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Summary 
 
This study explores the effect of increasing sample units density with 

presence-only data (PO data) on the ability to predict the distribution of three 
common (2e  dwarf shrub heath, 4b  bilberry birch forest and 9c  fen) and 
three rare (3b  tall forb meadow, 8d  rich swamp forest and 9d  mud- bottom 
fens and bogs) vegetation types. 

The chosen study area was Venabygdsfjellet in Ringebu municipality, 
Oppland. In 2001 the vegetation in the study area was mapped by Norwegian 
Institute for Forest and Landscape. The vegetation map was used as material for 
the PO data in the prediction modeling. In beforehand, this map was quality 
assessed. To evaluate the quality of the map, necessary fieldwork and statistical 
analysis was conducted. As a result of this evaluation, 84 % of all observations 
correspond to the mapped distribution on the vegetation map. The PO data for 
distribution modeling were collected in a point grid with different densities (100 
m for common and 25 m for rare vegetation types) within the sample units 
(1500×600m size). The sample unit was equivalent to a Primary Statistical Unit 
(PSU) of the AR18×18 survey system and given in a grid net with five 
densities: 3×3 km, 4,5×4,5 km, 6×6 km, 7,5×7,5 km and 9×9 km. In addition to 
PO data, 12 environmental variables were used as explanatory predictors (the 
digital elevation model, basin, curvatures, flow accumulation, flow direction, 
groundwater, slope, satellite image, the Normalized Difference Vegetation 
Index (NDVI), the Topographic Wetness index (TWI), sediment and soil maps). 
Using the PO data and these environmental variables, each vegetation type was 
modeled in all five densities of the PSU grid using a maximum entropy 
modeling method using a custom-made software called MaxEnt. 

In total, 26 out of 30 planned prediction models were run. The four 
missing models did not have any PO-points in some of the PSU grid density. 
Out of 26, 23 prediction models performed well according to the AUC-measure 
provided by MaxEnt (> 0.80 AUC). The statistical comparison of the predicted 
and true distribution of the modeled vegetation types showed that only 7 
prediction models can be considered as good (2e in densities 3×3 km and 
4.5×4.5 km, 4b in densities 3×3 km and 4.5×4.5 km, 9c in densities 3×3 km and 
7.5×7.5 km and 3b in density 3×3 km). The vegetation types 8d and 9d were not 
modeled successfully any PSU grid densities, although they had high AUC-
values. The best modeled vegetation type was 4b in a 3x3 km PSU grid density. 
The variable importance analysis conducted by MaxEnt trough the Jack-Knife 
test, showed that the DEM (the digital elevation model), NDVI index (the 
Normalized Difference Vegetation Index), slope and satellite images in blue 
band were the most important environmental variables among all vegetation 
type models. 
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1 Introduction 
 
Vegetation mapping is a very important part of resource management and 

environmental research both in Norway (Fremstad 1997; Rekdal & Larson 
2005) and other countries (Lawesson et al. 2000; Parry & Perkins 2002; 
Gudjonsson 2009). An increasing need for accurate environmental data has 
contributed to continuous development of mapping technologies and methods. 
The national governments allocate large funds to get more or less complete 
overview of natural resources that has both economic, social, conservation and 
science benefits. But the mapping process is slow. In Norway, during the last 40 
years only 10 % of the country has been mapped, mostly in the mountain 
regions (Rekdal & Bryn 2010). Each mapping project is closely linked to 
budget that limits both the mapping process and the recruiting of qualified 
specialist. The interaction of these, and other factors, causes a need to finding 
new methods that can accelerate the implementation and increase the efficiency 
of vegetation mapping. This study explores if one of these new methods that are 
capable of predicting the spatial distribution of vegetation types using 
environmental predictors. If the testing of this method ends up with acceptable 
results, then it can be used as a new tool in resource management and 
significantly reduce the time and costs during mapping. 

The term "vegetation mapping" can be interpreted in different ways, and 
there is no worldwide consensus (Rekdal & Bryn 2010). The classification of 
vegetation types was historically closely related to the discipline of 
phytosociology (Braun-Blanquet 1965; Küchler & Zonneveld 1988). 
Worldwide, there are many classification systems. In Norway, the most known 
systems are “Vegetasjonstyper i Norge” (Fremstad 1997) and “Veiledning i 
vegetasjonskartlegging. M 1:20000-50 000” (Rekdal & Larsson 2005).  

In Norway, a growing demand for reliable information about land cover 
and land resources led to the creation of new national survey system AR18×18 
(the Norwegian area frame survey of land resources). This system also 
constitutes a baseline for studying changes in outfield land resources and a 
framework for a national land resource accounting system for the outfields 
(Strand & Rekdal 2010). The AR18×18 survey system is methodologically 
linked to the European Lucas survey (Land use/cover agricultural survey) 
carried out in the EU countries by Eurostat (Eurostat 2003). The Lucas system 
is made up by a grid of 18×18 km mesh size (later condensed to 2×2km) that 
covers whole Europe and consists of points (the sampling units) located in 
intersections. These points are the center of a Primary Statistical Units (PSU) of 
1500 × 600 meters (0.9 km2). And in each PSU there are ten sample points. But 
in Norway, this system was modified, and instead of sample points it was added 
a detailed land cover of whole PSU at intermediate scale 1:20.000 (Strand 2013; 
Strand & Rekdal 2010). The Norwegian Forest and Landscape Institute is 
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primarily responsible for conducting the AR18×18 survey in Norway. First this 
system was tested in the mountains of Hedmark district during the summer 
season of 2004 and then carried out each year (Strand & Rekdal 2005). The 
completion of the survey is expected in 2015 depending on available resources 
(Strand & Rekdal 2010). Despite all advantages, the AR18×18 system does not 
provide a full overview of the land resources and continuous land cover in the 
country. But it can give good opportunities to test accelerated mapping 
processes using geostatistical methods (extrapolation).  

The increased use of Geographical information systems (GIS) and new 
statistical techniques in analyzing geodata has led to a rapid development of 
predictive distribution modeling (DM) in ecology. A central issue in DM is 
always related to the analysis of species–environment relationship (Guisan & 
Zimmermann 2000). The development of DM has also advanced in conjunction 
with the development of remote sensing-based vegetation mapping (Franklin 
1995). 

Franklin (1995) used the term predictive vegetation mapping, which has 
the same meaning as DM, and describes this term as predicting the vegetation 
composition across a landscape from mapped environmental variables. Usually, 
common vegetation types are correlated with a large range of environmental 
variables. This can be challenging, as it can be hard to find specific criteria for 
the distribution of the vegetation types and difficult to model. But rare 
vegetation types are often correlated with more narrow variables, which can 
make them easier to model (Halvorsen 2012a), if you have the variables 
available in GIS-formats. The knowledge about gradient analysis and ecological 
niche theory formed the basis of predictive vegetation mapping (Austin 2007; 
Franklin 1995). The successful use of DM for predictive vegetation mapping, 
has led these methods to become a very important tool for resource conservation 
related to e.g. effects of global environmental changes on species distribution 
and understanding the realized niche of species (Graham et al. 2004; Thomas et 
al. 2004; Palmer and Van Staden, 1992; Philips & Dudík 2008). The 
distribution modeling has been used for totally different topics such as the 
spread of invasive species (Thuiller et al. 2005); biodiversity conservation 
(Haines-Young 1991), spatial patterns of species diversity (Graham et al. 2006), 
ecological restoration (Martinez-Taberner et al. 1992), and the potential for 
expansion of forest following land-use change in Norway (Bryn et al. 2013). 
DM has also been applied to model land-cover types (Dobrowski et al. 2008) 
and different species assemblages such as vegetation types (Cawsey et al. 2002; 
Ferrier et al. 2002; Hemsing & Bryn 2012; Weber 2011). 

DM is mostly based on presence observations (presence-only data or PO 
data) of species occurrences (Stokland et al. 2011). The species occurrence data 
with good precision is becoming more and more available from different 
sources like atlases, books, journals, database of museums, as well as digitalized 
internet sources the GBIF (Phillips & Dudík 2008; Ramsen et al. 2011). At the 
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same time accessible digital maps of environmental variables with high 
resolution used in DM as predictors, are becoming more common (Bakkestuen 
et al. 2008; Elith et al. 2006; Crawford & Hoagland 2009; Franklin 2009).  The 
mapping of these variables should be easier than the vegetation mapping itself, 
in order for DM to be a practical or informative exercise (Franklin 1995). The 
nature of environmental variables allows to split them into two groups: direct 
and indirect (Austin 2002). Direct variables influence plants physiologically 
(temperature, soil, geology and solar radiation). Indirect variables have no 
directly impact on plants, but by influencing direct variables, they can limit the 
distribution of species on large geographical scales (latitude and longitude). 
Using different primary environmental variables it is possible to generate 
several surrogate variables such as the slope and flow direction extracted from a 
digital elevation model (DEM). Recently, there has been an increasing use of 
satellite images in DM (for example Sillero et al. 2012; Stokland et al. 2008). 
These can be used to obtain several types of predictive variables such as the 
Normalized difference vegetation index (Weier & Herring 2000) and infrared 
color bands. The accessibility of PO data and continuous digital environmental 
data help to provide a rich basis for DM and give possibility for many 
researchers to use DM for their varying needs. 

