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ABSTRACT 

Small-scale hydropower has been one of the frontiers in the development of new renewable 
electricity generation in Norway from the turn of the 21st century. Further, small-scale 
hydropower will be one of the key technologies to utilize in order to fulfill the political objective 
to increase the production of renewable electricity toward 2020. A better understanding of factors 
affecting the development of such schemes would therefore be valuable, but has received little 
attention in academic research. 

This thesis conducts a quantitative analysis of key external cost drivers for small-scale 
hydropower projects (1-10 MW) commissioned in the past ten years, and attempts to model a cost 
estimation tool to aid in assessment of new projects that are ready to be deployed.  

The results showed that investment costs are consistently underestimated in license application 
budgets. The median difference for total costs in nominal values was found to be 49.1%, and 1.12 
NOK/kWh (estimated annual production). The analysis further documents that: 

1) Specific total investment costs (in NOK/kWh) increased in real values during the past ten 
years, with an estimated average growth rate for all projects at 3.7 pp per year (with 2005 as 
the base year).  

2) Total investment costs increase with longer construction periods. An average increase of 
37.8% per year in real values was estimated when all projects in the dataset were taken into 
consideration. 

3) Specific investment costs differ between geographical regions. Projects in Western Norway 
tend to have relatively low specific costs with an observed average of 3.79 NOK/kWh in real 
values. Projects in Northern Norway tend to have a relatively high specific investment cost, 
with an observed average of 4.7 NOK/kWh in real values. 

4) Projects developed by the owners of the water resource were found to have lower reported 
costs than projects developed by professional project development companies. Projects in the 
non-professional group had an observed average specific cost of 3.95 NOK/kWh in real values, 
while the projects in the professional group had an average specific cost of 4.71 NOK/kWh in 
real values. 

Two cost estimation models for investment costs of small-scale hydropower projects were 
developed, with use of multiple linear regression. The first was developed for predicting total 
investment costs, and achieved a mean absolute error rate of 18.0%,. The second was developed 
for predicting partial costs, and achieved an error rate of 15.6%.  

This thesis contributes to the literature by documenting the scales of underbudgeting in license 
applications, and by analyzing estimated effects of the selected cost driving factors. The cost 
estimation models developed may prove useful in comparing future small hydropower projects 
with respect to their investment costs. They can be used to produce independent cost predictions, 
and complement license application budget estimates for increased accuracy and indication of the 
cost uncertainty for each project.  

If applied for analyzing future project development, these findings may be useful for the decision 
makers and for the hydropower industry. 
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SAMMENDRAG 

Småskala vannkraft har vært en av driverne for utvikling av ny fornybar kraftproduksjon i Norge 
siden årtusenskiftet. Framover vil også småkraft være en av driverne for å oppfylle de politiske 
målene om økt fornybar kraftproduksjon fram mot 2020. En bedre forståelse av faktorer som 
påvirker utviklingen av ny småkraft er derfor fordelaktig, men har mottatt lite oppmerksomhet i 
forskningen.  

I denne masteroppgaven utføres en kvantitativ analyse av eksterne kostnadsdrivere for 
småkraftprosjekter (1-10) satt i drift i løpet av de siste ti årene. Et kostnadsestimeringsverktøy 
blir utviklet med hensyn på å kunne bidra til å evaluere nye småkraftprosjekter som har mottatt 
konsesjon.  

Resultatene i denne analysen viser at investeringskostnadene regelmessig underbudsjetteres i 
budsjettene i konsesjonssøknadene. Median differanse mellom budsjetterte og innrapporterte 
totale kostnader var 49,1% og 1,12 kr/kWh (estimert årlig produksjon). Analysen dokumenterer 
videre at: 

Spesifikk investeringskostnad (i kr/kWh) hadde en realøkning i løpet av de siste ti årene, med en 
estimert gjennomsnittlig rate for alle prosjekter på 3,7 p.p. per år (med 2005 som basisår) 

Totale investeringskostnader økte ved lengre byggeperiode. En gjennomsnittlig økning 
tilsvarende 37,8% per år i faste priser ble estimert når alle prosjekter i datasettet var inkludert. 

Spesifikk investeringskostnad varierer mellom geografiske regioner. Prosjekter på Vestlandet 
tenderer til å ha relativt lave spesifikke investeringskostnader, med et observert gjennomsnitt på 
3,79 kr/kWh. Prosjekter i Nord-Norge tenderer til å ha relativt høye spesifikke 
investeringskostnader, med et observert gjennomsnitt på 4,7 kr/kWh i faste priser.  

Prosjekter utviklet av grunneiere hadde lavere innrapporterte kostnader enn prosjekter utviklet 
av profesjonelle aktører. Prosjekter utviklet av grunneierne hadde en observert gjennomsnittlig 
spesifikk kostnad på 3,95 kr/kWh i faste kroner, mens prosjekter utviklet av profesjonelle aktører 
hadde en observert gjennomsnittlig spesifikk kostnad på 4,71 kr/kWh i faste kroner. 

To kostnadsestimeringsmodeller for investeringskostnader for småkraftprosjekter ble utviklet 
ved hjelp av lineær regresjonsanalyse. Den første modellen ble utviklet for estimering av totale 
utbyggingskostnader, og hadde en gjennomsnittlig absolutt feilrate på 18.0%. Den andre modellen 
ble utviklet for estimering av totale delkostnader, med en feilrate på 15.6%. 

Denne masteroppgaven bidrar til forskningslitteraturen ved å dokumentere omfanget av 
underbudsjettering i konsesjonssøknadene, og ved å analysere effektene av de utvalgte eksterne 
kostnadsdrivende faktorene. Kostnadsestimeringsmodellene være nyttige for å sammenligne 
framtidige småkraftprosjekter med hensyn på utbyggingskostnad. De kan brukes som et 
uavhengig verktøy for å estimere utbyggingskostnader, og komplementere budsjettestimatene for 
økt nøyaktighet og en indikasjon på usikkerheten av utbyggingskostnaden for enkeltprosjekter.  

Disse funnene kan være nyttige for beslutningstakere og vannkraftsektoren for å analysere 
framtidig utvikling av småkraft i Norge. 
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LIST OF DEFINITIONS AND TRANSLATIONS 

English terms used in this thesis. Hydropower terminology mainly in accordance with ESHA 
(2004), Norwegian terms in accordance with NVE (2010b). 

English Norsk 
Absorption capacity 

See maximum discharge 
Slukeevne 

Compensation flow 
Minimum flow of water required to pass the dam/intake and run 
free in the water course. 

Minstevannføring 

Connection fee 
In this context, a fee paid to the grid owner (transmission or 
distribution network operator) to cover parts of the investment 
costs in cases when the capacity of the existing grid must be 
upgraded in order to allow for the new power production 

Anleggsbidrag 

Energy 
In electricity terms, work performed by electrical energy, 
measured in kWh or MWh.  

= 3600 J 

Energi 

Fifth percentile water flow 
The average water flow rate level in which the water flow rate is 
below in five percent of the time for a given period (year or 
season) based on a given dataset of hydrological measurements 

Fem persentil 
vannføring 

Generator 
Device transforming mechanical energy from the turbine to 
electrical energy 

Generator 

Head, gross 
Difference between intake MASL and MASL at center of turbine 
(Pelton turbines) or downstream water level (Francis turbines).  

Brutto fallhøyde 

High-head power plants 
Hydro power plant with gross head higher than 300 m, as 
defined by NVE (2015c). 

Høytrykksanlegg 

Installed capacity 
Production capacity of the generator(s) of the hydropower plant, 
in kW or MW 

Installert effekt 

Intake 
Construction where the water is led from the river to the 
waterway 

Inntak 

MASL. – Meters Above Sea Level Meter over havet (moh.) 
Maximum discharge 

Maximum discharge of water in turbine(s), measured in  
Slukeevne 

Micro hydropower plants 
Hydropower plants with an installed capacity of less than 100 
kW (NVE 2010b). 

Mikrokraftverk 

Mini hydropower plants 
Hydropower plants with an installed capacity of between 100 
and 1000 kW (NVE 2010b). 

Minikraftverk 

Nominal values, prices or costs 
Values not adjusted for cost inflation. Also termed as current 
prices. 

Nominelle verdier, 
priser eller kostnader 
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English Norsk 
Ordinary low water flow  

An observed average minimum water flow rate based on a given 
dataset of hydrological measurements (this measure has a more 
precise calculation procedure used by NVE) 

Alminnelig 
lavvannføring 

Penstock 
Pressure pipe leading the water from the intake to the turbine, 
made from ductile or cast iron, steel, glass-fiber, plastic and/or 
concrete 

(Trykk-) rør 

Power station/house 
The power station building in which the turbine, generator and 
control equipment is installed, and sometimes the transformer. 

Kraftstasjon 

Power 
Capacity to perform work, measured in watt (which equals joules 
per second) 

Kraft/effekt 

Real values, prices or costs 
Values adjusted for inflation or a specific cost index. Also termed 
as constant prices. 

Reelle verdier, priser 
eller kostnader 

Run-of-river scheme 
Hydropower plants with no water magazine, often with a low 
head. 

Elvekraftverk 

Shaft/pressure shaft 
In this context, structure in rock to lead the water from the 
intake to the turbine, constructed by drilling in rock. 
Distinguished from tunnels by having a smaller cross-section and 
constructed only by drilling.  

(Trykk-) sjakt 

Small hydropower plants 
Hydropower plants with an installed capacity of between 100 
and 1000 kW (NVE 2010b). 

Småkraftverk 

Specific (investment) cost 
Investment cost per estimated average annual production, 
measured in NOK/kWh (NVE 2015c).  

Spesifikk (investerings-) 
kostnad 

Tailrace 
Canal or tunnel which leads the water from the turbine(s) back 
to the main stream (tail) 

Utløpskanal/-tunnel 

Transformer 
Device changing the voltage of the electrical current to desired 
level. 

Transformator 

Tunnel 
In this context, a structure in rock to lead the water from the 
intake to the turbine, constructed by blasting or drilling in rock. 
Sometimes also used in tailrace to lead the water from the power 
station back to the river. 

Tunnel 

Turbine 
Mechanical device transforming kinetic energy from the water to 
mechanical energy 

Turbin 

Waterway 
Collective term for structures leading the water from the 
intake/headwater to the tail water, including penstocks, tunnels, 
shafts and canals. 

Driftsvannvei/vannvei 
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1 INTRODUCTION

Since the turn of the 21st century the 
Norwegian power sector has experienced a 
new era in the development of hydropower. 
In the period from 1990 to 2015, 4000 MW 
of new capacity has been installed in about 
900 hydropower plants, the majority of 
which has been developed within the last ten 
years (OED 2016). Small-scale hydropower 
projects have been developed in large 
numbers in all regions of the country.  

Norway is a hydropower nation, with around 
96% of its electricity production generated 
hydropower (SSB 2016b), and this 
production volume is set to increase . As of 
2012, Norway has enacted an electricity 
certificate scheme with Sweden, aiming to 
increase the total annual production of 
renewable electricity by 28.4 TWh by the end 
of 2021. As of January 1st, 2016, Norway and 
Sweden are half-way to the production 
target, with an increased annual production 
of nearly 14 TWh (NVE & 
Energimyndigheten 2016). The new 
production is expected to come mainly from 
small, mini and micro-scale hydropower and 
wind power, as these technologies are 
relatively mature and have the lowest costs 
(NVE 2015c). By the end of 2015, The 
Norwegian Water Resources and Energy 
Directorate (NVE) had approved new 
projects comprising 16.3 TWh annual 
production of hydropower (NVE 2015a) and 
almost 20 TWh annual production of wind 
power (NVE 2015b). The limited available 
volume of electricity certificates will not 
allow all of these projects to be developed 
and receive certificates, and such projects 
will most likely not be economically viable 
without the income from electricity 
certificates. This master thesis explores the 
question of which of these small hydropower 
projects (SHP, 1-10 MW) are more likely to 
be implemented, and the factors that affect 
this selection.  

The motivation behind this thesis is to make 
use of the past ten years of experience from 

small-scale hydropower project 
development in the future planning and 
decision making. Table 1 shows the number, 
capacity and estimated average annual 
production of small hydropower plants that 
are in operation, license applications filed to 
NVE and being processed, and projects that 
have received license, but have not yet been 
built. It shows that there are more small 
hydropower production projects in the 
pipeline than there are in operation. Based 
on the political goals of increasing the power 
production, and the fact that hydropower 
remains one of the most cost-efficient 
renewable power production solutions, a 
high number of new small-scale hydropower 
projects may be developed. In spite of this 
there will be a selection among the projects 
available. This raises questions of which 
lessons can be learned for the future project 
developments from the past ones, and which 
future projects will most likely have a low 
cost per production unit. 

Table 1: Status for small-scale hydropower projects in 
Norway. 

  No. of 
plants  

 Capacity 
[MW]  

 Prod. 
[TWh/yr] 

Installed  614 2067 8.5 
License 
applications  

331 1105 3.3 

License 
received, not 
built  

335 1151 3.6 

Installed capacity as of 1.1.2015(NVE 2015e). 
License applications under  process by NVE as of 

29.11.2015 (NVE 2015a). Projects that have 
received license, but are not yet built, as of 

November 2015 (NVE 2015d). 

No published journal articles have been 
found on this topic in Norway. Stokke (2014) 
completed a master thesis on deviations 
between budgeted and actual investment 
costs for small hydropower projects, 
identifying a trend of optimistic budgeting by 
project developers. The main issues leading 
to higher costs were related to project 
planning, in particular related to soil 
mechanics at dam/intake and in the 
waterway and time duration of the 
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construction period. Haga and Espegren 
(2013) conducted a similar study for NVE 
with more quantitative data and reached 
similar conclusions.  

1.1 APPROACH AND STRUCTURE 

This thesis expands the work from the 
aforementioned studies. It is based upon the 
same type of data as in Haga and Espegren 
(2013), but with more recent data and a 
more extensive record. The thesis has two 
main objectives. The first is to conduct a 
numeric analysis of deviations between 
budgeted costs and investment costs, and to 
identify and quantify factors that affect 
investment costs. The research questions to 
be answered in the first part are:  

Is there a significant trend of higher 
reported costs than budgeted in the 
license application? 

Do the following four factors have a 
significant effect on investment costs? 
(Construction year, construction time, 
geography and ownership of the 
hydropower project). 

The second objective is to develop a cost-
estimation tool for small-scale hydropower 
projects (1-10 MW). The research question 
to be answered here is: 

Can an investment cost estimation model 
be developed that has higher accuracy 
than budget estimates from license 
applications? 

The tool is built upon experience-based data, 
and is meant to be applied to projects that 
have received the required license, but have 
not yet been built. The tool should provide an 
estimate of investment cost for the projects, 
along with an estimate of its uncertainty.  

The goal for the cost estimation tool is for it 
to be accurate enough to suffice as a bench-
marking tool for license owners, investors, 
decision makers, and the public. It could be 
used together with the budget-estimates of 
each hydropower project as a measure of 
uncertainty of the project costs, and as an 
indication of how different/similar the 
project is to the projects upon which the cost 
estimation model has been developed. 

It can also be used as a cost-ranking tool to 
compare several hydropower projects, 
ultimately providing useful information to 
the public on which projects are likely to be 
the most cost-efficient. 

The structure of the thesis is as follows: 
Following this introduction, Chapter 2 
provides a background for the current state 
of the Norwegian small hydropower sector. 
Chapter 3 presents an in-depth literature 
review of former studies relevant for the 
analysis in this thesis. Chapter 4 presents the 
theory and methodology on which the thesis 
is based. It introduces basic information on 
small-scale hydropower in Norway, 
including cost elements of hydropower 
projects, and presents the relevant 
methodology for statistical analysis used in 
this thesis, collection and handling of the 
data used in the analysis, and finally a 
detailed documentation of how the data was 
analyzed. Chapter five presents some main 
characteristics of the portfolio of projects in 
the collected dataset which gives a context 
for the results of the analysis. In chapter six, 
the main results are presented according to 
the structure of the research questions. In 
chapter seven the results are discussed with 
regards to previous literature, 
interpretation, internal and external validity 
of the findings. Chapter eight gives a 
conclusion of the work done in this thesis.
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2 MOTIVATION: STATUS FOR 
SMALL HYDRO IN NORWAY 

The following section will present recent 
developments in the Norwegian small-scale 
hydropower market that are important in 
the context of developing a cost estimation 
tool. It will also explore the motivation 
behind developing a cost estimation tool for 
small-scale hydropower projects in Norway 
in greater detail. 

2.1 RECENT CHANGES IN THE SMALL 
HYDRO SECTOR 

2.1.1 Electricity price development 

One recent development within the 
hydropower sector is increased hesitation on 
the part of small hydro license-holding 
owners to invest in the realization of their 
hydropower projects. This stems from a 
decrease in electricity prices in Norway over 
the past five years, and low expected future 
electricity prices, which make investments in 
new electricity generation less attractive.  

To shed light upon the falling investment 
rate and profitability in the market, it is 
valuable to observe electricity price 
development. Figure 1 shows the 
development of the electricity price from 
2001. Although there is no clear trend in the 
price development over the whole period, 
the past five years show a gradual decrease 
in prices, which has disincentivized investors  

It may also be useful to look at how the 
market views the future electricity price. 
Financial contracts for future electricity 
deliverances are traded for up to five years 
ahead in time. Such contracts are the best 
estimate of future electricity prices, 
according to the knowledge existing in the 

market. Figure 2 provides a snapshot of 
market expectations for the next four years. 
The market estimates prices around 200 
NOK/MWh - more than a third lower than 
the average price between 2005 and 2010, 
and about one fourth lower than the average 
price between 2011 and today. This is 
another indication of a market in decline, 
which makes investors more pessimistic. 

2.1.2 Change in ownership 

A second development related to 
investments is a growing interest in small 
hydro from foreign capital funds. The 
German investment fund Aquila Capital 
recently acquired Småkraft AS and Norsk 
grønnkraft AS, some of the largest owners of 
small hydro plants. These acquisitions made 
the company the largest player in the 
Norwegian small hydro sector. Scottish-
owned SL Capital Partners LLP recently 
acquired Nordic Power, the owner of 13 
small hydro plants.  

Norwegian hydropower companies are now 
pulling out of small hydro because the 
profitability is lower than their required rate 
of return. Many of the foreign companies 
now looking to invest in Norway have high 
equity and are interested in secure, long-
term investments with a lower required rate 
of return.  

This combination of circumstances may lead 
to increased sales from Norwegian small 
hydro owners to foreign companies. There 
may also be a shift from new investments 
being driven by local Norwegian owners 
seeking profitable investments using their 
own and local capital, to investments being 
driven by foreign companies, demanding 
lower rates of return. 
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Figure 1: System price for Nordpool day-ahead market 2001-2016, adjusted for inflation. Real prices as of April 2016 
(Nord Pool 2016; SSB 2016a).  

  

Figure 2: Futures trading prices from Nasdaq OMX, snapshot from trades made on Wednesday May 11th 2016 . Each 
column shows trade fixing prices for contracts months, quarters and years ahead (NasdaqOMX 2016) 

2.1.3 Recent developments of small-
scale hydropower costs 

There are also factors on the cost-side that 
lead to lower profitability for new small 
hydro projects. Head of Småkraftforeninga 
Knut Olav Tveit points to two framework 
conditions lowering the potential 
profitability for investors (Aspen 2014). 
First, many of the pending projects are in 
areas with grids that lack the capacity for 
their power. Within the current framework 

the owners must pay their share for grid 
investments caused by their initiative, 
increasing the investment cost. Second, NVE 
has increased their demands for minimum 
flow of water in rivers with a power plant is 
in operation. This decreases the load 
duration (the number of hours during the 
year with enough river discharge for the 
power plant to produce electricity) for the 
plant, ultimately lowering profitability. Thus, 
to a certain extent these two conditions 
contribute to a lower rate of return. 
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2.2 MOTIVATION FOR DEVELOPING A 
COST ESTIMATION TOOL FOR 
SCREENING OF PROJECTS 

Currently, there are no easily accessible cost 
ranking tools for small hydropower projects 
in Norway that have received licensure. The 
public has access to recent license 
applications at NVE’s webpages(NVE 2015a), 
which provide budgeted investment costs 
and estimated average yearly production. 
Several factors make it difficult to compare 
the attractiveness across all projects, 
including: 

 Varying application dates (license 
applications dating back to 2005), 
prevent the costs of most of the 
applications from factually representing 
the actual costs of today. 

 the quality of the budgeting will vary due 
to the fact that some applications are 
carried out by owners with limited 
experience, some carried out by 
companies with experience from other 
small hydropower projects. This is 
discussed later in this chapter. 

It would be ideal to have a cost ranking to 
provide accurate and aligned estimates of 
investment costs for the projects that have 
received license. 

There does exist a more general tool to 
assess water resources, their potential and 
estimated investment costs for possible 
small hydropower projects. NVE carried out 
a resource assessment for small hydropower 
projects in Norway in 2004 (NVE 2004). This 
assessment was done with use of digital 
spatial analysis methods to calculate the 
potential of small-scale hydropower projects 
with a production capacity between 50 and 
10 000 KW. It identified possible projects 
with a specific investment cost lower than 3 
and costs between 3 and 5 NOK/kWh. The 
result revealed a possible potential of 9467 
schemes. 4128 schemes were discovered 
having estimated costs lower than 3 
NOK/kWh and an estimated average yearly 

production of 18 TWh. 5339 schemes were 
discovered having estimated costs between 
3 and 5 NOK/kWh, and an estimated average 
yearly production of 7 TWh. In addition to 
this resource assessment meant to identify 
projects smaller than 1000 kW, an 
assessment was conducted for possible 
hydropower projects larger than 1000 kW in 
the 1980s with the “Samlet plan”. Under this 
assessment, possible projects were 
identified and evaluated in more detail, with 
regards to production- and economic 
potential, environmental considerations, etc. 
The results from the “Samlet plan”-report 
was regarded by the report of NVE (2004) as 
being more accurate than their purely 
quantitative approach, so the results from 
“Samlet plan” are also included in the report. 
They report 7 TWh from the “Samlet plan” as 
having lower costs than 3 NOK/kWh. In total, 
the report showed a potential of 25 TWh of 
new small-scale hydropower projects with 
an investment cost lower than 3 NOK/kWh, 
with around 5 TWh of it having potential of 
being commissioned within a ten-year 
period. 

The purpose of NVE’s resource assessments 
was to help the public to identify possible 
projects, to be a basis for developing local 
energy plans, for local authorities to make 
land use plans, and for the central authorities 
to get an overview of the overall potential of 
water resources in Norway. The analysis 
does not take ownership arrangements into 
consideration, nor does it incorporate 
environmental considerations. It was not 
intended to evaluate specific projects, and 
therefore has limited value if the aim is to 
compare different license applications and 
their attractiveness. 

NVE’s resource assessments give an 
overview of potential projects, but are not 
linked to projects that are actually in the 
pipeline of the license process. The license 
applicant may choose a different river span 
than suggested by the spatial analysis, may 
have come up with more detailed 
hydrological data from assessments, and 
may also need to change the specifications of 
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the hydropower project according to 
demands from the license authority itself, 
NVE. Thus, this tool cannot be used to 
evaluate the possible potential of a specific 
licensed project. 

The tool used by project owners for 
estimating investment costs for their 
projects, is NVE’s cost base for small 
hydropower plant (2010a). It provides cost 
data for small hydropower projects of high 

accuracy, and is updated each year with an 
index for the various components. Although 
it has high accuracy, the guide is too detailed 
to be used in an overall screening of 
hydropower projects akin the one this thesis 
is meant to carry out. Still, the guide will be 
useful to validate the model created in this 
thesis. 

.
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3 LITERATURE REVIEW 

In this section, relevant literature is 
presented to put the analysis in a context. 
The first section describes in greater detail 
the two studies found on cost analysis of 
Norwegian small-scale hydropower. The 
second section presents an in-depth 
literature review of cost estimation 
modeling. 

3.1 RESEARCH ON BUDGETED VERSUS 
REPORTED COSTS FOR SHP IN 
NORWAY 

Stokke (2014) assessed 24 small 
hydropower projects and used a survey to 
collect data from the owners on deviations 
between budgeted investment costs and 
actual costs. Stokke identified a trend of 
optimistic budgeting from the owners in 
their license applications. The report shows 
that 23 out of 24 hydropower plants in his 
analysis had higher actual costs than 
budgeted costs. The various components of 
the projects had errors of different 
magnitude. The owners in his study reported 
that the largest errors were related to 
planning and administrative costs, 
intake/dam and electro- mechanics.  

In an internal report for NVE, Haga and 
Espegren (2013) did an analysis of the 
deviation between budgeted costs and 
reported costs for 74 small-scale 
hydropower plants. They used data from 
hydropower plants commissioned between 
2008 and 2013, with use of budgeted costs in 
license applications and actual costs 
reported from the plant owners. They found 
that 83% of the hydropower projects in their 
study had higher actual investment costs per 
kWh average production than budgeted in 
the license applications. For 60% of the 
power plants, the investment costs ended up 
more than 0.5 NOK/kWh over budgeted 
investment cost, and more than 1.5 
NOK/kWh over the budgeted cost for 20% of 
the plants. As seen in Table 2, their analysis 

indicates that there is a trend of 
underbudgeting in the early-phase project 
planning, with the highest deviations in costs 
for the intake.  

Table 2: Deviations between budgeted and actual 
costs for small hydropower projects in Haga and 
Espegren (2013).  n = 58. 

Expected 
deviation 

Median 
difference 

Mean 
difference 

Intake 44.1% 36.9% 
Waterway 22.7% 13.6% 
Power station 1.8% -1.4% 
Total 16.6% 13.6% 

 

They found that the median deviation 
between budgeted total costs and actual total 
costs was 0.806 NOK/kWh, with a standard 
deviation of 0.858 NOK/kWh for the 74 
projects in the dataset. These are important 
findings that suggest that more efforts 
should be put into accurate budgeting. 

From in-depth interviews with some of the 
power plant owners, they found that the 
projects in many cases had: 

 Lower annual production than planned 
(which itself leads to a higher cost per 
kWh estimated annual production),  

 longer planning- and construction period 
than planned 

 unpredictable entrepreneurial costs for 
intake and waterway due to  
o insufficient knowledge about 

geological and geotechnical 
parameters on the project site in the 
early phase planning 

o changes in the intake and waterway 
detail-plans  

These three factors may or may not be 
representative for all power plants, but are 
common and therefore important to take 
into consideration. 
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3.2 COST ESTIMATION MODELING 

Cost estimation is defined by GAO (2009 in 
Preface, p. i) as  

“the summation of individual cost 
elements, using established methods and 
valid data, to estimate the future costs (…), 
based on what is known today.” 

Cost estimation is carried out in any phase of 
a project, for example in pre-feasibility, 
feasibility, detail planning, or in tenders. The 
accuracy of cost estimation estimates 
increases with the level of detail of the 
project plan. For the scope of this thesis, the 
focus is on cost estimation on a pre-
feasibility or feasibility-level of detail.  

In this section, published academic literature 
dealing with cost-estimation of 
infrastructure projects will be reviewed 
(NVE has its own early-phase cost estimation 
methodology which will be presented in the 
next chapter). The section includes cost 
estimation methods for hydropower 
projects, as well as methods from other 
industries. 

Cost estimation models reviewed here make 
use of experience-based, quantifiable data in 
some form, which can be utilized for 
predicting costs for new projects. Such 
models may be based upon various methods, 
such as statistical regression, fuzzy logic, 
artificial neural networks, case-based 
reasoning, factor and pattern time series 
analysis, genetic algorithm and particle 
swarm optimization (Cavazzini et al. 2016; 
Elfaki et al. 2014; Gordon 1983; Kim et al. 
2004; Kim et al. 2012; Smith & Mason 1997; 
Trost & Oberlender 2003; Tuhtan 2007; 
Wang et al. 2012; Ökmen & Öztaş 2010). 

There does not seem to be a broad consensus 
in the literature which model is superior. 
Some studies find that networks can have 
higher precision than other methods when 
little guidance is given in constructing the 
model (Gunduz & Sahin 2015; Kim et al. 
2004; Smith & Mason 1997). Multiple 
regression models may perform better when 

they are well-defined, when the model 
developer has knowledge of the underlying 
relationship between variables, and when 
the relationship between the cost predictor 
variables and the cost response has a 
functional form without discontinuities 
(Smith & Mason 1997).  

Kim et al. (2004) compared the performance 
of three different types of cost estimation 
methods. The methods tested were multiple 
regression, neural network and case-based 
reasoning. The three methods were applied 
to prediction of construction costs for 
residential buildings. They report a mean 
absolute error rate (abbreviated to MAER 
henceforth) for each model type. The error is 
calculated as the mean absolute deviation 
between the predicted values and the 
reported costs, divided by the reported costs. 
The multiple regression model had a MAER 
of 6.95%, the best neural network model 
gave an MAER of 2.97% and the case-based 
reasoning model gave a MAER of 4.81%.  

Smith and Mason (1997) carried out a 
comparison between multiple regression 
and neural network models for cost 
estimation on simulated and real data. The 
simulated data was created using a third 
order function and by adding noise. Here 
they tested the neural network model 
performance against three different 
regression models, namely a first-order 
model, a second order model, and a model 
fitted using the same functional form as from 
which the data was generated. In this 
experiment, the second and third ordered 
models outperformed the neural network 
mode. The neural network model performed 
better than the first-order term regression 
model.  

In the real data sample problem, the two 
methods were tested on prediction of costs 
for pressure vessels for chemical production, 
based on 20 cases. When tested on the real 
data, a first order regression model was 
fitted with three predictor variables, on a 
data subset of 16 observations (where four 
observations had been excluded due to 
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extreme values). The performance of the 
multiple regression model and the artificial 
neural network models was tested using a 
leave-one-out cross-validation procedure. 
The performance test showed a significantly 
better performance of the neural network on 
all test parameters. While the neural 
network model had a MAER of 10.72%, the 
regression model had a MAER of 30.39%. 

The authors commented on the choice to not 
explore interactions and second order 
models in the multiple regression model 
selection for the real dataset: In this case, the 
authors had no a priori knowledge of the true 
relationship between costs and physical 
features. There are a large number of 
possible sub-models which can be tested 
once interaction terms, second or third order 
terms and transformations are included as 
possible predictor variables. The authors 
argue that constructing and testing such 
complex regression models based on 
random selection of higher order terms 
and/or data transformation defeats the 
purpose of cost estimation models because 
they should be simplistic and require little 
insightful knowledge of the physical features 
and their interactions. However, with the 
computation capacity of modern statistical 
computer software, a model developer 
should be able to develop complex models 
which can be reduced by stepwise regression 
methods, requiring little computational time 
(to a certain limit).  

3.2.1 A closer look at former cost 
estimation studies for 
hydropower projects 

There have been a number of articles 
published concerning cost estimation and 
reducing uncertainty of cost estimates, 
which are of relevance for this thesis. 
Research with a more broad approach to cost 
estimation, levelized cost of energy (LCOE), 
uncertainty and sensitivity analysis for 
small-scale hydropower projects, include 
Merrow and Schroeder (1991), Bacon and 
Besant-Jones (1998), Jenssen et al. (2000), 

Kaldellis et al. (2005), and Kaldellis (2007). 
An extensive volume of research has been 
carried out on cost estimation methods for 
partial costs for hydropower projects, which 
will be explained in greater detail in the 
following section. 

3.2.2 Partial cost correlations 

The earliest study found considering cost 
estimation for hydropower was Gordon and 
Penman (1979). They established a cost 
estimation model that has been the basis of 
the majority of the subsequent research on 
cost estimation modeling. Based on analyses 
of 64 estimates of projects that were to be 
installed at existing dams, they developed 
cost equations, called “correlations” in the 
literature, for hydropower plants up to 5 
MW. According to Cavazzini et al. (2016), this 
was the first study which established a 
correlation between the cost of electro-
mechanical equipment, power, and 
hydrological head. The correlation equations 
have the following basic form: 

 

where  is the electro-mechanical 
equipment cost,  is the power capacity and 

 is the net head. The ,  and  are 
coefficients found using statistical regression 
on a dataset of hydropower projects.  

