al. (2015). In their study, when excluding 

spectral variables, the reported RMSE were 1.55 m (13.66%). This was slightly reduced when 

including spectral variables (1.51 m; 13.28%). When modelling V and G, the current study 

revealed relative RMSEs of roughly 19%, both with and without spectral variables, while 

Puliti et al. (2015) reported smaller values. For V, they reported values of 14.95%, while they 

reported values for G were 15.38%. Neither of these models included spectral variables. 

When modelling N, the current study revealed relative RMSEs of 30.55% (491.65 stems/ha) 

and 30.99% (498.70 stems/ha) for the models with and without spectral variables, 

respectively. The scatterplot in Figure 2 show an overestimation of small values and an 

underestimation of large values for N. Puliti et al. (2015) also reported an underestimation of 

large values for N, and reported errors of 39.24% (538.31 stems/ha) and 38.57% (529.03 

stems/ha) with and without spectral variables, respectively. 

In the current study, there were no statistically significant differences between the UAS- and 

ALS models. In terms of relative RMSE, the UAS model hdom (without spectral variables) 

revealed a smaller relative RMSE than the corresponding ALS model (5.85% vs. 6.03%). 

Furthermore, both hdom and hL revealed smaller relative RMSEs for the UAS models 

including spectral variables than the corresponding ALS models (a difference of 0.45% and 

0.25%, respectively). When comparing the model V, the UAS- and ALS models had a 

difference in relative RMSE of 4.6% (without spectral variables) and 3.7% (including spectral 

variables). When comparing the model G, this difference was 5.2% (without spectral 

variables) and 5.3% (including spectral variables). Differences in relative RMSE of 0.8% and 

1.24% were observed when comparing N. Although the differences were non-significant, it 

seems like the largest differences in accuracy between UAS and ALS can be found when 

modelling V and G. Previous research has compared ALS and photogrammetric methods for 

predicting forest biophysical properties. For image matching, Gobakken et al. (2014) reported 

relative RMSEs varying between 6.6 - 28.6% and 9.2 – 43.7% for mature forest on poor and 

good sites, respectively. The values reported for ALS were smaller, 6.5 – 20.6% and 7.5 – 

35.1% for mature forest on poor and good sites, respectively. These RMSE values are 

consistent with the current study, which ranged from 5.85 – 30.55% and 5.58 – 30.99% for 

the UAS models with and without spectral variables.  

The s were not significantly different from zero. The relative s reported in this study were 

small, and the largest relative  was -0.61% of the ground reference value. The UAS models 
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without spectral variables had s in the range of -0.67 – 4.58 (-0.30 - 0.28%), and when 

spectral variables were included, the range was -1.32 – 4.63 (-0.61 - 0.29%). The negative 

signs reported for all s (except for N) in the UAS models, indicated that there was an overall 

tendency of overestimation. However, the positive sign in the N models indicated that N was 

underestimated, as stated earlier (Figure 2). Similar to the current study, Puliti et al. (2015) 

reported relative s of 0.05, 0.13, 0.21, 0.09 and -0.60% for hdom, hL, V, G and N (without 

spectral variables), respectively. In the three models that included spectral variables (hdom, hL 

and N) the s were 0.04, 0.03 and -0.36%. In contrast to the current study, Puliti reported 

positive signs for all models except for N, which translates to underestimation of the predicted 

values.   

For the ALS models the s ranged from -1.59 to -0.03 (-0.53 to -0.10%). Compared to the 

ALS models, smaller relative s were observed for the UAS models hdom and hL, both with 

and without spectral variables. This was also the case for V and G without spectral variables. 

However, the relative  was smaller for the ALS model N. Næsset (2002b) reported s in the 

range of -0.01 - 6 for mature forest on poor sites and 0.01 - 38 for mature forest on good sites. 

The largest s were reported for N, similar to the current study. The s reported in Næsset 

(2004) were in the range of -0.03 – 6 and 0 – 1 for mature forest on poor and good sites, 

respectively. Both of these studies used LOOCV, similar to the current study. However, no 

trees below 10 cm were callipered in the mature forest study sites in Næsset’s studies, while 

all trees above 4 cm were callipered in the present study. In addition, the plot sizes in his two 

studies were 200 and 232.9 m2, which is less than half the size of the plot size in the present 

study. Large plots are expected to give more accurate results than small plots (Gobakken & 

Næsset 2008; Gobakken & Næsset 2009). Thus, this might explain some of the differences in 

results.  