There are several types of DM with different types of statistical analysis 
and methods for evaluation of models. Some of these are Expert-based manual 
modelling (Moravec 1998; Hemsing & Bryn 2012), regression methods such as 
generalized additive models and generalized linear models (Elith et al. 2006), 
Rule-based envelope modelling (Bryn 2008) and Statistical predictive 
modelling (Phillips et al. 2006; Phillips & Dudík 2008). Some of these methods 
use presence-only data, others also include absences. A special feature of the 
new methods is their ability to fit more complex models from small datasets and 
prevent model complexity using mechanisms such as “regularization” (Philips 
& Dudík 2008). 

This  master thesis is a continuation and further development of a project 
related to the possibility of using Distribution modelling (DM) for vegetation 
mapping (Hemsing 2010; Ullerud 2013). Hemsing (2010) found that a statistical 
predictive GIS modelling method (MaxEnt) is good to use for the prediction of 
distribution of vegetation types, and this method was explored further and 
evaluated for many aspects in Hemsing & Bryn (2012, table 6). Ullerud (2013) 
studied the possibility to predict distribution of vegetation types in neighboring 
areas that have no presence data, i.e. spatial transferability. Ullerud (2013) 
showed that it was possible to extrapolate the DM, but also that the modeling 
performance varied between different vegetation types. In the modeling Ullerud 
used presence data from only one sample unit (c. 4 km2). In this study, instead 
of using only one sample unit, a grid that consist of many sample units in 
different densities was tested and the effect of increasing sample unit density on 
the prediction probability of the whole study area was analyzed.  
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The main objective of this study is to explore the effect of increasing the 
density of the PSU with presence-only data on the ability to predict the 
distribution of three common and three rare vegetation types. The second 
objective is to answer the following questions:  

a) Which density of the PSU grid net is most suitable to predict the 
distribution of selected vegetation types with the aim of decreasing time and 
costs for mapping? 

b) Which vegetation types can be predicted with high reliability using 
DM by MaxEnt? 

c) Which environmental variables are the most important predictors for 
the chosen vegetation types?   
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2. Materials 
2.1 Study area 
2.1.1 Location of the study area 

The study area is located in Venabygdsfjellet at Gudbrandsdalen, in the 
northwestern part of Ringebu municipality, in the eastern part of Oppland 
district, Eastern Norway (Figure 1). The center of the study area is Venabu 
(WGS 1984 UTM-zone 32 Ø555849 N6829297). In total, the study area 
constitutes 161 km2. To the west, the study area share borders with Sør-Fron 
municipality (№ 0519), Oppland district. In the north it shares boarders with 
Stor-Elvdal municipality (№ 0430), Hedmark district. The southern boundary of 
the study area goes from Venabygd along road RV27 and Jønnhaltveien to 
Jønnhalt. The eastern boundary goes from Jønnhalt up along the river Døra, 
brook Gråbekken to Mykjørrtjønnet and again along road RV27 to Hedmark 
district. The elevation of the study area is from 330 to 1365 m a.s.l. 

 
Figure 1. Maps showing the location of study area (red line) in the northwestern part of Ringebu 
municipality and position in southern central Norway. The maps were created using ArcGIS 10.1 with 
FKB map data and freely available WMS-service from the Norwegian national geodata coordinator 
Kartverket (source: www.kartverket.no). Map projection: WGS 84/UTM 32N. 

 
2.1.2 Nature 

The study area is characterized by large variations in relief and landform. 
The area has deep V-shaped valleys with steep slopes surrounded by high 
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mountains in the western and south-eastern parts. The central, northern and 
northeastern parts have mountains and mountain valleys dominated by mashes 
and lakes, but without forest. The southern part has flat terrain in some places, 
more smooth slopes and some mountains. Among the main forms, there are also 
some small hills and mountain ridges. The study area includes a set of high 
mountains, e..g. Ramstindan (1334 m a.s.l.), Nørdre Bølhøgda (1365 m a.s.l.), 
Søndre Bølhøgda (1258 m a.s.l, Svarthammaren (1182), Flakssjølighøgda (1112 
m a.s.l.), Dynjefjellet (1147 m a.s.l.), Svartfjellet (1154 m a.s.l.) and 
Trabelifjellet (1093 m a.s.l.). 

The whole study area has many small and several large lakes, narrow 
rivers and brooks. The largest lakes in Venabygdsfjellet are Flaksjøen (905 m 
a.s.l.), Bølvatnet (1006 m a.s.l.) and Muvatnet (1052 m a.s.l.) in the northern 
part. Most of the brooks and small rivers flow to the two large rivers Frya and 
Nordåa and then flow further down to the great river Lågen in the U-valley at 
Ringebu and Frya cities. In the V-valleys with deep ravines and gorges, the 
river flows hastily and foams. Larger waterfalls are not uncommon in these 
places. Snow and ice sheets are common in the top of valley slopes. The water 
comes from melted snow that accumulated during winter and from rainfall in 
warm seasons. 

The study area belongs to the north-boreal, low-, median- and high-alpine 
and south-arctic vegetation zones (Moen 1999). The vegetation in 
Venabygdsfjellet has a clear zonation. The tree line is around 1050 m a.s.l.. and 
consist of mountain birch forests that dominates in northwestern part (Bryn & 
Rekdal 2002). The mountain birch forest grows on the top of valleys slopes, 
low-lying plateaus and close to mountains. In the low-lying parts the forests, 
both spruce and pine might occur. The study area also has more grazing 
influenced birch forests or meadow birch forests influenced by human activity 
(Puschmann 2005). From around 950 m a.s.l. it is more coniferous trees, and 
further down spruce forests dominates (Bryn & Murvold 2003). The plunging 
and slope terrains into the Frya-valley in the west and into Ringebu and Frya 
cities in the south have birch forest at the top and coniferous forests down to 
valley bottoms. Pine is common in dry gravel or on scanty and often nutrient-
poor rock types and in small quantities in the southern and western part of study 
area. High and especially slim spruces are a character trait in some places 
(Puschmann 2005). Along rivers, around cultivated lands, and in parts of 
properties and around single-homestead deciduous forests dominates 
(Puschmann 2005). At the bottom of valley gorges, there are elements of alder 
forests (Bryn & Rekdal 2002). Above the tree line, there is treeless vegetation 
on or close to mountains. Northern and northeastern parts of the study area are 
dominated by alpine heaths, especially lichen and dwarf shrub heath around 
mountain tops, and wetlands in flat areas of mountain plateaus, especially fen 
and bog. There are also large agricultural areas at Bergstulen, Jønnhalt and 
between Venabygd and Slavolen along the Frya-valley. At Flaksjøen, Venabu, 
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Trabelia, Bergstulen, Dynje and Jønnhalt, there are also cultivated lands and 
grazing meadows. In addition, there are several mountain farms spread in the 
whole study area (Bryn & Rekdal 2002). In older pasturelands, juniper is 
common and forms cultivated land in some places (Puschmann 2005). The 
study area was mapped by the Norwegian Institute land Inventory in 2001 (Bryn 
& Rekdal 2002). 
 
2.1.3 Geology 

According to the bedrock map from National Bedrock database (NGU 
2014), the study area is dominated by grey sandstone, especially grey meta-
sandstone (66 %) and dark grey bad sorted sandstone (22 %). The grey meat-
sandstone is spread in the whole study area, especially in the southern part and 
with a strip in the northern part. The dark grey poorly sorted sandstone is found 
with two wide strips in the northern part (Appendix 1). Both bedrock types are 
the sedimentary thrust fault from late Precambrian (Siedlicka et al. 1987). There 
is also gneiss with a narrow strip from the west near Slavollen to Jønnhalt which 
covers the area between Trabelia, Bergstuen, Venabu and Jønnhalt, and 
constitutes 8 % of the study area. In addition, other bedrock types like dolomite, 
phyllite, granite, conglomerate, quartzite, black slate, schist, meta-gabbro and 
light sandstone are in small quantities in the west, near Trabelia and between the 
dominating bedrocks. Totally, they cover ca 3 % of the study area. 

