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Summary  
This study investigated the performance of distribution modeling (DM) for vegetation types. Two 

frame-areas were mapped. One area was used to train models in Maxent, a recommended method 

for DM. The other area was used for model projection and evaluation by independent data. Models 

were created for six vegetation types, two from each of the ecosystems present in the area; forest, 

wetland and mountain. For each ecosystem one locally common and one locally rare vegetation type 

was modeled. AUC was used as the model selection criteria. Environmental variables were selected 

through a backwards selection scheme, where variables contributing by less than 0.005 to the AUC-

value were excluded. Model complexity in Maxent was limited by allowing only three 

transformations; linear, quadratic and threshold, and setting the regularization multiplier to eight. 

The results showed that modeling of vegetation types and projecting the models locally to a 

neighboring area was possible. However, the resulting models varied greatly in predictive 

performance between the vegetation types, as well as in number of environmental variables 

included and the number of parameters in the final models. With the AUC-values from training, 

models for rare types were found to have better predictive performance than models for common 

types, and a significant negative relationship was found between the number of points used to train 

the model and the AUC-value. 

The models’ predictions were evaluated with independent data. The resulting AUC-values were 

found to be a better representation of the predictive performance than the training AUC-values, 

since the training AUC-values seemed to be affected by the characteristics of the training data. After 

evaluation the AUC-values portrayed less variation in model predictive performance. All six 

vegetation types had models that were characterized as good or excellent regardless of differences in 

occurrence, ecosystem, variation in environmental variables, number of points used to train the 

model and the complexity of the models.  
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1 Introduction 

1.1 Vegetation mapping 
There is an increasing need for reliable land cover information in nature management. Land cover 

and land-use maps that capture important ecological aspects of the nature, such as vegetation maps, 

are also important for the documentation and monitoring of changes in nature. Vegetation mapping 

has a long tradition in the European countries (Biondi 2011), and is based on recognition of 

predefined types more or less related to plant communities (Bryn 2006). Vegetation types for 

detailed mapping are often defined using combinations of common plant species and indicator 

species (Fremstad 1997), whereas survey mapping systems lean more on the vegetation 

physiognomy and structure that can be detected using aerial photos (Gudjonsson 2010; Ihse 2007). 

The ultimate goal of vegetation mapping is to capture ecological variation at a given scale, in order to 

provide information for different purposes such as nature management. 

Vegetation maps are recognized as one of the best existing maps for portraying location of natural 

resources and conditions (Rekdal & Bryn 2010). Many sectors depend on information present in, or 

derived from, maps of vegetation types. Farmers need information on land resources in order to find 

potential and carrying capacity for agriculture and foraging (Gudjonsson 2010). The nature 

management needs information based on the vegetation in order to find important areas for species 

and selection of management schemes. Also, the municipalities and private land owners need land 

cover information for planning of infrastructure, areas for settlement and outdoor areas for 

recreation. Vegetation maps are valuable for assessing land-use changes and analyzing impacts 

(Gudjonsson 2010). Vegetation maps can also be used to extract proxies for many environmental 

variables, such as water availability, species richness, snow cover and soil nutrients. 

The vegetation types and the present distribution of them within a landscape, is a result of the 

realized ecological response. All historical and recent biotic-, abiotic- and human-factors and 

interactions have influenced the given distribution (Halvorsen 2012a). Such a summary of the 

generally valid ecological relationships in geographical space has been used as a variable in many 

modeling studies (Franklin 2009), and is a good base for a projection of a model in time or space 

(Halvorsen 2012a). However, the low extent of coverage of vegetation maps is a major obstacle for 

this approach, especially in Norway, where only approximately ten percent of the land area has been 

mapped (Rekdal & Bryn 2010). To have a higher coverage of maps from all parts of Norway would be 

very useful both for nature management and modeling. 
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The first map from Norway that included all the present vegetation types within the study area, was 

published in 1937 (Mork & Heiberg 1937). At that time the mapping was based mainly on 

phytosociological systems (Biondi 2011). After some decades with more focus on ecology and 

landscape (Biondi 2011), vegetation mapping was again in focus in the seventies. Phytosociology was 

still the basis for the mapping systems that were developed. The Norwegian Forest and Landscape 

Institute (TNFLI) developed their own mapping system and became one of the main actors in the 

field of vegetation mapping. They were given the national responsibility for vegetation mapping in 

Norway in the eighties (NOU 1983). 