Gordon later published several other studies 
using the same methodology; Gordon (1981) 
did a similar study on hydropower hydro 
power station costs between five and 1000 
MW with heads between 10 – 300 m. Gordon 
(1983) (as cited in Singal et al. 2010 p. 117) 
developed a methodology for early-phase 
estimation of project costs for hydropower 
projects. The methodology in the latter paper 
developed was based on a statistical analysis 
of data from 170 projects. The estimation 
model had head and capacity as the main 
input parameters, was calibrated for large 
hydropower projects with medium- to high 
hydrological heads, and had a measured 
estimation accuracy of . Gordon 
and Noel (1986) developed a methodology 
for estimating minimum costs for new small-
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scale hydropower plants, based on analysis 
of cost data from 141 projects. (It was not 
possible to access the full-texts of any of the 
above-cited publications by Gordon. 
Information about the publication was 
retrieved from other papers citing these 
publications, and from the abstracts of the 
publications, where they were available. It 
was still worthwhile to mention them.) 

Singal et. al. published a series of papers on 
cost estimation of small hydropower 
schemes in India, relying on the same basic 
methodology of Gordon. Singal and Saini 
(2007) developed a cost equation for small-
size, low head run-of-river projects with 
hydrological head between six and 15 meters 
and installed capacity of one to ten 
megawatts, with an accuracy of . Singal 
and Saini (2008) developed cost-estimation 
equations for small, low-head dam-toe 
hydropower plants based on the number of 
turbines, a hydrological head of 3-20 meters, 
and a capacity of 1-5 MW. Singal et al. (2010) 
developed a set of cost estimation equations 
for projects with heads in the range of 3-20 
m and capacity between 1-5 MW with the use 
of statistical analysis. Their model validation 
showed an accuracy of . Mishra et al. 
(2012) developed a cost estimation equation 
for electromechanical equipment based on 
hydrological head and installed capacity. 
This is based on a log-log-transformed least 
squares regression analysis. They reported a 
prediction accuracy of . 

Ogayar and Vidal (2009) developed a cost-
estimation model for electro-mechanical 
equipment for small hydropower plants in 
Spain based on the methodology of Gordon 
and Penman (1979). They developed 
individual models for the three main turbine 
types: Pelton, Francis and Kaplan. They also 
did a comparison with a list of studies using 
the same model approach (Anagnostopoulos 
& Papantonis 2007; Kaldellis et al. 2005; 
Kaldellis 2007; Montanari 2003; Sheldon 
1981; Willer 1991). The cost estimation 
model of Ogayar and Vidal (2009) had an 
error range between 19.52% and -9.50% for 
the cases in their study, and their model 

performed better than the cost equations 
proposed by the papers that had been 
reviewed. 

Aggidis et al. (2010) had a similar model 
approach as Ogayar and Vidal (2009) and 
made cost-estimation equations for turbines 
and electro-mechanical components in 
small-scale hydropower schemes in the UK. 
The input variables in Aggidis et al. (2010) 
were: hydrological head, discharge, turbine 
type, installed capacity and partial costs. 
They report prediction accuracy of the 
equations down to , and up to  
for different turbine types, and  
accuracy for electro-mechanical equipment. 

Zhang et al. (2012) developed a similar set of 
cost estimation equations for total project 
costs and electro-mechanical costs for 
different turbine types in the US. Their cost-
equations were also based on the 
methodology of Gordon and Penman (1979). 
They reported a very low accuracy of the 
total project cost equation due to a small 
sample size. The regression results for the 
electro-mechanical costs had also a lower 
accuracy than that of many other studies. 

Cavazzini et al. (2016 p. 749) attempt to 
develop the cost correlation methodology 
further by adding turbine discharge as a 
third cost determining variable in the cost 
equation. The model is estimated using a 
Particle Swarm Optimization method. They 
present a thorough literature review of 
formerly developed cost equations, where 
many of the above-mentioned authors are 
cited. Their model performed with mean 
errors below  for electro-mechanical 
equipment for Pelton and Francis turbines 
and below  for Kaplan turbines. Their 
model outperformed the other studies 
reviewed in the paper, with lower mean 
errors. 
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3.2.3 Cost-estimation for small 
hydropower model using linear 
regression and artificial neural 
networks 

Gunduz and Sahin (2015) developed and 
tested two cost estimation models for small 
hydropower projects based on a subset of 
physical features of the projects. They built a 
multiple regression model and compared it 
to a model based on the neural network 
method. The physical feature variables they 
used as initial input variables were: Project 
cost, installed capacity, average discharge (of 
river), project design discharge (turbine 
discharge), project design head, length of 
tunnel, length of channel, length of 
transmission line, diameter of penstock, 
length of penstock, five year occurrence 
flood discharge, hundred year occurrence 
flood discharge, and catchment area of basin. 
The dataset contained 54 projects, and the 
model performance was validated on a 
selection of five projects. 

The full multiple linear regression model in 
this study is a first-order model, with all of 
the above-mentioned variables, with no 
interaction terms, squared terms or 
transformations of variables. They 
conducted a backwards stepwise selection 
where coefficients with high p-values were 
omitted, step by step. Their final model was: 

 

The model validation was done by 
calculating the mean absolute prediction 
error for the five validation sample projects, 
based on the formula above. The best subset 
regression model gave a mean absolute 
prediction error rate of 9.94% for the 
validation samples, while the best artificial 
neural network model gave a mean absolute 
prediction error rate of 5.04%.  
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4 THEORY AND METHODS

This chapter begins by introducing of some 
of the key characteristics of small-scale 
hydropower and the setting in which the 
analysis was carried out. In the succeeding 
sections the methodology for data collection, 
data handling and data analysis is described. 

4.1 REGULATORY, TECHNICAL AND 
ECONOMIC CHARACTERISTICS OF 
SMALL-SCALE HYDROPOWER IN 
NORWAY 

In this section, relevant concepts for small-
scale hydropower (SHP) in Norway will be 
introduced to give the reader a notion of the 
framework in which the analysis in this 
thesis was conducted. The section includes a 
brief explanation of the legislative 
framework for small-scale hydro, central 
components of small-scale hydropower 
plants and typical cost characteristics of 
small-scale hydropower plants.  

In order to build and establish small-scale 
hydropower schemes in Norway, one is 
required to apply for a license, according to 
Section 8 of the Act relating to river systems 
and groundwater [Act No. 82 of November 
24th 2000: the Water Resources Act]. The 
main criterion for receiving a license for such 
measures is given in section 25, which states 
that  

“A licence may be granted only if the 
benefits of the measure outweigh the 
harm and nuisances to public and private 
interests affected in the river system or 
catchment area” (OED & NVE 2007) 
Section 25 

NVE is in charge for the administrative 
procedure of granting licenses for small-
scale hydropower schemes. The license 
application process requires applicants to 
submit a detailed plan and budget for the 

hydropower project (NVE 2016c). One of the 
assessment criterions is the economy of the 
project (which NVE considers in each case 
according to section 25 of the water resource 
act).  

SHP plants usually have little or no water 
magazine capacity. The schemes comprise of 
the following main components: 

 Dam and/or intake, in some cases canal 
 Waterway: penstock, tunnels and/or 

shafts 
 Power station building with turbine, 

generator, transformer (sometimes in a 
separate building structure) and control 
equipment 

 Tailrace leading the water from the 
turbine back to the stream 

 Connection line to the nearest local or 
regional transmission network 

 Roads to the power station, and usually 
to the intake, and sometimes along the 
penstock. 

For more details on physical features of SHP 
plants, see ESHA (2004) or NVE (2010b). 

The typical cost shares of components will 
vary according to the characteristics of the 
hydropower plant. As shown in Table 3, the 
waterways can be a major cost driver, 
followed mechanical equipment and electro-
technical equipment. According to a recent 
publication from NVE (2015c), SHP with a 
hydrological head lower than 300 meters 
usually have an investment cost distribution 
of 59% related to general civil works (which 
includes waterway, dam, intake, power 
station building and access roads), 24% 
related to mechanical equipment and 17% 
related to electro-technical equipment. High-
head hydropower plants, including SHP, 
have a higher share of costs related to civil 
works of 69%, 13% related to mechanical 
equipment and 18% related to electro-
technical equipment. 
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Table 3: Cost components for small-scale hydropower plants (1-10 MW), from (NVE 2010b) 

Cost component Cost share 
Access roads to power station and intake 1 - 5%
Dams and intakes 5 - 10%
Waterways (penstocks, tunnels, shafts, and/or canals) 10 - 50%
Mechanical equipment: Turbines, turbine control, valves, etc. 20 - 30%
Electro-technical equipment: Generators, control- and device installations, transformers 15 - 25%
Power station buildings 2 - 5%
Power line connections 5 - 15%
Administrative work, contracts and planning, detail project planning, construction management 7 - 10%
Water rights (“fallrettighet”), miscellaneous costs 2 - 5%

NVE has developed a cost basis for 
hydropower projects. It was first released in 
1982, was initially revised in 1987, and has 
been revised every five years since 1990. In 
2010 the first cost basis was released for 
small-scale hydropower, projects with 
installed capacity below 10 MW (NVE 
2016b).  

The cost basis is intended to provide 
hydropower license applicants and project 
developers proper cost estimates for early-
phase planning of hydropower projects. NVE 
also use it as a cost reference and estimation 
tool when assessing the economy and budget 
estimates in license applications.  

The cost base contains unit cost estimates for 
parts and materials for all components of 
small hydropower schemes, as well as 
“expert” advice and tips for minimizing costs. 
It has a range of unit cost equations for 
various components of hydropower projects, 
including (NVE 2012; NVE 2016b): 

 unit price for dam length based on dam 
height for various types of dams,  

 total price for the intake based on 
discharge (m3/s),  

 power station (building) costs based on 
discharge and hydrological head for 
power stations in the open and 
underground,  

 unit cost per meter canal for rock 
blasting and in soil based on maximum 
discharge,  

 unit cost per meter tunnel 
drilling/blasing and shaft drilling based 
on tunnel cross-section area and shaft 
diameter,  

 generator, transformer and control 
equipment costs based on active effect 
(kW) capacity,  

 unit costs per meter power line based on 
mast type, turbine costs per installed 
effect (NOK/kW) based on discharge 
capacity differentiated for net 
hydrological head and turbine type 
(Pelton, Francis, Kaplan and others),  

 unit cost per meter for different penstock 
types based on penstock diameter and 
pressure class,  

 hatch price based on hatch area 
differentiated per hatch type,  

 cost per installed effect (NOK/kW) for 
different turbine types and hydrological 
head for complete set of electro-
mechanical equipment based on 
maximum discharge. 

4.2 DATA COLLECTION 

The investment cost analysis and cost 
estimation tool development in this thesis is 
based upon data material collected from 
NVEs electronic archive. Four sources of data 
were used, and the content and 
considerations for each source are given 
below. 

4.2.1 Budgets and project plans 

The data for budgeted costs and other 
features of the plans for the SHP-plants was 
reviewed and collected from four types of 
documents in NVE’s electronic archive. 
These include: NVE’s internal license 
application database, license applications, 
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revisions of the license applications and the 
final decision documents from NVE.  

The dataset was built upon an extract from 
NVEs license database, which contains main 
data from license applications. Data used 
from this source were: name of the project, 
license ID, county, installed capacity, 
estimated average annual production, 
budgeted cost, specific cost, date of budget 
cost. This was accessed by email 
correspondence with Erlend Støle Hansen 
November 4th 2015. 

In the initial data collection process, detailed 
project data from 82 of the total 153 projects 
were collected from the license documents. 
Projects had often undergone changes 
during the license application process. In 
some cases these changes had not been 
updated in the license database. For these 
cases, the budgeted costs, annual production 
estimate, installed capacity and cost date 
were cross-checked against the license 
database, and revised if the database record 
was not the latest revision.  

In cases where NVE had detected large 
deviations between the budget estimate in 
the license application and their own 
estimate, the latter was used.  

For the rest of 71 projects, the data was 
cross-checked and revised if the cost date or 
other data were missing. 

4.2.2 The form for commissioning 

Once a hydropower project has been 
commissioned, the owners are required to 
submit a form to NVE in which they state the 
date of commissioning, and details about the 
physical properties of the scheme, as well as 
investment costs. This was the primary 
source on which the cost analysis and cost 
estimation models were based. 

The following data has been collected from 
the forms: Date of commissioning; installed 
capacity; annual average production 
estimate; intake-, waterway-, power station- 
and total costs; gross head; dam dimensions; 

waterway type, properties and dimensions; 
turbine types and -properties.  

In 30 out of the 153 forms, the partial costs 
had not been reported. The accuracy of the 
reported costs range from no decimals to 
two decimals (MNOK).  

In some cases, the dam/intake, turbine type 
dimensions were not reported. In such cases, 
the detail plan for the project was consulted 
to find these values. This plan the plan must 
then be accepted by NVE in all SHP projects 
prior to construction start-up. 

4.2.3 Construction start-up date 

The reported costs were to be transformed 
from nominal prices to real prices via index 
regulation. The construction start-up date 
has been used as a temporal cost correction 
point for each project. NVE has a record of 
these dates in an internal hydropower 
database. The construction start-up date was 
missing for 58 out of 153 SHP-plants. For 
these cases, the date was supplemented by 
accessing electricity certificate (“green” 
certificate) applications, in which the owners 
are required to document the construction 
start-up date. The construction start-up date 
could not be found for two projects out of the 
153 in the record. 

4.2.4 NVEs cost index for hydropower 
projects 

The index regulation of budgeted costs and 
reported costs was based on the official cost 
index for hydropower projects which is 
released annually by NVE (2016a). This is 
adapted to small-scale hydropower plants, 
and high-pressure hydropower plants (> 300 
m gross head), with the average partial cost 
shares for each type according to the cost 
report from NVE (2015c). The cost index 
values can be found in Table 14 in Appendix 
1: Cost index for small-scale hydropower 
plants. 
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4.3 DATA HANDLING 

The project data was recorded in a single 
data table in Excel. Once the data collection 
was finished, the data was loaded into the 
open source statistics program R. All 
recoding of variables, as well as variable 
algebra was done using R. The packages used 
here include the core stats package (R Core 
Team 2015) and the coding grammar 
package dplyr (Wickham & Francois 2015). 
All R coding has been documented in 
Appendix 5: R code . 

All plots produced in R were made using the 
ggplot2-package (Wickham 2009). 

4.4 BRIEF INTRODUCTION OF THE 
STATISTICAL METHODS 

The analysis in this master thesis relies upon 
location tests and multiple linear regression. 
A brief introduction to the methods used will 
be presented in the following section. 

4.4.1 Two-sample tests 

Student’s t-Tests (t-test) and Mann-Whitney-
Wilcoxon tests (Wilcoxon tests), and variants 
of these were both used for:  

 Two-sample location tests on difference 
between two independent samples, such 
as the prediction model estimates and 
the budget estimates of investment costs 

 Paired sample tests on difference 
between two dependent samples, such as 
the budget estimates and the reported 
costs 

The t-test is in general valid only under the 
assumption that the population is normally 
distributed around the mean (for example 
the mean difference between budget 
estimates and actual costs). When dealing 
with a sample from the population, this is 
assumed to follow a t-distribution, which is 
dependent upon the sample size. If the 
distribution of the sample does not follow 
the t-distribution, the test is not valid. In 

order to test for this validity, the Shapiro-
Wilks test was used, which is reported to be 
the most reliable test for normality (Razali & 
Wah 2011). If the p-value for this test is 
below the  level of significance, then the 
null-hypothesis that the observed data is 
drawn from a normally distributed 
population is rejected.  

The assumption of normality was frequently 
violated in the tests conducted in this thesis. 
As a solution to this, non-parametric 
methods can be more precise and effective 
when the underlying assumptions are not 
satisfied for methods based on normal 
theory (Hollander et al. 2014). The term non-
parametric refers to the fact these methods 
are not relying on assumptions of underlying 
probability distributions for the population. 
Therefore, Wilkoxon tests were utilized 
alongside the t-tests for all location tests. The 
underlying assumption for the unpaired 
Wilcoxon test is that the distributions of the 
two samples are have identical probability 
functions. For the paired test the assumption 
is that the distribution of the differences is 
symmetric. 

All the above-mentioned tests were 
performed as two-tailed hypothesis tests in 
this thesis, which entails that the null-
hypothesis is that the expected values (mean 
or median) for two independent samples are 
equal, the difference between two dependent 
samples equals zero, the mean of the 
estimated linear regression coefficient 
equals zero. The alternative hypothesis is 
that the expected values are not equal, and 
that the expected difference or estimated 
coefficient is not zero.  

The null hypothesis was rejected if the test 
statistic had a larger value than the critical 
value for rejecting the null-hypothesis for the 
given level of significance. For more details of 
these tests, see Løvås (2010 Ch. 8.) and 
Hollander et al. (2014 Ch. 3-5) 

A formal set-up of the hypothesis tests is 
stated below. This is an example of a t-test for 
paired samples: 
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H0:  vs. H1:  

Where H0 is the null-hypothesis that the 
population difference  equals zero, and the 
H1 is that the difference is not zero.  is 
rejected if the test statistic . The 
level of significance for all hypothesis tests in 
this thesis is set to . 

The t-Test was conducted using the t.test-
command, the Shapiro-Wilks test using the 
shapiro.test-command and the Wilcoxon 
test using the wilcox.test, all in the stats 
core package (R Core Team 2015).  

T-tests are also used frequently in the thesis 
for the significance of regression model 
coefficients. Here, the underlying 
assumption is that the residuals, i.e the 
difference between the observed sample 
values and the fitted values, are normally 
distributed around zero. 

4.4.2 Analysis of variance and 
Kruskal Wallis Rank Sum Test 

For instances with more than two groups, 
tests for analysis of variances (ANOVA) were 
conducted. This method was also frequently 
used for assessing linear models and their 
predictor variables..  

The one-way ANOVA tests whether the 
variance within each group is similar to the 
variance across all groups. The one-way 
ANOVA relies upon the assumptions that the 
within-group standard deviation is equal, 
and that the observations within each group 
are normally distributed. 

The null-hypothesis is that the expected 
value is equal for all groups, the alternative 
hypothesis is that at least one of the group 
have different expected value compared to 
the others, stated as: 

  

At least one  differs from the rest  

In case the observations within each group 
are not normally distributed, the Kruskal-
Wallis’ test can serve as an alternative. This 

was done in one instance to test for 
differences between reported investment 
costs for different counties and regions. 

These tests were conducted using the aov 
command and the kruskal.test-command 
in the stats core package in R (R Core Team 
2015). 

4.4.3 Simple linear regression  

Linear regression was frequently used as 
analytical method in this analysis.  

The relationship between individual and 
external factors, namely construction year, 
construction time, counties and regions, and 
investment costs was analyzed using simple 
linear regression.  

Linear regression relies upon the method of 
minimizing the squared error between the 
estimated values of the fitted regression line 
and the observed values.  

Linear regression, including simple and 
multivariate regression, relies upon the 
following assumptions(Hyndman & 
Athanasopoulos 2013b; Mendenhall & 
Sincich 2003): 

 Linearity between the predictor 
variable(s) and the response variable 

 The random errors are independent 
 The random errors are uncorrelated 

with each other and with the predictor 
variables 

 The random errors have mean zero, are 
normally distributed, and with a 
constant variance 

Violations of these assumptions may lead to 
unreliable test results for the model 
performance, as well as misspecified models 
and poor prediction/explanation power.  

The calculations behind the model metrics 
will not be presented here, as this is 
thoroughly explained in several textbooks 
(Hyndman & Athanasopoulos 2013a; 
Johnson & Wichern 2007; Løvås 2010; 
Mendenhall & Sincich 2003). 



 

17 

All regression analyses were done using the 
lm-command in the stats core package. In all 
regression analyses, the predictor 
coefficients , their p-values, the residual 
standard error , the multiple , the 
global -test and its p-value, were evaluated 
for each model.  

4.4.4 Assessing linear model 
assumptions 

Violations of assumptions of the linear 
models were assessed by plotting 
diagnostics plots, testing for normality of 
residuals using the Shapiro-Wilks test, the 
Global Validation of Linear Model 
Assumptions test and by assessing 
multicollinearity among the predictor 
variables. These assessments will be 
introduced briefly. 

Diagnostics plots are commonly used for 
model evaluation. The diagnostics plots used 
in this analysis includes six separate plots,:  

1) Residuals versus fitted values for 
detecting observations with high 
residuals, as well as patterns of the 
residuals, such as heteroscedasticity. 

2) Standardized residuals versus 
theoretical quantiles to assess normality 
of the residuals,  

3) Square root of standardized (absolute) 
residuals versus fitted values to identify 
patterns in the residuals. 

4) Cook’s distance per observation number 
to identify observations with a large 
cook’s distance. 

5) Residuals versus leverage to identify 
observations with a large influence on 
the fitted model, i.e., with high leverage 
and high residuals. 

6) Cook’s distance versus leverage to 
identify observations which have a high 
impact on the fitted model. 

In addition to the diagnostics plot, the 
models were assessed using the Global 
Validation of Linear Model Assumptions 
(GVLMA) methodology presented in Peña 

and Slate (2012). The GVLMA-test evaluates 
four test parameters, namely;  

1) skewness of the residuals of the fitted 
model, 

2) of deviations from kurtosis of the 
assumed normal distribution of the 
residuals,  

3) whether the link function of the model is 
misspecified, i.e. lack of linearity 
between predictor variables and the 
response variable,  

4) heteroscedastic and/or dependent 
residuals.  

Finally, a global test statistics is used to 
detect whether at least one of the four test-
statistics suggests that the linear model 
assumptions are violated in the current 
model.  

In addition to this model assumption test, a 
Shapiro-Wilks normality test was applied to 
the residuals, although this and the GVLMA 
should yield the same results.  

To test for multicollinearity among predictor 
variables, variance inflation factors were 
calculated for each model. The variance 
inflation factor for a given predictor variable 
increases with correlation between this 
variable and the remaining predictor 
variables. According to Mendenhall and 
Sincich (2003), VIF-values of ten or higher 
are signs of highly correlated predictor 
variables. 

The diagnostics plots were produced with 
the autoplot-command in the ggfortify-
package (Horikoshi & Tang 2015).The 
GVLMA was carried out by the gvlma-
command from a package with the same 
name (Peña & Slate 2014). The Shapiro-
Wilks-test was conducted using the 
command shapiro.test in the stats core 
package (R Core Team 2015). 

If the linear model assumptions were not met 
by a fitted model, two measures were carried 
out. In case of heteroscedasticity of residuals, 
a logarithmic transformation of the response 
variable was carried out, as this allows for 
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increasing variance with increasing values of 
the (non-transformed) response variable. 
(Mendenhall & Sincich 2003 Ch. 7). 
Consequently, the log-transformed model 
was tested with regards to violation of model 
assumptions. The second measure was to 
delete observations with relatively large 
residuals. In such cases, it was documented 
how many observations were deleted in the 
resulting model. 

4.4.5 Second order multiple 
regression models 

Second-order (and third-order) models with 
both quantitative and qualitative variables 
were tested during the model-fitting 
procedure in this analysis. These can be 
challenging to interpret, and therefore a brief 
introduction has been given. An example 
model is: 

 

Where  is a dummy variable 

,  and  are quantitative 

variables.  is an interaction term 
between the dummy variable  and the 
quantitative variable , meaning that if 

, the term is also : .  can 
thus be interpreted as the slope of  given 
that  (is true). The term  is a 
quadratic term which determines the shape 
of the curve for , for all terms including , 
when all other  are held constant. A 
positive  gives a parabolic curve for , 
opening upwards; a negative  gives a 
parabolic curve for , opening downwards. 
The term  is an interaction term 
between two quantitative predictor 
variables, which is applicable when the 
relationship between  and  is 
dependent of the value of , and vice versa. 
This implies that, when considering a 
simplified subset model 

, that the slope for  is 
 when holding  fixed and the slope for 

 is  when holding  fixed. 

Thus, the slopes for  changes depending on 
, and vice versa. 

In some cases, the response variable and/or 
predictor variables were transformed. 
Transformation of the response variable is 
described in the previous sub-section. 
Transformation of predictor variables may 
also increase prediction performance of the 
linear regression model.  

4.4.6 Cross validation of models 

The main method of cross-validating the 
multiple regression models in this paper is 
by using leave-one-out analysis, a method 
also referred to as the jackknife. One of the 
measures using this techniques is called 
prediction sum of squares (PRESS), 
suggested first by Allen (1974) for model 
evaluation. The PRESS is calculated by 

 

Where  is the predicted value of  when 
model is fitted excluding observation , and  
is the number of observations in the dataset.  

When comparing models with unequal size 
of the dataset, the standardized measure 
root mean square error of prediction 
(RMSEP) may be more appropriate: 

 

The PRESS and RMSEP measures were the 
main performance indicator used in model 
evaluation of the cost estimation models. 
Cross-validation using k-fold cross 
validation may be a better performance test 
for the true model performance upon new 
data, but due to the limited size of the 
dataset, the leave-one-out procedure was 
chosen. 
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4.4.7 Predictive versus explanatory 
modeling 

Multiple linear regression analysis can have 
two different goals: explaining and 
predicting. Shmueli (2010 p. 290) states that  

“Explanatory modeling and predictive 
modeling reflect the process of using data 
and statistical (or data mining) methods 
for explaining or predicting, respectively” 

In the first instance, the goal is to explore the 
causal relationship between variables and to 
explain the various predictor variables’ 
effect on the response variable. Regression 
analysis is a useful tool to test hypotheses on 
whether and to what extent  is affected by 
variables , based on a pattern 
suggested by a theoretical framework. On the 
other hand, regression analysis can also 
utilized for building prediction models on 
how the response of  can be predicted by a 
set of variables. This distinction also has 
implications for model building. While the 
“true” model is sought in explanatory 
modeling, the model with best predictive 
properties is sought in predictive modeling, 
and these approaches may often end up with 
different model results (ibid).  

The cross-validation method is, for example, 
less used for explanatory modeling because 
it may cost statistical power (ibid p. 297) 
(which is defined as “the probability of 
rejecting the null-hypothesis when it is 
false”(Everitt & Skrondal 2010 p. 334)). 
Predictive modeling often involves more 
exploration of possible variable 
transformations and dimension reduction 
(such as principle component analysis and -
regression) than for explanatory modeling. 
When transforming variables, this may lead 
to a better fit of the model and reduce 
sampling variance, but these measures can 
make the interpretation of each coefficient’s 
effect on the response more difficult 
(Shmueli 2010 p. 297).  

In explanatory modeling,  

“variable choice is based on the role of the 
construct in the theoretical causal 
structure and on the operationalization 
itself.” (ibid p. 297),  

On the other hand, in predictive modeling  

“there is no need to delve into the exact 
role of each variable in terms of an 
underlying causal structure. Instead, 
criteria for choosing predictors are 
quality of the association between the 
predictors and the response, data quality, 
and availability of the predictors at the 
time of prediction, known as ex-ante 
availability” (ibid p. 298) 

Another important aspect is the role of 
multicollinearity. In explanatory modeling, 
the presence of multicollinearity between 
two or more variables will make it difficult to 
explain each individual coefficient’s effect on 
the response. In prediction however, the 
focus lies on the response variable and 
reduction of prediction error. For this 
purpose, multicollinearity may not be a 
problem. According to Spyros et al. (1998 p. 
288, as cited in Shmueli 2010 p. 299); 

“multicollinearity is not a problem unless 
either (i) the individual regression 
coefficients are of interest, or (ii) attempts 
are made to isolate the contribution of one 
explanatory variable to Y, without the 
influence of the other explanatory 
variables. Multicollinearity will not affect 
the ability of the model to predict.” 

There is also an important and distinct 
difference between explanatory power and 
predictive power. Explanatory power is 
measured by  and -statistics. Predictive 
power is measured by the selected 
prediction model’s performance on new 
data. Predictive power is not necessarily 
inferred from explanatory power, and, in the 
words of Shmueli (2010 p. 300):  

“While predictive power can be assessed 
for both explanatory and predictive 
models, explanatory power is not typically 
possible to assess for predictive models 
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because of the lack of  (the underlying, 
causal function of , ed.rem.) and 
an underlying causal structure. Measures 
such as  and  would indicate the level 
of association, but not causation.” 

This fact has an important effect on the set-
up of the statistical analysis, and the 
assumptions made. While this thesis deals 
with both explanatory models and predictive 
models, the goals and procedure of the 
analysis will differ for the two approaches. 
The first part of the analysis deals with 
explanatory modeling to find indices for 
difference in investment costs due to 
economical, temporal and geographical 
factors. The latter part deals with predictive 
modeling, where the goal is to build a 
statistical prediction model for future 
projects. Following section 4.4.7, this had 
implications for how the analysis was 
conducted in the two parts. 

4.5 DOCUMENTATION OF THE DATA 
ANALYSIS 

4.5.1 Test for difference between 
budgeted and reported costs 

In this analysis, tests were conducted on the 
observed difference between the budgeted 
costs and the reported costs. The budget 
estimates and the reported costs reported 
for each projects are assumed to be 
paired/dependent in these tests, allowing for 
a comparison of costs within each project, 
instead of a comparison of the 
means/medians of all budget estimates and 
reported costs in the sample. The tests were 
thus conducted as dependent two-tailed 
tests for paired samples of whether or not 
there is a significant difference.  

The tests were conducted on both values in 
millions of Norwegian kroner (MNOK), and 
on values in percent of budgeted cost. The 
difference in MNOK is computed as: 

 

where  is the difference  in MNOK for 
observation pair ,  is the reported cost  
for observation , and  is the budgeted cost 

 for observation . 

The relative difference in percent was 
computed as: 

 

where  is the relative difference  in 
percent  for observation pair . 

This standardization is relevant because the 
size and absolute cost of the projects varies 
from tens to hundreds of MNOK. A difference 
of one million NOK is less critical in a 70 
MNOK project compared to a 30 MNOK 
project. It is therefore interesting to analyze 
deviations in both MNOK and percent of 
budgeted costs.  

It is also relevant to test whether the 
investment costs per production unit have 
changed, and to analyze whether this data 
record follows the same pattern of difference 
in investment costs per production unit as 
found in Haga and Espegren (2013). 
Therefore, tests were performed on the 
difference between budgeted costs per 
production volume (GWh) estimated in the 
license application and reported costs per 
production volume estimated after 
completion of the projects. 

As described earlier, the owners of the power 
plants report the investment cost of their 
projects in both partial costs and as a total 
cost. The total cost is often higher than the 
sum of the partial costs (as seen in Figure 3 
and Figure 4). It is therefore also relevant to 
look at the difference between the sum of 
partial costs and the budgeted total costs. 
The possible sources for these deviations are 
discussed in section 7.1.  

In total, 12 tests were conducted on the 
differences between the budgeted and 
reported costs  
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4.5.2 Tests for the effect of 
construction year on reported 
costs  

Tests were conducted to observe the 
difference in investment costs for projects 
undertaken in different years, in order to 
analyze the cost development over time. In 
order to evaluate projects across different 
scales, two different standardization 
measures were made. In the first, changes in 
specific costs were tested, which refers to 
investment cost per kWh estimated average 
annual production. The second 
standardization calculation measured costs 
per installed production capacity, namely 
cost per watt. 

Specific costs per annual production is the 
standardization measure used by NVE to 
compare costs of hydropower projects of 
different scales. It is useful to evaluate 
different projects based upon their expected 
income from power production. When 
interpreting the development of investment 
cost per production unit over time, any 
change can be due to changes in both costs 
and production volume. In order to isolate 
costs for the infrastructure of projects across 
different scales, cost per installed production 
capacity was also calculated and tested.  

The data was first explored graphically. The 
relationship between construction year and 
investment costs was then analyzed using 
simple linear regression with construction 
year as the predictor variable, and 
investment cost as the response variable. 

Four models were tested: Nominal and real 
costs per estimated annual production, and 
nominal and real costs per installed capacity. 
By testing cost development in both nominal 
and real values, it was possible to measure 
whether there was still a temporal effect on 
investment costs after the investment costs 
were adjusted for the cost increase for cost 
components. 