The mountain areas are mostly covered by a thin moraine layer, but in the 
north of Bølhøgda, the layer is thick. On the tops there is exposed bedrocks and 
boulder fields (Sollid og Trollvik 1991). The mountain areas between lake 
Flaksjøen and mountain Nødre Bølhøgda have soils with depth lower than 30 
cm. In the forest areas, the moraine cover is thick. There are also large marsh 
areas with organic soil at Jønnhalt, around Venabu, Svartåkluftin, Bølvatnet and 
down to Mysætrin (Bryn & Rekdal 2002). Especially for the area in the west 
and south for Trabelia and south of Forbundsfjellet, there are occurrences of 
large rough boulder fields that have extra good drainage and poor water supply 
for plant growth. These boulder fields were deposited by glacial rivers at last Ice 
age (Bergersen 1993). 
 
2.1.4 Climate 

The study area is located in a transition zone between a continental and an 
oceanic climate (Moen 1999). The growing season length constitutes 150-170 
days with mean temperature ≥ 5° C. The annual mean temperature is -0.28°C. 
The average temperature for coldest month January is – 9.7°C and warmest 
month July +10.4°C. The annual precipitation is 700-1500 mm. Number of days 
with snow cover is 175-225, with more than half of the ground covered with 
snow (Moen 1999). According to Norwegian Meteorological Institute, that has a 
meteorological station (930 m a.s.l.., established in 1980) at Venabu, the annual 
mean temperature in 2013 was 0.15°C, the coldest month was January with 
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average of 11.3°C and the warmest July with 12.2°C (Figure 2). The annual 
mean wind speed was 2.63 m/s with strongest indicator 15.3 m/s in 27. June. 
The annual mean precipitation was 68.72 mm with greatest total value of 
monthly precipitation 163 mm in June and lowest 4.9 mm in March. 

 
Figure 2. Monthly mean normal and measured temperature and precipitation at Venabu in 2013. Data 
is taken from Norwegian Meteorological Institute (source: www.met.no) 

 
2.1.5 Cultural influence 

The main features of human activities in the study area are farming 
villages with timber houses and old cultivated lands both near farms and in 
outfields (Puschmann 2005). From 16th century due to a rapidly increasing 
population in Ringebu municipality, there was a marked increasing activity of 
cotter farms in the study area that spread out in the outfields and cultivated new 
land. Number of farms within study area varied greatly during the last three 
hundred years. In 1723 there was registered only 9 cotter farms in Venabygd, 
but in the period 1851-1930 the number increased to 70-80 cotter farms 
(Hovdhaugen 1988). During 20th century, the number decreased to around 45 
cotter farms in 1942, 5 summer dairy farms in 1974 to only 1 active farm in 
2006 (Bryn 2006). Therefore, much of the previously cultivated lands are not 
used anymore, and is becoming reforested by birch. More typically is the spread 
of farming villages with single farms or small hamlets in between. In some 
places, large village communities and hamlets are creating greater associated 
farmlands. 

Meadows and pastures dominate in land use areas and the livestock is 
large, especially in upper mountain areas where cultivated lands are small due to 
soil specificity (Puschmann 2005). Large areas of cultivated land are generally 
located near easily accessible places along roads and greater settlements, for 
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example areas along the road Venabygdsveien from Venabygd church to 
Hovde, at Bergstuen, Dynje, Trabelia and Jønnhalt (Appendix 2). 

There are many cottages that are spread in the whole study area and in 
some places make up cottage fields, especially in areas close to mountains, 
lakes and on forest covered slopes.  The large cottage fields are located in areas 
around Venåssætra, Dynje, Bergstuen, Trabelia, Friskevarpet and Jønnhalt. 
Cottage building in outfields is a new trend in Norway and in specially in 
mountain area (Taugbøl 2002). 

In the study area there are two major settlements that represent the current 
life of region. One of this two is Venabygd. This is a traditional village 
settlement located on the top of the Frya-valley with traditional agriculture 
based on husbandry. Also the use of outfield resources like logging, hunting, 
fishing, the collection of lichens and other types of outfield fodder, and outfield 
scything and grazing, play an important role among farmers (Almås et al. 2004). 
The other settlement is Venabu. This is the tourist settlement related to nature 
experiences and variety of activities like guided ski and snow shoeing tours, dog 
sleigh rides, biking, swimming, mountain hike etc. The settlement includes 
many cottages around, the tourist trade, camping and a shopping mall. From 
Venabu it runs many hiking and skiing trails that cover almost whole study area.  
A little further north from Venabu, at Flakssjøen there is Venabu mountain 
hotel with ski resort. 
 
2.2 Vegetation map data 

In this study a vegetation map from 2001 was implemented. The mapping 
was performed by Norwegian Institute for land Inventory (NIJOS) as a result of 
a project for Ringebu municipality, and in accordance with NIJOS instructions 
for mapping in scale 1:50 000 (Larsson & Rekdal 1997). The fieldwork was 
mainly performed in July (Bryn and Rekdal 2002). The vegetation mapping 
consisted of fieldwork and digitalization of maps. Field registrations were 
drawn on aerial photos from 1992 (in scale 1:40 000) and then digitized by 
using an analytical stereo plotter AP 190. The final vegetation database was 
completed in ArcInfo. The vegetation map was finished in 2002 (Appendix 2). 
Totally 16 1,46 km2 (excluding water) was mapped. The largest part of the 
study area is dominated by forest (45.3 %), especially in the western and 
southern parts. The other significant part is dominated by alpine vegetation 
(35.6 %), mostly in the northern and northeastern parts and the center. Wetlands 
cover 11.2% and are spread in whole study area, both in forest and alpine parts. 
Agricultural lands cover 4.1 %. 

 
2.3 Environmental variables 

In the prediction modeling there were used 12 environmental variables 
(Table 1, Appendix 4) in the form of raster map with cell size 10x10 m. Totally, 
each raster map consist of 2 667 249 cells. Some variables were obtained in 
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different resolutions and file formats. Therefore they were transformed to the 
same resolution and format using ArcGIS’s tools. There is a common 
coordinate system for all raster maps of environmental variables: WGS 1984 
UTM Zone 32N. In addition to the right resolution and coordinate system, all 
raster maps must be within the same boundaries. Otherwise the software used 
for prediction modeling will not work. 

The digital elevation model (DEM) generated from the laser scanning 
data (Light Detection And Ranging) was used to make the derived variables, 
namely Basin, Slope, flow accumulation, Flow direction, Curvatures, the TWI. 
and the NDVI. The satellite image in different bands was used to generate the 
Normalized Difference Vegetation Index (NDVI). Also there were used three 
maps that show the distribution of sediments, soil and groundwater in the study 
area. 
Table 1. Overview of environmental variables that were used in the prediction modeling. All variables 
were transformed to a raster map with the same resolution (10×10), within boundaries and inserted in 
the same coordinate system before modeling. All preparations were done in ArcGIS.  

Environmental 
variables Generated from Original 

resolution 
Transformation to 

10x10 m 
 
1. DEM 
(Digital Elevation 
model) 
 

 
LiDAR 1 

 
10×10 

 

2. Basin Flow direction 10×10  

3. Curvatures DEM 10×10  

4. Flow accumulation DEM 10×10  

5. Flow direction DEM 10×10  

6. Groundwater ND_Løsmasser 3 continuous 
vector data 

conversion from feature 
to raster (ArcGIS), with 
snap to DEM 
 

7. NDVI  
(the Normalized 
Difference Vegetation 
Index) 

Satellite image in red (VIS) 
and infrared (NIR) band. 
Calculated in the formula: 

 

25×25 resample (ArcGIS), with 
snap to DEM 

8. Satellite image: blue, 
green and red bands 
 

  resample (ArcGIS), with 
snap to DEM 

9. Sediments ND_Løsmasser 2 continuous 
vector data 

conversion from feature 
to raster (ArcGIS), with 
snap to DEM 
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10. Soil Berggrunn N50 2 continuous 
vector data 

conversion from feature 
to raster (ArcGIS), with 
snap to DEM 

11. Slope DEM 
 
 

10×10  

12. TWI  
(the Topographic 
Wetness index) 
 
 
 
 
 
 
 
 
 

TWI can quantify the control 
of local topography on 
hydrological processes and 
indicate the spatial 
distribution of soil moisture 
and surface saturation: 

 

flac- flow accumulation 
sl – slope 
10 – the size of pixels 

10×10 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

1 The LiDAR scanning over Venabygdsjellet was done by Statens kartverk in period 2011-2013 (the 
scanning density 1-5 points per m2). Generated to DEM (Digital Eleveation Model) in the resolution 
10×10 m. Download from Norge Digitalt. "Copyright Norge digitalt" 
2 Beggrunn N50. NGU (Norges geologiske undersøkelser) in scale 1:50.000. The mapping was done 
be NGU in 1983 and converted to digital form by scanning and vectorization in 2003. Download from 
NGU net site in shape format (SOSI 4.0). The maps are. 
3 ND_Løsmasser. NGU (Norges geologiske undersøkelser) in scale 1:50.000. The mapping was done 
by NGU in 1993 and converted to digital form by scanning and vectorisation. Download from NGU 
net site in shape format (SOSI 4.0). 
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3. Methods 
3.1 Vegetation types 

Six vegetation types from three ecosystems (mountain, forest and 
wetland) were chosen for the prediction modeling (Table 2). In every ecosystem 
one rare and one common vegetation type was chosen. This choice was based 
on the present distribution of the vegetation types within the study area. Totally, 
the summed area of all six selected vegetation types covers 52.7 % of the study 
area. 
Table 2. Overview of the six selected vegetation types and their proportion in the study area. 