The systems for mapping were gradually developed alongside the focus of ecological research and 

most Nordic systems are now mainly based on ecological gradient perspectives (Bryn 2006). The 

scale of the mapping will affect which gradients that influence the vegetation in an area. On a 

regional scale the vegetation sector and zones are important (Bakkestuen et al. 2008), whilst at the 

local scale factors such as slope, exposure, soil moisture, snow cover and nutrient availability in the 

substrate will influence the vegetation. Often, also human influence in an area will be of importance 

for understanding the variation in nature (Bryn & Hemsing 2012). 

Today there are two main scales for mapping of vegetation in use in Norway, Sweden, Iceland and 

Finland. One scale is used for a number of survey mapping systems (e.g. Andersson 2010; 

Gudjonsson 2010), in Norway mainly handled by TNFLI and used for mapping at scales 1:25 000 -

50 000 (Rekdal & Bryn 2010). Standard procedure for mapping with this system is use of aerial 

photos in field. The other scale of mapping is used for a number of detailed mapping systems 

(Fremstad 1997; Påhlsson 1998). Fremstad (1997) has developed a more detailed system for Norway 

that is used for mapping at scales 1:5000 - 25 000. The systems are linked hierarchically so that all 

units from the detailed level can be located within units at a survey level. Mapping of nature types 

rather than mapping based mainly on vegetation, has gradually received more attention (Halvorsen 

et al. 2009). Nature types are useful as they can describe nature also where vegetation is absent, 

such as in cold water coral reefs. The EU Habitat Directive (1992) demands mapping of nature types, 

and although Norway has not signed the directive, a project for mapping of nature types has been 

started (Halvorsen et al. 2009). However, this system for mapping of nature types is not yet 

commonly used by mappers. 

The areas in Norway where vegetation has been mapped are mainly located in the mountainous 

regions in south-central Norway, Nordland and in inland parts of Finnmark (Vegetasjonskart - 

dekning). Vegetation mapping can be done at a pace of 3 – 5 km2 per day using the most general 
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system, the survey system of TNFLI. Mapping the entire land area of Norway is approximated to cost 

1 billion NOK, even if this survey system is used (Strand & Rekdal 2010).  

The Norwegian area frame survey of land cover and outfield land resources (AR18x18) is an attempt 

to provide more information about land resources (Strand 2013). In the AR18x18 system a grid with a 

spacing of 18 km has been laid over Norway, and in every grid corner vegetation has been mapped in 

a plot of 0.9 km2 (Strand & Rekdal 2010; Strand 2013). The AR18x18 system will provide reporting of 

land cover statistics for Norway (Strand & Rekdal 2010), but does not increase the cover of 

vegetation maps very much. However, the AR18x18 system could be used to speed up the process of 

mapping vegetation, for example by using the mapped plots to train models for vegetation types and 

use these to generate vegetation maps for the surrounding areas (extrapolation). These maps will 

still need to be validated with field-data, but if such modeling is found to be possible, the speed of 

generating vegetation maps might be greatly increased. 

1.2 Distribution modeling 
Distribution modeling (DM) could be a possible method for increasing the progress of vegetation 

mapping. In DM, observations of a defined target (e.g. species, vegetation type) are combined with 

digital maps of relevant ecological variables in order to create a model that predicts probability of 

presence for the target in a defined area. The output of DM is a map representation of model 

predictions as well as measurements of performance for the model. 

The pioneers in DM performed the studies manually using graphs and calculating gradients 

(Whittaker 1960). The introduction of Geographical Information Systems (GIS) in the eighties and the 

following rapid improvements and innovations in GIS has increased the access to digital 

environmental variables, as well as the amount of information that can be processed in DM (Franklin 

2009). This has given DM a great boost and quickly turned it into a separate field of ecology 

(Halvorsen 2012a).  

There is a great variety of approaches and targets used in DM, and the terminology and classification 

of the modeling varies as much as the range of applications (Ferrier et al. 2002; Franklin 2009). 