Before running the models, the predictor 
variable was recoded from construction date 

to construction year, and furthermore, the 
construction year was set to one for the first 
construction year recorded in the dataset 
(2005), two for 2006, and continuing. The 
accuracy of this recoding measure is 
discussed in section 7.1. 

The predictor variable year is set to numeric, 
starting at one in 2005 (the first year of 
construction in the dataset) and increasing 
by one per year. This facilitates 
interpretation of the coefficient.  

4.5.3 Test for the relationship 
between construction time and 
costs 

Tests were conducted to measure whether 
there was a significant trend difference 
between specific investment costs of SHP 
plants with differing construction period 
lengths.  

The construction time was calculated as the 
time difference between construction start 
date and date of operation.  

The data was plotted and examined 
graphically. The relationship between 
construction time and total investment costs 
was analyzed further using simple linear 
regression.  

A non-transformed linear model was fitted at 
first, but inspection of the diagnostics plot 
indicated violation of the statistical 
assumptions of the model (in particular, 
normality of the residuals). In the second 
attempt to fit the model, the response 
variable was log-transformed. Observations 
with extreme values were removed if needed 
to meet the model assumptions. 

4.5.4 Test for the relationship 
between geography and 
investment costs 

Tests were conducted to measure whether 
there was a significant difference between 
specific investment costs of SHP plants in 
different regions of Norway for the dataset. 
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The observed specific investment costs (in 
real prices) were plotted per county in a box-
plot, and grouped by geographical region.  

The difference in costs between counties was 
tested with use of one-way ANOVA and linear 
regression.  

4.5.5 Test for the relationship 
between license holder type and 
investment cost 

Tests were conducted to measure whether 
there was a significant difference between 
specific investment costs of SHP plants and 
project developers having multiple projects 
in their portfolio and project developers 
having only one or a few projects in their 
portfolio.  

The observed specific investment costs (in 
real prices) were plotted per license holder 
type in a box-plot. 

The difference in costs between holder 
groups was tested with use of independent 
two-sample tests. In the t-test, the variance 
within each sample was assumed to be non-
equal. 

The classification of owners is given in Table 
15 in Appendix 2: License owner 
classification 

4.5.6 Prediction models for 
investment costs estimation 

In this analysis, the goal was to build a model 
as accurate as possible using multiple linear 
regression. As described in section 4.4, the 
model building strategy for predictive 
modeling sometimes differs from that of 
explanatory modeling. We know from 
previous literature that physical features 
such as size, structure types, material types 
and equipment types of small-scale 
hydropower plants are associated with 
investment cost. The question is which 
physical parameters have the highest 
correlation, the lowest variance, and the best 
predictability on the investment cost, given 
the sample of data available for this analysis. 

In order to develop the best possible subset 
model for prediction, all reported physical 
features of the plants available in the dataset 
were tested in the full model, and followed by 
a stepwise selection of predictor variables.  

The variables included were: installed 
capacity, gross head, maximum discharge, 
dam height, dam length, penstock length, 
penstock diameter, penstock types, tunnel 
length, tunnel cross section area, shaft 
length, shaft cross section area, turbine 
types, county, construction year, year of 
operation and construction time, as well as 
dummy variables for waterway type 
(penstock, tunnel and shaft). These are all 
variables that have been used as predictor 
variables in the studies mentioned in the 
literature review or in the cost base from 
NVE (2012), with the exception of county, 
license owner, year of operation, year of 
construction and construction time. 

The variables are in different scales, ranging 
from decimals to thousands. Scaling of 
variables may be useful for easier 
interpretation of the model coefficients, and 
to reduce multicollinearity between 
interaction terms or second order terms. 
Scaling does not affect the accuracy of the 
fitting process. Multicollinearity may cause 
rounding errors in calculation of the model 
estimates (Mendenhall & Sincich 2003 Ch. 7), 
but this is neglected in this analysis. As 
mentioned in section 4.4.7, multicollinearity 
will not affect the prediction performance of 
the model (Spyros et al. 1998, as cited in 
Shmueli 2010).  

Attempts were made to build models using 
scaled variables, but they were abandoned 
due to the fact that such models are less 
practical in use when applied to a new 
dataset. 

In the first attempts to build a subset model, 
only first order terms were included, and no 
transformations of the variables were made. 
With no transformation, the model failed to 
satisfy the model assumptions. Therefore, 
the response variable was log-transformed.  
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Attempts were also made to develop a 
second order model with interaction terms 
on both quantitative and qualitative 
variables and squared terms. These included 
logarithmic and squared terms of all physical 
sizes, and interaction terms between: 
installed capacity and gross head; dam 
height and dam length; penstock diameter 
and penstock length; penstock types, 
penstock length and penstock diameter; 
tunnel binary variable, tunnel length and 
tunnel cross section area; shaft binary 
variable, shaft cross section area, and shaft 
length, construction time and construction 
year. 

At first, the model selection relied upon two-
way stepwise selection based on AIC, using 
the stepAIC-function in the MASS package 
(Venables & Ripley 2002). However, when 
cross-checked against manual model 
selection based on PRESS evaluation, the 
stepAIC overfit the model, leading to higher 
PRESS-values than the manual selection, 
despite the findings in the literature that AIC 
is the asymptomatic equivalence to PRESS in 
model selection. AIC tend to have a bias 
towards overfitting when the sample size is 
low. According to (Burnham & Anderson 
2004) the AICc measure should be used in 
model selection where n/K is smaller than 
about 40, where K is the number of predictor 
variables in the full model. This 
unfortunately came to the author’s 
knowledge at a late stage in the model 
selection process. 

There exist packages for unsupervised 
model selection based on AICc, such as the 
MuMLn and the AICcmodavg, but due to time 
constraints, these were not utilized.  

The model performances were evaluated 
with regards to PRESS, using the press-
command in the DAAG package, and for every 
performance test violation of model 
assumptions were also tested.  

If the test indicated that the assumptions 
were not acceptable, the model was revised. 
Deleted observations were documented. 

Multicollinearity among the predictor 
variables was also assessed, using the vif-
command in the car package (Fox & 
Weisberg 2011).  

Several attempts were made using the 
stepAIC-function, and thereafter using 
manual backward selection based on 
PRESS/RMSEP. The number of trials was not 
counted, but would probably sum up to 200-
400 or more. The subset-models reported 
here is thus a result of both subjective 
assessments of the model variables, mixed 
with the pure quantitative approach using 
stepAIC.  

Two models are reported in this chapter. The 
first is based on total investment costs, and 
the second is based on sum of partial costs. In 
both models, projects with tunnels have been 
excluded due to the fact that such projects 
tend to have significantly higher costs than 
those without tunnels, and this lead to lower 
model accuracy when those were included. 
The total costs, as reported from the owners, 
may include external costs having little to do 
with the projects themselves (for example 
grid connection fees). The sum of reported 
partial costs are likely to be more directly 
correlated to the physical properties of the 
hydropower projects. It is still relevant to 
observe the extent to which these factors 
affect the accuracy of the models, and 
therefore both have been included.  

It should be noted, that in the model 
selection, factors such as license holder class 
and estimated annual production in some 
cases added prediction power to the model. 
In spite of this, these factors were left out. It 
is difficult to interpret the effect of license 
ownership on future projects. There may be 
multiple factors leading to significantly 
lower costs for non-professional license 
owners. It may be due to non-reported ower 
efforts in the construction period. It may also 
be the case that non-professional owners 
keep their water resource and develop it at 
their own hands because the water resource 
is of a high quality and easy to exploit. In such 
cases, the difference between non-
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professionally owned projects and the 
professionally owned projects in part is due 
to the quality of the water resource. The 
annual production estimate introduces 
another source of uncertainty when used for 
prediction of future projects. 

Once the best subset model was selected, a 
leave-one-out cross-validation was carried 
out using the cv.lm command in the DAAG 
package (Maindonald & Braun 2015). This 
cross-validation package is designed for K-
fold cross validation, but if the number of 
folds is set to the number of observations, it 
is equivalent to a leave-one out cross 
validation. This command returns the leave-
one-out prediction for each observation, 
which was used as a performance indicator 
for the model’s prediction performance 
compared to the budget estimates. 

The model performance was sensitive to 
deletion and adding of observations for both 
models.  

The difference between the cost estimates 
and the reported costs was calculated as the 
mean absolute error rate (MAER) between 
estimates and real costs, according to the 
formula below 

 

Where  is the reported  cost  for 
observation , the  is the cross-validated 
prediction  cost for observation , for  
number of observations. This error 
measurement is equivalent to the one used in 
Gunduz and Sahin (2015), Kim et al. (2004), 
Smith and Mason (1997). 

The performance of the best subset models 
compared to the budget estimates was 
plotted and analyzed graphically and tested 
numerically using two-sample tests for 
difference.  

The model predictions, the real budget 
estimates, and the real reported costs were 
all plotted in the same graph, with the 
observations sorted by increasing reported 
costs. This was done to provide a visual 
representation of the model results. A second 
graph was produced where the real reported 
costs were set to zero, and the real budget 
estimates, and the model predictions were 
plotted as deviations from the true costs. 
This was done to enable a closer graphical 
analysis and comparison of the residuals of 
the estimates. 

A chi-squared test was also conducted to 
determine whether there was a significant 
pattern of simultaneous over- and 
underestimation for both budget- and model 
estimates.
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5 THE DATASET

The data collection resulted in a dataset of 
153 cases with budgeted and reported total 
costs for SHP projects. The variables that 
have been used in this analysis are listed in 
Table 4. Some variables do not have a full 
record due to missing information from the 
forms from which the data was collected. 

Table 4: Selection of variables recorded in the dataset. 

Full variable name Coded variable 
name 

n 

License registration 
number 

Kdb_ID 153 

Power plant name Title 153 
License status date Main_Status_date 153 
License holder Holder 153 
County County 153 
Planned effect Effect 153 
Planned annual 
average production 

Production 153 

Budgeted cost Est_Cost 153 
Budgeted specific 
cost 

Spec_Cost 153 

Date of budgeted 
cost 

Cost_Date 153 

Reported date of 
operation 

Date_Operation_R 153 

Reported Installed 
capacity 

Max_Effect_R 153 

Reported annual 
production estimate 

Ann_Prod_Est_R 153 

Reported Dam and 
intake costs 

Inlet_Cost_R 123 

Reported waterway 
costs 

Penstock_Costs_R 123 

Reported power 
station costs 

PP_Costs_R 123 

Reported total costs Total_Costs_R 153 
Reported gross 
head 

Gross_Head_R 153 

Reported dam 
height 1 

Dam_1_Height_R 151 

Reported dam 
length 1 

Dam_1_Length_R 151 

Reported dam 
height 2 

Dam_2_Height_R 12 

Reported dam 
length 2 

Dam_2_Length_R 12 

1st penstock section 
length 

Penstock1_ 
Length_R 

152 

1st penstock section 
diameter 

Penstock1_Dia_R 151 

1st penstock type Penstock1_Type_R 151 
2nd penstock section 
length 

Penstock2_ 
Length_R 

71 

2nd penstock section 
diameter 

Penstock2_Dia_R 71 

2nd penstock type Penstock2_Type_R 69 
Reported tunnel 
length 

Tunnel_Length_R 23 

Full variable name Coded variable 
name 

n 

Reported tunnel 
cross section area 

Tunnel_Cross_Sect_R 23 

Reported shaft 
length 

Shaft_Length_R 13 

Reported shaft 
cross section area 

Shaft_Cross_Sect_R 13 

Reported turbine 1 
type 

Turbine1_Type_R 147 

Reported turbine 1 
power capacity 

Turbine1_Effect_R 152 

Reported turbine 1 
maximum discharge 

Turbine1_Abs_Cap_ 
R 

152 

Reported turbine 2 
type 

Turbine2_Type_R 31 

Reported turbine 2 
power capacity 

Turbine2_Effect_R 32 

Reported turbine 2 
maximum discharge 

Turbine2_Abs_Cap_R 32 

Construction start 
date 

Construction_Date 151 

 

Figure 3 and Figure 4 show reported 
investment costs and reported specific costs 
for all observations available in this dataset, 
in real costs adjusted to the 2015 index.  

What these summary statistics tell us: 

 There are some large deviations between 
sum of partial costs and the total costs for 
several projects. In some cases this is 
most likely because the owners have to 
pay a grid fee (“anleggsbidrag”) to the 
distribution system operator for 
improving the electricity line in the area. 
In other cases it may be that the owners 
have excluded miscellaneous and 
administrative costs from the partial 
costs. This is uncertain, and a challenging 
source of error. 

 Projects with tunnels have in most cases 
substantially higher total costs than 
projects with other waterway types, as 
seen in Figure 3. At the same time, 
projects with tunnels and shafts are fairly 
equally distributed in the range of 
specific costs seen in Figure 4, which 
means that projects with tunnels and 
shafts often have higher annual 
production.  
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 There are relatively few observations of 
projects with tunnels and shafts. 

 
Figure 3: Real total investment costs in the dataset, stacked by investment cost. Colored bars show total costs by their 
main waterway type. The points show sum of partial costs by waterway type. Partial costs set to zero when not reported.  

 
Figure 4: Real specific total investment costs in the dataset, stacked by specific total cost. Colored bars show specific 
costs by their main waterway type. The points show specific sum of partial costs by waterway type. Partial costs set to 
zero when not reported.  

Table 5 summarizes the investment cost 
data for the total costs and sum of partial 
costs, grouped by waterway type. 
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Table 5: Real investment costs grouped by waterway type. 

Cost components Water-
way Type 

Min 1st 
Quant. 

Median Mean 3rd 
Quant. 

Max n (ex 
NAs) 

NA
s 

Real Total Costs Penstock 10.83 26.75 34.28 38.66 47.20 116.79 116 2 
Real Total Costs Shaft 25.60 36.55 45.14 53.29 60.14 129 12 0 

Real Total Costs Tunnel 40.95 66.56 90.01 103.47 112.33 244.77 22 1 
Real Total Costs Total 10.83 28.87 39.56 49.34 59.02 244.77 150 3 

          
Real Partial Costs Penstock 10.83 23.36 31.74 34.85 40.95 74.57 97 21 
Real Partial Costs Shaft 24.73 38.70 43.04 49.66 45.23 129 9 3 

Real Partial Costs Tunnel 37.16 51.28 72.95 94.40 114.85 244.77 14 9 
Real Partial Costs Total 10.83 25.47 35.33 42.91 47.52 244.77 120 33 

          
Rel. Intake Cost Penstock 2.0% 7.5% 10.6% 12.7% 16.7% 37.5% 98 20 
Rel. Intake Cost Shaft 3.2% 6.2% 7.8% 8.0% 8.9% 16.7% 9 3 

Rel. Intake Cost Tunnel 4.6% 6.3% 9.1% 11.6% 12.5% 28.8% 15 8 
Rel. Intake Cost Total 2.0% 7.2% 10.3% 12.2% 15.8% 37.5% 122 31 

          
Rel. Waterway Cost Penstock 13.8% 28.3% 34.0% 35.8% 41.6% 62.5% 98 20 

Rel. Waterway Cost Shaft 25.4% 35.2% 38.9% 42.3% 46.8% 60.8% 9 3 
Rel. Waterway Cost Tunnel 16.6% 31.7% 38.3% 39.3% 46.7% 58.2% 16 7 

Rel. Waterway Cost Total 13.8% 29.6% 35.7% 36.7% 42.5% 62.5% 123 30 
          
Rel. Station Costs Penstock 7.3% 37.8% 45.1% 45.9% 55.0% 70.9% 98 20 

Rel. Station Costs Shaft 24.6% 31.4% 37.9% 36.5% 39.3% 46.8% 9 3 
Rel. Station Costs Tunnel 25.7% 29.6% 37.7% 41.1% 53.4% 72.0% 16 7 

Rel. Station Costs Total 7.3% 36.0% 43.0% 44.6% 54.6% 72.0% 123 30 
          
Rel. Partial Costs Penstock 47.0% 100% 100% 94.4% 100% 107.1% 98 20 

Rel. Partial Costs Shaft 60.7% 80.8% 83.4% 86.8% 100% 100% 9 3 
Rel. Partial Costs Tunnel 62.5% 80.7% 100% 90.6% 100% 100.8% 15 8 

Rel. Partial Costs Total 47.0% 91.4% 100% 93.4% 100% 107.1% 122 31 

All relative costs are based on nominal costs, and are calculated as percent of total costs 

Figure 5 shows the average share of partial 
costs for the SHP projects in this dataset and 
provides a graphical summary of cost 
component characteristics of the dataset. 

 
Figure 5: Average shares of partial costs per total costs 
for SHP projects in the dataset. ‘Other costs’ indicates 
the difference between sum of partial costs and the 
total reported costs. Differences were calculated based 
on nominal costs.

44,6 %

36,7 %

12,2 %
6,5 %

Other costs

Intake cost

Waterway cost

Powerplant
costs

Cost shares
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6 RESULTS

6.1 BUDGETED VS. ACTUAL, REPORTED 
COSTS 

The results from these tests, given in Table 
6, show a significant difference between 
budgeted and reported costs in nearly every 
case. The table shows test results from 
twelve different comparisons, each tested 
with two different methods, namely the two-
sample, two-tailed paired t-test and 
Wilcoxon signed rank test with continuity 

correction. All valid tests show a significantly 
larger reported cost than budgeted cost. The 
Student’s t-Test of difference between the 
sum of real partial costs and the real 
budgeted costs is not significant, but the 
Shapiro-Wilks test on normality of the 
differences indicates the normality 
assumption is violated. When standardized, 
the relative difference is significantly larger 
than zero for the same comparison, and this 
test is valid with respect to the normality 
assumption. 
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6.2 FOUR SELECTED EXTERNAL COST-
DRIVING FACTORS 

6.2.1 Construction year and costs 

Figure 6 presents the cost development of 
the sample of small hydropower projects in 
this analysis over time. The figures are in 

specific costs. The figure shows boxplots for 
the four different cost measures : nominal 
specific partial costs; nominal specific total 
costs; real partial costs; and real total costs. 
By graphic inspection, there appears to be a 
trend of increasing costs, although projects 
in 2014 have lower costs than the previous 
two to three years. 

 

 
Figure 6: Specific investment costs in real values for power plants in this analysis. Four different series are shown per 
year: nominal specific partial costs, nominal specific total costs, real partial costs, and real total costs. Three 
observations were omitted due to extreme values (Specific cost higher than 8 NOK/KWh). Same number of observation 
per series as in Table 6. The colored boxes show the range of the interquartile (from the lower 25% quartile to the 
upper 75% quartile), the black line within the boxes is the median, and the whiskers extend up/down 1.5 times the 
range of the inter quartile, dots are cases outside of this range. Number of cases per group below each boxplot. 

The trend of increased costs, in both nominal 
and real costs, is explored further with use of 
linear regression. Table 7 shows the R 
output for fitted regression models with 
construction year as the predictor variable.  

Both models on specific costs have 
significant p-values at  in the t-
statistics for the intercepts and s, and F-
statistics for the models.  

As expected, the Multiple is higher in the 
model with nominal costs ( ) than 
on the model with real costs ( ). 
The -coefficient for construction start year 

is higher for Model 1 with nominal costs (
) than Model 2 with real costs (
). The difference between the 

coefficients is significant with a p-value of < 
2E-16 when tested with a two-tailed 
independent two-sample t-test. 

In order to satisfy the assumptions of 
normality of residuals, three and four 
observations were omitted in model 1 and 
model 2 respectively. In the resulting 
models, the Shapiro-Wilks test for normality 
in the residuals gave p-values of 0.1 and 0.09 
respectively, and graphical assessment of the 
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diagnostics plots indicated no severe 
violations of the linear model assumptions. 

The slope in Model 1 corresponds to an 
average annual increase of 10.85 pp 
(percentage points) in nominal costs per 
production unit from 2005 to 2015 (with 
2005 as base year = 100%). The slope in 
Model 2 corresponds to an average annual 
increase of 3.74 pp in real costs per 
production unit from 2005 to 2015 (with 
2005 as base year = 100%). In comparison, 
the cost index increases by 5.2 pp on average 
when 2005 is set as base year =100%. 

When fitting Model 3 and 4, the response 
variable had to be log-transformed in order 
to satisfy the linear model assumptions. Five 
were deleted in Model 3, with nominal costs 
per MW  20. Six observations were deleted 
in Model 4, with real costs per MW  25. 

Year model 3 has a significant F-statistic, 
with a p-value of 0.0005. Year model 4 does 
not yield significance for the global F-
statistic, with a p-value of 0.26. This indicates 
the index adjustment of the costs cancels out 
the cost increase, and Year model 4 can 
explain no excessive growth in costs per 
installed capacity based on the dataset.  

In Model 3 with nominal costs, the -
coefficient for construction year is 
significant, with a coefficient of 0.05 per year. 
The multiple  is 0.15. All linear model 
assumptions were met for both models, 
assessed by visual inspection of diagnostics 
plots and by the Global Validation of Linear 
Model Assumptions tests. 

The slope in Model 3 corresponds to a cost 
increase of 5.87% per year with 2005 as base 
year (= 100%). Since the function here is 
non-linear, the increase in percentage points 
per year is not constant.  

Table 7: Four regression models on investment costs 
and year of construction. 

Year model 1: 
Nominal specific 
total costs. 

Estimat
e 

Std. 
Error 

Pr(>|t|) 

Intercept 2.06 0.209 < 2e-16 
Construction 
Year 

0.251 0.0317 6.4E-13 

Construction year 2005 = 1. Residual standard 
error: 0.860 on 145 degrees of freedom. R2 = 0.301. 
Global F-test: p-value: 6.35e-13. Original n = 150, 3 

observations deleted due to extreme values,  6. 
    

Year model 2: 
Real specific. 
total costs. 

Estimat
e 

Std. 
Error 

Pr(>|t|) 

Intercept  3.35 0.239 < 2e-16 
Construction 
Year 

0.130 0.0362 4.5E-04 

Construction year 2005 = 1. Residual standard 
error: 0.982 on 144 degrees of freedom. R2 = 

0.0822. Global F-test: p-value: 4.51E-04. Original n 
= 150, 4 observations deleted due to extreme 

values,  6.99. 
 

Year model 3: 
Nominal costs 
per kW. 

Estimat
e 

Std. 
Error 

Pr(>|t|) 

Intercept 2.10 0.0668 < 2e-16 
Construction 
Year 

0.0503 0.0102 2.1E-06 

Log-transformed response variable. 
Construction year 2005 = 1.  

Residual standard error: 0.274 on 143 degrees of 
freedom. R2 = 0.146. Global F-test  

p-value:2.07e-06. Original n = 150, 5 observations 
deleted due to extreme values,  20 MNOK/MW. 

    

Year model 4: 
Real costs per 
kW. 

Estimat
e 

Std. 
Error 

Pr(>|t|) 

Intercept  2.49 0.0655 <2e-16 
Construction 
Year 

0.0113 0.0099
3 

0.257 

Log-transformed response variable 
Construction year 2005 = 1.  

Residual standard error: 0.264 on 142 degrees of 
freedom. R2 = 0.00905. Global F-test: p-value: 

0.257. Original n = 149, 6 observations deleted due 
to extreme values,  25 MNOK/MW 
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Figure 7: Total costs in real values and construction time with fitted linear regression line in blue, with 95% confidence 
interval for the expected prediction values in the shaded ribbon. 10 observations omitted: 6 > 150 MNOK investment 
cost, and 5 > 3 years construction time. 

6.2.2 Construction time and costs 

Construction time may affect project costs. A 
linear regression model was fitted to explore 
this effect. As seen in the scatter plot in 
Figure 7, there is a weak trend of increasing 
costs with increased construction time. 

A non-transformed linear model was fitted at 
first, but when tested using the Global 
Validation of Linear Model Assumptions test, 
and the Shapiro-Wilks test on normality of 
residuals the tests indicated violation of the 
statistical assumptions of the model. 
Inspection of the diagnostics plot gave the 
same impression. In the second attempt to fit 
a model, the response variable was log-
transformed. A Shapiro-Wilks test on 
normality of residuals (p-value of 0.3), and a 
visual inspection of the diagnostics plot 
indicated that the statistical assumptions of 
the regression model with log-transformed 
response variable were satisfied. The 
GVLMA-test indicated model assumptions 
were satisfied. The R output is shown in 
Table 8.  

The fitted regression model indicates a very 
weak, but still significant correlation 
between construction time and reported 
investment costs, with 

and . The coefficient for 
construction time translates into an 
estimated cost growth rate per year of 
37.8%. The weak correlation indicates the 
model lacks predictor variables.  

Table 8: Regression models on construction time (in 
years) as predictor for real total costs. 

Construction 
time model. 

Estimate Std. 
Error 

Pr(>|t|) 

Intercept 3.24 0.145 < 2e-16 
Construction 
time 

0.321 0.0945 9.2E-04 

Response variable log-transformed 
Construction time in years. Residual standard 
error: 0.499 on 134 degrees of freedom. R2 = 

0.079. Global F-test: p-value: 9.20E-04. Original n 
= 146, 10 observations deleted due to extreme 

values: 6 observations  150 MNOK total 
investment costs, 4 observations  3 years 

construction time 
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6.2.3 Geography and costs 

Costs of installing small hydropower plants 
vary due to geographical features. This can 

be due to socio-economic factors, as well as 
purely physical factors. Figure 8 shows 
specific investment cost in real values 
grouped by county. 

 
Figure 8: Boxplot with specific investment costs in real values for SHP projects per county, grouped by region. The 
colored boxes show the range of the interquartile (from the lower 25% quartile to the upper 75% quartile), the black 
line within the boxes is the group median, and the whiskers extend up/down 1.5 times the range of the inter quartile, 
dots are cases outside of this range. Number of cases per group is indicated below each boxplot.

To check whether there is a significant 
difference between costs among different 
counties and regions, Kruskal Wallis Rank 
Sum Tests and one-way ANOVA tests were 
carried out. Two test-rounds were 
conducted: one with no removal of 
observations, and a second with removal of 
observations with total specific investment 
costs equal to or higher than 6.5 NOK/kWh 
(nine observations, with an original n of 
150). 

For counties in the first test-round, the 
Kruskal-Wallis test on counties gave a p-
value of 0.004. The ANOVA gave a p-value of 
0.0073, but the Shapiro-Wilks test on 
normality of residuals indicated that this 
assumption was violated with a p-value of 
less than 0.0001.  

For regions in the first test round, the 
Kruskal-Wallis test indicates a significant 

difference. The test gave a p-value below 
0.0001. The ANOVA gave a p-value of 0.0013, 
but the Shapiro-Wilks test on normality of 
residuals indicated that this assumption was 
violated with a p-value below 0.0001. 

In the second round two linear models were 
fitted, one with counties as predictor and one 
with regions as predictor, both with specific 
total costs as response. In addition to 
deleting observations with specific costs 
equal to or higher than six, the group with the 
lowest mean cost (in this case the County of 
Sogn og Fjordane and the region of Western 
Norway) was set as the first factor, ie. the 
base response for the model. In this case, all 
effect sizes relate to the group with the 
lowest mean, such that the effect sizes, and 
the p-values of each factor relate to the 
lowest group mean. The differences among 
the other factors may not be significant. 
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When linear models for regions and counties 
were fitted with the default factor, (in this 
case Hedmark and Eastern Norway, which 
both have means close to the mean 
investment cost (4.14 NOK/kWh) across all 
projects), the effect sizes were not 
significant. 

For counties in the second round, the 
regression model gave a significant p-value 
for the global F-test, with a value of 0.0802, 
residual standard error of 0.985 and a 
multiple  of 0.166. Nearly half of the 
counties had significant effect sizes, 
including: Intercept (Sogn og Fjordane) with 
a mean of 3.71, Oppland + 0.52, Nord-
Trøndelag + 0.93, Nordland + 1, and Troms 
+0.968. All values were given in NOK/kWh. 
All model assumptions were satisfied 
according to the GVLMA-test, the Shapiro-
Wilks test on normality of residuals, and 
inspection of the diagnostics plot. 

For regions in the second round, the global F-
test of the regression model was significant 
with a p-value of 0.0007, residual standard 
error of 0.972 and a multiple  equal to 
0.131. The intercept (Western Norway) had 
a mean of 3.79 and the region of Northern 
Norway had a mean of + 0.912, both 
significant. The other three regions did not 
have significant effect sizes, but had all p-
values below 0.1, with the region of 
Trøndelag + 0.518, Eastern Norway + 0.478, 
Southern Norway + 0.623. All model 
assumptions were satisfied according to the 
GVLMA-test, the Shapiro-Wilks test on 
normality of residuals, and inspection of the 
diagnostics plot. 

There are relatively few observations in the 
dataset from projects in Southern Norway, 
Trøndelag and Eastern Norway, and most 
counties here have group means close to the 
total mean. This means more data would be 
required in order to test whether significant 
differences may occur. 

6.2.4 License holder and cost 

It is relevant to investigate whether or not 
the companies that have specialized in 

developing small-scale hydropower projects 
are able to realize their projects at lower 
costs than companies organized by land 
owners. The boxplot in Figure 9 shows 
investment costs for the holders classified as 
professional developers, versus the “non-
professional” project developers, i.e. 
property owners who own the license and 
the power plant themselves. The figure 
indicates, quite surprisingly, that the 
professional developers have higher 
investment costs per kWh than the non-
professionals. 

 
Figure 9: Boxplot with specific total investment costs 
in real values, by owner type. Number of cases for each 
group summarized at bottom of graph. The colored 
boxes show the range of the interquartile (from the 
lower 25% quartile to the upper 75% quartile), the 
black line within the boxes is the group median, and the 
whiskers extend up/down 1.5 times the range of the 
inter quartile. 

The mean of the non-professional group is 
3.95 NOK/kWh while the professional group 
averaged 4.71 NOK/kWh, giving a difference 
of 0.76 NOK/kWh. The median of the non-
professional group is 3.75 NOK/kWh and of 
the professional group 4.46 NOK/kWh, 
giving a difference of 0.714 NOK/kWh. To 
check for a significant difference between the 
expected values (mean and median) of the 
two groups, two independent two-sample, 
two-tailed tests were carried out. The t-test 
gave a 95% confidence interval of 0.336 to 
1.20 NOK/kWh of the difference between the 
professional-group and the non-professional 



 

35 

group, with a significant p-value of 0.0006. 
The Wilcoxon rank sum test gave an 
estimated difference of 0.787 NOK/kWh, 
with a 95% confidence interval of 0.408 to 
1.158 MNOK/kWh, and a p-value of 0.0001. 
Both tests suggest there is a statistically 
significant difference between the expected 
values for two groups. 

The difference is also significant for both 
tests when applied to total investment costs 
per MW installed capacity.  

6.3 PREDICTION MODELS FOR 
INVESTMENT COSTS  

An extensive model selection procedure was 
carried out to find an appropriate subset 
model for investment cost prediction.  

The full model for partial costs, including all 
first order terms and selected second order 
terms and interaction terms, yielded a 
multiple  of 0.889, a residual standard 
error of 0.217 (on logarithmic scale), and a 
significant global F-statistic, with a p-value 
below 0.0001. The PRESS and RMSEP were 
both infinite. The model coefficients for the 
full model will not be given here.  

6.3.1 Prediction model 1: Total costs  

The final subset-model had the function 
given in Equation 1, and its metrics are given 

in Table 9. It is a model with seven predictor 
variables. Installed capacity has one first 
order term and a squared term, with positive 
and negative coefficients respectively, giving 
a downward-facing parabolic curve when 
isolated against the log-transformed 
response variable. The dam height term and 
the construction time terms are first-order 
terms which indicate a linear relationship 
between the log-transformed response 
variable and these predictor variables (when 
all other terms are kept constant). The 
weighted average penstock diameter term is 
squared, with no first-order term included. 
This can be justified by the fact that the 
cross-section area of the penstock may be a 
more applicable predictor than just its 
diameter. It was tested whether the true area 
of the inner penstock cross section gave a 
different model result by replacing the 
square term by an exact area term  

, but this gave no 
change in the model output, so they can be 
regarded as equivalent in this context. The 
log-transformed waterway length term can 
be interpreted as displaying a linear 
relationship between log-transformed costs 
and log-transformed waterway length when 
all other variables are kept constant. The 
dummy variable of shaft can be interpreted 
as an increase in average costs from when 
the SHP plant has shaft as part of the 
waterway. 