Type of ecosystem     Vegetation types Occurrence Proportion of 
study area, % 

Alpine ecosystem 2e – dwarf shrub heath common 21.3 
3b – tall forb meadow  rare 1.5 

    

Forest ecosystem 4b – bilberry birch forest common 22.9 
8d – rich swamp forest  rare 0.4 

    

Wetland ecosystem 9c – fen common 6.1 
9d – mud- bottom fens and bogs rare 0.5 

 
3.2 Sample units (PSU) and point grid  

For prediction modeling, occurrence information was only gathered for 
the selected vegetation types within the boundaries of the sample units. The 
sample units used in data collection is equivalent 
to a Primary Statistical Unit (PSU) of the 
AR18×18 survey system of 1500×600 m size 
(Figure 4). The PSU have been stratified 
according to different densities. Each PSU was 
inserted in bottom left corner of a grid mesh. The 
distance between sample units was measured 
from and to these corners (Figure 3).  

In the MaxEnt software (see the next 
paragraph), that was used in the prediction 
modeling, the information about presences of 
selected vegetation types is taken in the form of 
point grid and presented as PO data (presence-
only data). Due to significant difference in the 
occurrence of selected vegetation types, rare and 
common vegetation types were tested using 
different presence point density. As a result of 
these tests, rare vegetation types was tested using 
a point grid distance of 25 meters, whereas 100 
meters point grid distance was used for common 
vegetation types (Figure 4). 

Figure 3. The study area (red line) 
covered by a 3x3km grid mesh 
(black line). The distance between 
sample units (latticed rectangles) is 
taken from and to bottom left corner 
of each unit. 
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On the vegetation map the selected vegetation types is shown sometimes 
as mosaics and with additional signs. The mosaics consist of two or more 
vegetation types that are spatially mixed with each other, so that they can’t be 
separated into different polygons. The additional signs were used to show 
important characteristics of the vegetation cover that are not used for the general 
description of the vegetation types. Both the selected vegetation types 
represented as the secondary vegetation types in mosaics and additional signs 
were not taken into consideration and were excluded during the creation of PO 
data (Table 3). This exclusion is seen as a necessity to improve the models to 
recognize selected vegetation types in their specific ecological ranges and 
increase the predictive performance of models. The creation of both sample 
units and point grid, and all other processes related to geographical and 
statistical analyses were done in ArcGIS software (version 10.1).  

 
Table 3. The number of training points (PO data) generated for prediction modeling in each selected 
vegetation type within sample units, their kind of mosaic and additional signs that were and not were 
involved in modeling. Training points were created in ArcGIS (version 10.1). Description of codes an 
additional signs is given in Appendix 3. 
Vegetation type Density 

of sample 
units 

Number of training points 
from sample units taken 
into prediction modeling 

Mosaics and signs 
included in 
presences 

Additional 
signs 

2e – dwarf shrub 
heath 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

374 
115 
59 
91 
52 

2e, 2e/2c, 2e/3b, 
2e/9c 

g, j, H, k, n, s, 
v, ᴐ, o), *,   , + 

3b – tall forb 
meadow 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

355 
53 
48 
21 

not found 

3b, 3b/2e, 3b/9c g, j, H, k, s, ᴐ, 
* 

4b – bilberry 
birch forest 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

370 
164 
30 
34 
1 

4b, 4b/2e, 4b/4a, 
4b/4c, 4b/6b, 4b/8d, 
4b/9c, 

g, v, o), *,  , +,  
] 

Figur 4. The sample unit with to two types of point grid: a) with 25m distance for rare vegetation 
types; b) with 100m distance for common vegetation types. The sample unit that was used in 
prediction modeling is originally taken as a Primary Statistical Unit (PSU) in AR18×18 system. The 
size of each unit is 1500×600 m. 

a) b) 
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8d – rich swamp 
forest 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

331 
45 

not found 
not found 

25 

8d, 8d/7b, 8d /9c k, o) 

9c – fen 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

132 
26 
18 
19 
12 

9c, 9c/2e, 9c/3b, 
9c/9a, 9c/9d ᴐ, o), k, s, g,  

9d – mud- 
bottom fens and 
bogs 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

381 
264 

not found 
109 
264 

9d, 9d/9a, 9d/9c none 

 
3.3 Distribution modeling 

Today there are several methods for DM of vegetation types, but the best 
method was recognized a statistical predictive GIS-modelling method (Hemsing 
& Bryn 2012), a method for presence-only DM. This method is based on 
maximum entropy modeling, often described as a machine learning method, 
which are trying out various interactions between environmental factors 
(Phillips et al. 2006; Phillips & Dudík 2008), and can also be explained as a 
maximum likelihood method (Halvorsen 2012a).  

In this study the MaxEnt software (version 3.3.3k) was used to prepare 
statistical predictive models for the potential distribution of vegetation types 
(Phillips et al. 2004). The main idea of the modeling is to estimate an unknown 
probability distribution of, in our case, vegetation types in relation to a set of 
restrictions. The restrictions put in MaxEnt are that the expected value (the true 
mean) related to each environmental variables should be the same as the 
observed mean (Stokland et al. 2008). It is more about statistical analysis of 
combinations and interactions of environmental variables in the presence-cells 
and finding of locations where the target might be present (Elith et al. 2011; 
Phillips & Dudik 2008).  

The models in MaxEnt were created in the form of rasterized frame-area 
for training and used environmental variables for this frame-area for projection. 
Each cell marks MaxEnt as an observation unit. There are two types of 
observation units: presence and absence. By using extrapolation the frame-area 
generate map representations of model predictions. The prediction results from 
MaxEnt are given as relative predicted probabilities of presence (RPPP) because 
models are based on PO data and the prevalence of the modelled target is not 
known. It is known nothing about eventual presence or absence in the 
uninformed background observation units (Phillips et al. 2006; Ward et al. 
2009). The term “relative” means that model predictions can be compared 
among grid cells, but that their absolute values cannot be used for interpretation 
in terms of probabilities of presence of the modelled target (Ferrier et al. 2002). 
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In order to translate RPPP to predicted probability of presence (PPP), the 
modelled predictions were evaluated with independent data. This independent 
data was generated from the vegetation map where there were spread random 
points in the frame-area for projection and attaching presence/absence 
information to each point.  Evaluation of models results is based on the MaxEnt 
output using the following parameters: 

1) ROC curves and AUC-value 
Evaluation of results from MaxEnt was done by a threshold-independent 

receiver operating characteristic (ROC) analysis with ROC curve and AUC-
values. The ROC curve evaluates a models usefulness to predict the relative 
distribution probability of species (Elith et al. 2006). The curve is obtained by 
“joining the dots” (Phillips et al. 2005) and plotting the species true positive rate 
on the y-axis and the false positive rate on the x-axis for all possible thresholds 
(Phillips et al. 2006). In other words, the curve shows how the sensitivity and 
specificity varies as a function of the threshold. 

The area under the ROC curve is AUC, which measures the quality of a 
ranking of sites or the models relative predictive ability (Fielding and Bell 1997; 
Franklin 2009; Halvorsen 2012a; Pearce & Ferrier 2000). In MaxEnt AUC-
values are not based on a normal ROC curve, but on a presence-versus-random 
ROC curve (Phillips et al. 2006). The AUC is the probability to differentiate 
between presences and pseudo-absences, and that a randomly chosen presence 
site will be ranked above a randomly chosen absence site (Halvorsen 2012a; 
Stokland et al. 2011). It is important to note here that AUC-value become 
higher for predictive object (species) that have narrow ranges of environmental  
parameters (Phillips et al. 2006). AUC-value ranges from 0 up to 1. The closer 
to 1 the AUC-values are, the greater the model’s predictive ability is, whereas 
AUC-value 0.5 is equal to a random model (Pearce & Ferrier 2000). Models 
with values above 0.75 are considered potentially useful (Elith 2002). In this 
study results should be evaluated by the classifying scale shown in Table 4. 
 