 

4.2 Spectral variables 

There were no statistically significant differences between the UAS models with and without 

spectral variables. Thus, the importance of spectral variables can be questioned. As stated 

earlier, the goodness of fit had a slight increase when adding spectral variables to the models 

(0.02, 0.04, 0.02, 0 and -0.01 for hdom, hL, V, G and N, respectively). Puliti et al. (2015) 

reported an increase in R2
adj of 0.01, 0.03 and 0.03 for the models that included spectral 

variables (hdom, hL and N). Furthermore, the spectral variables only led to a slight decrease in 
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relative RMSE for the models hdom, hL and V (0.27, 0.69 and 0.89%, respectively), while G 

and N had an increase in relative RMSE (-0.08 and -0.44%). This is consistent with  previous 

research which also reported a decrease in relative RMSE for the models hdom and hL, in 

addition to an increase in relative RMSE for the model N (Puliti et al. 2015). The imagery in 

the current study was collected in August, October and November, and the variation in light 

and atmospheric conditions during the different flight acquisition dates were probably not 

optimal for assessing the viability of the spectral data. Ideally, all flights should be conducted 

within the same timeframe. It is likely that because most of the imagery in the current study 

was collected during the vegetative season it was better than the data Puliti et al. (2015) used 

in their study in Våler. However, there will still be problems with heterogeneity of the light 

and atmospheric conditions that increases the level of noise in the spectral data. Eventually, 

the use of band rations could potentially result in more homogenous information and possibly 

better results. 

  

4.3 Development class and tree species composition 

Development class had no significant effect on the UAS models. Thus, there were no 

significant differences between young productive forest and mature productive forests. VPs 

had a significant effect on hdom, indicating that an increase of one unit of VPs led to an 

increase in hdom. Norway spruce can potentially grow taller than deciduous species found in 

Norway, therefore it seems reliable that an increase of VPs per hectare will increase hdom. The 

addition of VPd in the hL model led to a significant effect on hL, indicating that an increase of 

one unit of VPd led to a decrease in hL. Thus, if there is a large amount of deciduous species in 

a forest, the models indicated that the mean height in the forest would be lower than in for 

example a forest consisting of conifers like Norway spruce and Scots pine. 

 

4.4 General considerations 

GCPs were used in order to increase the accuracy of the 3D point clouds generated from the 

UAS imagery. As indicated in the methods section, the GCPs were made of black and white 

checkerboard patterns as well as objects found in nature. The centres of the GCPs were 

located in the software Agisoft PhotoScan. On some of the images, the GCPs were hard to 

locate. Often, this was due to low contrasts in the images. In addition, some of the rocks and 
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sticks that were used might have been too small, which made them hard to find. Fog and low 

cloud cover also made the GCPs hard to locate. Other factors of importance are the distortions 

on the sides of the images, and shadows cast by the trees. Measuring GCPs was a time-

consuming task, and in order to improve the efficiency of the data collection an option could 

have been to reduce the number of GCPs. However, this will probably affect the accuracy of 

the georeferenced point cloud. The eBee has a positional accuracy down to 3 cm when GCPs 

are measured, but without GCPs the positional accuracy varies between 1-5 m (Anon. 2016b). 

However, the senseFly eBee RTK (Anon. 2016a) is reported to have a positional accuracy 

down to 3 cm without using GCPs. This will lead to a more efficient data collection. 

Both aviation regulations and battery capacity affect the size of the study area. If the battery 

capacity improves, it will lead to an increase in flight duration and larger areas being covered 

in one flight. Changes in the aviation regulations in Norway may occur, which can affect the 

regulations concerning the VLOS. Today, the VLOS is set to a radius of 600 meters around 

the operator and a maximum flight altitude of 125 m (for small UASs). If this either increases 

or is removed from the regulations, each flight can cover larger areas and alternatively it can 

cover larger areas with sloping terrain, which makes it difficult to maintain the VLOS. If the 

size of the study area can be increased, this may make UASs more attractive for data 

collection in forestry.  
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5 Conclusions  

When compared to ALS, the results of the current study indicate that UAS and 

photogrammetric data can be used to accurately model forest biophysical properties. This 

indicates that UAS can be a substitute or a supplement for ALS, given that an accurate DTM 

of the area exist. UAS may be a viable tool for various forestry applications such as a forest 

inventory. The high spatial resolution of the imagery collected by the UAS can potentially be 

used for pre- and post-harvest surveys, or to map windfallen trees or other forms of natural 

disturbances. Both technology and software are rapidly evolving, and UASs are now available 

to a wide audience. As it is today in forestry, UASs are mostly used for research purposes, 

although there is an increasing number of companies using them for commercial purposes as 

well. The rapid changes might lead to cheaper equipment with improved free license software, 

making UASs more attractive for people outside the research community.  
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