 

(1) 
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Table 9: Prediction model 1. Model data for best subset model for predicting (log-transformed) total costs. 

Predictors 
 -estimate -SE p-value 

Data range 
Min Max 

Intercept  1.03E+00 3.68E-01 5.90E-03   
Installed capacity [MW]  4.55E-01 9.26E-02 3.10E-06 1.20 5.60 

(Installed capacity [MW])2  -3.51E-02 1.32E-02 9.00E-03 1.20 5.60 

Dam height [m]  1.13E-02 6.03E-03 6.46E-02 0.0 32.0 

(Weighted average penstock diameter [m])2  1.50E-01 3.05E-02 3.10E-06 0.20 2.10 

log(Waterway Length [m])  1.39E-01 5.16E-02 8.20E-03 170 4948 

Construction year [years, 2005 = 1]  1.77E-02 9.47E-03 6.47E-02 2005 2015 
Construction time [years]  1.42E-01 3.00E-02 6.70E-06 0.49 4.56 

Shaft(TRUE)  1.41E-01 6.72E-02 3.78E-02 0 1 

Response variable log-transformed using natural logarithm. 
Residual standard error = 0.213, 111 degrees of freedom, , adjusted , 

F-statistic 48.9on 8 and 111 DF . p-value  2E-16. PRESS = 5.93, RMSEP = 0.222. 
Four observations were omitted due to extreme residuals. 

The evaluation of model assumption for the 
selected model yielded a p-value of  for 
the Shapiro-Wilks test on normality of 
residuals. All four directional tests in the 
GVLMA test reported that the model 
assumptions were acceptable, as well as the 
global test. The test gave p-values above 0.5, 
for all five tests. High VIF-values were 
detected, 42.08 and 40.75 on installed 
capacity and squared installed capacity 
respectively, and otherwise were below 1.7.  

A diagnostics plot was plotted and assessed, 
given in Figure 10. It shows a few influential 
observations, namely 128 with a relatively 
high Cook’s distance and residual error, 122 
with relatively high leverage and cook’s 
distance and 117 with a relatively high 
Cook’s distance. The diagnostics plot was 
found to be acceptable with respect to 
normality of residuals and absence of 
patterns in the residuals vs. fitted and scale-
location plots.

 
Figure 10: Six diagnostics plots for Prediction model 1 for total investment costs. 
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The results from the leave-one-out cross-
validation are presented graphically in 
Figure 11. This shows the total investment 
costs as predicted by the linear model, with 
confidence and prediction intervals for the 
estimates, along with the budgeted (real) 
costs, reported (real) costs, and the leave-
one-out cross-validation estimate. The figure 
shows that neither the model nor the 

budgets are able to give precise estimates of 
the actual investment costs. The confidence 
and prediction intervals for each observation 
are based on the linear model estimates, and 
are therefore conservative. If the intervals 
were based on the cross-validated estimates 
they would have been slightly wider (due to 
a higher residual standard error).

 
Figure 11: Prediction model 1 estimates with confidence and prediction intervals of total investment costs compared 
to budgeted costs, actual costs, and leave-one-out cross-validation estimates. The CI and PI are not based on the cross-
validated prediction, and are thus conservative.

In order to more closely inspect the 
deviations from the reported costs, a plot for 
the deviations between actual costs, modeled 
costs and budgeted costs is given in Figure 
12. The figure indicates no systematic 
pattern or correlation between the budget 
cost estimates and model cost estimates. It 

shows that the cross-validation estimates 
and the linear model predictions are mostly 
consistent, with the exception of one 
substantial deviation of approximately 20%.  
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Figure 12: Plot for relative deviations in Prediction model 1 estimates and budgeted costs as percentage of reported 
costs, sorted by deviation size of the cross-validated linear model prediction estimates. Negative values show 
underestimated costs (estimated costs lower than actual costs), positive values show overestimated costs (estimated 
costs higher than actual costs).

Further analysis of model performance is 
given in section 6.3.3. The model results for 
each observation is given in Table 16 in 
Appendix 3: Prediction model 1 dataset 

6.3.2 Prediction model 2: Sum of 
partial costs 

The final subset-model had the function 
given in Equation 2, and its metrics are given 
in Table 10. It is a model with six predictor 
variables. Installed capacity has one first 
order term and a squared term, with positive 
and negative coefficients respectively, giving 
a downward-facing parabolic curve when 
isolated against the log-transformed 
response variable. The weighted average 
penstock diameter term is squared, with no 

first-order term included, the justification for 
this choice is found in the previous model 
description in section 6.3.1. The waterway 
length variable has one first order term and 
one squared term. These two terms have also 
a downward-facing parabolic curve when 
isolated. For the time variables the terms 
indicate a positive linear function between 
the variables and the log-transformed cost 
response term. This model was fitted using a 
substantially smaller dataset than the 
previous model, with only 90 observations. 
The record of reported partial costs is 
smaller than that of total costs, and the range 
of the model, i.e. range of each predictor 
variable, was reduced by removing outliers 
in an attempt to develop a model more 
precise for the majority of the cases. 

 

(2) 
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Table 10: Prediction model 2. Model data for best subset model for predicting (log-transformed) sum of partial costs. 

Predictors  -estimate  SE p-value  Data range 
Min Max 

Intercept  1.31E+00 2.15E-01 3.80E-08   
Installed capacity [MW]  5.47E-01 8.84E-02 2.30E-08 1.20 5.60 

(Installed capacity [MW])2  -4.80E-02 1.28E-02 0.00031 1.20 5.60 
(Weighted average penstock diameter [m])2  1.88E-01 3.27E-02 1.60E-07 0.20 2.10 

Waterway Length [m]  5.98E-04 1.89E-04 0.00224 170 2730 
(Waterway Length [m])2  -1.50E-07 5.76E-08 0.01095 170 2730 

Construction year [years, 2005 = 1]  2.56E-02 9.88E-03 0.01142 2005 2015 
Construction time [years]  1.23E-01 2.67E-02 1.40E-05 0.49 4.56 

Response variable log-transformed using natural logarithm. 
Residual standard error =  MNOK, 82 degrees of freedom (DF), , adjusted , 

F-statistic: 58.5 on 8 and 82 DF . p-value  2E-16. PRESS = 3.17, RMSEP =  MNOK.  
Mean absolute error rate of CV prediction = 15.6%. 

13 observations were omitted due to extreme residuals and/or high values of Cook’s distance or Leverage. 

The evaluation of model assumption for the 
selected model yielded a p-value of  for 
the Shapiro-Wilks test on normality of 
residuals. All four directional tests in the 
GVLMA test reported that the model 
assumptions were acceptable, as was the 
global test. The test gave p-values above 
0.15, for all five tests. High VIF-values of 
40.57 and 40.11 were detected for installed 
capacity and squared installed capacity 

respectively, and VIF-values of 32.00 and 
29.48 were detected for waterway length 
and waterway length squared respectively, 
otherwise below 1.7.  

The diagnostics plot in Figure 13 shows no 
single influential observations, and no 
apparent pattern of the residuals, and was 
found to be acceptable.

 
Figure 13: Six diagnostics plots for Prediction model 2 on partial costs. 
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The results from the leave-one-out cross-
validation are displayed graphically in 
Figure 14. This shows the partial investment 
costs (intake, waterway and power station 
costs) as predicted by the linear model, with 
confidence and prediction intervals for the 

estimates, along with the budgeted (real) 
costs, reported (real) costs, and the leave-
one-out cross-validation estimate. The figure 
confirms a slightly better performance than 
Prediction model 1 with respect to the 
reported costs. 

 
Figure 14: Prediction model 2 estimates with confidence and prediction intervals of partial costs compared to budgeted 
costs, actual costs, and leave-one-out cross-validation estimate. Predictions for the same dataset as the linear model 
was estimated from. The CI and PI are not based on the cross-validated prediction, and are thus conservative.

In order to more closely inspect the 
deviations from the reported costs, a plot for 
the deviations between actual costs, modeled 
costs and budgeted costs is given in Figure 
15. The figure indicates no systematic 
pattern or correlation between the budget 
cost estimates and model cost estimates. It 
shows that the cross-validation estimates 

and the linear model predictions are mostly 
consistent, with the exception of one 
substantial deviation of approximately 20%.  

The model results for each observation is 
given in Table 17 in Appendix 4: Prediction 
model 2 dataset
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Figure 15: Plot for relative deviations in Prediction model 2 estimates and budgeted costs as percentage of reported 
costs, sorted by deviation size of the cross-validated linear model prediction estimates. Negative values are 
underestimated costs (estimated costs lower than actual costs), positive values are overestimated costs (estimated 
costs higher than actual costs)

6.3.3 Performance test of the two 
linear models compared to 
budget estimates 

The prediction performance for this model 
was tested using two-sample tests. The 
results are given in Table 11. The results 
show that, although both prediction models 
on average have smaller percent deviations 
in both relative and absolute percent, the test 
cannot conclude that the models have 
significantly better prediction performance 
on average than the budget estimates. It also 
shows that when the model is tailored to a 
more homogenous subset of the data, and 
only the partial costs are used as a 
benchmark, the prediction model 2 still 
cannot perform significantly better than the 
budget estimates.  

Tests were performed, as an extension from 
the graphical analysis of the standardized 
deviations of the models in Figure 12 and 
Figure 15, to identify any presence of system 
patterns of devation in the estimates among 

the budget estimates and the model 
estimates. Table 12 and Table 13 give cross-
tabulations of the frequency of under- and 
overestimation of costs in the budget 
estimates and estimates of the two 
prediction models. Chi-square tests were 
performed performed to determine whether 
or not there was an equal distribution of 
simultaneous under- and overestimation of 
the two estimates. The results from the chi-
square tests for both models confirm that the 
distribution is not equal. A closer look at both 
tables show that the prediction models have 
a relatively even distribution of under- and 
overestimation (which is also required by 
the linear model assumptions of normality of 
residuals), and the budget estimates show a 
clear trend of underestimation of total costs, 
and a weak trend of underestimation 
compared to the sum of partial costs. More 
compelling in the analysis are the diagonals 
of the tables: Both show that the estimates 
tend to “agree”, in the sense that they are 
both under- or overestimating 
simultaneously. For model 1 on total costs, 
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the model estimates and the budget 
estimates are both under or over in 62.7% of 
the cases, and for model 2 in 66.7% of the 
cases. This may be a sign that both estimation 

methods lack the some underlying 
information from which the estimates were 
based.
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7 DISCUSSION 

This paper has been devoted to two main 
analyses: The first is an explanatory analysis 
of external project factors that may affect the 
cost of small-scale hydropower plants, and 
the second consists of predictive modeling of 
investment costs of small-scale hydropower 
projects. In this chapter, strengths and 
weaknesses of the analysis, and the results 
will be discussed with respect to the findings 
in these analyses compared to previous 
research. The chapter starts off with a 
section on limitations to the analysis. 

7.1 LIMITATIONS OF THE DATA AND THE 
ANALYSIS 

In this section, the main limitations of the 
data collection and statistical analysis are 
stated and discussed. Several factors in this 
analysis’ weaknesses may be due to the data 
quality, and some to the assumptions made 
in the modeling process. 

In statistical analysis, one of the assumptions 
is that the sample data is randomly selected 
from a larger population. The regulation 
requiring SHP owners to submit 
commissioning reports came into place in 
2007. This introduced a time bias, as projects 
commissioned before this year were not 
included in this data record. In addition, not 
all owners submitted commissioning forms. 
This is the case for 51 projects, more than 
half of which dated back before 2009. No 
measures were taken to overcome this bias. 

There are some concerns to be considered 
regarding the data quality from the 
commissioning reports themselves. The 
license holders are not required to submit 
third party documentation for most of the 
features in the report (which include 
investment costs, intake and waterway 
dimensions); only for the performance 
characteristics of the turbine and the 
generator are these required. This 
information may therefore in many cases be 

inaccurate. Additionally, the owners are 
required to submit the form within one 
month after the power plant has been 
commissioned. With such a short timeframe, 
there is no guarantee that the owner has 
finalized the economic assessment of the 
project, which means the reported costs may 
be partly estimates, and thus inaccurate.  

For several of the projects reported in the 
dataset, the total costs and the sum of partial 
costs differed. It is not possible to know with 
certainty which costs have been added to the 
total costs when these two numbers differ. In 
some cases it might be the cost of a 
connection fee, while. In other cases, 
administrative costs and other 
miscellaneous costs not directly related to 
the inlet, penstock and power plant might 
have been added only in the “total costs” 
figure. 

No measures were done to overcome 
accuracy issues related to reported 
investment costs. In Haga and Espegren 
(2013) they adjusted the partial costs by 
splitting the difference between the sum of 
partial costs and total costs evenly on the 
three cost components. Consequently, the 
sum of adjusted partial costs and total were 
thus equal in their analysis. However, as the 
modeling process showed, there was more 
noise in the reported total costs than in the 
sum of partial costs.  

The adjustments made to prices according to 
the cost index were based on average 
numbers. Each hydropower plant had 
different shares of partial costs, each of 
which has had a slightly different price 
development during the last ten years. The 
most precise way to adjust the costs would 
therefore be to break down both budgeted 
costs and reported costs into each category 
of the index and adjust accordingly. This 
would, however, require a more detailed 
assessment of each project, which was not 
prioritized within the timeframe of this 
research. The costs in real values reported in 
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this thesis should therefore be treated as an 
approximation of what the actual budgeted 
and reported costs would have been in 2015 
currency if adjusted precisely. 

The cost index adjustment was based on the 
reported construction start-up date. This 
may have not have yielded accurate cost 
adjustments, as the main cost-driving 
construction activity may have occurred at a 
later point in time/later year than the 
reported start-up date. For projects with a 
construction period spanning over several 
years, the costs may also have increased 
within the construction period. Despite these 
possible shortcomings, there were few other 
options for more accurate index adjustments 
of the costs with the available data. This 
method of index adjustment was also in line 
with the method used in Haga and Espegren 
(2013), which was based on expert advice by 
NVE. 

The cost index is updated annually, and no 
interpolation was done to increase the time 
resolution of the index. Therefore, the 
construction date variable was recoded to 
construction year and adjusted to the index 
accordingly. Due to this fact, some level of 
accuracy may have been lost in the 
construction year variable. On the other 
hand, this loss of accuracy was likely 
negligible when compared to the accuracy of 
the other variables, due to factors including 
the above-mentioned inaccuracies found in 
the rest of the dataset. 

The construction time variable used in this 
analysis was calculated as the time 
difference between the construction start-up 
date and the date of commissioning. The time 
lag between when the construction work 
itself was actually finished and the reported 
date of operation may vary in the dataset, 
such that the length of the construction 
period as calculated here was was likely 
exaggerated compared to the actual 
construction period. In order to account for 
this, one would need to obtain more detailed 
data from each power plant owner, and that 
was outside of the scope of this thesis. 

The extent to which the above-mentioned 
inaccuracies have added noise and/or 
introduced a systematic bias to the dataset is 
(to the author’s knowledge) impossible to 
measure using the data available in this 
thesis. This could be tested later if quality-
assured data were collected and tested 
against this sample.  

7.2 BUDGETED VERSUS REPORTED 
COSTS 

The observed tendency of underbudgeting in 
the license applications supports the findings 
in Stokke (2014) and Haga and Espegren 
(2013). Haga and Espegren found a mean 
deviation of 0.806 NOK/kWh and a median 
deviation of 0,821 NOK/kWh. In this 
analysis, a mean deviation of 0.734 
NOK/kWh and median deviation of 0.699 
NOK/kWh was found (see Table 6). Haga 
and Espegren’s findings lie within the 95% 
confidence intervals for both mean (t-test) 
and the median (Wilcox test). The two 
findings are thus consistent in statistical 
sense.  

An increase in total costs from the budget 
estimate in the license application is not 
necessarily a problem if the rise in costs is 
due to changes in plans leading to a higher 
annual production. However, the tests for 
deviation between estimated annual 
production in the license application and the 
updated estimate reported after 
commissioning show no significant trend in 
any direction, but have a mean and median 
decrease in estimated annual production of 
209 kWh and 230 kWh respectively. This 
indicates the increased specific costs per 
kWh in the majority of the cases is not due to 
decrease in the production estimates, but 
due to an actual increase in costs. 

There is a significant median increase in the 
nominal total costs of 49.1%, and a median 
increase in nominal specific total costs of 
1.12 NOK/kWh, which signifies an 
unambiguous trend of underbudgeting in the 
license applications. As Stokke (2014) and 



 

46 

Haga and Espegren (2013) suggest, this may 
be due to several unforeseeable factors, such 
as changes in plans, a lengthy license 
process, a lack of forecasting of cost increase 
from rising prices, and inadequate planning 
of the construction period. Still, if the 
budgeted investment cost in the license 
applications is to be regarded as a useful 
evaluation criterion for the owners 
themselves, NVE, other decision makers, 
possible investors, and the public in general, 
more precise budget estimates would be 
advantageous, or even a requirement.  

7.3 COST-DRIVERS 

7.3.1 Construction year 

The average increase in nominal investment 
costs over time were found to be 10.9 pp 
(percentage points, 2005 = 100%) per year 
in total investment cost per estimated annual 
production, and 5.9% per year in total 
investment costs per installed capacity. The 
average increase in real investment costs 
over time was found to be 3.7 pp per year for 
total investment costs per estimated annual 
production, while the fitted model for real 
investment costs per installed capacity 
indicated no significant increase in costs. In 
comparison, the cost index for small 
hydropower had an average increase of 5.2 
pp and 4.3% during the same period, while 
Prediction model 1 and 2 had effect sizes 
equivalent to 1.79% and 2.59% cost growth 
per year respectively (when all other 
variables were kept at dataset average). It 
should be noted that both prediction models 
were estimated on a subset of the data from 
which the simple linear models for 
construction year were estimated. 

On the other hand, if the physical dimensions 
of the hydropower plants have grown (in 
particular waterway length) due to less 
accessible water resources, this would 
explain part of the difference between the 
isolated effects in the prediction models 
compared to effect sizes of the simple linear 
model. When assessing the data, there is a 

trend of increasing waterway lengths over 
time. 

The results from the second model indicate 
hydropower projects have become more 
expensive per kWh estimated production, 
also when the costs are adjusted for the 
growth in the SHP cost index.  

No significant cost increase was detected for 
real costs per production capacity. There is 
still, however, an average deviation of 1.6% 
between the growth in costs per MW in 
nominal values and the growth in the SHP 
cost index. This deviation cannot be 
regarded as significant in a statistical sense, 
but may still indicate an actual cost increase. 

These two results from cost development per 
MWh and per MW combined suggest a trend 
of decreasing production volume per 
investment cost over time, but also a possible 
cost increase exceeding the inflation in the 
SHP cost index. The fact that the construction 
year term provided a significant contribution 
as a predictor in the cost estimation models 
for investment costs supports the second 
argument that costs have in fact increased.  

NVE (2015c) mention that the hydropower 
projects with the best water resources and 
lowest specific investment costs generally 
are those first developed. NVE claim license 
applications display a trend of increasing 
specific costs for hydropower projects over 
time (Hansen, E. Personal communication 
06.05.2016). Graphical inspection of the data 
from budgeted specific investment costs 
supports this trend. 

Another possible explanation of less 
production volume per investment costs is 
that the requirements for mitigation of 
environmental impacts have become stricter 
over time. NVE claim that stricter 
environmental requirements have not been 
documented during the past ten years (ibid.), 
although the requirements for 
environmental assessments have become 
stricter. 
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NVE do state the compensation flow has 
increased. The compensation flow 
requirement has in general increased from 
the ordinary low water flow up to the 5th 
percentile during the past ten to fifteen 
years, indicating that less of the water flow 
can be utilized for production (ibid).  

In conclusion, the observed increase of 
investment costs per annual production 
supports a possible explanation that the 
most accessible and easily exploitable water 
resources have been developed, and that 
over time the potential projects left are the 
less cost efficient ones.  

7.3.2 Construction time 

Total investment costs were found to 
increase with construction time, with an 
observed effect of 37.8% per year, when no 
other predictor variables were considered. 
These results should, however, be treated 
with caution. While the model and its 
predictor variable did display a significant 
contribution to explaining investment costs, 
the unexplained variance is still very high. 
This fitted regression model is thus not 
useful for prediction of increase in costs per 
length of construction period. 

When more predictors were included into 
the regression, the observed effect was much 
lower. In Prediction model 1 and 2, the 
isolated effect of construction time 
corresponded to an increase in total costs by 
15.3% and 13.1% per year respectively. It 
should be noted that both prediction models 
have been trained on a subset of the data 
from which the simple linear model was 
fitted. In these subsets, projects with tunnels 
are excluded, and such projects have both 
higher costs, and somewhat longer 
construction periods. This increases the 
effect size of construction time on 
investment costs when projects with tunnels 
are included. 

In any case, the detection of construction 
time as a significant prediction variable 
supports the findings in Stokke (2014) and 
Haga and Espegren (2013), where both 

studies point to prolonged construction 
periods as one of the main causes of budget 
overruns. 

7.3.3 Geography  

The results from this analysis indicate a 
significant difference between total 
investment costs per annual production 
across counties and regions in Norway. 
Western Norway, and in particular Sogn og 
Fjordane stand out having the lowest specific 
costs. Northern Norway, and both the 
counties Nordland and Troms have a 
relatively high number of observations, and 
group means that are higher than the total 
mean. This indicates a significantly higher 
specific cost in this region and for both 
counties compared to the rest of the regions 
and counties. For the rest of the counties, 
finding a clear pattern is more difficult, and 
no significant difference has been found in 
specific costs among those counties and 
regions.  

Lower specific costs for projects in Western 
Norway could be expected, as this region has 
a relatively high level of precipitation 
combined with a topography with a large 
relief. It is the region in Norway with the 
highest potential for small-scale hydropower 
according to NVE (2004). For Northern 
Norway, the observed higher specific costs 
may then be more surprising. Nordland and 
Troms are both counties with high levels of 
precipitation and mountainous areas, and 
some of the highest potential for small-scale 
hydropower according to NVE (2004), 
ranking among the top five together with 
Hordaland, Sogn og Fjordane and Møre og 
Romsdal. As the region of Northern Norway 
is less densely populated, the transmission 
and distribution networks are also more 
thinly dispersed This translates into 
increased costs due to longer distances to 
existing power grid and other infrastructure, 
and other factors related to distances, 
population density and economic activity 
(higher transport costs, less contractor 
expertise available, etc.). This would need to 
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be analyzed further in order to give a 
plausible and concise explanation.  

7.3.4 License owners and costs 

The results indicate specific investment costs 
are higher for professional developers than 
non-professional project developers. There 
may be several explanations for this, but two 
will be elaborated upon here:  

Renewable energy projects such as small-
scale hydropower are capital intensive. The 
production infrastructure has a high initial 
capital requirement, while the costs for 
operation and maintenance are low, and the 
infrastructure has a very long lifetime.  

Access to necessary investment capital at a 
sufficiently low cost may therefore be a 
concern for private license owners. The 
distribution of ownership of the small-scale 
hydropower projects might therefore be a 
result of a “natural selection”, where the 
owners of the most cost-efficient projects 
have been able to raise the necessary capital 
themselves for developing their projects, 
while owners of less cost-efficient projects 
have sold their water rights to professional 
developer companies with more available 
investment capital. Given that an owner or a 
group of owners can raise the necessary 
capital with low costs at its own hands, it will 
be more attractive for them not to sell the 
water rights and keep all income themselves.  

For the professional project developers, 
access to new and attractive projects is 
restricted by the ownership of the water 
rights. Their portfolio of possible investment 
may therefore restricted to projects made 
available only by the owners willing to sell 
their water rights. 

When it comes to the project development 
process itself, it would seem likely that 
professional developers with experience 
from developing previous projects would be 
able to achieve lower costs. However, this 
could be outweighed by the lower 
quality/accessibility of the water resource if 
private, non-professional owners in general 

have access to the most cost-efficient 
projects and develop those themselves.  

Another likely explanation that may 
contribute to the cost differences is that 
private owners may not report the cost of 
their work efforts in the project development 
process. In many cases, these owners are 
farmers that can do some of the construction 
work themselves. They are also likely to 
spend a considerable time on administrative 
work. The “true” costs of privately owned 
projects may therefore not have been 
reported. Professional developers, on the 
other hand, would naturally account for all 
costs from their labor. 

The above-mentioned arguments are not 
supported by literature and should be 
regarded as new questions to be answered in 
future studies rather than reliable 
explanations.  

7.4 PREDICTION MODEL FOR 
INVESTMENT COSTS 

These results indicate the regression method 
for cost estimation can be applied to 
Norwegian small-scale hydropower projects, 
and that it can be used to estimate 
investment costs for future projects. In this 
section the performance of the models in this 
thesis is compared to performance of models 
in previous studies, along with some 
considerations of the generalization of the 
prediction models, and practical use of them. 

7.4.1 Model performance compared 
to other methods 

Prediction model 1 had a mean absolute 
error rate (MAER) of 18% compared to the 
reported total costs in real values, while 
Prediction model 2 on partial costs had a 
MAER of 15.6%. As recalled from the 
literature review, the regression model in 
Kim et al. (2004) for residential building 
costs had a MAER of 6.95%. Smith and Mason 
(1997) had a MAER of 30.4% for their 
regression model for costs of pressure 
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vessels for chemical production, while 
Gunduz and Sahin (2015) reported an 
absolute error rate of 9.94% for their 
regression model on hydropower plant 
costs.  

The papers presenting cost estimation 
equations in Section 3.2.2. or the most part 
do not give mean error rates, but rather error 
rate ranges. To allow for comparison, the 
prediction error ranges for the prediction 
models in this thesis are presented here. 
Prediction model 1 has an absolute error rate 
from of 0.0283% to 70.9%, and a range of 
relative error rate from -45.4% to 70.9%. 
Prediction model 2 has an absolute error rate 
from 0.0006% to 43.9%, and a range of 
relative error rate between -30.7% and 
43.9%. 

The studies referred to in the literature are 
listed below, with their ranges: 

 Gordon (1983) (in Singal et al. 2010) 
reported a measured estimation 
accuracy of  in an early-phase 
estimation model for project costs.  

 Singal and Saini (2007) achieved an 
accuracy of  in their cost equation 
for small-size, low head run-of-river 
projects.  

 Singal et al. (2010) achieved an accuracy 
of  in their cost estimation 
equations for small hydropower projects 
cost. 

 Ogayar and Vidal (2009) reported an 
error range between-9.50% and 19.52% 
for the cases in their study. 

 Aggidis et al. (2010) reported error rates 
down to , and up to  for 
different turbine types, and  
accuracy for electro-mechanical 
equipment in their cost-estimation 
equations.  

 Cavazzini et al. (2016) reported mean 
errors below  for electro-mechanical 
equipment for Pelton and Francis 
turbines and below  for Kaplan 
turbines. The latter paper reported 
higher accuracy compared to several of 
the above-mentioned models. 

Many of the aforementioned cost equations 
consider only parts of the hydropower 
projects, for example turbine costs or 
hydropower station costs. With this 
approach, fewer variables contribute to the 
estimate cost. With this isolation of variables, 
it is easier to achieve increased accuracy.  

The motivation behind developing two 
prediction models was in part to compare 
how well the two models would perform 
with slightly different data, and whether 
different predictor variables would add to 
the prediction performance with the two 
response variables. It is not altogether 
surprising that mainly the same predictor 
variables were the best contributors in both 
models, as none of the variability which lies 
in the difference between the sum of partial 
costs and the total costs can be said to be 
attributed to any of the variables collected 
inn this dataset. While Prediction model 1 
cannot be said to add value as an accurate 
model, it may still have its virtues when 
compared to Prediction model 2. Although 
Prediction model 2 is the obvious choice 
when attempting to estimate investment 
costs for new projects as accurate as 
possible, Prediction model 1 can give 
information about how uncertain the 
estimates are. In other words, since the lack 
of predictor variables is apparent, how much 
did total investment costs vary for other 
projects similar the one analyzed? 

7.4.2 Loss of accuracy through the 
model generalization 

Small hydropower projects in Norway are all 
“tailor-made” to fit the specific site 
characteristics. Translated into model terms, 
this means that hydropower projects have a 
high number of changing variables, all of 
which contribute to the total investment cost 
to varying extents. It is therefore challenging 
to take all the possible 
characteristics/variables of hydropower 
projects into consideration when developing 
a regression model from a limited dataset. It 
would be preferable to include as many 
variables as possible, in order to project the 



 

50 

full extent of a new project as accurately as 
possible when predicting the investment 
cost. However, as observed in the model 
fitting process, the multiple linear regression 
method became less accurate when all 
variables were included. On the other hand, 
the fewer variables included, the more 
generalized the model becomes. The models 
developed here will predict the same cost for 
one project with a 2 m dam, and one with a 
100 m wide dam (when all other variables 
are kept the same), even though the project 
costs should clearly differ. Thus, the model 
predictions for new projects must be 
interpreted and used with caution.  

The main scarcity when estimating such 
models is the amount of available data. With 
a dataset containing ten times more 
observations, many of the variables that 
were left out in this study could possibly 
contribute to higher prediction accuracy. 
This is, however, a challenge for the majority 
of such modeling problems. 

One of the main motivations to develop a 
prediction model for new hydropower 
projects was to have an independent project 
assessment tool for estimating investment 
costs for new projects. The budgets in the 
license applications clearly have their 
shortcomings, judging by the observed 
inaccuracy. The goal was therefore to 
develop a model which could take 
experience from previous project 
developments into consideration and 
incorporate the cost deviations which are 
unforeseeable at the planning stage, and 
project onto new projects.  

7.4.3 Selection of modeling method.  

The majority of the literature found on cost 
estimation of small-scale hydropower 
projects had a different methodological 
approach than multiple linear regression. If a 
different and more advanced method had 
been used, this might have yielded a more 
precise prediction model. On the other hand, 
the advantage of multiple linear regression is 
that the methodology is well-documented. 

The simplicity of the model makes it 
transparent and easy to interpret. In order to 
achieve higher prediction accuracy, more 
sophisticated modeling methods could be 
considered for future research.  

7.4.4 Practical use of the prediction 
models and limitations 

For practical use, these prediction models 
could be valuable for comparing multiple 
small-hydropower projects. The results 
indicate that although both prediction 
models developed in this study had lower 
mean absolute error rates on average, they 
were still not significantly better than the 
budget estimates when tested.  

When comparing multiple projects, it is 
advisable to standardize the cost estimates 
by the estimated average annual production. 
Together with the budget estimates (when 
these are adjusted to real costs), it could be 
used as a second estimate (or third, when 
you take into consideration the budget 
assessment done by NVE in the license 
application process). It could also be used as 
an estimate of both expected costs and the 
uncertainty of the cost estimate. Here, 
uncertainty is meant both in terms of 
internal model uncertainty (confidence 
and/or prediction interval), and “external” 
uncertainty as compared to the budgeted 
cost. A large deviation between the model 
prediction estimate and the budgeted cost 
for a specific project would indicate that this 
project differs in some parameters compared 
to the sample of projects upon which the 
prediction model was estimated. This can be 
useful when screening of multiple projects, 
for example in the case of a possible investor 
looking into investment projects or 
portfolios. 

When utilized for prediction of costs for new 
projects, the prediction models perform well 
only when the data is within the range from 
which the prediction models were 
calculated. Extrapolation is burdened with 
high uncertainty. It is therefore likely that 
the two prediction models developed here 



 

51 

cannot be utilized for all new projects. 
Projects with tunnels are in any case out of 
scope for the models reported here. 

The time variables included in the prediction 
models will introduce more uncertainty, but 
were regarded as non-negligible. The effect 
of construction year on an investment ahead 
in time will be uncertain. From a more 
technical perspective, it may also introduce 
higher confidence and prediction intervals 
for the cost estimate when the input 
variables are outside the ranges of the 
training dataset. The variable should be kept, 
as is it signifies that there has been a trend of 
increasing costs (in spite of the costs having 
been adjusted for inflation and general 
growth in contractor costs) which should 
also somehow be accounted for in cost 
estimation for future projects. In the 
practical use of the model for future projects, 
two choices can be made: One is to set the 
construction year value to 2015 (11) in all 
new projects for which the prediction model 
is utilized, and use a prognosis for the future 
cost index development to scale up the 
investment cost for a future year. The second 
choice may be to plug in the actual estimated 
construction year, and in addition use a 
prognosis for future cost index development, 
which will give a higher estimate of the 
investment cost. 