Table 4. The scale for classifying of DM’s result from MaxEnt based on the AUC-value. 
Classes Worthless Poor Fair Good Excellent 

AUC-value < 0.60 0.61-0.70 0.71-0.80 0.81-0.90 > 0.91 

 
2) Map representation of the prediction model 

In addition to the statistical results, the MaxEnt exports a raster 
representation of the model that takes the form of a map (Appendix 5). This 
map shows the predicted distribution of the modeled vegetation types. Variation 
of predicted probability of presences (RPPP) conditions is shown in different 
colors. Red color is indicating high probability of suitable conditions for the 
certain vegetation type, green indicating conditions typical of those where 
certain vegetation type is found, and lighter shades of blue indicating low 



16 
 

predicted probability of suitable conditions (Phillips et al. 2006). White dots on 
a map show the presence locations used for training and while violet dots show 
test locations. 

3) Response curves 
Response curves show how each environmental variable affects the 

MaxEnt prediction and which variable becomes a good predictor (Phillips et al. 
2006). Each curve presents a different model. There are two types of response 
curves: with marginal and single effect. Marginal effect means that variation of 
each environmental variable will follow to changes in the logistic prediction, 
while all other variables are kept constant. Response curves with single effect 
show the response to only one environmental variable. 

4) Analysis of variable contributions 
After response curves there comes a table that shows estimates of relative 

contributions and permutation importance of the environmental variables to the 
MaxEnt model. By modifying the coefficient for single feature each step of 
modeling algorithm increases the gain. The MaxEnt relates the increase in the 
gain to environmental variables that feature depends on. And at the end of 
training process it become converted to percentages (Phillips et al. 2005). 

5) “Jack-Knife test” 
“Jack-Knife test” was used for to evaluate variables importance and 

contribution to the model in MaxEnt (Phillips & Dudik 2008; Halvorsen 2012a). 
Results of this test come out as a graphic that shows the gain of each 
environmental variable in isolation and point out certain variables, which appear 
to have the most useful information by itself and that isn't present in the other 
variables. Environmental variables with low contribution (less than 0.005 to the 
AUC-value) to the model were excluded and not used in the ultimate model 
tests, following Stokland et al. (2011). 

Before the final model testing, training tests were run to determine the 
right settings for each vegetation type. The ascertainment of the right settings 
was based on the evaluation of the same parameters listed above and 
comparison output raster map with existing vegetation map.  

The logistic output format was used in DM. The reason for this choice is 
that it was easier to analyze output results and conduct further statistical 
comparison with real distribution of selected vegetation types when the 
probability value of presence is represented in scale from 0 to 1. Actually this 
value shows the percentage of probability value to find certain vegetation type 
in a given place in the modelled reality (Phillips et al. 2005). 

Based on training experiments related to improve prediction ability there 
was chosen three types of features: linear, quadratic and product. The linear 
feature is equal to continuous environmental variables and ensures that the mean 
value of environmental variables at where the vegetation type is predicted to 
occur approximately matches the mean value where it’s observed. The threshold 
feature makes a continuous predictor binary derived by thresholding 
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environmental variables and gives value 1 above the threshold and 0 below. The 
quadratic feature is the square of the linear environmental variables. This 
feature constrains the variance in environmental variables where the vegetation 
type is predicted to occur to match observation. The product feature is equal 
products of pairs of continuous environmental variables. In other words, this 
feature constrains the covariance of environmental variables with other 
predictors and is equivalent to interaction terms in regression. The hinge feature 
is like threshold feature, except that a linear function is used (Phillips & Dudik 
2008; Halvorsen 2012b; Merow et al. 2013).  

Threshold- and hinge features were not activated because they often led 
to overfitted models. Changing of parameter “regularization multiplier” (RM) 
under threshold and hinge features didn’t lead to less overfitted models. This 
parameter is used to avoid overfitting in MaxEnt. RM affects how focused or 
closely-fitted the output distribution is (Phillips et al. 2005). The default value 
in MaxEnt’s settings is 1.0. A smaller value than 1.0 will result in more 
localized output distribution that is a closer fit to the given PO data and the 
model doesn’t generalize well to independent test data. A larger value than 1.0 
will result in more spread out distribution, less localized prediction. In addition, 
the potential for overfitting increases as the model complexity increases. 

Other functions and parameters that are available in MaxEnt were not 
used. For those functions and parameters, the default setting was used. 

 
3.4 Comparison of the predicted and real distribution 

The analysis of the MaxEnt results consists of a statistical comparison of 
the output raster map with the ground truth given by the implemented 
vegetation map. In other words, it was carried out comparison of the predicted 
distribution with the real distribution of selected vegetation types (overlay). 

During the preparation of data first it was created a point grid with 10 
meters distance converted from raster map from MaxEnt’s output using 
conversion tool in ArcGIS. Then this point grid was cut out in boundaries of the 
study area. In this way it was covered the whole predicted distribution map and 
incorporated all probability values (RPPP) of each one cell. This conversion 
process was performed separately for each model. Using the join-function in 
ArcGIS, the information about the real distribution from the vegetation map was 
inserted into the same point grid. As result it was obtained one point grid that 
contains information about both predicted probability of presences (RPPP) of 
modelled vegetation type and real presence (PO data) in a given place. This 
information was exported as a table that was further analyzed statistically. 

In the statistically analysis all points were classified to 5 classes (Table 5) 
according to probability value. Then all points were summed with the PO data 
within each class. A successful prediction model was considered as a model 
with such distribution that has an increasing number of PO data form low to 
high probability value, in other words has high probability values 
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geographically located within the boundaries of real distribution of the modeled 
vegetation type. While the number of points, that are outside the real 
distribution, should decrease from low to high value. The probability values 
located in the cultivated lands and water surfaces were excluded from 
comparison analysis. The final evaluation of the prediction models is based on 
results from MaxEnt’s evaluation and the comparison analysis. 
Table 5. The scale for classifying of probability value from MaxEnt output, which was previously 
transformed by logistic output format in the scale from 0 to 1. 
Classes Worthless Low Middle Good Excellent 

Probability value < 0.60 0.61-0.70 0.71-0.80 0.81-0.90 > 0.91 
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4. Evaluation of the implemented vegetation 
map 

The presence data used for the prediction modeling is taken from the 
digitalized vegetation map implemented in 2001. Before model testing, there 
was the need to evaluate the quality of this map. To evaluate the quality of the 
implemented vegetation map, fieldworks was conducted, and followed by 
subsequent statistical analyses. The fieldwork was conducted in five locations: 
Venassætra, Bølvatnet, Flaksjølia, Bergstulen and Jønnhalt (Figure 5). All five 
locations have differences in landscape, environmental and climatic conditions 
and were subjectively selected to represent as much variation as possible from 
the study area. Bølvatnet and Flaksjølia represent mountain environments with 
elements of alpine heath, meadow communities and wetlands, steep terrain in 
some places and mostly without a bush layer. But, bush layers occur along 
small brooks that flow into the lakes. 
Jønnhalt includes large wetlands, 
especially bogs and fen marshes, 
deciduous forest, alpine heath and 
meadow communities, farm lands, 
and the landscape is more flat than 
the two previous sites. Venassætra 
and Bergstuen have a lot of 
deciduous- and spruce forests, alpine 
meadow communities, and in small 
quantities also becomes elements of 
wetlands and pine forests. Bergstulen 
also includes cultivated land.  

The observation points were 
generated randomly in ArcGIS 
(function: generate random points) 
and then transferred to the GPS. Later 
on, the observation points were 
joined and intersected with the 
vegetation map. To find the 
validation points, there were used the 
GPS navigator and the detailed 

topographic paper map. 
Totally, 220 points were 

observed (Table 6). As a result of the 
statistical analysis, all observation 
points were classified into three 
groups: 

Figure 5. The map shows five locations where it 
was conducted fieldwork related to the evaluation 
of quality of old vegetation map. Each observation 
site is represented in different color: black – 
correspondence, orange – insignificant error and 
red – significant error. 
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1- correspondence: 
- observed vegetation type corresponded with the vegetation type in the 

map 
- specified vegetation type was similar to the observed vegetation type, but 

with different additional symbols 
2 - insignificant errors: 

- specified vegetation type was observed in less than 10 meters away from 
its designated area on the map (this distance is given because of the 
uncertainties in navigation of the GPS and the resolution intended from 
the mapping of vegetation) 

- specified vegetation type is the primary dominant vegetation type in a 
mosaic (the mix of two or more vegetation types), but with different 
secondary vegetation types 

3 - significant errors: 
- vegetation type didn’t exist in a given place on the map 
- specified vegetation type was observed in more than 10 meters away from 

its designated area on the map 
Table 6. Overview of observed locations and classified errors per location and vegetation type. 

Locations Number of 
observations 

Total 
number 
of errors  

Number of 
significant 

errors  

Number of 
insignificant 

errors  

Number of errors per 
vegetation type 

 
Bergstulen 

 
38 

 
4 

 
1 

 
3 

   
  1 - alpine vegetation 
  1 - deciduous forest 
  2 - spruce forest 
 

Bølvatnet 50 10 3 7   6 - alpine vegetation 
  4 - wetlands 
 

Flaksjølia 39 1 1    1 - alpine vegetation 
 

Jønnhalt 48 11 8 3   2 - alpine vegetation 
  5 - deciduous forest 
  4 - wetlands 
 

Venassætra 45 9 6 3   3 - alpine vegetation 
  4 - deciduous forest 
  2 - pine forest 

Total 220 
(100 %) 

35 
(15.9 %) 

19 
(8,6 %) 

16 
(7,3 %) 

13 - alpine vegetation 
10 - deciduous forest 
  2 - spruce forest 
  2 - pine forest 
  8 - wetlands 
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From 220 observation points there were registered 35 errors (15.9 %), 
where 19 - significant errors and 16 - insignificant errors. The largest numbers 
of errors were registered in alpine heath communities (13 errors) and deciduous 
forest there were registered (10 errors). Also it was registered 8 errors in 
wetlands, 2 errors in spruce forest and 2 errors in pine forest. The greatest 
number of errors was registered in Jønnhalt (11 errors) and least in Flaksølia 
(only 1 error). Most of insignificant errors were found in wetlands (9 cases). 
The number of correspondences is 185 that corresponding to over 84 % of total 
number of all observation points.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

5. Results 
5.1 MaxEnt result 

In total, the modeling resulted in 26 predictions based on different SPU 
grid net size (Table 7). Some vegetation types (4) did not have any training 
points (PO data) in some of the grid densities, and thus did not result in any 
model output. Of these 26 models only four had AUC-values less than 0.80 
(poor models). The other models had AUC-values above 0.80, can be classified 
as good models by MaxEnt, and had strong relationship between environmental 
predictors and the modeled vegetation types. Also the prediction modeling has 
shown that the models of the rare vegetation types had very high AUC- and 
RPPP-values and therefore mostly were classified as excellent models. The 
models of the common vegetation types had less both AUC- and RPPP-values.  

Table 7 shows that the number of training points decreases with 
decreasing density of a Primary Statistical Units (PSU). An exception from this 
overall trend is documented by vegetation type 8d, which has the same number 
of training points in PSU grid-densities 4.5×4.5 km and 9×9 km. Among all 
vegetation types the greatest number of training points is in the 3×3 km PSU 
grid. Vegetation type 4b had only 1 training point in the 9×9 km PSU grid, 
which led to a useless model. The highest AUC-value was gained for vegetation 
type 9d in a 7.5×7.5 km PSU grid.  
Table 7. Evaluation of MaxEnt’s results. This table shows the variation in AUC values as result of 
varying of number of training points in the model at a constant set of environmental variables 
(predictors). The most important variables for each vegetation type is provided in the last column. 

Vegetation type 
PSU grid 
density, 

km 

Number of 
training 
points in 
the model 

AUC 
value 

Highest 
RPPP 
value 

Classificati
on of DM’s 

result 

Most important 
environmental 

variables 

C
om

m
on

 v
eg

et
at

io
n 

ty
pe

s 

2e – dwarf 
shrub heath 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

374 
115 
59 
91 
52 

0.807 
0.872 
0.739 
0.845 
0.961 

0.76 
0.74 
0.69 
0.91 
0.82 

good 
good 
fair 

good 
excellent 

DEM, NDVI, 
Blue band 

 

4b – bilberry 
birch forest 

 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

370 
164 
30 
34 
1 

 
0.826 
0.861 
0.662 
0.890 
0.500 

 

0.84 
0.87 
0.86 
0.74 
0.50 

good 
good 
poor 
good 

worthless 

DEM, NDVI, 
Blue band 

 

9c – fen 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

132 
26 
18 
19 
12 

0.898 
0.870 
0.957 
0.954 
0.814 

0.95 
0.89 
0.99 
0.99 
0.86 

good 
good 

excellent 
excellent 

good 

DEM, 
Slope, Sediments, 

Red band 
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R
ar

e 
ve

ge
ta

tio
n 

ty
pe

s 

3b – tall forb 
meadow 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 
 

355 
53 
48 
21 

not found 
 

0.871 
0.950 
0.946 
0.920 
− 
 

0.99 
0.91 
0.94 
0.99 
− 
 

good 
excellent 
excellent 
excellent 

 
 

DEM, NDVI, 
Blue band, Slope, 

TWI 
 

8d – rich 
swamp forest 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 
 

331 
45 

not found 
not found 

25 
 

0.955 
0.926 
− 
− 

0.992 
 

0.96 
0.98 
− 
− 

0.93 

excellent 
excellent 

 
 

excellent 
 

DEM, NDVI, 
Blue band, Slope 

 

9d – mud- 
bottom fens 

and bogs 

3×3 
4,5×4,5 

6×6 
7,5×7,5 

9×9 

381 
264 

not found 
109 
264 

0.989 
0.993 
− 

0.994 
0.993 

0.98 
0.99 
− 

0.99 
0.99 

excellent 
excellent 

 
excellent 
excellent 

DEM, Blue band, 
Sediments, Slope, 
Groundwater, Soil 

 

 
The most important environmental predictors vary among the modeled 

vegetation types, but the most common were altitude (digital elevation model; 
DEM), Normalized Difference vegetation Index (NDVI), LandSat image (blue 
band) and Slope. From these predictors, only DEM is important for all models, 
but contributing in varying degree to the model performance. Among marsh 
communities (9c, 9d), other environmental predictors, such as sediment, soil 
and groundwater were included, based on increased model performance. 
 
5.2 Comparison of predicted and true distribution of vegetation types 

In the statistical analyses, the data with relative probability values (RPPP) 
was based on the output raster maps (10×10m resolution) from MaxEnt. These 
were projected into a point grid that afterwards was clipped within the 
boundaries of the study area. Totally, it resulted in a point grid with 997 638 
points from a 10×10m plot mesh. The proportions of the modeled vegetation 
types given by these points differs from the real distribution of the vegetation 
types (Table 8) provided by the original vegetation map. In a point grid the 
vegetation type 2e includes 303 193 points (30.39 %) in point grid, 4b – 
includes 159 201 points (15.96 %), 9c – includes 84 869 points (8.51 %), 3b – 
includes 18 035 points (1.81 %), 8d – includes 932 points (0.09 %) and 9d – 
includes 6 962 points (0.70 %). 

The main idea behind this statistical analysis is to evaluate if the number 
of points within the true distribution increases with increasing RPPP value, 
while the number of points outside the true distribution (still with increasing 
RPPP) decreases. This method represents an independent evaluation of the 
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model performance, by comparing the model output for the different vegetation 
types with the true distribution. However, such a trend, i.e. an increasing RPPP 
within the true distribution, is only registered in four out of 26 models (Table 8). 
These four vegetation types were: 

 Vegetation type 2e in a PSU grid density 4.5×4.5 km 
 4b - 3×3 km and 4.5×4.5 km 
 3b - 3×3 km 

The other models have more varying results, mostly a decreasing number 
of true points with towards higher RPPP values. Therefore, these models should 
not be considered as good models regardless of their potentially high AUC-
values. In ten of the models the number of RPPP points within the true 
distribution increases only to the fourth class of RPPP value (0.6-0.8), and then 
decreases again in the fifth class (0.8-1.0 RPPP) or have no point in this class. 

Out of 26 models, no model should be evaluated as better than good. 
Thus, the analysis including the evaluation data, show that none of the tested 
models is good enough for a reasonable modelling of vegetation types, 
following the executed methods with the provided environmental layers. Out of 
26, 7 models however, were evaluated as good: 

 Vegetation type 2e in a PSU grid densities 3×3 km and 4.5×4.5 km 
 4b - 3×3 km and 4.5×4.5 km 
 9c - 3×3 km and 7.5×7.5 km 
 3b - 3×3 km 

These results show that the prediction models perform better with more 
dense grid meshes of PSUs, than with more scattered grid meshes. The other 19 
models have been interpreted as unsuccessful, since few of the points with high 
RPPP values falls within their true distribution. Interestingly, the vegetation 
types 8d and 9d got very poor evaluation results, whereas they resulted in the 
highest AUC-values among all MaxEn models. The overall summary of results 
is presented in the table in the next page (Table 8). 
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5.3 Predicted and true distribution on the map 
The raster maps from MaxEnt’s output, that show the predicted 

distribution of the vegetation types, allows a visual interpretation of the models 
precision that vary according to the grid mesh density of a Primary Statistical 
Unit (PSU).  Figure 6 includes five maps of a small area located between 
Flaksjøen and Bølvatnet Lake. These maps show the visual comparison of 
predicted and true distribution of dwarf shrub heath (2e) from five PSU grid 
densities. Only the first two models have been interpreted as good models 
(Table 8). From the statistical analyses of MaxEnt results (Table 7), there was 
no correlation between the reduction of a grid mesh density and increasing 
probability values (RPPP) of the models. The highest RPPP value among these 
models belongs to the fourth model (0.90 in 0-1 scale) and the third model has 
the lowest value (only 0.69), however both of them were interpreted as 
unsuccessful. The second model has the best result from the comparison 
analyses (Table 8) and was nearly equally good as the first model, but the map 
is more clear and cells with highest RPPP value are more close to true 
distribution. 