The construction time variable must also be 
based on estimation of construction time for 
future projects. As reported in previous 
studies (Haga & Espegren 2013; Stokke 
2014), the actual construction period is often 
lengthier than estimated in the license 
applications. This research tested whether 
project size had any effect on construction 
time, but no trends were found. The best 
estimate here may therefore be the mean 
construction time for the reported projects. 

7.5 IMPLICATIONS OF THE FINDINGS 
AND FUTURE WORK 

The findings in this thesis can serve as a basis 
to improve the budget estimation process for 

license applicants, and the assessment of the 
budgets made by NVE. If the budgeted costs 
are to serve as a reasonable cost estimate, 
the rather low accuracy found in this study 
should call for improvements. NVE can use 
this for further adjustment of their cost basis 
for small-scale hydropower projects, which 
is frequently used as a basis for these 
budgets. The budget estimates would 
become more accurate if they also included 
an estimate of inflation in costs, which was 
also suggested by Stokke (2014) and Haga 
and Espegren (2013)  

The cost estimation tool developed in this 
thesis clearly has its shortcomings, but may 
be developed further to a more accurate tool, 
by: 

 Collecting more accurate accounting 
figures from existing hydropower 
projects: Excluding highly unpredictable 
numbers, such as grid connection fee, 
expropriation fees, etc. will give more 
comparable data, and the model 
estimation is likely to be more accurate. 

 Different model development approach: 
Using more sophisticated modeling tools, 
such as particle swarm optimization (see 
Cavazzini et al. 2016). 

 Incorporating spatial analysis, adding 
variables such as distance to existing 
roads and closest power grid connection 
point, geological characteristics of intake 
and waterway areas and topography (as 
also suggested in Stokke 2014) 

The results in Section 6.3.3 show an apparent 
correlation of simultaneous under- and over-
estimation of investment costs by both 
budget costs and estimated costs. This 
pattern may indicate that both cost 
estimation methods lack information and 
have a common bias. For further 
development of a cost estimation model, this 
could be investigated more in detail. 
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8 CONCLUSION

This thesis conducts numeric analyses of 
costs for small-scale hydropower in Norway. 
It shows that budgets in license applications 
have consistently low accuracy in their 
estimates of total investment costs. The 
thesis documents four external cost drivers 
for SHP projects, namely: 

1) Specific costs have increased 
significantly more than the general cost 
inflation for SHP projects throughout the 
past ten years 

2) Investment costs increase significantly 
with longer construction periods 

3) SHP projects in Northern Norway have 
significantly higher costs than SHP 
projects in Western Norway, although 
both regions have among the best 
potential for SHP production 

4) Non-professional developers of small-
scale hydropower projects achieve 
significantly lower specific investment 
costs than professional development 
companies. 

The thesis also sets out to develop a cost 
estimation tool for SHP projects. Two models 
were estimated based on multiple linear 
regression. One achieved a moderate 
accuracy in estimation of partial costs of SHP 
projects. 

The results from the analysis call for 
improvements of the budgets in the license 
applications, if these should serve as a 
reasonable estimate of the total investment 
cost of SHP projects. The analysis of the four 
cost driving factors for SHP project costs is 
the first of its kind in the literature, and these 
results may be useful information for 
investors and project developers looking 
into new development objects.  

The cost estimation tools may serve as a 
valuable independent tool for SHP project 
assessment. Together with index adjusted 
budget estimates, they can aid in the cost 
ranking of multiple projects for investors and 
project developers who are seeking new 
ventures. 
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APPENDIX 2: LICENSE OWNER CLASSIFICATION 

Table 15: Company classification into professional and non-professional owners 

Kdb_I
D 

Title Holder Company 
Classification 

4579 Færåsen kraftverk AGDER ENERGI VANNKRAFT AS pro 
5215 Akslandselva kraftverk AKSLANDSELVA KRAFTVERK AS non-pro 

5295 Bentsjord kraftverk BEKK OG STRØM AS Pro 
4854 Bele Kraftverk BELE KRAFT AS pro 

4474 Berdalselva kraftverk BERDALSKRAFT AS non-pro 
5394 Måren kraftverk BKK PRODUKSJON AS pro 

4940 Dalelva kraftverk DALELVO KRAFT AS non-pro 
5168 Dversetelva kraftverk DRAGEFOSSEN KRAFTANLEGG 

AS 
non-pro 

4211 Dvergsdalsdalen kraftverk DVERGSDALSDALEN 
KRAFTVERK AS 

non-pro 

4108 Lya kraftverk E-CO Vannkraft as pro 

4714 Eitro kraftverk EITRO KRAFTVERK AS non-pro 
4904 Embla kraftverk EMBLA KRAFT AS non-pro 

5046 Follsjå kraftverk FOLLSJÅ KRAFT AS pro 
5639 Fossbråten kraftverk FOSSBRÅTEN KRAFTVERK AS non-pro 

4212 Frammarsvik kraftverk FRAMMARSVIK KRAFT AS non-pro 
4770 Føssa kraftverk FØSSA KRAFTVERK AS non-pro 

3987 Gautvella småkraftverk GAUTVELLA KRAFTVERK AS non-pro 
4406 Gjesdal kraftverk GJESDAL KRAFT AS non-pro 

4095 Gjetingsdalen kraftverk GJETINGSDALEN KRAFT AS non-pro 
4514 Gryta kraftverk GRYTA KRAFT AS non-pro 

4670 Grønlielva kraftverk GRØNLIELVA KRAFTVERK AS non-pro 
5492 Folkedal kraftverk -opprusting og utviding HARDANGER ENERGI AS pro 

5199 Bordalsbekken kraftverk HAUGALAND KRAFT AS pro 
4620 Øvre Forsland kraftverk HELGELAND KRAFT AS pro 

2712 Laksen kraftverk HELGELAND KRAFT AS pro 
4425 Kangsliåga kraftverk HELGELAND SMÅKRAFT AS pro 

4837 Holdal kraftverk HOLDALBEKK KRAFT AS non-pro 
4948 Hopselva kraftverk HOPSELVA KRAFTVERK AS pro 

4291 Hovland kraftverk HOVLAND KRAFT AS non-pro 
4571 Hynna Kraftverk HYNNA KRAFT AS non-pro 

5247 Fossan kraftverk HÅLOGALAND KRAFT AS non-pro 
5070 Håra Kraftverk HÅRA KRAFT AS non-pro 

5096 Sundli kraftverk, reg. Strømtjønna Jamtåsbekken vasskraftlag DA 
v/Røhme 

non-pro 

4088 Julfoss kraftverk JULFOSS KRAFT AS non-pro 
5326 Kaldåna småkraftverk KALDÅNA KRAFT AS non-pro 

4363 Veslefallet kraftverk KIÆR MYKLEBY Anders Kiær non-pro 
2969 Landakraft (tidl. Landa kraftverk) KLØVKRAFT AS non-pro 

5377 Kulu kraftverk KULU KRAFTVERK AS non-pro 
5535 Kverninga kraftverk KVERNINGA KRAFTVERK AS non-pro 

3028 Kvernstad kraftverk KVERNSTAD KRAFT AS non-pro 
4834 Kvitno kraftverk KVITNO KRAFT AS pro 
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Kdb_I
D 

Title Holder Company 
Classification 

5324 Kvitvella Electrisitetsverk i Kvitvella-fossen KVITVELLA 
ELECTRISITETSVERK AS 

non-pro 

4805 Kviven kraftverk KVIVEN KRAFT AS non-pro 

4842 Kylland småkraftverk KYLLAND KRAFT AS non-pro 
4637 Kysinga kraftverk KYSINGA KRAFT AS non-pro 

5140 Litj-Hena kraftverk LITJ-HENA KRAFTVERK AS pro 
4288 Fjellet kraftverk, Godal kraftverk med reg. og 

overføring 
LØVENSKIOLD FOSSUM KRAFT pro 

6015 Åmot kraftverk LØVENSKIOLD-FOSSUM KRAFT 
AS 

pro 

5272 Middøla kraftverk MIDDØLA KRAFT AS pro 

5028 Misfjord kraftverk MISFJORD KRAFT AS non-pro 
4900 Muoidejohka kraftverk MUOIDEJOHKA KRAFT AS pro 

5191 Mygland kraftverk MYGLAND KRAFT AS pro 
4703 Nape kraftverk NAPE KRAFT AS non-pro 

4468 Nedre Neset kraftverk NESET KRAFT AS pro 
4470 Østre Neset kraftverk NESET KRAFT AS pro 

4469 Vestre Neset kraftverk NESET KRAFT AS pro 
5016 Fjelna kraftverk NORDIC POWER AS pro 

4848 Saltdalelva kraftverk NORDIC POWER AS pro 
4998 Ellenelva kraftverk NORDIC POWER AS pro 

4502 Røstad kraftverk NORDIC POWER AS pro 
5025 Bergselva kraftverk NORDIC POWER AS pro 

4348 Lappvikelva (Tidl. Lappvik) kraftverk NORDIC POWER AS pro 
4381 Mortensdalelva kraftverk NORDIC POWER AS pro 

4293 Storå kraftverk NORDIC POWER AS pro 
4340 Glesåa kraftverk NORDRE LØSSET AS non-pro 

2283 Forsanvatn kraftverk NORD-SALTEN KRAFT AS pro 
6106 Kvemma kraftverk NORSK GRØNNKRAFT AS pro 

4308 Leirelva kraftverk NORSK GRØNNKRAFT AS pro 
5550 Kvassteinåga kraftverk NORSK GRØNNKRAFT AS pro 

4309 Tverråga kraftverk NORSK GRØNNKRAFT AS pro 
1784 Havdal kraftverk NORSK GRØNNKRAFT AS pro 

5094 Skravlåga kraftverk NORSK GRØNNKRAFT AS pro 
5092 Kinnforsen kraftverk NORSK GRØNNKRAFT AS pro 

4490 Urdsdalselva kraftverk NORSK GRØNNKRAFT AS pro 
5833 Tossevikelva kraftverk NORSK GRØNNKRAFT AS pro 

4393 Imsland småkraftverk NORSK KRAFT HOLDING AS pro 
4540 Nydalselva småkraftverk NYDALSELVA KRAFT AS non-pro 

5485 Nyvikelva kraftverk NYVIKELVA KRAFT DA pro 
4535 Herje kraftverk RAUMA ENERGI AS non-pro 

5643 Ravnåga kraftverk RAVNÅGA KRAFTVERK AS non-pro 
4200 Rendalselva Kraftverk (Tidl. Kraftutbygging 

Rendalselva) 
RENDALSELVA KRAFTVERK AS non-pro 

4394 Ringdal kraftverk RINGDAL KRAFTVERK AS non-pro 
3826 Vassfossen kraftverk RISDAL ENERGI AS non-pro 

5171 Rodal kraftverk RODAL KRAFT AS non-pro 
5379 Ryddøla kraftverk RYDDØLA KRAFTVERK AS non-pro 

3137 Saksenvik småkraftverk SAKSENVIK KRAFT AS pro 
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2932 Mølnelva minikraftverk SANDVIK ENERGI AS non-pro 

4754 Seimsdal(Tidl. Øyni) kraftverk SEIMSDAL KRAFT AS non-pro 
5623 Kraftverk i Gaudalselva SETERKRAFT AS pro 

2511 Reinskar kraftverk,regulering av Storvatn SJØFOSSEN ENERGI AS pro 
4014 Steinåga kraftverk SJØFOSSEN ENERGI AS pro 

5229 Liarelva Kraftverk SKL PRODUKSJON AS pro 
4737 Skripelandsfossen kraftverk SKRIPELANDSFOSSEN KRAFT AS non-pro 

4347 Rasdalen kraftverk SMÅKRAFT AS pro 
4505 Søberg kraftverk SMÅKRAFT AS pro 

4201 Furegardene (Tidl. Sagelvi) kraftverk SMÅKRAFT AS pro 
4600 Dokkelva kraftverk SMÅKRAFT AS pro 

5570 Reinåga kraftverk SMÅKRAFT AS pro 
4203 Knutfoss kraftverk SMÅKRAFT AS non-pro 

4321 Usma kraftverk SMÅKRAFT AS pro 
4396 Skarelva kraftverk SMÅKRAFT AS pro 

2548 Kveaså kraftverk (Tidl. Kveasåni småkraftverk) SMÅKRAFT AS pro 
4598 Kanndalen kraftverk SMÅKRAFT AS pro 

4497 Stublielva småkraftverk SMÅKRAFT AS pro 
4601 Sagelvi kraftverk SMÅKRAFT AS pro 

4158 Vågaåna småkraftverk SMÅKRAFT AS pro 
4427 Bruvollelva kraftverk SMÅKRAFT AS pro 

4215 Tveitaskar (Tidl. Tveitaskarelva) Kraftverk SMÅKRAFT AS pro 
4536 Tjøtaelva kraftverk SMÅKRAFT AS pro 

4390 Bergstø kraftverk SMÅKRAFT AS pro 
4525 Langdalselva kraftverk SMÅKRAFT AS pro 

5754 Kaldsåni kraftverk SMÅKRAFT AS pro 
4341 Blådalselva kraftverk SMÅKRAFT AS pro 

5473 Tyttebærelva kraftverk SMÅKRAFT AS pro 
4451 Stokkelandsåna kraftverk SMÅKRAFT AS pro 

5431 Valåi/Vålåe kraftverk SMÅKRAFT AS pro 
4323 Eidsetelva kraftverk SMÅKRAFT AS pro 

4480 Tua småkraftverk SMÅKRAFT AS pro 
4541 Torvikelva kraftverk SMÅKRAFT AS pro 

5026 Snefjellå kraftverk SNEFJELLÅKRAFT AS non-pro 
4508 Fykanvannet kraftverk STATKRAFT ENERGI AS pro 

4008 Rødberg kraftverk STATKRAFT SF pro 
4388 Steindøla kraftverk STEINDØLA KRAFT AS pro 

4752 Innhavet kraftverk STORVATNET KRAFT AS non-pro 
4384 Furset kraftverk - Planendring ved 

gjenoppbygging 
Stranda Energiverk AS pro 

5220 Rødset kraftverk Stranda Energiverk AS pro 

4866 Strandos kraftverk STRANDOS KRAFT AS non-pro 
4877 Stølsdalselva kraftverk STØLSDALSELVA KRAFTVERK 

AS 
non-pro 

4400 Sværen kraftverk SVÆREN KRAFT AS non-pro 

4669 Syrifossen kraftverk SYRIKRAFT AS non-pro 
4629 Dyrkorn kraftverk TAFJORD KRAFTPRODUKSJON 

AS 
pro 
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5699 Simavika kraftverk TROMSØ KOMMUNE non-pro 

4636 Litlebø kraftverk TRYGGESTAD KRAFT AS non-pro 
4130 Urke kraftverk TUSSA ENERGI AS pro 

5788 Viddal kraftverk TUSSA ENERGI AS pro 
5029 Standal kraftverk TUSSA ENERGI AS pro 

4851 Draura kraftverk TUSSA ENERGI AS pro 
4273 Dalegjerdet kraftverk Tussa Energi AS pro 

4653 Skår småkraftverk TUSSA ENERGI AS pro 
4573 Tveitelva kraftverk TVEITELVA KRAFTVERK AS non-pro 

4634 Usma kraftverk USMA KRAFT AS non-pro 
4160 Veka kraftverk VEKA KRAFT AS non-pro 

4760 Venna kraftverk VENNA KRAFT AS non-pro 
5048 Vikaelva kraftverk VIKAELVA KRAFTVERK AS non-pro 

5184 Voldsetelva kraftverk VOLDSETELVA KRAFTVERK AS non-pro 
4101 Vågen kraftverk VÅGEN KRAFT AS non-pro 

4270 Eldrevatn kraftverk Østfold Energi AS pro 
4791 Hanestadnea kraftverk ØVERGAARD ENERGI AS non-pro 

4477 Øvstedal minikraftverk ØVSTEDAL KRAFT AS non-pro 
4374 Øyadalen kraftverk ØYADALEN KRAFTVERK AS non-pro 

4555 Ågskar småkraftverk ÅGSKARKRAFT AS non-pro 
5339 Åkraelva kraftverk ÅKRAELVA KRAFTVERK AS non-pro 

4886 Åselva småkraftverk ÅSELVA KRAFT AS non-pro 
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APPENDIX 3: PREDICTION MODEL 1 DATASET

Table 16: Prediction model 1 output. Reported costs and predictor variables omitted due to confidentiality.

Nr Budg. Costs  
[MNOK] 

CV Pred.  
[MNOK] 

LM Pred 
[MNOK] 

LM CI 
Lower 

[MNOK] 

LM CI  
Upper 

[MNOK] 

LM PI 
Lower 

[MNOK] 

LM PI  
Upper 

[MNOK] 
1 25.05 17.83 17.92 15.89 20.21 11.33 28.35 
2 16.95 17.88 18.03 16.15 20.13 11.43 28.45 
3 13.23 18.45 18.57 16.38 21.05 11.72 29.41 
4 20.88 19.25 18.57 16.63 20.74 11.77 29.30 
5 13.95 19.29 19.83 17.08 23.02 12.43 31.63 
6 10.81 19.32 19.14 17.35 21.12 12.17 30.12 
7 15.51 19.64 19.66 17.52 22.05 12.44 31.05 
8 18.14 19.81 19.49 17.48 21.73 12.35 30.73 
9 20.91 20.04 20.09 18.18 22.19 12.76 31.62 

10 12.50 20.05 20.11 18.01 22.46 12.75 31.74 
11 15.98 20.55 20.15 17.66 23.00 12.70 31.98 
12 12.40 20.81 19.97 17.67 22.57 12.62 31.61 
13 21.65 21.40 21.44 19.76 23.28 13.67 33.63 
14 23.89 22.49 22.77 20.48 25.31 14.45 35.89 
15 38.13 22.58 22.84 20.87 24.99 14.54 35.87 
16 16.23 22.66 22.40 19.63 25.55 14.11 35.54 
17 18.38 22.96 23.20 19.37 27.78 14.39 37.41 
18 21.76 23.04 22.96 21.16 24.91 14.64 36.00 
19 15.68 23.20 23.00 21.07 25.12 14.65 36.12 
20 18.27 23.27 23.27 21.39 25.32 14.83 36.51 
21 19.87 23.28 23.50 21.65 25.49 14.98 36.85 
22 27.73 23.33 23.47 21.81 25.25 14.98 36.75 
23 21.62 23.69 23.62 21.46 25.99 15.02 37.14 
24 13.76 23.78 23.59 21.49 25.89 15.01 37.08 
25 15.40 24.51 24.31 22.75 25.98 15.54 38.03 
26 22.31 24.65 24.98 23.21 26.89 15.95 39.12 
27 17.55 25.54 25.61 23.01 28.50 16.24 40.38 
28 18.16 25.62 25.68 24.05 27.42 16.42 40.17 
29 25.94 25.93 25.93 23.81 28.24 16.52 40.69 
30 33.68 25.97 26.28 24.30 28.43 16.77 41.20 
31 24.64 26.34 26.36 24.53 28.32 16.83 41.26 
32 11.23 26.47 26.26 21.26 32.44 16.09 42.89 
33 26.44 26.92 27.23 23.96 30.94 17.18 43.15 
34 19.49 27.21 27.44 25.24 29.85 17.49 43.06 
35 31.92 27.38 27.64 25.52 29.93 17.63 43.33 
36 32.76 27.63 27.78 25.82 29.90 17.74 43.51 
37 26.21 28.08 27.99 25.13 31.17 17.75 44.14 
38 16.29 28.71 28.35 26.22 30.67 18.09 44.44 
39 27.70 29.95 29.98 28.04 32.06 19.17 46.91 
40 17.55 30.41 30.03 26.99 33.42 19.05 47.35 
41 25.95 30.60 30.79 28.18 33.65 19.61 48.36 
42 38.66 30.92 31.14 29.04 33.39 19.90 48.74 
43 36.23 31.52 31.72 29.27 34.36 20.23 49.73 
44 33.54 31.53 31.53 28.41 34.98 20.01 49.67 
45 33.81 32.09 32.67 29.98 35.59 20.81 51.27 
46 26.70 32.21 31.67 25.85 38.79 19.46 51.52 
47 26.47 32.21 32.88 29.51 36.63 20.85 51.85 
48 19.11 32.54 32.02 28.90 35.48 20.33 50.43 
49 27.57 33.09 32.53 29.50 35.88 20.68 51.19 
50 27.05 33.09 32.69 27.87 38.34 20.42 52.32 
51 30.89 33.18 33.04 30.59 35.68 21.08 51.77 
52 43.04 33.51 33.47 30.49 36.74 21.30 52.61 
53 29.53 33.58 33.54 30.68 36.67 21.36 52.68 
54 18.76 33.76 33.62 30.65 36.89 21.39 52.84 
55 35.30 33.99 33.91 31.62 36.36 21.66 53.07 
56 23.21 34.25 33.35 27.53 40.40 20.59 54.02 
57 40.68 34.84 34.99 31.56 38.80 22.22 55.12 
58 25.80 35.01 36.0 6 31.88 40.79 22.78 57.09 
59 22.40 35.47 35.04 31.94 38.44 22.29 55.07 
60 35.36 35.53 35.25 32.35 38.41 22.46 55.33 
61 21.92 35.73 35.55 32.15 39.31 22.58 55.97 
62 34.99 35.96 36.35 32.84 40.24 23.08 57.24 
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Nr Budg. Costs  
[MNOK] 

CV Pred.  
[MNOK] 

LM Pred 
[MNOK] 

LM CI 
Lower 

[MNOK] 

LM CI  
Upper 

[MNOK] 

LM PI 
Lower 

[MNOK] 

LM PI  
Upper 

[MNOK] 
63 33.14 36.48 36.36 33.58 39.36 23.19 56.99 
64 25.69 36.71 36.92 33.87 40.25 23.52 57.95 
65 22.79 36.73 36.38 28.87 45.85 22.08 59.94 
66 23.52 36.86 37.44 34.40 40.74 23.86 58.74 
67 31.07 37.97 36.41 30.61 43.30 22.64 58.56 
68 38.22 38.04 38.49 32.44 45.67 23.95 61.85 
69 31.96 38.16 37.81 35.04 40.80 24.13 59.24 
70 28.92 38.22 39.03 35.49 42.92 24.82 61.37 
71 28.92 38.44 38.32 34.60 42.43 24.33 60.34 
72 36.45 38.91 39.03 34.91 43.63 24.73 61.60 
73 34.40 39.67 38.72 33.74 44.44 24.36 61.55 
74 27.95 40.01 40.03 34.68 46.21 25.14 63.74 
75 29.21 40.15 40.03 34.49 46.46 25.10 63.85 
76 44.11 40.38 40.45 36.54 44.78 25.69 63.69 
77 25.27 42.04 41.63 38.34 45.20 26.54 65.29 
78 54.35 42.78 43.34 39.20 47.92 27.53 68.23 
79 49.61 43.30 43.36 39.34 47.79 27.56 68.21 
80 45.66 44.04 45.12 39.77 51.18 28.48 71.48 
81 37.97 44.81 44.20 39.32 49.68 27.97 69.85 
82 39.18 46.88 46.25 42.44 50.41 29.47 72.60 
83 38.63 47.26 46.06 40.40 52.50 29.03 73.06 
84 52.41 47.37 47.14 43.23 51.40 30.03 74.00 
85 36.93 48.23 48.09 43.31 53.38 30.52 75.77 
86 37.95 48.30 48.80 43.49 54.77 30.89 77.10 
87 42.15 48.45 48.45 43.90 53.46 30.79 76.24 
88 65.71 49.31 49.29 44.92 54.08 31.36 77.46 
89 54.15 49.72 49.81 45.92 54.03 31.76 78.11 
90 29.21 50.08 50.30 46.70 54.19 32.11 78.79 
91 36.91 50.17 50.33 46.16 54.88 32.07 79.01 
92 29.80 50.75 50.01 40.94 61.10 30.77 81.29 
93 53.55 50.84 51.24 44.70 58.74 32.25 81.42 
94 51.43 51.48 51.03 45.60 57.11 32.33 80.57 
95 46.31 52.04 51.85 47.56 56.52 33.03 81.38 
96 30.29 52.18 49.65 41.45 59.47 30.79 80.07 
97 54.06 52.58 52.32 47.51 57.61 33.26 82.28 
98 58.39 52.92 52.33 45.67 59.97 32.94 83.15 
99 45.36 53.13 54.16 48.74 60.18 34.37 85.36 

100 31.06 53.41 53.73 49.69 58.09 34.28 84.20 
101 45.51 54.02 53.04 46.73 60.21 33.47 84.05 
102 72.29 54.97 55.16 50.14 60.69 35.08 86.75 
103 56.78 55.10 56.67 49.07 65.44 35.58 90.25 
104 38.51 55.23 55.80 50.93 61.13 35.51 87.67 
105 43.30 55.56 55.77 51.56 60.31 35.58 87.41 
106 56.65 56.01 57.07 51.15 63.66 36.18 90.02 
107 42.32 56.24 54.34 46.36 63.69 33.96 86.95 
108 45.34 56.34 55.21 49.39 61.73 34.98 87.14 
109 46.88 56.56 56.52 48.55 65.78 35.40 90.23 
110 34.28 58.08 58.24 53.92 62.92 37.17 91.27 
111 70.32 58.30 57.99 51.95 64.74 36.76 91.50 
112 51.34 59.54 59.75 52.82 67.59 37.74 94.59 
113 40.84 59.87 59.14 50.56 69.17 36.98 94.57 
114 53.58 61.93 63.49 53.60 75.21 39.53 101.97 
115 61.61 65.58 65.85 57.55 75.36 41.46 104.59 
116 88.76 67.84 76.59 63.20 92.82 47.27 124.07 
117 56.60 72.23 72.48 62.60 83.92 45.48 115.52 
118 93.37 79.39 72.73 62.62 84.46 45.59 116.03 
119 56.32 91.10 84.89 68.76 104.82 52.00 138.60 
120 49.47 96.88 81.08 56.72 115.89 45.91 143.18 
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APPENDIX 4: PREDICTION MODEL 2 DATASET

Table 17: Prediction model 2 output. Reported costs and predictor variables omitted due to confidentiality. 

Nr. Budg.Costs 
[MNOK] 

LM Pred 
[MNOK]. 

CV Pred 
[MNOK]. 

LM CI lower 
[MNOK] 

LM CI upper 
[MNOK] 

LM PI lower 
[MNOK] 

LM PI upper 
[MNOK] 

1 25.05 14.48 14.31 12.79 16.39 9.73 21.55 
2 20.88 14.63 15.26 12.82 16.70 9.81 21.83 
3 10.81 17.03 17.10 15.50 18.73 11.54 25.14 
4 13.23 17.52 17.27 15.57 19.71 11.80 26.02 
5 12.40 16.69 17.31 14.79 18.84 11.23 24.82 
6 12.50 17.57 17.31 15.84 19.49 11.88 26.00 
7 15.51 18.03 17.84 16.00 20.32 12.13 26.80 
8 20.91 17.71 17.92 16.01 19.59 11.98 26.18 
9 18.14 18.25 18.47 16.34 20.40 12.31 27.06 

10 15.98 18.18 18.56 15.89 20.81 12.18 27.16 
11 18.27 19.43 19.21 17.71 21.31 13.17 28.66 
12 21.76 20.04 20.01 18.46 21.76 13.62 29.50 
13 23.89 20.07 20.11 18.00 22.38 13.55 29.73 
14 27.73 21.05 21.06 19.65 22.56 14.34 30.91 
15 19.87 22.11 21.71 20.27 24.12 15.01 32.58 
16 38.13 21.81 21.75 20.22 23.52 14.84 32.05 
17 15.40 21.72 21.91 20.22 23.32 14.79 31.90 
18 15.68 21.83 22.03 19.97 23.87 14.81 32.19 
19 13.76 21.95 22.10 19.92 24.18 14.86 32.41 
20 21.62 22.21 22.21 20.14 24.50 15.04 32.81 
21 26.44 23.45 22.35 20.26 27.14 15.64 35.16 
22 18.16 23.18 23.03 21.73 24.73 15.80 34.00 
23 32.76 25.23 24.95 23.48 27.12 17.18 37.06 
24 31.92 25.18 25.22 23.42 27.08 17.14 36.99 
25 24.64 25.48 25.43 23.60 27.53 17.33 37.47 
26 19.49 25.86 25.49 23.82 28.08 17.57 38.06 
27 33.68 25.98 25.52 23.80 28.36 17.63 38.28 
28 16.29 25.46 25.77 23.60 27.48 17.32 37.43 
29 25.94 25.71 26.05 23.45 28.18 17.43 37.92 
30 17.55 26.84 27.03 24.24 29.72 18.15 39.69 
31 26.21 27.02 27.06 24.12 30.27 18.21 40.08 
32 25.95 27.10 27.06 25.03 29.33 18.42 39.86 
33 27.05 27.14 27.29 24.81 29.68 18.41 40.01 
34 26.70 28.24 27.75 23.33 34.19 18.50 43.12 
35 19.11 27.82 28.46 24.97 31.01 18.78 41.21 
36 33.54 29.08 28.64 24.93 33.92 19.34 43.72 
37 18.76 29.21 29.09 26.46 32.24 19.77 43.16 
38 27.70 28.99 29.10 26.99 31.14 19.74 42.58 
39 38.66 29.88 29.51 27.75 32.17 20.34 43.91 
40 29.53 30.32 30.43 27.81 33.06 20.58 44.67 
41 36.23 30.75 30.44 28.39 33.31 20.90 45.24 
42 26.47 31.16 31.19 28.06 34.60 21.06 46.11 
43 23.21 31.00 31.38 25.96 37.03 20.43 47.06 
44 40.68 32.97 32.61 29.72 36.58 22.28 48.78 
45 22.79 33.92 33.01 26.91 42.74 21.78 52.81 
46 36.45 34.31 33.68 30.52 38.58 23.11 50.95 
47 35.30 33.64 33.77 31.12 36.35 22.87 49.46 
48 23.52 34.16 33.96 31.70 36.82 23.25 50.21 
49 34.99 35.00 34.18 31.21 39.25 23.59 51.93 
50 30.89 34.08 34.39 31.22 37.19 23.13 50.21 
51 21.92 34.28 34.43 30.92 38.01 23.18 50.71 
52 28.92 35.22 35.07 30.40 40.81 23.48 52.82 
53 27.95 36.21 35.57 31.36 41.81 24.17 54.24 
54 25.69 36.53 36.21 33.51 39.81 24.80 53.81 
55 22.40 35.83 36.49 32.67 39.30 24.29 52.86 
56 34.40 37.26 38.36 32.41 42.83 24.91 55.72 
57 45.66 41.74 40.09 36.98 47.11 28.08 62.06 
58 25.27 39.80 40.25 36.68 43.18 27.04 58.57 
59 29.21 40.52 40.84 34.52 47.56 26.88 61.07 
60 29.80 39.98 41.09 34.14 46.81 26.55 60.20 
61 37.97 40.73 41.15 36.33 45.66 27.45 60.43 
62 49.61 41.54 41.34 37.72 45.75 28.13 61.34 
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Nr. Budg.Costs 
[MNOK] 

LM Pred 
[MNOK]. 

CV Pred 
[MNOK]. 