     
 
 
 

 

The fifth model has the least precise result, and the true distribution is 
mostly covered by cells with low RPPP. The third model had only 7 training 
points less than the fifth model, but the result differs significantly. The reason 
for this difference is that training points (PO data) of the fifth model was taken 
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Figure 6. Visual representation of changing precision of MaxEnt models five maps. The figure shows 
the overlap of the predicted distribution (RPPP) in colors (from blue to red) and the true distribution 
in crosshatch of 2e vegetation type. Below the figure, the following information is provided: the 
density of PSU grid mesh used in the models, the summarized number of training points found in the 
sample units, AUC-values that show the MaxEnt models performance, as well as the highest RPPP 
value for each model. 
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from only one PSU unit, but the third model has got training points from three 
PSU units, located in geographically and ecologically different places. 
Therefore, it is important to note that the precision of the MaxEnt models 
depends not only on how many training points that are used for the modeling, 
but also the distribution of these points. The precision vary quite much among 
all five models in the study area, and are without doubt more accurate close to 
the training points. More detailed maps with comparison of predicted and true 
distribution are attached in Appendix 5. 
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6. Discussion 
6.1 Implemented vegetation map 

Based on the conducted fieldwork, the distribution of vegetation types on 
the implemented vegetation map (Bryn & Rekdal 2002) corresponds to the real 
distribution in 185 of 220 observation points (Table 6).  This constitutes 84 % 
of all observation points. This gives the reasons to consider that the vegetation 
map from 2001used in the prediction modeling has a quality which if good 
enough for the purposes of the presented study.  

The cause of insignificant errors in the implemented map could be the 
development of the vegetation types during the last 12 years or incorrect 
navigation caused by the difficulty of landscape, tree layer, weather and quality 
of the GPS receiver. The average GPS accuracy uncertainty during 
measurement of coordinates was 6.97 m, but varied from 5 m to 21 m. In 
addition, all observation points for the fieldwork were generated in ArcGIS with 
random spreading. Many of these points were generated close to the boundaries 
between vegetation types, and could thus be caused by difference in spatial 
resolution among the two very different approaches. The possible reason for 
significant errors on the implemented vegetation map is most probably human 
failure during vegetation mapping. 
 
6.2 MaxEnt models 

The main conclusion from the prediction modeling is that common 
vegetation types cannot be well modeled using a low PSU grid mesh densities, 
and the tested densities are not suitable for modelling of rare vegetation types. 
The main reason for this is probably the shortage of presence-only data (PO 
data) that was provided to present the modeled ecological and geographical 
variation of the vegetation types. In a study from Valdres, South-Central 
Norway, Ullerud (2013), found that some of the same vegetation types could be 
well modeled using MaxEnt with many of the same environmental variables. 
However, Ullerud (2013), used all presence locations for a test of model 
transferability (Randin et al. 2006), and therefore had many more PO points to 
train the MaxEnt models with (Hernandez et al., 2006). Also, as noted in the 
results, the distribution of the PO points is important for the model performance.  
Jimenez-Valverde et al. (2013) found that the distribution of the PO points was 
important for assessing the model performance, and that good models can only 
be achieved when the PO data are representative for the environmental variation 
within the study area. In the presented results, the obvious interpretation of low 
model performance for models run with a low density of PSU grid, should thus 
be that the PO points given by these PSU grids, are not representative for the 
environmental variation within the study area. The other reason that could affect 
the model performance can be the lack of more specified environmental 
variables and errors within the actual vegetation map. Most of the available 
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environment variables used in the MaxEnt modeling describes primarily the 
abiotic environment. But it is recomended to include biotic interactions for 
species modeling, and this could potentionally also influence modeling of 
vegetation types. For example, in a study from Finland, Heikkinen et al. (2007) 
used the distribution of woodpecker species to predict owl distributions since 
woodpeckers provide nesting sites for owls by making cavities in trees.  

Based on the MaxEnt evaluation of prediction models, the accuracy of 
models is greater for the rare vegetation types with more restricted 
environmental range and shown with high AUC values. This result has also 
been demonstrated by other comparable studies (Chahouki et al. 2010; 
Hernandez et al. 2006; Phillips et al. 2006). The common vegetation types had 
lower AUC values as than usually found (Phillips & Dudík 2008). Despite that 
almost all MaxEnt models was performing well according to the AUC values, 
the statistical analyses with evaluation data resulted in only 7 MaxEnt models 
interpreted as good models. It means that the MaxEnt models can be interpreted 
as successful at a first glance, but also that AUC values is not a good indicator 
of true model performance (Merow et al. 2013). Therefore, MaxEnt models 
with a high AUC value can in fact perform poorly when confronted with 
independent evaluation data (Halvorsen 2013). 

Actually, this study supports that MaxEnt can be considered as a useful 
method for modeling the distribution of vegetation types, as found by Hemsing 
& Bryn (2012) and Ullerud (2013), but that it is of vital importance to confront 
the modelling results with independent evaluation data to assess the true 
performance, and furthermore that it is important to have PO training points that 
cover the entire range of environmental variation within the study area 
(Jimenez-Valverde et al. 2013). 

The selection of environmental variables is crucial for the prediction 
modeling and often needs expert knowledge (Guisan & Zimmermann 2000; 
Manel et al. 2001).  The MaxEnt ability to test variable importance using the 
“Jack-Knife test” allows to select the most important predictor variables and in 
turn to improve the model performance, following Halvorsen (2012). Based on 
the results in Table 7, the environmental predictors contribute differently in 
each of the modeled vegetation types. This is not very strange, since the 
vegetation types represent different parts of the ecological space (Bryn 2008; 
Ullerud 2013). The most widely distributed vegetation types, 2e and 4b, are 
seemingly regulated by the same set of environmental predictor variables. Other 
vegetation types that are less abundant within the study area, are regulated by 
other sets of predictors, and slope is becoming the most common environmental 
variable for the given distribution. Elevation is the most important 
environmental predictor variable that regulates the spatial distribution of all 
modeled vegetation types. This is clearly seen from the distribution of the 
vegetation types 2e and 4b, where 2e cover mostly mountainous areas whereas 
4b is located mostly in lower parts. The use of satellite images in the modeling 
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is justified by the fact that the different bands contribute to much of the model 
performance. The use of satellite images thus implies a great potential for 
further development within distribution modelling of vegetation types. From the 
satellite images, the blue band was the most important predictor variable for 
almost all modeled vegetation types (except 9c). The development of technical 
tools provided the opportunity to generate derived environmental variables, 
such as the NDVI (derivative of satellite image), TWI and slope (derivative of 
DEM), where NDVI was the most important predictor variable for MaxEnt 
modeling of forest and mountainous vegetation communities (2e, 3b, 4b and 
8d). Increasing number of derived variables itself enriches the basis for DM and 
helps to investigate the influence of different factors of the distribution of 
vegetation types in a large variety of environmental parameters. 

In this study, it was used a Primary Statistical Unit (PSU) as the sample 
unit for collection of the PO data. During preparation of the PO data, it was 
demonstrated that both shape and size of this unit are well suited to obtain 
enough PO data. The change of design of these units will probably influence the 
predictive performance of the models and provide changes in the modeling 
results (Stokland et al. 2011), because it would increase or decrease the number 
of training PO points for many of the vegetation types, and also change the 
distribution of the environmental predictor variables. Therefore it is probably 
interesting to look into the effect of prediction performance using different form 
of sample units (such us circles, routes, crosses, line grid) and changing their 
sizes. Another alternative for testing of models in different PSU grid densities 
can be the choice of representative sample units based on topographic features, 
because the geographical representation of sample units is probably more 
important than the number of samples, following Hengl et al. (2009). 