LM CI lower 
[MNOK] 

LM CI upper 
[MNOK] 

LM PI lower 
[MNOK] 

LM PI upper 
[MNOK] 

63 44.11 40.88 41.59 36.98 45.19 27.66 60.42 
64 46.88 42.99 42.80 38.78 47.66 29.06 63.59 
65 42.32 43.91 44.02 38.83 49.65 29.52 65.32 
66 54.35 45.00 44.34 40.75 49.70 30.45 66.50 
67 40.84 45.85 45.91 40.87 51.43 30.89 68.04 
68 36.91 44.45 46.11 39.23 50.36 29.86 66.16 
69 54.15 46.45 46.18 42.84 50.37 31.57 68.35 
70 30.29 45.50 46.58 39.78 52.05 30.47 67.94 
71 36.93 45.44 46.88 39.64 52.07 30.41 67.89 
72 52.41 46.02 46.99 41.72 50.77 31.15 67.99 
73 53.55 48.67 47.79 42.55 55.67 32.60 72.67 
74 65.71 47.85 47.80 43.72 52.37 32.45 70.55 
75 38.63 46.55 48.37 40.83 53.07 31.21 69.43 
76 51.43 48.52 48.83 43.69 53.88 32.79 71.80 
77 58.39 48.75 48.96 43.02 55.24 32.75 72.56 
78 45.34 47.28 49.19 39.69 56.33 31.18 71.69 
79 42.15 49.81 49.91 45.16 54.94 33.72 73.58 
80 54.06 51.61 52.00 46.41 57.38 34.86 76.40 
81 31.06 52.53 52.05 48.60 56.78 35.72 77.24 
82 49.47 53.63 52.32 48.46 59.36 36.27 79.30 
83 72.29 52.81 52.47 48.41 57.61 35.84 77.81 
84 38.51 53.71 52.50 48.34 59.67 36.29 79.49 
85 45.36 55.05 53.43 49.15 61.66 37.11 81.66 
86 43.30 54.24 53.89 50.14 58.68 36.88 79.77 
87 70.32 54.19 56.42 48.90 60.06 36.64 80.15 
88 51.34 56.36 57.24 50.20 63.29 37.97 83.67 
89 61.61 68.22 68.17 59.28 78.52 45.60 102.08 
90 56.60 75.94 76.32 63.63 90.62 50.04 115.23 
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APPENDIX 5: R CODE  

All relevant coding used for data handling, data analysis and plotting is given below. 
 
# Intropart: Loading packages, read file, read columns correctly, make adjustments  
 
# Packages used in this script 
library(MASS) 
library(car) 
library(DAAG) 
library(gvlma) 
library(leaps) 
library(bootstrap) 
library(bootStepAIC) 
library(ggplot2) 
library(cowplot) 
library(dplyr) 
library(boot) 
library(reshape2) 
library(ggfortify) 
library(gmodels) 
 
# Saving default graphical parameters 
def.par <- par(no.readonly = TRUE) # save default, for resetting... 
 
phi <- 1.61803399 
graphics.off() 
wi=9/2.51; he=9/2.51; windows(width = wi, height = he);  
wi=14/2.51; he=(14/phi)/2.51; windows(width = wi, height = he);  
wi=7.38/2.51; he=(7.38/phi)/2.51; windows(width = wi, height = he);  
wi=23/2.51; he=(23/phi)/2.51; windows(width = wi, height = he); 
wi=18/2.51; he=(19/phi)/2.51; windows(width = wi, height = he); 
wi=23/2.51; he=(23/3*2)/2.51; windows(width = wi, height = he); 
 
setwd("C:/Users/tobe/Desktop/Master_lokal") 
 
############################################################################## 
4.3. Data handling 
########################################################################### 
 
# Read power plant data 
Rselection <- read.csv("Reported_costs3.csv", na.strings=c("NULL", "-9999", "IO", 
"00.01.1900", ""), header=TRUE) 
head(Rselection) 
 
# Set selected cells with no input to 0, not NA --------- 
Rselection$Dam1_Height_R[is.na(Rselection$Dam1_Height_R)] <- 0 
Rselection$Dam1_Length_R [is.na(Rselection$Dam1_Length_R )] <- 0 
Rselection$Dam2_Height_R [is.na(Rselection$Dam2_Height_R )] <- 0 
Rselection$Dam2_Length_R [is.na(Rselection$Dam2_Length_R )] <- 0 
Rselection$Penstock1_Length_R [is.na(Rselection$Penstock1_Length_R )] <- 0 
Rselection$Penstock1_Dia_R [is.na(Rselection$Penstock1_Dia_R )] <- 0 
Rselection$Penstock2_Length_R [is.na(Rselection$Penstock2_Length_R )] <- 0 
Rselection$Penstock2_Dia_R [is.na(Rselection$Penstock2_Dia_R )] <- 0 
Rselection$Tunnel_Length_R [is.na(Rselection$Tunnel_Length_R )] <- 0 
Rselection$Tunnel_Cross_Sect_R [is.na(Rselection$Tunnel_Cross_Sect_R )] <- 0 
Rselection$Shaft_Length_R [is.na(Rselection$Shaft_Length_R )] <- 0 
Rselection$Shaft_Cross_Sect_R [is.na(Rselection$Shaft_Cross_Sect_R )] <- 0 
Rselection$Turbine2_Effect_R [is.na(Rselection$Turbine2_Effect_R )] <- 0 
Rselection$Turbine2_Abs_Cap_R [is.na(Rselection$Turbine2_Abs_Cap_R )] <- 0 
Rselection$Generator1_Cap_R [is.na(Rselection$Generator1_Cap_R )] <- 0 
Rselection$Generator2_Cap_R [is.na(Rselection$Generator2_Cap_R )] <- 0 
 
# Penstock type --------- 
Rselection$Penstock1_Type_R <- as.character.factor(Rselection$Penstock1_Type_R) 
Rselection$Penstock2_Type_R <- as.character.factor(Rselection$Penstock2_Type_R) 
 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "Duktil"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "Duktil"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "Duktilt"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "Duktilt"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "Duktilt"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "Duktilt"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "DSJ"] <- "Duktile" 
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Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "DSJ"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "GJS"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "GJS"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "STJ"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "STJ"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "K10"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "K10"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "K9"] <- "Duktile" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "K9"] <- "Duktile" 
Rselection$Penstock1_Type_R [Rselection$Penstock1_Type_R == "GUP"] <- "GRP" 
Rselection$Penstock2_Type_R [Rselection$Penstock2_Type_R == "GUP"] <- "GRP" 
 
attach(Rselection) 
Rselection$Penstock_Types_R <- "NA" 
for (t in 1:nrow(Rselection)) { 
  if (isTRUE(Rselection$Penstock1_Type_R[t] == "Duktile" & 
Rselection$Penstock2_Type_R[t] == "GRP")) Rselection$Penstock_Types_R[t] <- 
"GRP_Duc" 
  else  
    if (isTRUE(Rselection$Penstock1_Type_R[t] == "GRP" & 
Rselection$Penstock2_Type_R[t] == "Duktile")) Rselection$Penstock_Types_R[t] <- 
"GRP_Duc" 
    else 
      if (isTRUE(Rselection$Penstock1_Type_R[t] == "GRP/duktil")) 
Rselection$Penstock_Types_R[t] <- "GRP_Duc" 
      else 
        if (isTRUE(Rselection$Penstock2_Type_R[t] == "GRP/duktil")) 
Rselection$Penstock_Types_R[t] <- "GRP_Duc" 
        else 
          if (isTRUE(Rselection$Penstock1_Type_R[t] == "GRP" & 
Rselection$Penstock2_Type_R[t] == "PE")) Rselection$Penstock_Types_R[t] <- "GRP_PE" 
          else 
            if (isTRUE(Rselection$Penstock1_Type_R[t] == "PE" & 
Rselection$Penstock2_Type_R[t] == "GRP")) Rselection$Penstock_Types_R[t] <- "GRP_PE" 
            else 
              if (isTRUE(Rselection$Penstock1_Type_R[t] == "PE" & 
Rselection$Penstock2_Type_R[t] == "Duktile")) Rselection$Penstock_Types_R[t] <- 
"PE_Duk" 
              else 
                if (isTRUE(Rselection$Penstock1_Type_R[t] == "Duktile" & 
Rselection$Penstock2_Type_R[t] == "PE")) Rselection$Penstock_Types_R[t] <- "PE_Duk" 
                else 
                  if (isTRUE(Rselection$Penstock1_Type_R[t] == "Stål" & 
Rselection$Penstock2_Type_R[t] == "Duktile")) Rselection$Penstock_Types_R[t] <- 
"St_Duk" 
                  else 
                    if (isTRUE(Rselection$Penstock1_Type_R[t] == "Duktile" & 
Rselection$Penstock2_Type_R[t] == "Stål")) Rselection$Penstock_Types_R[t] <- 
"St_Duk" 
                    if (isTRUE(Rselection$Penstock1_Type_R[t] == "GRP" & 
Rselection$Penstock2_Type_R[t] == "Stål")) Rselection$Penstock_Types_R[t] <- 
"GRP_St" 
                    else 
                      if (isTRUE(Rselection$Penstock1_Type_R[t] == "GJS/GRP")) 
Rselection$Penstock_Types_R[t] <- "GRP_Duc" 
                      else 
                        if (isTRUE(Rselection$Penstock2_Type_R[t] == "GJS/GRP")) 
Rselection$Penstock_Types_R[t] <- "GRP_Duc" 
                        else 
                          if (isTRUE(Rselection$Penstock_Types_R[t] == "NA")) 
Rselection$Penstock_Types_R[t] <- Rselection$Penstock1_Type_R[t] 
                          if (isTRUE(Rselection$Penstock_Types_R[t] == "")) 
Rselection$Penstock_Types_R[t] <- "NA" 
} 
detach(Rselection) 
Rselection$Penstock_Types_R <- as.factor(Rselection$Penstock_Types_R) 
 
# Turbines ----- 
Rselection$Turbine1_Type_R <- as.character.factor(Rselection$Turbine1_Type_R) 
Rselection$Turbine2_Type_R <- as.character.factor(Rselection$Turbine2_Type_R) 
 
attach(Rselection) 
Rselection$Turbine_Types_R <- "NA" 
for (t in 1:nrow(Rselection)){ 
  if (isTRUE(Rselection$Turbine1_Type_R[t] == "Francis" & 
Rselection$Turbine2_Type_R[t] == "Francis")) 
    Rselection$Turbine_Types_R[t] <- "2xFrancis" 
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  else 
    if (isTRUE(Rselection$Turbine1_Type_R[t] == "Pelton" & 
Rselection$Turbine2_Type_R[t] == "Pelton")) 
      Rselection$Turbine_Types_R[t] <- "2xPelton" 
    else 
      if (isTRUE(Rselection$Turbine1_Type_R[t] == "Francis" & 
Rselection$Turbine2_Type_R[t] == "Pelton")) 
        Rselection$Turbine_Types_R[t] <- "FrancisPelton" 
      else 
        if (isTRUE(Rselection$Turbine1_Type_R[t] == "Pelton" & 
Rselection$Turbine2_Type_R[t] == "Francis")) 
          Rselection$Turbine_Types_R[t] <- "FrancisPelton" 
        else 
          if (isTRUE(Rselection$Turbine_Types_R[t] == "NA")) 
Rselection$Turbine_Types_R[t] <- Rselection$Turbine1_Type_R[t] 
          else 
            if (isTRUE(Rselection$Turbine1_Type_R[t] == "")) 
Rselection$Turbine_Types_R[t] <- "NA" 
} 
Rselection$Turbine_Types_R <- as.factor(Rselection$Turbine_Types_R) 
detach(Rselection) 
 
Rselection$Turbine_Types_R2 <- "NA" 
for (t in 1:nrow(Rselection)){ 
  if (isTRUE(Rselection$Turbine1_Type_R[t] == "Francis")) 
    Rselection$Turbine_Types_R2[t] <- "Francis" 
  else 
    if (isTRUE(Rselection$Turbine1_Type_R[t] == "Pelton")) 
      Rselection$Turbine_Types_R2[t] <- "Pelton" 
    else 
      if (isTRUE(Rselection$Turbine1_Type_R[t] != "Francis" | 
Rselection$Turbine1_Type_R[t] != "Pelton" | Rselection$Turbine1_Type_R[t] == "")) 
        Rselection$Turbine_Types_R2[t] <- "Other" 
      if (is.na(Rselection$Turbine1_Type_R[t])) 
        Rselection$Turbine_Types_R2[t] <- "Other" 
} 
Rselection$Turbine_Types_R2 <- as.factor(Rselection$Turbine_Types_R2) 
 
# exclude variables ---- 
exclude <- names(Rselection) %in% c("Main_status", "Municipality", 
"Power_Plant_Built", "Penstock_Cover", "Kommentar")  
Rselection <- Rselection[!exclude] 
 
# Correct reading of data --------- 
Rselection$Cost_Date <- as.Date(Rselection$Cost_Date, format = "%d.%m.%Y") 
Rselection$Main_status_date <- as.Date(Rselection$Main_status_date, format = 
"%d.%m.%Y") 
Rselection$Penstock_Dia <- as.numeric(Rselection$Penstock_Dia) 
Rselection$Penstock_Length <- as.numeric(Rselection$Penstock_Length) 
Rselection$Tunnel_Length <- as.numeric(Rselection$Tunnel_Length) 
Rselection$Shaft_Dia <- as.numeric(Rselection$Shaft_Dia) 
Rselection$Shaft_Length <- as.numeric(Rselection$Shaft_Length) 
Rselection$Earth_Cable <- as.numeric(Rselection$Earth_Cable) 
Rselection$Sea_Cable <- as.numeric(Rselection$Sea_Cable) 
Rselection$Dam_Length <- as.numeric(Rselection$Dam_Length) 
Rselection$Pwr_Station_Base <- as.numeric(Rselection$Pwr_Station_Base) 
Rselection$Road_Length <- as.numeric(Rselection$Road_Length) 
Rselection$No_Turbines <- as.numeric(Rselection$No_Turbines) 
Rselection$VannKV_Yr <- as.numeric(Rselection$VannKV_Yr) 
Rselection$Date_Operation_R <- as.Date(Rselection$Date_Operation_R, format = 
"%d.%m.%Y") 
Rselection$VannKV_Date <- as.Date(Rselection$VannKV_Date, format = "%d.%m.%Y") 
Rselection$Byggestart <- as.Date(Rselection$Byggestart, format = "%d.%m.%Y") 
Rselection$Byggestart_supplert <- as.Date(Rselection$Byggestart_supplert, format = 
"%d.%m.%Y") 
Rselection$Shaft_Length_R <- as.numeric(Rselection$Shaft_Length_R) 
Rselection$Tunnel_Length_R <- as.numeric(Rselection$Tunnel_Length_R) 
 
# Aggregation of som of the data 
Rselection$Water_Way_Length <- Rselection$Penstock_Length + Rselection$Tunnel_Length 
+ Rselection$Shaft_Length 
Rselection$Connector_Length <- Rselection$Earth_Cable + Rselection$Sea_Cable + 
Rselection$Pwr_Line 
Rselection$Water_Way_Length_R <- Rselection$Penstock1_Length_R + 
Rselection$Penstock2_Length_R + Rselection$Tunnel_Length_R + 
Rselection$Shaft_Length_R 
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Rselection$Total_Dam_Length_R <- Rselection$Dam1_Length_R  + 
Rselection$Dam2_Length_R  
Rselection$Abs_Cap_R <- Rselection$Turbine1_Abs_Cap_R   + 
Rselection$Turbine2_Abs_Cap_R 
Rselection$Penstock_Lengths_R <- 
Rselection$Penstock1_Length_R+Rselection$Penstock2_Length_R 
Rselection$Sum_Partial_Costs_R <- Rselection$Inlet_cost_R + 
Rselection$Penstock_Cost_R + Rselection$PP_cost_R 
Rselection$Sum_Partial_Costs_R[Rselection$Sum_Partial_Costs_R == 0] <- NA 
 
Rselection$Total_Costs3_R <- as.numeric(NA) 
for(t in 1:nrow(Rselection)){ 
  if(is.na(Rselection$Total_Cost2_R[t])) 
    Rselection$Total_Costs3_R[t] <- Rselection$Total_Costs_R[t] 
  else 
    Rselection$Total_Costs3_R[t] <- Rselection$Total_Cost2_R[t] + 
Rselection$Total_Costs_R[t] 
} 
 
Rselection <- mutate(Rselection,  
                     Unadj_Spec_Tot_Cost_R = Total_Costs3_R/Ann_Prod_Est_R) 
Rselection <- mutate(Rselection, Unadj_Spec_Partial_Costs = 
Sum_Partial_Costs_R/Ann_Prod_Est_R) 
 
# Create a single column with construction date 
Rselection$Construction_Date <- as.Date("01.01.1900", format = "%d.%m.%Y")            
for (t in 1:nrow(Rselection)){ 
  if (isTRUE(Rselection$Byggestart[t] > 0)) 
    Rselection$Construction_Date[t] <- Rselection$Byggestart[t] 
  else 
    Rselection$Construction_Date[t] <- Rselection$Byggestart_supplert[t] 
} 
 
Rselection$Construction_Time <- NA 
for(t in 1:nrow(Rselection)){ 
  if(isTRUE((Rselection$Date_Operation_R[t] - Rselection$Construction_Date[t]) > 0)) 
    Rselection$Construction_Time[t] <- as.numeric(Rselection$Date_Operation_R[t] - 
Rselection$Construction_Date[t]) 
  else 
    Rselection$Construction_Time[t] <- as.numeric(NA) 
} 
Rselection <- mutate(Rselection, Construction_Time_Yr = Construction_Time/365) 
 
Years <- seq(from = 1900, to = 2016, by = 1) 
Rselection$Construction_Year <- as.numeric(NA) 
for(n in 1:length(Years)){ 
  for(i in 1:nrow(Rselection)) { 
    if(isTRUE(Rselection$Construction_Date[i] >= paste(Years[n], "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(Years[n], "-12-31", sep=""))) 
      Rselection$Construction_Year[i] <- as.numeric(Years[n]) 
  } 
} 
Rselection$Construction_Year_fac <- as.factor(Rselection$Construction_Year) 
 
Rselection <- mutate(Rselection, Construction_Year0 = Construction_Year-
min(Construction_Year, na.rm=TRUE)+1) 
 
# Creating dummy variables for tunnell and shaft 
Rselection$Waterway_Type <- "NA" 
for(t in 1:nrow(Rselection)){ 
  if(isTRUE(Rselection$Tunnel_Length_R[t] > 0)) 
    Rselection$Waterway_Type[t] <- "Tunnel" 
  else 
    if(isTRUE(Rselection$Shaft_Length_R[t] > 0)) 
      Rselection$Waterway_Type[t] <- "Shaft" 
    else 
      if(isTRUE(Rselection$Penstock1_Length_R[t] > 0)) 
        Rselection$Waterway_Type[t] <- "Penstock" 
} 
Rselection$Waterway_Type <- as.factor(Rselection$Waterway_Type) 
 
Rselection$Penstock_Bin <- as.logical("FALSE") 
Rselection$Tunnel_Bin <- as.logical("FALSE") 
Rselection$Shaft_Bin <- as.logical("FALSE") 
for(t in 1:nrow(Rselection)){ 
  if(isTRUE(Rselection$Tunnel_Length_R[t] > 0)) 
    Rselection$Tunnel_Bin[t] <- as.logical("TRUE") 
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} 
 
for(t in 1:nrow(Rselection)){ 
  if(isTRUE(Rselection$Shaft_Length_R[t] > 0)) 
    Rselection$Shaft_Bin[t] <- as.logical("TRUE") 
} 
 
for(t in 1:nrow(Rselection)){ 
  if(isTRUE(Rselection$Penstock1_Length_R[t] > 0)) 
    Rselection$Penstock_Bin[t] <- as.logical("TRUE") 
} 
 
Rselection$Penstock_Types_sub <- NA 
for (t in 1:nrow(Rselection)) { 
  if(isTRUE(Rselection$Penstock_Types_R[t] == "GRP")) 
    Rselection$Penstock_Types_sub[t] <- "GRP" 
  else 
    if(isTRUE(Rselection$Penstock_Types_R[t] == "St_Duk")) 
      Rselection$Penstock_Types_sub[t] <- "St_Duk" 
    else 
      if(isTRUE(Rselection$Penstock_Types_R[t] == "Duktile")) 
        Rselection$Penstock_Types_sub[t] <- "Ductile" 
      else 
        if(isTRUE(Rselection$Penstock_Types_R[t] == "PE_Duk")) 
          Rselection$Penstock_Types_sub[t] <- "PE_Duk" 
        else 
          if(isTRUE(Rselection$Penstock_Types_R[t] == "GRP_Duc" | 
Rselection$Penstock_Types_R[t] == "GRP_PE" | Rselection$Penstock_Types_R[t] == "PE" 
| Rselection$Penstock_Types_R[t] == "NA")) 
            Rselection$Penstock_Types_sub[t] <- "Other" 
          else 
            if (is.na(Rselection$Penstock_Types_R[t])) 
              Rselection$Penstock_Types_sub[t] <- "Other" 
} 
Rselection$Penstock_Types_sub <- as.factor(Rselection$Penstock_Types_sub) 
 
# Adding missing start-up date to reported date from the record in Vannkraftdatabasen 
for(t in 1:nrow(Rselection)){ 
  if(is.na(Rselection$Date_Operation_R[t])) 
    Rselection$Date_Operation_R[t] <- Rselection$VannKV_Date[t] 
} 
 
# Converting start-up date to start-up year: 
Years <- seq(from = 1900, to = 2016, by = 1) 
Rselection$Operation_Year <- as.numeric(NA) 
for(n in 1:length(Years)){ 
  for(i in 1:nrow(Rselection)) { 
    if(isTRUE(Rselection$Date_Operation_R[i] >= paste(Years[n], "-01-01", sep="") & 
Rselection$Date_Operation_R[i] <= paste(Years[n], "-12-31", sep=""))) 
      Rselection$Operation_Year[i] <- as.numeric(Years[n]) 
  } 
} 
Rselection$Operation_Year_fac <- as.factor(Rselection$Operation_Year) 
 
# Recode year variable to start from 1 in 2005 
Rselection <- mutate(Rselection, Operation_Year0 = Operation_Year-
min(Operation_Year, na.rm=TRUE)+1) 
 
# Adjust investment cost for date of cost-------- 
# Read cost index data 
IndexTable <- read.csv("Index_Table_Rev.csv", header = T) 
 
# Adjust budgeted investment cost for date of cost-------- 
Rselection$Adj_Cost <- NA 
for(n in 1:nrow(IndexTable)){ 
  for(i in 1:nrow(Rselection)) { 
    if(isTRUE(Rselection$Cost_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Cost_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] < 300)) 
      Rselection$Adj_Cost[i] <-
Rselection$Est_Cost[i]/IndexTable$Small_Hydro_Plants[n]*IndexTable$Small_Hydro_Plan
ts[1] 
    else 
      if(isTRUE(Rselection$Cost_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Cost_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] >= 300)) 
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        Rselection$Adj_Cost[i] <-
Rselection$Est_Cost[i]/IndexTable$High_Head_Plants[n]*IndexTable$High_Head_Plants[1
] 
  } 
} 
# Specific budgeted total cost in real values 
Rselection$Adj_Spec_Cost <- Rselection$Adj_Cost/Rselection$Production 
 
# Index regulating total reported costs 
Rselection$Adj_Tot_Cost_R <- as.numeric(NA) 
for(n in 1:nrow(IndexTable)){ 
  for(i in 1:nrow(Rselection)) { 
    if(isTRUE(Rselection$Construction_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] < 300)) 
      Rselection$Adj_Tot_Cost_R[i] <-
Rselection$Total_Costs_R[i]/IndexTable$Small_Hydro_Plants[n]*IndexTable$Small_Hydro
_Plants[1] 
    else 
      if(isTRUE(Rselection$Construction_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] >= 300)) 
        Rselection$Adj_Tot_Cost_R[i] <-
Rselection$Total_Costs_R[i]/IndexTable$High_Head_Plants[n]*IndexTable$High_Head_Pla
nts[1] 
  } 
} 
# Specific total reported costs in real values 
Rselection$Adj_Spec_Tot_Cost_R <- 
Rselection$Adj_Tot_Cost_R/Rselection$Ann_Prod_Est_R 
 
# Index regulating total reported costs 2, with extra column with misc., unknown 
extra costs 
Rselection$Adj_Tot_Cost2_R <- as.numeric(NA) 
for(n in 1:nrow(IndexTable)){ 
  for(i in 1:nrow(Rselection)) { 
    if(isTRUE(Rselection$Construction_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] < 300)) 
      Rselection$Adj_Tot_Cost2_R[i] <-
Rselection$Total_Costs3_R[i]/IndexTable$Small_Hydro_Plants[n]*IndexTable$Small_Hydr
o_Plants[1] 
    else 
      if(isTRUE(Rselection$Construction_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] >= 300)) 
        Rselection$Adj_Tot_Cost2_R[i] <-
Rselection$Total_Costs3_R[i]/IndexTable$High_Head_Plants[n]*IndexTable$High_Head_Pl
ants[1] 
  } 
} 
# Specific total reported costs 2 in real values 
Rselection$Spec_Adj_Tot_Cost2_R <- 
Rselection$Adj_Tot_Cost2_R/Rselection$Ann_Prod_Est_R 
 
# Index regulating reported partial costs 
Rselection$Adj_Partial_Costs_R <- as.numeric(NA) 
for(n in 1:nrow(IndexTable)){ 
  for(i in 1:nrow(Rselection)) { 
    if(isTRUE(Rselection$Construction_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] < 300)) 
      Rselection$Adj_Partial_Costs_R[i] <-
Rselection$Sum_Partial_Costs_R[i]/IndexTable$Small_Hydro_Plants[n]*IndexTable$Small
_Hydro_Plants[1] 
    else 
      if(isTRUE(Rselection$Construction_Date[i] >= paste(2016-n, "-01-01", sep="") & 
Rselection$Construction_Date[i] <= paste(2016-n, "-12-31", sep="") & 
Rselection$Gross_Head_R[i] >= 300)) 
        Rselection$Adj_Partial_Costs_R[i] <-
Rselection$Sum_Partial_Costs_R[i]/IndexTable$High_Head_Plants[n]*IndexTable$High_He
ad_Plants[1] 
  } 
} 
Rselection$Adj_Partial_Costs_R[(Rselection$Adj_Partial_Costs_R==0)] <- NA 
Rselection$Adj_Spec_Part_Cost_R <- 
Rselection$Adj_Partial_Costs_R/Rselection$Ann_Prod_Est_R 
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# Costs per installed capacity for reported total costs in nominal and real values 
Rselection <- mutate(Rselection,  
                     Nom_Cost_per_MW = Total_Costs3_R/Max_Effect_R,  
                     Adj_Cost_per_MW = Adj_Tot_Cost2_R/Max_Effect_R) 
 
# Create a new variable with average penstock diameter weighted by penstock length -
--- 
Rselection$Penstock1_Dia_R[Rselection$Penstock1_Dia_R==0] <- NA 
Rselection$Adj_Penstock_Dia <- as.numeric(NA) 
for (t in 1:nrow(Rselection)){ 
  if(isTRUE(Rselection$Penstock2_Dia_R[t] > 0)) 
    Rselection$Adj_Penstock_Dia[t] <- 
((Rselection$Penstock1_Dia_R[t]*Rselection$Penstock1_Length_R[t]+Rselection$Penstoc
k2_Dia_R[t]*Rselection$Penstock2_Length_R[t])/(Rselection$Penstock1_Length_R[t]+Rse
lection$Penstock2_Length_R[t])) 
  else  
    Rselection$Adj_Penstock_Dia[t] <- Rselection$Penstock1_Dia_R[t] 
} 
 
# Creating an aggregated variable with average dam height weighted by dam length for 
power plants with two dams. 
Rselection$Adj_Dam_Height <- as.numeric(NA) 
for (t in 1:nrow(Rselection)){ 
  if(isTRUE(Rselection$Dam2_Height_R[t] > 0)) 
    Rselection$Adj_Dam_Height[t] <- 
((Rselection$Dam1_Height_R[t]*Rselection$Dam1_Length_R[t]+Rselection$Dam2_Height_R[
t]*Rselection$Dam2_Length_R[t])/(Rselection$Dam1_Length_R[t]+Rselection$Dam2_Length
_R[t])) 
  else  
    Rselection$Adj_Dam_Height[t] <- Rselection$Dam1_Height_R[t] 
} 
 
# Grouping licence holders into professional and non-professional project deveopers. 
Classified by  
SHP_owner_classification <- read.csv(file = "SHP_owner_classification.csv") 
 
# merge two data frames by ID and Country 
Rselection <- merge(Rselection,SHP_owner_classification,by="Kdb_ID") 
Rselection <- arrange(Rselection, desc(Date_Operation_R)) 
select(Rselection, Kdb_ID, VannKVnavn, Holder, Company_class) 
 
# Grouping counties into regions 
Rselection$Region <- NA 
Rselection$County <- as.character(Rselection$County) 
for (t in 1:nrow(Rselection)){ 
  if (Rselection$County[t] == "Troms" | Rselection$County[t] == "Nordland" | 
Rselection$County[t] == "Finnmark") 
    Rselection$Region[t] <- "Northern Norway" 
  else 
    if (Rselection$County[t] == "Nord-Trøndelag" | Rselection$County[t] == "Sør-
Trøndelag") 
      Rselection$Region[t] <- "Trøndelag" 
    else 
      if (Rselection$County[t] == "Hordaland" | Rselection$County[t] == "Møre og 
Romsdal" | Rselection$County[t] == "Rogaland" | Rselection$County[t] == "Sogn og 
Fjordane") 
        Rselection$Region[t] <- "Western Norway" 
      else 
        if (Rselection$County[t] == "Aust-Agder" | Rselection$County[t] == "Vest-
Agder") 
          Rselection$Region[t] <- "Southern Norway" 
        else 
          if (Rselection$County[t] == "Telemark" | Rselection$County[t] == "Buskerud" 
| Rselection$County[t] == "Hedmark" | Rselection$County[t] == "Oppland" | 
Rselection$County[t] == "Akershus" | Rselection$County[t] == "Oslo" | 
Rselection$County[t] == "Vestfold" | Rselection$County[t] == "Østfold") 
            Rselection$Region[t] <- "Eastern Norway" 
} 
Rselection$Region <- as.factor(Rselection$Region) 
Rselection$County <- as.factor(Rselection$County) 
 
# Sorting county factor by county number 
Rselection$County = 
factor(Rselection$County,levels(Rselection$County)[c(13,7,6,11,5,10,4,9,14,1,12,2,8
,3)]) 
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Rselection$County = factor(Rselection$County,levels(Rselection$County)[seq(14,1,-
1)]) 
Rselection$Region = 
factor(Rselection$Region,levels(Rselection$Region)[c(2,4,5,3,1)]) 
Rselection$Region = factor(Rselection$Region,levels(Rselection$Region)[seq(5,1,-1)]) 
 
#Write all data into a new table  
write.csv(Rselection, file = "Full_dataset_2016_05_09.csv") 
 
#Summary of the dataset 
summary(Rselection) 
 
###############################################################################  
5. The dataset 
########################################################################### 
 
# Table with Summarized costs  
Rselection$Adj_Partial_Costs_R[(Rselection$Adj_Partial_Costs_R==0)] <- NA 
Rselection$Adj_Tot_Cost_R[(Rselection$Adj_Tot_Cost_R==0)] <- NA 
Rselection$Inlet_cost_R[(Rselection$Inlet_cost_R==0)] <- NA 
Rselection$Penstock_Cost_R[(Rselection$Penstock_Cost_R==0)] <- NA 
Rselection$PP_cost_R[(Rselection$PP_cost_R==0)] <- NA 
 
# Real total costs grouped 
Adj_Tot_Cost_R_by_waterway <- summarise(group_by(Rselection, Waterway_Type), Min = 
min(Adj_Tot_Cost_R, na.rm=TRUE), Q1=quantile(Adj_Tot_Cost_R, probs=0.25, 
na.rm=TRUE), Q2=quantile (Adj_Tot_Cost_R, probs=0.50, na.rm=TRUE), Mean = 
mean(Adj_Tot_Cost_R, na.rm=TRUE), Med=median(Adj_Tot_Cost_R, na.rm=TRUE), 
Q3=quantile(Adj_Tot_Cost_R, probs=0.75, na.rm=TRUE), Max = max(Adj_Tot_Cost_R, 
na.rm=TRUE), n = n()-sum(is.na(Adj_Tot_Cost_R)), NAs = sum(is.na(Adj_Tot_Cost_R))) 
write.csv(Adj_Tot_Cost_R_by_waterway, file = "Adj_Tot_Cost_R_by_waterway2.csv") 
 
# Real total costs ungrouped 
Adj_Tot_Cost_R <- summarise(Rselection, Min = min(Adj_Tot_Cost_R, na.rm=TRUE), 
Q1=quantile(Adj_Tot_Cost_R, probs=0.25, na.rm=TRUE), Q2=quantile (Adj_Tot_Cost_R, 
probs=0.50, na.rm=TRUE), Mean = mean(Adj_Tot_Cost_R, na.rm=TRUE), 
Med=median(Adj_Tot_Cost_R, na.rm=TRUE), Q3=quantile(Adj_Tot_Cost_R, probs=0.75, 
na.rm=TRUE), Max = max(Adj_Tot_Cost_R, na.rm=TRUE), n = n()-
sum(is.na(Adj_Tot_Cost_R)), NAs = sum(is.na(Adj_Tot_Cost_R))) 
write.csv(Adj_Tot_Cost_R, file = "Adj_Tot_Cost_R2.csv") 
 
# Real sum of partial costs grouped 
Adj_Partial_Costs_R_by_waterway <- summarise(group_by(Rselection, Waterway_Type), 
Min = min(Adj_Partial_Costs_R, na.rm=TRUE), Q1=quantile(Adj_Partial_Costs_R, 
probs=0.25, na.rm=TRUE), Q2=quantile (Adj_Partial_Costs_R, probs=0.50, na.rm=TRUE), 
Mean = mean(Adj_Partial_Costs_R, na.rm=TRUE), Med=median(Adj_Partial_Costs_R, 
na.rm=TRUE), Q3=quantile(Adj_Partial_Costs_R, probs=0.75, na.rm=TRUE), Max = 
max(Adj_Partial_Costs_R, na.rm=TRUE), n = n()-sum(is.na(Adj_Partial_Costs_R)), NAs = 
sum(is.na(Adj_Partial_Costs_R))) 
write.csv(Adj_Partial_Costs_R_by_waterway, file = 
"Adj_Partial_Costs_R_by_waterway.csv") 
 
# Real partial costs ungrouped 
Adj_Partial_Costs_R <- summarise(Rselection, Min = min(Adj_Partial_Costs_R, 
na.rm=TRUE), Q1=quantile(Adj_Partial_Costs_R, probs=0.25, na.rm=TRUE), Q2=quantile 
(Adj_Partial_Costs_R, probs=0.50, na.rm=TRUE), Mean = mean(Adj_Partial_Costs_R, 
na.rm=TRUE), Med=median(Adj_Partial_Costs_R, na.rm=TRUE), 
Q3=quantile(Adj_Partial_Costs_R, probs=0.75, na.rm=TRUE), Max = 
max(Adj_Partial_Costs_R, na.rm=TRUE), n = n()-sum(is.na(Adj_Partial_Costs_R)), NAs = 
sum(is.na(Adj_Partial_Costs_R))) 
write.csv(Adj_Partial_Costs_R, file = "Adj_Partial_Costs_R.csv") 
 
# Relative dam and inlet costs by waterway type 
Rel_Inlet_cost_R_by_waterway <- summarise(group_by(Rselection, Waterway_Type), Min = 
min(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q1=quantile(Inlet_cost_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), Q2=quantile 
(Inlet_cost_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(Inlet_cost_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), n = n()-
sum(is.na(Inlet_cost_R/Total_Costs_R*100)), NAs = 
sum(is.na(Inlet_cost_R/Total_Costs_R*100))) 
write.csv(Rel_Inlet_cost_R_by_waterway, file = "Rel_Inlet_cost_R_by_waterway2.csv") 
 
# Relative intake costs ungrouped 
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Rel_Inlet_cost_R <- summarise(Rselection, Min = min(Inlet_cost_R/Total_Costs_R*100, 
na.rm=TRUE), Q1=quantile(Inlet_cost_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), 
Q2=quantile (Inlet_cost_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(Inlet_cost_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(Inlet_cost_R/Total_Costs_R*100, na.rm=TRUE), n = n()-sum(is.na(Inlet_cost_R)), 
NAs = sum(is.na(Inlet_cost_R))) 
write.csv(Rel_Inlet_cost_R, file = "Rel_Inlet_cost_R2.csv") 
 
#Relative waterway costs by waterway type 
Rel_Penstock_Cost_R_by_waterway <- summarise(group_by(Rselection, Waterway_Type), 
Min = min(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q1=quantile(Penstock_Cost_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), Q2=quantile 
(Penstock_Cost_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(Penstock_Cost_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), n = n()-
sum(is.na(Penstock_Cost_R)), NAs = sum(is.na(Penstock_Cost_R))) 
write.csv(Rel_Penstock_Cost_R_by_waterway, file = 
"Rel_Penstock_Cost_R_by_waterway2.csv") 
 
#Relative waterway costs ungrouped 
Rel_Penstock_Cost_R <- summarise(Rselection, Min = 
min(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q1=quantile(Penstock_Cost_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), Q2=quantile 
(Penstock_Cost_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(Penstock_Cost_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(Penstock_Cost_R/Total_Costs_R*100, na.rm=TRUE), n = n()-
sum(is.na(Penstock_Cost_R)), NAs = sum(is.na(Penstock_Cost_R))) 
write.csv(Rel_Penstock_Cost_R, file = "Rel_Penstock_Cost_R2.csv") 
 
# Relative powerplant costs by waterway type 
Rel_PP_cost_R_by_waterway <- summarise(group_by(Rselection, Waterway_Type), Min = 
min(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q1=quantile(PP_cost_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), Q2=quantile 
(PP_cost_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(PP_cost_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), n = n()-sum(is.na(PP_cost_R)), NAs = 
sum(is.na(PP_cost_R))) 
write.csv(Rel_PP_cost_R_by_waterway, file = "Rel_PP_cost_R_by_waterway2.csv") 
 
# Relative PP-costs ungrouped 
Rel_PP_cost_R <- summarise(Rselection, Min = min(PP_cost_R/Total_Costs_R*100, 
na.rm=TRUE), Q1=quantile(PP_cost_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), 
Q2=quantile (PP_cost_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(PP_cost_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(PP_cost_R/Total_Costs_R*100, na.rm=TRUE), n = n()-sum(is.na(PP_cost_R)), NAs = 
sum(is.na(PP_cost_R))) 
write.csv(Rel_PP_cost_R, file = "Rel_PP_cost_R2.csv") 
 
#Relative sum of partial costs costs by waterway type 
Rel_sum_partial_costs_R_by_waterway <- summarise(group_by(Rselection, 
Waterway_Type), Min = min(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), 
Q1=quantile(Sum_Partial_Costs_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), 
Q2=quantile (Sum_Partial_Costs_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), 
Med=median(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(Sum_Partial_Costs_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), n = n()-
sum(is.na(Sum_Partial_Costs_R)), NAs = sum(is.na(Sum_Partial_Costs_R))) 
write.csv(Rel_sum_partial_costs_R_by_waterway, file = 
"Rel_sum_partial_costs_R_by_waterway2.csv") 
 
#Relative sum of partial costs ungrouped 
Rel_Partial_Costs <- summarise(Rselection, Min = 
min(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), 
Q1=quantile(Sum_Partial_Costs_R/Total_Costs_R*100, probs=0.25, na.rm=TRUE), 
Q2=quantile (Sum_Partial_Costs_R/Total_Costs_R*100, probs=0.50, na.rm=TRUE), Mean = 
mean(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), 
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Med=median(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), 
Q3=quantile(Sum_Partial_Costs_R/Total_Costs_R*100, probs=0.75, na.rm=TRUE), Max = 
max(Sum_Partial_Costs_R/Total_Costs_R*100, na.rm=TRUE), n = n()-
sum(is.na(Sum_Partial_Costs_R)), NAs = sum(is.na(Sum_Partial_Costs_R))) 
write.csv(Rel_Partial_Costs, file = "Rel_Partial_Costs2.csv") 
 
###############################################################################  
6.1 Two-sample tests on difference between budgeted and actual costs 
########################################################################### 
 
Relative_Costs <- data.frame(Rselection$Est_Cost, Rselection$Total_Costs3_R) 
Relative_Costs <- setNames(Relative_Costs, c("Est_Cost","Total_Costs_R")) 
Relative_Costs$Spec_Total_Costs_R <- 
(Rselection$Total_Costs3_R/Rselection$Ann_Prod_Est_R) 
Relative_Costs$Spec_Total_Costs <-Rselection$Spec_Cost2 
Relative_Costs$Rel_Est_Cost <- Rselection$Est_Cost/Rselection$Est_Cost*100 
Relative_Costs$Rel_Spec_Est_Cost <- Rselection$Spec_Cost2/Rselection$Spec_Cost2*100 
Relative_Costs$Rel_Total_Costs_R <- 
Rselection$Total_Costs3_R/Rselection$Est_Cost*100 
Relative_Costs$Rel_Spec_Total_Costs_R <- 
(Rselection$Total_Costs3_R/Rselection$Ann_Prod_Est_R)/Rselection$Spec_Cost2*100 
Relative_Costs$Rel_Adj_Cost <- Rselection$Adj_Cost/Rselection$Adj_Cost*100 
Relative_Costs$Rel_Spec_Adj_Cost <- 
Rselection$Adj_Spec_Cost/Rselection$Adj_Spec_Cost*100 
Relative_Costs$Rel_Adj_Tot_Cost_R <- 
Rselection$Adj_Tot_Cost2_R/Rselection$Adj_Cost*100 
Relative_Costs$Rel_Spec_Adj_Tot_Cost_R <- 
Rselection$Spec_Adj_Tot_Cost2_R/Rselection$Adj_Spec_Cost*100 
Relative_Costs$Rel_Partial_Costs_R <- 
Rselection$Sum_Partial_Costs_R/Rselection$Est_Cost*100 
Relative_Costs$Rel_Spec_Partial_Costs_R <- 
Rselection$Unadj_Spec_Partial_Costs/Rselection$Adj_Spec_Cost*100 
Relative_Costs$Rel_Adj_Partial_Costs_R <- 
Rselection$Adj_Partial_Costs_R/Rselection$Adj_Cost*100 
Relative_Costs$Rel_Spec_Adj_Partial_Costs_R <- 
Rselection$Adj_Spec_Part_Cost_R/Rselection$Adj_Spec_Cost*100 
Relative_Costs$Sum_Partial_Costs_R <- Rselection$Sum_Partial_Costs_R 
Relative_Costs$Unadj_Spec_Partial_Costs <- Rselection$Unadj_Spec_Partial_Costs 
Relative_Costs$Adj_Tot_Cost_R <- Rselection$Adj_Tot_Cost2_R 
Relative_Costs$Adj_Spec_Tot_Cost_R <- Rselection$Spec_Adj_Tot_Cost2_R 
Relative_Costs$Adj_Cost <- Rselection$Adj_Cost 
Relative_Costs$Adj_Spec_Cost <- Rselection$Adj_Spec_Cost 
Relative_Costs$Adj_Partial_Costs_R <- Rselection$Adj_Partial_Costs_R 
Relative_Costs$Adj_Spec_Partial_Costs_R <- Rselection$Adj_Spec_Part_Cost_R 
 
# Uncorrected budgeted vs actual costs 
attach(Relative_Costs) 
t.test(Total_Costs_R, Est_Cost, paired=TRUE, alternative="two.sided", var.equal = 
TRUE) 
shapiro.test((Total_Costs_R-Est_Cost)) 
var(Total_Costs_R) 
var(Est_Cost) 
wilcox.test(Total_Costs_R, Est_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
t.test(Rel_Total_Costs_R, Rel_Est_Cost, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Rel_Total_Costs_R-Rel_Est_Cost)) 
var(Rel_Total_Costs_R) 
var(Rel_Est_Cost) 
wilcox.test(Rel_Total_Costs_R, Rel_Est_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
# Inflation/index adjusted budgeted vs. actual costs 
t.test(Adj_Tot_Cost_R, Adj_Cost,paired=TRUE, alternative="two.sided", var.equal = 
TRUE) 
shapiro.test((Adj_Tot_Cost_R-Adj_Cost)) 
var(Adj_Tot_Cost_R, na.rm = TRUE) 
var(Adj_Cost, na.rm = TRUE) 
wilcox.test(Adj_Tot_Cost_R, Adj_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
t.test(Rel_Adj_Tot_Cost_R, Rel_Adj_Cost,paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Rel_Adj_Tot_Cost_R-Rel_Adj_Cost)) 
var(Rel_Adj_Tot_Cost_R, na.rm = TRUE) 
var(Rel_Adj_Cost, na.rm = TRUE) 
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wilcox.test(Rel_Adj_Tot_Cost_R, Rel_Adj_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
# Partial costs 
t.test(Sum_Partial_Costs_R, Est_Cost, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Sum_Partial_Costs_R-Est_Cost)) 
var(Sum_Partial_Costs_R, na.rm = TRUE) 
var(Est_Cost, na.rm = TRUE) 
wilcox.test(Sum_Partial_Costs_R, Est_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
t.test(Rel_Partial_Costs_R, Rel_Est_Cost, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Rel_Partial_Costs_R-Rel_Est_Cost)) 
var(Rel_Partial_Costs_R, na.rm = TRUE) 
var(Rel_Est_Cost, na.rm = TRUE) 
wilcox.test(Rel_Partial_Costs_R, Rel_Est_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
t.test(Adj_Partial_Costs_R, Adj_Cost, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Adj_Partial_Costs_R-Adj_Cost)) 
var(Adj_Partial_Costs_R, na.rm = TRUE) 
var(Adj_Cost, na.rm = TRUE) 
wilcox.test(Adj_Partial_Costs_R, Adj_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
t.test(Rel_Adj_Partial_Costs_R, Rel_Adj_Cost, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Rel_Adj_Partial_Costs_R-Rel_Adj_Cost)) 
var(Rel_Adj_Partial_Costs_R, na.rm = TRUE) 
var(Rel_Adj_Cost, na.rm = TRUE) 
wilcox.test(Rel_Adj_Partial_Costs_R, Rel_Adj_Cost,paired=TRUE, 
alternative="two.sided", conf.int=TRUE) 
 
# Specific costs 
t.test(Spec_Total_Costs_R, Spec_Total_Costs, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Spec_Total_Costs_R-Spec_Total_Costs)) 
var(Spec_Total_Costs_R, na.rm = TRUE) 
var(Spec_Total_Costs, na.rm = TRUE) 
wilcox.test(Spec_Total_Costs_R, Spec_Total_Costs,paired=TRUE, 
alternative="two.sided", conf.int=TRUE) 
 
t.test(Adj_Spec_Tot_Cost_R, Adj_Spec_Cost, paired=TRUE, alternative="two.sided", 
var.equal = TRUE) 
shapiro.test((Adj_Spec_Tot_Cost_R-Adj_Spec_Cost)) 
var(Adj_Spec_Tot_Cost_R, na.rm = TRUE) 
var(Adj_Spec_Cost, na.rm = TRUE) 
wilcox.test(Adj_Spec_Tot_Cost_R, Adj_Spec_Cost,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
 
t.test(Unadj_Spec_Partial_Costs, Spec_Total_Costs, paired=TRUE, 
alternative="two.sided", var.equal = TRUE) 
shapiro.test((Unadj_Spec_Partial_Costs-Spec_Total_Costs)) 
var(Unadj_Spec_Partial_Costs, na.rm = TRUE) 
var(Spec_Total_Costs, na.rm = TRUE) 
wilcox.test(Unadj_Spec_Partial_Costs, Spec_Total_Costs,paired=TRUE, 
alternative="two.sided", conf.int=TRUE) 
 
t.test(Adj_Spec_Partial_Costs_R, Adj_Spec_Cost, paired=TRUE, 
alternative="two.sided", var.equal = TRUE) 
shapiro.test((Adj_Spec_Partial_Costs_R-Adj_Spec_Cost)) 
var(Adj_Spec_Partial_Costs_R, na.rm = TRUE) 
var(Adj_Spec_Cost, na.rm = TRUE) 
wilcox.test(Adj_Spec_Partial_Costs_R, Adj_Spec_Cost,paired=TRUE, 
alternative="two.sided", conf.int=TRUE) 
detach(Relative_Costs) 
 
attach(Rselection) 
t.test(Ann_Prod_Est_R, Production, paired=TRUE, alternative="two.sided", var.equal = 
TRUE) 
shapiro.test((Ann_Prod_Est_R-Production)) 
range((Ann_Prod_Est_R-Production)) 
summary((Ann_Prod_Est_R-Production)) 
hist((Ann_Prod_Est_R-Production)) 
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var(Ann_Prod_Est_R, na.rm = TRUE) 
var(Production, na.rm = TRUE) 
wilcox.test(Ann_Prod_Est_R, Production,paired=TRUE, alternative="two.sided", 
conf.int=TRUE) 
detach(Rselection) 
 
ggplot(Rselection, aes(x=Prod_Diff)) + theme_grey() +  
    geom_histogram(binwidth=0.5, 
                   colour="black", fill="dark green", alpha = 0.5) 
 
############################################################################### 
6.2.1 Year of construction 
########################################################################### 
 
Rselection_years <- filter(Rselection, Construction_Year > 0) 
 
give.n <- function(x){ 
  return(c(y = 1.1, label = length(x))) 
} 
 
Rselection_long <- select(Rselection_years, Kdb_ID, Unadj_Spec_Partial_Costs, 
Unadj_Spec_Tot_Cost_R, Adj_Spec_Part_Cost_R, Spec_Adj_Tot_Cost2_R, 
Construction_Year_fac) 
Rselection_long <- melt(Rselection_long, 
id.vars=c("Kdb_ID","Construction_Year_fac"), na.rm=TRUE) 
 
boxplot_years_spec <- ggplot(Rselection_long, aes(x=variable, y=value, 
fill=variable))+geom_boxplot()+facet_grid(.~Construction_Year_fac) + 
labs(x="Years",y="Specific Costs [NOK/kWh annual production]") + theme_grey() + 
theme(axis.ticks = element_blank(), axis.text.x = element_blank()) + 
scale_fill_discrete(name="Reported costs", breaks=c("Unadj_Spec_Partial_Costs", 
"Unadj_Spec_Tot_Cost_R", "Adj_Spec_Part_Cost_R", "Spec_Adj_Tot_Cost2_R"), 
labels=c("Spec.Part.Costs", "Spec.Tot. Costs", "Adj.Spec.Part.Costs", 
"Adj.Spec.Tot.Costs"))  + coord_cartesian(ylim = c(0, 8)) + stat_summary(fun.data = 
give.n, geom = "text", size = 2.5) 
 
dev.set(5)  
boxplot_years_spec  
ggsave("boxplot_years_spec_costs_03-05-16.png") 
 
#Rselection_years0 <- filter(Rselection, Unadj_Spec_Tot_Cost_R > 0, 
Construction_Year0 > 0) 
Rselection_years <- filter(Rselection, Unadj_Spec_Tot_Cost_R > 0 
                           # , Unadj_Spec_Tot_Cost_R <6 
                           , Construction_Year0 > 0) 
 
years.lm <- lm(Unadj_Spec_Tot_Cost_R ~ Construction_Year0, data = Rselection_years2) 
summary(years.lm) 
anova(years.lm) 
confint(years.lm) 
 
Rselection_years2 <- filter(Rselection, Total_Costs3_R < 150) 
Rselection_years2 <- arrange(Rselection_years2, Total_Costs3_R) 
select(Rselection_years2, Total_Costs3_R) 
years2.lm <- lm(log(Total_Costs3_R) ~ Construction_Year0, data = Rselection_years2) 
summary(years2.lm) 
gvmodel <- gvlma(years2.lm)  
summary(gvmodel) 
anova(years2.lm) 
 
shapiro.test(years.lm$residuals) 
layout(matrix(c(1,2,3,4),2,2)) 
plot(years.lm) 
par(def.par) 
 
Costs_per_MW <- filter(Rselection, Construction_Year0 > 0 
                       #, Unadj_Spec_Tot_Cost_R <6 
) 
Costs_per_MW$Nom_Cost_per_MW <- 
Costs_per_MW$Total_Costs3_R/Costs_per_MW$Max_Effect_R 
Costs_per_MW$Adj_Cost_per_MW <- 
Costs_per_MW$Adj_Tot_Cost2_R/Costs_per_MW$Max_Effect_R 
Costs_per_MW <- arrange(Costs_per_MW, Adj_Cost_per_MW) 
Costs_per_MW <- Costs_per_MW[(Costs_per_MW$Nom_Cost_per_MW < 20),] 
Costs_per_MW$Nom_Cost_per_MW <- 
Costs_per_MW$Total_Costs3_R/Costs_per_MW$Max_Effect_R 
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Costs_per_MW$Adj_Cost_per_MW <- 
Costs_per_MW$Adj_Tot_Cost2_R/Costs_per_MW$Max_Effect_R 
Costs_per_MW <- arrange(Costs_per_MW, Adj_Cost_per_MW) 
Costs_per_MW2 <- filter(Costs_per_MW 
                        , Tunnel_Bin == FALSE 
                        #, Adj_Cost_per_MW < 15 
                        , Adj_Cost_per_MW > 0) 
Costs_per_MW2$Adj_Cost_per_MW 
 
Costs_per_MW <- arrange(Costs_per_MW, Max_Effect_R) 
select(Costs_per_MW, Max_Effect_R, Adj_Tot_Cost2_R, Adj_Cost_per_MW) 
 
years_MW.lm <- lm(log(Nom_Cost_per_MW) ~ log(Construction_Year0), data = 
Costs_per_MW) 
gvmodel <- gvlma(years_MW.lm)  
summary(gvmodel) 
 
plot(Costs_per_MW$Nom_Cost_per_MW ~ Costs_per_MW$Construction_Year0) 
 
#summary(years_MW.lm) 
#anova(years_MW.lm) 
 
layout(matrix(c(1,2,3,4),2,2)) 
plot(years_MW.lm) 
shapiro.test(years_MW.lm$residuals) 
par(def.par) 
 
years_MW_adj.lm <- lm(Adj_Cost_per_MW ~ Construction_Year0, data = Costs_per_MW2) 
gvmodel <- gvlma(years_MW_adj.lm)  
summary(gvmodel) 
#anova(years_MW_adj.lm) 
layout(matrix(c(1,2,3,4),2,2)) 
plot(years_MW_adj.lm) 
shapiro.test(years_MW_adj.lm$residuals) 
par(def.par) 
 
Rselection_years2 <- filter(Rselection,Spec_Adj_Tot_Cost2_R < 6.99, 
Spec_Adj_Tot_Cost2_R > 0 
                            , Construction_Year0 > 0 
) 
years_adj.lm <- lm(Spec_Adj_Tot_Cost2_R ~ Construction_Year0, data = 
Rselection_years2) 
summary(years_adj.lm) 
anova(years_adj.lm) 
confint(years_adj.lm) 
 
x_1 <- coef(summary(years.lm))[2, "Estimate"] 
x_2 <- coef(summary(years_adj.lm))[2, "Estimate"] 
s_1 <- coef(summary(years.lm))[2, "Std. Error"] 
s_2 <- coef(summary(years_adj.lm))[2, "Std. Error"] 
n_1 <- length(years.lm$fitted.values) 
n_2 <- length(years_adj.lm$fitted.values) 
 
s_x1x2 <- sqrt(s_1^2/n_1 + s_2^2/n_2) 
t <- (x_1-x_2)/s_x1x2 
df <- ((s_1^2/n_1)+(s_2^2/n_2))^2/ 
  ( 
    ((s_1^2/n_1)^2/(n_1-1)) + ((s_2^2/n_2)^2/(n_2-1)) 
  ) 
 
abs(qt(0.05/2, df)) 
 
2*pt(-abs(t),df=df) 
 
# s_x1x2 <- sqrt(coef(summary(years.lm))[2, "Std. 
Error"]^2/(length(years.lm$fitted.values))+coef(summary(years_adj.lm))[2, "Std. 
Error"]^2/(length(years_adj.lm$fitted.values))) 
 
# t <- (coef(summary(years.lm))[2, "Estimate"]-coef(summary(years_adj.lm))[2, 
"Estimate"])/s_x1x2 
 
years_adj2.lm <- lm(Spec_Adj_Tot_Cost2_R ~ Construction_Year0 + Construction_Time_Yr, 
data = Rselection_years) 
summary(years_adj2.lm) 
anova(years_adj2.lm) 
 
layout(matrix(c(1,2,3,4),2,2)) 
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plot(years_adj.lm) 
shapiro.test(years_adj.lm$residuals) 
par(def.par) 
 
############################################################################### 
6.2.2 Construction time 
########################################################################### 
 
Rselection_Construction_Time <- Rselection 
# Rselection_Construction_Time <- mutate(Rselecion_Construction_Time, 
log10Adj_Tot_Cost_R = log10(Adj_Tot_Cost_R)) 
Rselection_Construction_Time0 <- filter(Rselection, Adj_Tot_Cost2_R > 0, 
Construction_Time_Yr > 0) 
Rselection_Construction_Time <- filter(Rselection 
                                       , Adj_Tot_Cost2_R > 0 
                                       , Adj_Tot_Cost2_R < 150 
                                       , Construction_Time_Yr < 3 
                                       , Construction_Time_Yr > 0) 
#  
# construction_time.lm <- lm(Adj_Tot_Cost2_R ~ Construction_Time_Yr, data = 
Rselection) 
# summary(construction_time.lm) 
# anova(construction_time.lm) 
# shapiro.test(construction_time.lm$residuals) 
# layout(matrix(c(1,2,3,4),2,2)) 
# plot(construction_time.lm) 
# par(def.par) 
 
construction_time.lm_log <- lm(log(Adj_Tot_Cost2_R) ~ Construction_Time_Yr, data = 
Rselection_Construction_Time) 
summary(construction_time.lm_log) 
anova(construction_time.lm_log) 
gvmodel <- gvlma(construction_time.lm_log)  
summary(gvmodel) 
shapiro.test(construction_time.lm_log$residuals) 
 
layout(matrix(c(1,2,3,4),2,2)) 
plot(construction_time.lm_log) 
par(def.par) 
 
Predictions_Test <- predict(construction_time.lm_log, newdata = 
Rselection_Construction_Time, interval = "confidence") 
Rselection_Construction_Time$preds <- exp(Predictions_Test[,1]) 
Rselection_Construction_Time$lowerCI <- exp(Predictions_Test[,2]) 
Rselection_Construction_Time$upperCI <- exp(Predictions_Test[,3]) 
 
construction_time_scatter <- ggplot(Rselection_Construction_Time, 
aes(x=Construction_Time_Yr, y=Adj_Tot_Cost2_R)) + 
  geom_point() +   
  theme_grey() + 
  labs(x="Construction time in years",y="Total investment costs [MNOK] in real 
values") + 
  geom_line(aes(x=Construction_Time_Yr, y=preds), colour = "blue", size = 1)+ 
  geom_ribbon(aes(ymin=lowerCI, ymax=upperCI), alpha=0.2) + 
  scale_y_continuous(breaks=seq(0, 140, 20))  
 
dev.set(5) 
construction_time_scatter 
ggsave("construction_time_scatter_07-05-15.png") 
 
############################################################################### 
6.2.3 Geography 
########################################################################### 
 
give.n <- function(x){ 
  return(c(y = (min(x)-0.3), label = length(x)))  
} 
 
boxplot_geography <- ggplot(Rselection, aes(factor(Region), y=Spec_Adj_Tot_Cost2_R,  
fill=factor(County)))+ 
  geom_boxplot() +  
  labs(x="Counties grouped by region",y="Adjusted Specific Total Costs [NOK/KWh]") +  
  theme_grey() +  
  stat_summary(fun.data = give.n, geom = "text", fun.y = median, 
position=position_dodge(width=0.75)) +  
  guides(fill=guide_legend(title = "Counties")) + 
  scale_y_continuous(breaks=seq(0, 10, 2)) 
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dev.set(5) 
boxplot_geography  
ggsave("boxplot_geography_08-05-16.png") 
 
Rselection_region <- filter(Rselection, Spec_Adj_Tot_Cost2_R > 0) 
summarize(Rselection_region, mean(Spec_Adj_Tot_Cost2_R), 
median(Spec_Adj_Tot_Cost2_R)) 
 
krusk_county <- kruskal.test(Spec_Adj_Tot_Cost2_R ~ County, data = Rselection_region) 
aov_County <- aov(Spec_Adj_Tot_Cost2_R ~ County, data=Rselection_region) 
krusk_county 
summary(aov_County) 
shapiro.test(aov_County$residuals) 
 
krusk_region <- kruskal.test(Spec_Adj_Tot_Cost2_R ~ Region, data = Rselection_region)  
aov_region <- aov(Spec_Adj_Tot_Cost2_R ~ Region, data=Rselection_region) 
krusk_region 
summary(aov_region) 
shapiro.test(aov_region$residuals) 
 
Rselection_region <- filter(Rselection, Spec_Adj_Tot_Cost2_R <6.5) 
Rselection_region$Region = 
factor(Rselection_region$Region,levels(Rselection_region$Region)[c(3,4,1,2,5)]) 
Rselection_region$County = 
factor(Rselection_region$County,levels(Rselection_region$County)[c(9,1,2,3,4,5,6,7,
8,10,11,12,13,14)]) 
 
krusk_county <- kruskal.test(Spec_Adj_Tot_Cost2_R ~ County, data = Rselection_region) 
aov_County <- aov(Spec_Adj_Tot_Cost2_R ~ County, data=Rselection_region) 
krusk_county 
summary(aov_County) 
shapiro.test(aov_County$residuals) 
 
krusk_region <- kruskal.test(Spec_Adj_Tot_Cost2_R ~ Region, data = Rselection_region)  
aov_region <- aov(Spec_Adj_Tot_Cost2_R ~ Region, data=Rselection_region) 
krusk_region 
summary(aov_region) 
shapiro.test(aov_region$residuals) 
 
lm_county <- lm(Spec_Adj_Tot_Cost2_R ~ County, data = Rselection_region) 
aov(lm_county) 
gvmodel <- gvlma(lm_county)  
summary(gvmodel) 
shapiro.test(lm_county$residuals) 
 
layout(matrix(c(1,2,3,4),2,2)) 
plot(lm_county) 
par(def.par) 
 
lm_region <- lm(Spec_Adj_Tot_Cost2_R ~ Region, data = Rselection_region) 
aov(lm_region) 
gvmodel <- gvlma(lm_region)  
summary(gvmodel) 
shapiro.test(lm_region$residuals) 
 
layout(matrix(c(1,2,3,4),2,2)) 
plot(lm_region) 
par(def.par) 
 
############################################################################### 
6.2.4 LICENSE HOLDER AND COST 
########################################################################### 
 
# Boxplot  
boxplot_holder_spec <- ggplot(Rselection, aes(x=Company_class, 
y=Spec_Adj_Tot_Cost2_R))+geom_boxplot(aes(fill=Company_class)) + labs(x="SHPP 
owner/developer classification",y="Specific Total Costs [NOK/KWh] in real values") + 
guides(fill=FALSE) + theme_grey() +  stat_summary(fun.data = give.n, geom = "text") 
+ scale_x_discrete(breaks=c("pro", "non-pro"), labels=c("Professional \ndeveloper", 
"Non-professional \ndeveloper")) + theme(axis.title.x = element_blank()) 
 
dev.set(2) 
boxplot_holder_spec # se plottet 
ggsave("boxplot_boxplot_holder_spec_small_8-5-16.png") 
 
t.test(Rselection$Spec_Adj_Tot_Cost2_R ~ Rselection$Company_class, var.equal=FALSE) 
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wilcox.test(Rselection$Spec_Adj_Tot_Cost2_R ~ Rselection$Company_class, 
alternative="two.sided", conf.int=TRUE, paired = FALSE) 
shapiro.test(Rselection$Spec_Adj_Tot_Cost2_R[Rselection$Company_class == "non-pro"]) 
shapiro.test(Rselection$Spec_Adj_Tot_Cost2_R[Rselection$Company_class == "pro"]) 
med_non_pro <- median(Rselection$Spec_Adj_Tot_Cost2_R[Rselection$Company_class == 
"non-pro"], na.rm=TRUE) 
med_pro <- median(Rselection$Spec_Adj_Tot_Cost2_R[Rselection$Company_class == 
"pro"], na.rm=TRUE) 
med_pro - med_non_pro 
 
t.test(Rselection$Adj_Cost_per_MW ~ Rselection$Company_class, var.equal=FALSE) 
wilcox.test(Rselection$Adj_Cost_per_MW ~ Rselection$Company_class, 
alternative="two.sided", conf.int=TRUE, paired = FALSE) 
shapiro.test(Rselection$Adj_Cost_per_MW[Rselection$Company_class == "non-pro"]) 
shapiro.test(Rselection$Adj_Cost_per_MW[Rselection$Company_class == "pro"]) 
 