The prediction modeling has shown that the use of different density in a 
point grid of presences for common (100×100m) and rare (25×25 m) vegetation 
types probably was a useful approach. However, these densities are probably 
not high enough. Table 7 shows that with increasing PSU grid density the 
number of training point increases significantly. The rare vegetation types had 
no PO data for some greater PSU grid densities. Close to the lowest PSU grid 
density, many modeled vegetation types had less than 100 training points 
collected in the whole study area. Thus, it makes sense to use higher density in a 
point grid of presences, especially for rare vegetation types that are limited by 
more specific environmental conditions. On the other hand, the inclusion of 
more PSU units is probably more important, since more PSU units will provide 
a better distribution of the PO points. Also, including more PO points for the 
common vegetation types, will increase the repeatability of the environmental 
variation, and thus only supply the modelling with redundant PO points, and 
thus slow down the running time for modelling in MaxEnt. 
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6.3 Geostatistical analysis 
The geostatistical analyses that were used in the presented study are 

probably valid. But, during preparation of the data, some technical challenges 
arose in the collection of statistical data. The data was obtained as a point grid 
converted from a raster map that should be compared with true distribution in 
the form of a vector map. Points were located in the center of each raster cell 
and gave one value for a plot of 10×10 m size. During the joining of vegetation 
data onto this point grid, many points got zero values instead of codes for 
vegetation types. The reason for this is that these points were inserted in areas 
between two vegetation type polygons. Therefore, the vegetation map had to be 
converted to raster format in the same cell size and position as the raster map 
with the predicted distribution. In this way, the boundaries between the 
polygons have been deleted, but at the same time the spatial precision was 
reduced (Figure 7). However, the modeling was carried out on fairly large 
datasets, so it would probably not influence the results very much. Areas with 
high levels of human disturbance (cultivated lands and pastures) were excluded 
from this analysis, because MaxEnt will not perform very well for land cover 
types that are only indirectly explained by the available environmental variables 
(Hemsing 2010).  

A possible alternative for this type of analysis, could be to overlay two 
maps with predicted and true distribution, previously converted to common 
format (vector or raster), and then to calculate the overlapped area and the rest 
area of the predicted and true distribution.  The differences between these areas 
can be used further in evaluating and comparison of models. One of the 
preconditions here is that a map that shows predicted distribution will include 
polygons with only high RPPP values.  

  
Figure 7. Visual presentation of changes in form and size of polygons on a map during 
conversion of vegetation map from vector (a) to raster format (b). 

 
The modeling was executed with default settings in MaxEnt. Changing of 

some parameters as regularization multiplier and number of background points 
did not lead to significant improvements in the models. And the use of special 
settings needs adjustment of each model separately that subsequently would 
provide unequal settings among the MaxEnt models. But it opens great 

a) b) 
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opportunities for research regarding the effects of varying settings on the 
performance of prediction models. 

The PO data of selected vegetation types that belong to mosaics and make 
up less than 50 % of the cover within them were excluded from the modeling. 
The reason for this decision was to get the most correct ecological niches where 
modeled vegetation type can exist and were they do not overlapped or are 
mixed up with other vegetation types. On the other side, these mosaics show 
actual presences and can therefore be used as valuable material in the MaxEnt 
models as well as in the geostatistical comparison analyses. It was proven by 
several models that the predicted distribution is located to areas covered by 
mosaic polygons where modeled vegetation type was not dominant. Figure 8 
show that in many places that are covered by mosaics, where 2e is secondary 
vegetation type, the probability of presence is very high. This gives reason to 
say that involvement of these mosaics into the modeling and model evaluation 
is very important and can improve the precision of prediction models. 

  
Figure 8. Comparison of predicted (background) and true (black crosshatch) distribution of 4b 
vegetation type included mosaics (purple crosshatch) where 2e cover less than 50 % of area 
(secondary vegetation type in a mosaic polygon).        

The nature is a dynamic system that changes constantly as a result of 
various factors such as the species competition, climate changes, vegetation 
succession, invasive species, grazing, avalanches, wildfire, human influence and 
so on (Russell et al. 2011; Sala et al. 2000; Rosenzweig at al. 2007; Hernaux 
1997; Bergeron and Archambault 1993, Weber and Flannigan 1997; Didier 
2001). The interaction of these factors changes both the species composition 
within vegetation types and the species distribution area within the limits of 
environmental parameters. This can cause inaccuracies and challenges in the 
DM. The vegetation type is considered as a set of certain plant species that 
dominate both in tree, field and bottom layer (Rekdal & Larsson 2005). Many 
plant species have the same ecological niches and environmental conditions, 
while they belong to different vegetation types. Some plant species grow in 
several vegetation types. This can led to that the two or more vegetation types 
can have the spatial distribution limited by the same range of environmental 
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parameters. As result of this “overlapping”, the MaxEnt can generate high 
RPPP in the areas outside the true distribution (Figure 8). Therefore it is 
reasonable first to model the distribution of the most important and dominant 
species separately and then by using overlapping to get summarized picture of 
modeled vegetation type, as done by Hemsing & Bryn (2012). On the other 
hand, we can consider these imprecisions on the map as potentially suitable 
distribution area for modeled vegetation types. This consideration can be used 
in the studies related to the potential natural vegetation types in areas strongly 
influenced by human activities, as in a study from Valders, Hemsing (2010). 
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7. Conclusion 
The presented study has shown that distribution modeling of some 

vegetation types is possible using a frame area survey approach. It was obtained 
successful results for some vegetation types, indicating the clear relationships 
between modeled vegetation types and their environmental conditions, 
especially among common vegetation types in small densities of the PSU grid. 

The collection of PO data was carried out in five densities of PSU grids 
for each vegetation type. Totally, of 30 planned models only 26 got PO data. 
Four models got no PO data and did therefore not contribute further in the 
prediction modeling. The PO data was obtained from the implemented 
vegetation map, which was structurally assessed for quality and errors before it 
was taken it use. The assessment was based on randomized field-observations 
within five areas of the map. The results showed that 84 % of the classified map 
corresponded with the real distribution.  

Most of the prediction models were well evaluated by MaxEnt in 
according to the relative predictive ability. Of 26 tested models, 3 models have 
AUC-value less than 0.80 (more poor models). There was only one worthless 
model with an AUC-value of 0.500 (random model).  It was not found any 
relationship between the number of presences in PO data and the AUC-value. 

 The comparison of the predicted and real distribution of modeled 
vegetation types has shown that only 6 of 26 prediction models can be 
considered as good models. Vegetation types 2e (dwarf shrub heath) and 4b 
(bilberry birch forest) were good modeled in 3×3 km and 4.5×4.5 km PSU grid 
densities. Vegetation type 3b (tall forb meadow) was good modeled in only 3×3 
km PSU grid density. The vegetation type 9c (fen) has equal results for 3×3 km 
and 7.5×7.5 km PSU grid densities. The PO data for 9c were randomly located 
in the same PSU of these two densities. The best modeled vegetation type is 4b 
in 3x3 km PSU grid density. The vegetation types 8d (rich swamp forest) and 
9d (mud- bottom fens and bogs) were not modeled successfully in any PSU grid 
densities, although they had high AUC-values.  

The most important environmental variable that contributed to the 
prediction ability of all the modeled vegetation types was the DEM (the digital 
elevation model), NDVI index (the Normalized Difference Vegetation Index), 
slope and satellite image in blue band. The analysis of the variable importance 
conducted by MaxEnt (Jack-knife test) has shown that these variables have the 
most useful information. But the relative importance varies between the 
vegetation types and different PSU grid densities. These results show that the 
data generated from LIDAR-data and the satellite images contribute greatly to 
the performance of the prediction modeling.  

This study could be repeated using the different form and size of the PSU, 
less PSU grid densities, different densities of point grid of the PO data, varying 
starting coordinates of the grids and alternative comparison analyses.  
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Appendices 
 
Appendix 1. Bedrock map of the study area.  
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Appendix 2. Vegetation map of the study area. 
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Appendix 3. Additional signs used to describe variation within the modeled 
vegetation types (table 3). 
Additional signs Described variation 
o) deciduous trees, unspecified 
+ Scots pine 
* Norwegian spruce 
j more than 50 % cover of Juniperus 
ᴐ 25-50 % cover of willows 
s more than 50 % cover of willows 
g grass-rich vegetation 
v 25 – 50 % cover of lichens 
x more than 50% cover of lichens 
 50-75 % cover of stone and block 
] 25-50 % cover of trees 
k calcareous vegetation 
n more than 50 % cover of Nardus stricta 
H cut areas or young forest 
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Appendix 4. Environmental variables. In the prediction modeling all variables 
were used as the raster maps. Below, the maps show the variety (in colors) of 
each environmental parameter in the study area. The red line shows the 
boundary of the study area. 
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Appendix 5. Comparison analysis. The maps show the comparison of 
predicted and real distribution of modeled vegetation types. The predicted 
distribution is shown as a raster map in colors. Warmer colors show higher 
probability of presence. The red line shows the boundary of the study area. The 
black crosshatch shows the true distribution of the modeled vegetation types.  
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