############################################################################### 
6.3.1 Prediction Model 1 total costs 
########################################################################### 
 
Rselection5 <- Rselection[(Rselection$Tunnel_Bin==FALSE),] 
include <- names(Rselection5) %in% c("Kdb_ID","Adj_Cost", "Adj_Partial_Costs_R", 
"Adj_Tot_Cost_R", "Total_Costs_R", "Max_Effect_R", "Adj_Penstock_Dia", 
"Construction_Year0","Construction_Time_Yr", "Water_Way_Length_R", "Adj_Dam_Height", 
"Total_Dam_Length_R", "Shaft_Bin")  
Rselection5 <- Rselection5[include] 
Rselection5 <- arrange(Rselection5, Adj_Tot_Cost_R) 
Rselection5 <- Rselection5[-c(127,126,70, 41),] 
Subset3 <- na.omit(Rselection5) 
summary(Subset3) 
Subset3[(Subset3$Adj_Dam_Height ==0),] 
 
# full.model6_log  
full.model6_log <- lm(log(Adj_Tot_Cost_R) ~  
                      Max_Effect_R  
                      +I(Max_Effect_R^2)  
                      +Adj_Dam_Height 
                      +I(Adj_Penstock_Dia^2) 
                      +log(Water_Way_Length_R) 
                      +Construction_Year0  
                      +Construction_Time_Yr  
                      +Shaft_Bin 
                      , data = Rselection5) 
summary(full.model6_log) 
press(full.model6_log) 
sqrt(press(full.model6_log)/length(full.model6_log$fitted.values)) 
 
par(mfrow = c(1, 2)) 
diagnostics_plot_partial_costs_incl_time <-  
  autoplot(full.model6_log, which = 1:6, ncol = 3, label.size = 3)+ theme_grey() 
dev.set(5) 
diagnostics_plot_partial_costs_incl_time 
 
vif(full.model6_log) # variance inflation factors  
gvmodel <- gvlma(full.model6_log)  
summary(gvmodel) 
shapiro.test(full.model6_log$residuals) 
 
# Plot with the model 
predicted <- predict(full.model6_log, Subset3, se.fit=TRUE,  interval = "prediction") 
predicted_ci <- predict(full.model6_log, Subset3, se.fit=TRUE,  interval = 
"confidence") 
full.model6_log_cv <- cv.lm(data=Subset3, form.lm=full.model6_log, m= nrow(Subset3), 
plotit = F) 
full.model6_log_cv$pred_lower <- predicted$fit[,2] 
full.model6_log_cv$pred_upper <- predicted$fit[,3] 
full.model6_log_cv$lm_predict <- predicted$fit[,1] 
full.model6_log_cv$ci_lower <- predicted_ci$fit[,2] 
full.model6_log_cv$ci_upper <- predicted_ci$fit[,3] 
 
full.model6_log_cv_trans <- mutate(full.model6_log_cv, 
                                   True_costs = exp(log(Adj_Tot_Cost_R)), 
                                   Budget_Costs = Adj_Cost, 
                                   LM_Prediction = exp(lm_predict), 
                                   CV_Prediction = exp(cvpred), 
                                   True_costs_Rel = True_costs/True_costs*100, 
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                                   LM_Prediction_Rel = (LM_Prediction - 
True_costs)/True_costs*100, 
                                   CV_Prediction_Rel = (CV_Prediction - 
True_costs)/True_costs*100, 
                                   Budget_costs_rel = (Adj_Cost - 
True_costs)/True_costs*100, 
                                   LM_Prediction_Abs_Perc_Diff = abs(LM_Prediction - 
True_costs)/True_costs*100, 
                                   CV_Prediction_Abs_Perc_Diff = abs(CV_Prediction - 
True_costs)/True_costs*100, 
                                   Budget_costs_Abs_Perc_Diff = abs(Adj_Cost - 
True_costs)/True_costs*100, 
                                   Pred_diff = LM_Prediction - True_costs, 
                                   Pred_diff_Rel = (LM_Prediction - 
True_costs)/True_costs*100, 
                                   Budg_diff = Adj_Cost - True_costs, 
                                   Budg_diff_Rel = (Adj_Cost - 
True_costs)/True_costs*100, 
                                   PI_upper = exp(pred_upper), 
                                   PI_lower = exp(pred_lower), 
                                   CI_upper = exp(ci_upper), 
                                   CI_lower = exp(ci_lower) 
) 
 
summarize(full.model6_log_cv_trans, min(CV_Prediction_Abs_Perc_Diff), 
max(CV_Prediction_Abs_Perc_Diff), min(CV_Prediction_Rel), max(CV_Prediction_Rel)) 
 
full.model6_log_cv_trans <- arrange(full.model6_log_cv_trans, LM_Prediction) 
full.model6_log_cv_trans$Index <- 
seq.int(along.with=full.model6_log_cv_trans$LM_Prediction) 
 
CV_mod2_investment_cost_scatter <- ggplot(full.model6_log_cv_trans, aes(x=Index))  + 
  geom_ribbon(aes(ymin=PI_lower, ymax=PI_upper, alpha="PI_lower")) + 
  geom_ribbon(aes(ymin=CI_lower, ymax=CI_upper, alpha="CI_lower")) + 
  scale_alpha_manual(name = "PI and CI intervals", breaks = c("PI_lower", 
"CI_lower"), labels = c("Prediction interval", "Confidence interval"), 
values=c(0.4,0.2))+ 
  geom_point(aes(y = CV_Prediction, color="CV_Prediction", shape = "CV_Prediction"), 
size =2)+ 
  geom_point(aes(y=Budget_Costs, color="Budget_Costs", shape = "Budget_Costs"), size 
=2) + 
  geom_point(aes(y=True_costs, color="True_costs", shape = "True_costs"), size =2)+ 
  theme_grey() + 
  labs(x="Rank of linear model estimates",y="Total investment costs [MNOK] in real 
values") + 
  scale_colour_discrete("Cost types", breaks = c("Budget_Costs", "True_costs", 
"CV_Prediction"), labels = c("Budget costs", "Actual costs", "Cross-validated 
\nprediction estimate"))+ 
  scale_shape_discrete("Cost types", breaks = c("Budget_Costs", "True_costs", 
"CV_Prediction"), labels = c("Budget costs", "Actual costs", "Cross-validated 
\nprediction estimate"))+ 
  geom_line(aes(y=LM_Prediction, linetype="LM_Prediction"), size = 1, color="white", 
alpha = 0.8) + 
  scale_linetype_manual(name="Linear model \nprediction estimate", 
breaks=c("LM_Prediction"), labels =c("White line showing \nprediction estimate"), 
values = c("solid"))+ 
  coord_cartesian(ylim = c(0, 135), xlim = c(0,100)) + 
  scale_y_continuous(breaks=seq(0, 140, 20)) + 
  scale_x_continuous(breaks=seq(0, 120, 20)) 
 
dev.set(5) 
CV_mod2_investment_cost_scatter 
ggsave("LM1_Total_Cost_cost_scatter_7-5-16.png") 
 
full.model6_log_cv_long2 <- select(full.model6_log_cv_trans, Kdb_ID, Index, 
Budget_costs_rel, CV_Prediction_Rel, LM_Prediction_Rel) 
full.model6_log_cv_long2 <- arrange(full.model6_log_cv_long2, CV_Prediction_Rel) 
full.model6_log_cv_long2$Index <- 
seq.int(along.with=full.model6_log_cv_long2$CV_Prediction_Rel) 
full.model6_log_cv_long2 <- melt(full.model6_log_cv_long2, id.vars=c("Kdb_ID", 
"Index"), na.rm=TRUE) 
 
CV_mod1_standardized_cost_scatter <- ggplot(full.model6_log_cv_long2, aes(x=Index, 
y=value))  + 
  geom_point(aes(colour=variable, shape = variable, fill = variable), size =2)+ 
  theme_grey() + 
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  scale_fill_discrete(name ="Cost types deviation", breaks = c("LM_Prediction_Rel", 
"Budget_costs_rel", "CV_Prediction_Rel"), labels = c("Deviations LM cost 
\nestimates", "Deviations budgeted \ncosts", "Deviations CV cost \nestimates"))+ 
  scale_colour_discrete(name ="Cost types deviation", breaks = c("LM_Prediction_Rel", 
"Budget_costs_rel", "CV_Prediction_Rel"), labels = c("Deviations LM cost 
\nestimates", "Deviations budgeted \ncosts", "Deviations CV cost \nestimates"))+ 
  scale_shape_discrete(name ="Cost types deviation", breaks = c("LM_Prediction_Rel", 
"Budget_costs_rel", "CV_Prediction_Rel"), labels = c("Deviations LM cost 
\nestimates", "Deviations budgeted \ncosts", "Deviations CV cost \nestimates"))+ 
  labs(x="Rank of deviations between cross-validated estimates and actual 
costs",y="Percent deviation from reported cost") + 
  geom_hline(yintercept=0) 
 
dev.set(5) 
CV_mod1_standardized_cost_scatter 
ggsave("CV_standardized_cost_scatter_1-5-16-2.png") 
 
attach(full.model6_log_cv_trans) 
 
t.test(CV_Prediction_Abs_Perc_Diff, Budget_costs_Abs_Perc_Diff, 
alternative="two.sided", paired = FALSE, var.equal = FALSE) #  
shapiro.test(CV_Prediction_Abs_Perc_Diff) 
shapiro.test(Budget_costs_Abs_Perc_Diff) 
wilcox.test(CV_Prediction_Abs_Perc_Diff, Budget_costs_Abs_Perc_Diff, 
alternative="two.sided", conf.int=TRUE, paired = FALSE) #  
#  t-test 
t.test(CV_Prediction_Rel, Budg_diff_Rel, alternative="two.sided", paired = FALSE, 
var.equal = FALSE) #  
shapiro.test(CV_Prediction_Rel) 
shapiro.test(Budg_diff_Rel) 
wilcox.test(CV_Prediction_Rel, Budg_diff_Rel, alternative="two.sided", 
conf.int=TRUE, paired = FALSE) #  
 
t.test(CV_Prediction_Abs_Perc_Diff, Budget_costs_Abs_Perc_Diff, 
alternative="two.sided", paired = TRUE, var.equal = FALSE) #  
shapiro.test(CV_Prediction_Abs_Perc_Diff) 
shapiro.test(Budget_costs_Abs_Perc_Diff) 
var(CV_Prediction_Abs_Perc_Diff) 
var(Budget_costs_Abs_Perc_Diff) 
wilcox.test(CV_Prediction_Abs_Perc_Diff, Budget_costs_Abs_Perc_Diff, 
alternative="two.sided", conf.int=TRUE, paired = TRUE) #  
#  t-test 
t.test(CV_Prediction_Rel, Budg_diff_Rel, alternative="two.sided", paired = TRUE, 
var.equal = FALSE) #  
shapiro.test(CV_Prediction_Rel) 
shapiro.test(Budg_diff_Rel) 
var(CV_Prediction_Rel) 
var(Budg_diff_Rel) 
wilcox.test(CV_Prediction_Rel, Budg_diff_Rel, alternative="two.sided", 
conf.int=TRUE, paired = TRUE) #  
detach(full.model6_log_cv_trans) 
 
full.model6_log_cv_trans$budg_high <- "TRUE" 
full.model6_log_cv_trans$budg_low <- "TRUE" 
full.model6_log_cv_trans$budg_eq <- "TRUE" 
full.model6_log_cv_trans$lm_high <- "TRUE" 
full.model6_log_cv_trans$lm_low <- "TRUE" 
full.model6_log_cv_trans$lm_eq <- "TRUE" 
full.model6_log_cv_trans$eq_sign_lm_bud_diff <- "TRUE" 
for(t in 1:nrow(full.model6_log_cv_trans)) { 
  ifelse(isTRUE(full.model6_log_cv_trans$Budget_Costs[t] > 
full.model6_log_cv_trans$True_costs[t]), full.model6_log_cv_trans$budg_high[t] <- 
"TRUE", full.model6_log_cv_trans$budg_high[t] <-"FALSE") 
  ifelse(isTRUE(full.model6_log_cv_trans$Budget_Costs[t] < 
full.model6_log_cv_trans$True_costs[t]), full.model6_log_cv_trans$budg_low[t] <- 
"TRUE", full.model6_log_cv_trans$budg_low[t] <- "FALSE") 
  ifelse(isTRUE(full.model6_log_cv_trans$Budget_Costs[t] == 
full.model6_log_cv_trans$True_costs[t]), full.model6_log_cv_trans$budg_eq[t] <- 
"TRUE", full.model6_log_cv_trans$budg_eq[t] <- "FALSE") 
  ifelse(isTRUE(full.model6_log_cv_trans$CV_Prediction[t] > 
full.model6_log_cv_trans$True_costs[t]), full.model6_log_cv_trans$lm_high[t] <- 
"TRUE", full.model6_log_cv_trans$lm_high[t] <- "FALSE") 
  ifelse(isTRUE(full.model6_log_cv_trans$CV_Prediction[t] < 
full.model6_log_cv_trans$True_costs[t]), full.model6_log_cv_trans$lm_low[t] <- 
"TRUE", full.model6_log_cv_trans$lm_low[t] <- "FALSE") 
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  ifelse(isTRUE(full.model6_log_cv_trans$CV_Prediction[t] == 
full.model6_log_cv_trans$True_costs[t]), full.model6_log_cv_trans$lm_eq[t] <- 
"TRUE", full.model6_log_cv_trans$lm_eq[t] <- "FALSE") 
   
  ifelse(isTRUE( 
    (full.model6_log_cv_trans$CV_Prediction[t] > 
full.model6_log_cv_trans$True_costs[t] 
     &full.model6_log_cv_trans$Budget_Costs[t] > 
full.model6_log_cv_trans$True_costs[t]) 
    |(full.model6_log_cv_trans$CV_Prediction[t] < 
full.model6_log_cv_trans$True_costs[t] 
      &full.model6_log_cv_trans$Budget_Costs[t] < 
full.model6_log_cv_trans$True_costs[t])) 
    ,full.model6_log_cv_trans$eq_sign_lm_bud_diff[t] <- "TRUE" 
    , full.model6_log_cv_trans$eq_sign_lm_bud_diff[t] <- "FALSE") 
} 
full.model6_log_cv_trans$budg_high <- as.factor(full.model6_log_cv_trans$budg_high) 
full.model6_log_cv_trans$budg_low <- as.factor(full.model6_log_cv_trans$budg_low) 
full.model6_log_cv_trans$budg_eq <- as.factor(full.model6_log_cv_trans$budg_eq) 
full.model6_log_cv_trans$lm_high <- as.factor(full.model6_log_cv_trans$lm_high) 
full.model6_log_cv_trans$lm_low <- as.factor(full.model6_log_cv_trans$lm_low) 
full.model6_log_cv_trans$lm_eq <- as.factor(full.model6_log_cv_trans$lm_eq) 
full.model6_log_cv_trans$eq_sign_lm_bud_diff <- 
as.factor(full.model6_log_cv_trans$eq_sign_lm_bud_diff) 
 
full.model6_log_cv_trans$eq_sign_lm_bud_diff <- 
as.factor(full.model6_log_cv_trans$eq_sign_lm_bud_diff) 
 
summary(full.model6_log_cv_trans$eq_sign_lm_bud_diff) 
 
# 2-Way Cross Tabulation 
Cross_table_costs <- CrossTable(full.model6_log_cv_trans$budg_high, 
full.model6_log_cv_trans$lm_low, chisq=TRUE) 
chisq.test(full.model6_log_cv_trans$budg_high, full.model6_log_cv_trans$lm_low) 
 
############################################################################### 
6.3.2 Prediction Model 2 partial costs 
########################################################################### 
 
Rselection6 <- Rselection[(Rselection$Tunnel_Length_R==0),] 
include <- names(Rselection6) %in% c("Kdb_ID","Adj_Cost", "Adj_Partial_Costs_R", 
"Adj_Tot_Cost_R", "Total_Costs_R", "Max_Effect_R", "Adj_Penstock_Dia", 
"Construction_Year0", "Company_class", "Construction_Time", "Construction_Time_Yr", 
"Shaft_Bin", "Water_Way_Length_R")  
Rselection6 <- Rselection6[include] 
Rselection6 <- arrange(Rselection6, Adj_Partial_Costs_R) 
Rselection6 <- Rselection6[-c(106, 65, 16, 11, 72,96, 29, 77, 81, 92, 53, 91, 27),] 
Subset6 <- na.omit(Rselection6) 
summary(Subset6) 
 
full.model2_log <- lm(log(Adj_Partial_Costs_R) ~  
                        Max_Effect_R  
                      + I(Max_Effect_R^2)  
                      + I(Adj_Penstock_Dia^2) 
                      + Water_Way_Length_R 
                      + I(Water_Way_Length_R^2) 
                      + Construction_Year0 
                      + Construction_Time_Yr 
                      , data = Subset6) 
 
#  Evaluating model by plots and tests  
gvmodel <- gvlma(full.model2_log)  
summary(gvmodel) 
shapiro.test(full.model2_log$residuals) 
vif(full.model2_log) # variance inflation factors  
press(full.model2_log) 
sqrt(press(full.model2_log)/length(full.model2_log$fitted.values)) 
 
par(mfrow = c(1, 2)) 
diagnostics_plot_partial_costs_incl_time <- autoplot(full.model2_log, which = 1:6, 
ncol = 3, label.size = 3)+ theme_grey() 
dev.set(5) 
diagnostics_plot_partial_costs_incl_time # se plottet 
 
predicted <- predict(full.model2_log, Subset6, se.fit=TRUE,  interval = "prediction") 
predicted_ci <- predict(full.model2_log, Subset6, se.fit=TRUE,  interval = 
"confidence") 
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Model2_partial_costs_cv <- cv.lm(data=Subset6, form.lm=full.model2_log, m= 
nrow(Subset6), plotit = F) 
Model2_partial_costs_cv$pred_lower <- predicted$fit[,2] 
Model2_partial_costs_cv$pred_upper <- predicted$fit[,3] 
Model2_partial_costs_cv$lm_predict <- predicted$fit[,1] 
Model2_partial_costs_cv$ci_lower <- predicted_ci$fit[,2] 
Model2_partial_costs_cv$ci_upper <- predicted_ci$fit[,3] 
 
Model2_partial_costs_cv_trans <-  
  mutate(Model2_partial_costs_cv, 
         True_costs = exp(log(Adj_Partial_Costs_R)), 
         LM_Prediction = exp(lm_predict), 
         CV_Prediction = exp(cvpred), 
         True_costs_Rel = True_costs/True_costs*100, 
         LM_Prediction_Rel = (LM_Prediction - True_costs)/True_costs*100, 
         CV_Prediction_Rel = (CV_Prediction - True_costs)/True_costs*100, 
         Budget_costs_rel = (Adj_Cost - True_costs)/True_costs*100, 
         LM_Prediction_Abs_Perc_Diff = abs(LM_Prediction - 
True_costs)/True_costs*100, 
         CV_Prediction_Abs_Perc_Diff = abs(CV_Prediction - 
True_costs)/True_costs*100, 
         Budget_costs_Abs_Perc_Diff = abs(Adj_Cost - True_costs)/True_costs*100, 
         Pred_diff = LM_Prediction - True_costs, 
         Budg_diff = Adj_Cost - True_costs, 
         Budget_Costs = Adj_Cost, 
         PI_upper = exp(pred_upper), 
         PI_lower = exp(pred_lower), 
         CI_upper = exp(ci_upper), 
         CI_lower = exp(ci_lower) 
) 
 
summarize(Model2_partial_costs_cv_trans, min(CV_Prediction_Abs_Perc_Diff), 
max(CV_Prediction_Abs_Perc_Diff), min(CV_Prediction_Rel), max(CV_Prediction_Rel)) 
 
mean(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff) 
t.test(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff, alternative 
="two.sided") 
shapiro.test(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff) 
sd(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff) 
mad(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff) 
wilcox.test(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff, alternative 
="two.sided", conf.int = TRUE) 
median(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff) 
summary(Model2_partial_costs_cv_trans$CV_Prediction_Abs_Perc_Diff) 
 
Model2_partial_costs_cv_trans <- arrange(Model2_partial_costs_cv_trans, 
LM_Prediction) 
Model2_partial_costs_cv_trans$Index <- 
seq.int(along.with=Model2_partial_costs_cv_trans$LM_Prediction) 
 
CV_mod2_partial_cost_scatter <- ggplot(Model2_partial_costs_cv_trans, aes(x=Index))  
+ 
  geom_ribbon(aes(ymin=PI_lower, ymax=PI_upper, alpha="PI_lower")) + 
  geom_ribbon(aes(ymin=CI_lower, ymax=CI_upper, alpha="CI_lower")) + 
  scale_alpha_manual(name = "PI and CI intervals", breaks = c("PI_lower", 
"CI_lower"), labels = c("Prediction interval", "Confidence interval"), 
values=c(0.4,0.2))+ 
  geom_point(aes(y = CV_Prediction, color="CV_Prediction", shape = "CV_Prediction"), 
size =2)+ 
  geom_point(aes(y=Budget_Costs, color="Budget_Costs", shape = "Budget_Costs"), size 
=2) + 
  geom_point(aes(y=True_costs, color="True_costs", shape = "True_costs"), size =2)+ 
  theme_grey() + 
  labs(x="Rank of linear model estimate",y="Sum of partial costs [MNOK] in real 
values") + 
  scale_colour_discrete("Cost types", breaks = c("True_costs", "Budget_Costs", 
"CV_Prediction"), labels = c("Reported costs", "Budget costs", "Cross-validated 
\nprediction estimate"))+ 
  scale_shape_discrete("Cost types", breaks = c("True_costs", "Budget_Costs", 
"CV_Prediction"), labels = c("Reported costs", "Budget costs", "Cross-validated 
\nprediction estimate"))+ 
  geom_line(aes(y=LM_Prediction, linetype="LM_Prediction"), size = 1, color="white", 
alpha = 0.8) + 
  scale_linetype_manual(name="Linear model \nprediction estimate", 
breaks=c("LM_Prediction"), labels =c("White line showing \nprediction estimate"), 
values = c("solid")) + 
coord_cartesian(ylim = c(0, 110), xlim = c(0,90)) + 



 

86 

  scale_y_continuous(breaks=seq(0, 120, 20)) + 
  scale_x_continuous(breaks=seq(0, 100, 20)) 
 
dev.set(5) #om jeg tror den første ramma passer for figuren.  
CV_mod2_partial_cost_scatter # se plottet 
ggsave("LM2_Partial_Cost_cost_scatter_7-5-16.png") 
 
Model2_partial_costs_cv_long2 <- select(Model2_partial_costs_cv_trans, Kdb_ID, 
Index, Budget_costs_rel, CV_Prediction_Rel, LM_Prediction_Rel) 
Model2_partial_costs_cv_long2 <- arrange(full.model6_log_cv_long2, 
CV_Prediction_Rel) 
Model2_partial_costs_cv_long2$Index <- 
seq.int(along.with=full.model6_log_cv_long2$CV_Prediction_Rel) 
 
Model2_partial_costs_cv_long2 <- melt(Model2_partial_costs_cv_long2, 
id.vars=c("Kdb_ID", "Index"), na.rm=TRUE) 
 
CV_mod2_standardized_cost_scatter <- ggplot(Model2_partial_costs_cv_long2, 
aes(x=Index, y=value))  + 
  geom_point(aes(colour=variable, shape = variable, fill = variable), size =2)+ 
  theme_grey() + 
  scale_fill_discrete(name ="Cost types deviation", breaks = c("LM_Prediction_Rel", 
"Budget_costs_rel", "CV_Prediction_Rel"), labels = c("Deviations LM cost 
\nestimates", "Deviations budgeted \ncosts", "Deviations CV cost \nestimates"))+ 
  scale_colour_discrete(name ="Cost types deviation", breaks = c("LM_Prediction_Rel", 
"Budget_costs_rel", "CV_Prediction_Rel"), labels = c("Deviations LM cost 
\nestimates", "Deviations budgeted \ncosts", "Deviations CV cost \nestimates"))+ 
  scale_shape_discrete(name ="Cost types deviation", breaks = c("LM_Prediction_Rel", 
"Budget_costs_rel", "CV_Prediction_Rel"), labels = c("Deviations LM cost 
\nestimates", "Deviations budgeted \ncosts", "Deviations CV cost \nestimates"))+ 
  labs(x="Rank of deviations between cross-validated estimates and actual 
costs",y="Percent deviation from reported sum of partial costs (real costs)") + 
  geom_hline(yintercept=0) 
 
dev.set(5) #om jeg tror den første ramma passer for figuren.  
CV_mod2_standardized_cost_scatter # se plottet 
ggsave("CV_standardized_cost_scatter_2-5-16.png") 
 
summarize(Model2_partial_costs_cv_trans, RMSEP_CV_Pred = sum(sqrt((CV_Prediction-
True_costs)^2))/nrow(Model2_partial_costs_cv_trans), RMSE_LM_Pred = 
sum(sqrt((LM_Prediction-True_costs)^2))/nrow(Model2_partial_costs_cv_trans), 
RMSE_Budget = sum(sqrt((Budget_Costs-
True_costs)^2))/nrow(Model2_partial_costs_cv_trans), Abs_Diff_CV_Pred = 
sum(CV_Prediction_Abs_Perc_Diff)/nrow(Model2_partial_costs_cv_trans), 
Abs_Diff_LM_Pred = 
sum(LM_Prediction_Abs_Perc_Diff)/nrow(Model2_partial_costs_cv_trans),Abs_Diff_Budge
t = sum(Budget_costs_Abs_Perc_Diff)/nrow(Model2_partial_costs_cv_trans)) 
 
sqrt((Model2_partial_costs_cv_trans$True_costs_Rel-
Model2_partial_costs_cv_trans$CV_Prediction_Rel)^2) 
 
attach(Model2_partial_costs_cv_trans) 
t.test(CV_Prediction_Abs_Perc_Diff, Budget_costs_Abs_Perc_Diff, 
alternative="two.sided", paired = FALSE, var.equal = FALSE) 
shapiro.test(CV_Prediction_Abs_Perc_Diff) 
shapiro.test(Budget_costs_Abs_Perc_Diff) 
wilcox.test(CV_Prediction_Abs_Perc_Diff, Budget_costs_Abs_Perc_Diff, 
alternative="two.sided", conf.int=TRUE, paired = FALSE) 
t.test(CV_Prediction_Rel, Budg_diff_Rel, alternative="two.sided", paired = FALSE, 
var.equal = FALSE) #  
shapiro.test(CV_Prediction_Rel) 
shapiro.test(Budg_diff_Rel) 
wilcox.test(CV_Prediction_Rel, Budg_diff_Rel, alternative="two.sided", 
conf.int=TRUE, paired = FALSE) #  
detach(Model2_partial_costs_cv_trans) 
 
Model2_partial_costs_cv_trans$budg_high <- "TRUE" 
Model2_partial_costs_cv_trans$budg_low <- "TRUE" 
Model2_partial_costs_cv_trans$budg_eq <- "TRUE" 
Model2_partial_costs_cv_trans$lm_high <- "TRUE" 
Model2_partial_costs_cv_trans$lm_low <- "TRUE" 
Model2_partial_costs_cv_trans$lm_eq <- "TRUE" 
for(t in 1:nrow(Model2_partial_costs_cv_trans)) { 
  ifelse(isTRUE(Model2_partial_costs_cv_trans$Budget_Costs[t] > 
Model2_partial_costs_cv_trans$True_costs[t]), 
Model2_partial_costs_cv_trans$budg_high[t] <- "TRUE", 
Model2_partial_costs_cv_trans$budg_high[t] <-"FALSE") 
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  ifelse(isTRUE(Model2_partial_costs_cv_trans$Budget_Costs[t] < 
Model2_partial_costs_cv_trans$True_costs[t]), 
Model2_partial_costs_cv_trans$budg_low[t] <- "TRUE", 
Model2_partial_costs_cv_trans$budg_low[t] <- "FALSE") 
  ifelse(isTRUE(Model2_partial_costs_cv_trans$Budget_Costs[t] == 
Model2_partial_costs_cv_trans$True_costs[t]), 
Model2_partial_costs_cv_trans$budg_eq[t] <- "TRUE", 
Model2_partial_costs_cv_trans$budg_eq[t] <- "FALSE") 
  ifelse(isTRUE(Model2_partial_costs_cv_trans$CV_Prediction[t] > 
Model2_partial_costs_cv_trans$True_costs[t]), 
Model2_partial_costs_cv_trans$lm_high[t] <- "TRUE", 
Model2_partial_costs_cv_trans$lm_high[t] <- "FALSE") 
  ifelse(isTRUE(Model2_partial_costs_cv_trans$CV_Prediction[t] < 
Model2_partial_costs_cv_trans$True_costs[t]), 
Model2_partial_costs_cv_trans$lm_low[t] <- "TRUE", 
Model2_partial_costs_cv_trans$lm_low[t] <- "FALSE") 
  ifelse(isTRUE(Model2_partial_costs_cv_trans$CV_Prediction[t] == 
Model2_partial_costs_cv_trans$True_costs[t]), 
Model2_partial_costs_cv_trans$lm_eq[t] <- "TRUE", 
Model2_partial_costs_cv_trans$lm_eq[t] <- "FALSE") 
  ifelse(isTRUE( 
    (Model2_partial_costs_cv_trans$CV_Prediction[t] > 
Model2_partial_costs_cv_trans$True_costs[t] 
     &Model2_partial_costs_cv_trans$Budget_Costs[t] > 
Model2_partial_costs_cv_trans$True_costs[t]) 
    |(Model2_partial_costs_cv_trans$CV_Prediction[t] < 
Model2_partial_costs_cv_trans$True_costs[t] 
      &Model2_partial_costs_cv_trans$Budget_Costs[t] < 
Model2_partial_costs_cv_trans$True_costs[t])) 
    ,Model2_partial_costs_cv_trans$eq_sign_lm_bud_diff[t] <- "TRUE" 
    , Model2_partial_costs_cv_trans$eq_sign_lm_bud_diff[t] <- "FALSE") 
} 
Model2_partial_costs_cv_trans$budg_high <- 
as.factor(Model2_partial_costs_cv_trans$budg_high) 
Model2_partial_costs_cv_trans$budg_low <- 
as.factor(Model2_partial_costs_cv_trans$budg_low) 
Model2_partial_costs_cv_trans$budg_eq <- 
as.factor(Model2_partial_costs_cv_trans$budg_eq) 
Model2_partial_costs_cv_trans$lm_high <- 
as.factor(Model2_partial_costs_cv_trans$lm_high) 
Model2_partial_costs_cv_trans$lm_low <- 
as.factor(Model2_partial_costs_cv_trans$lm_low) 
Model2_partial_costs_cv_trans$lm_eq <- 
as.factor(Model2_partial_costs_cv_trans$lm_eq) 
Model2_partial_costs_cv_trans$eq_sign_lm_bud_diff <- 
as.factor(Model2_partial_costs_cv_trans$eq_sign_lm_bud_diff) 
 
# 2-Way Cross Tabulation 
Cross_table_costs <- CrossTable(Model2_partial_costs_cv_trans$budg_high, 
Model2_partial_costs_cv_trans$lm_high, chisq=TRUE) 
chisq.test(Model2_partial_costs_cv_trans$budg_high, 
Model2_partial_costs_cv_trans$lm_high) 



 

88 

 



 