Modeling can aim at explaining ecological relationships in nature, or in different ways try to locate 

species or habitats (Halvorsen 2012a). There are many different types of DM-methods, including 

regression methods such as generalized additive models and generalized linear models, envelope-

style and distance-based methods, as well as newer, less established methods for DM such as 

machine learning methods (Elith et al. 2006). Some methods use presence-only data, others include 

absences. The methods for evaluation of the models also differ greatly. Several of the methods have 
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proved to be quite successful in predicting the occurrence of the modeled target (Elith et al. 2006). 

Indifferent to how the modeling is classified, the purpose of the study and the characteristics of the 

modeled target are important issues when deciding methods and settings (Halvorsen 2012a).  

Species distribution has been the most common modeling target for DM (Bekkby et al. 2002; 

Edvardsen et al. 2011; Marino et al. 2011; Parolo et al. 2008; Wollan et al. 2008). However, it has also 

been used for totally different topics, for example modeling of the potential for expansion of forest 

following land-use change in Norway (Bryn et al. 2013). Distribution modeling has also been applied 

to model land-cover types (Dobrowski et al. 2008) and different species assemblages, such as 

vegetation types (Cawsey et al. 2002; Ferrier et al. 2002; Hemsing & Bryn 2012; Weber 2011). 

Vegetation types have different characteristics and the ease of modeling will vary with how well the 

distribution of the vegetation types is explained by the included environmental variables, but also on 

how strictly the vegetation types have been defined. Common types might cover a larger range of 

environmental variables, making specific criteria for the distribution hard to find. Rare vegetation 

types are often strongly correlated with a more narrow range on several ecoclines (Halvorsen 2012a), 

and this might make them easier to model. 

The purpose of this study is to explore the ability of predicting the vegetation type in an area through 

modeling. Models will be trained with vegetation samples from one area before they are used to 

project results into a comparable neighboring geographical area. The projections will be evaluated 

with independent data to find the predictive performance of the models outside the area of training. 

This study will examine the certainty by which survey vegetation types can be projected locally by use 

of presence-only distribution modeling. Secondly it will investigate whether locally rare vegetation 

types are easier to model than common, and thirdly find the effect of variance in environmental 

variables on modeling ability. The fourth objective of the study is to investigate whether vegetation 

types from some ecosystems are easier to model than others. Additional problems to be addressed 

are to identify the most important environmental variables when modeling vegetation types and to 

identify environmental variables that should be provided as digital wall-to-wall maps in order to 

improve results and progress of DM. 
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2 Materials 

2.1 Study Area 

2.1.1 Physical location of the area 
The study area is located at Gravfjellet, south-east of the village Beitostølen, in the middle of Øystre 

Slidre municipality, north-east in the district of Oppland, in south-central Norway (Table 1 and Figure 

1). The study area consists of two rectangular frame-areas. One frame-area was used for training the 

model, while the other was used for projection and evaluation by independent data. 

Table 1 Area, position and altitude of the frame-areas that make up the study area. 

Frame-
area 

Area (km2) 
 

Centre coordinates 
(WGS84/UTM32N) 

Altitudinal range (m a.s.l.) 
 

Training 4.0 6786585N/505708E 849-1169 
Projection 4.0 6786585N/507123E 881-1173 

 

 

Figure 1 Maps showing the position of the study area in south-central Norway, as well as the detailed 
location of the study area with its two neighboring frame-areas. The left frame-area was used for training, 
the right for evaluation by independent data. Map projection WGS 84/UTM 32N. Maps from geoNorge 
(Topografisk rasterkart 2WMS). 
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2.1.2 Nature and climate 
The vegetation within the study area spans from the northern boreal to the low alpine zone (Moen 

1999). The area is in the transition vegetation section (OC – Oceanic Continental), where eastern 

plants are most common, but weakly western plants can be found (Moen 1999). Zone and section 

are influenced locally by topographic variation, and the scale makes topographic variation a more 

important factor for determining the vegetation in this study (Bakkestuen et al. 2008; Moen 1999). 

The mean annual temperature at the closest weather station, Løken in Volbu, is -0.8 °C, and there is 

an average of 590 mm precipitation per year (Table 1). 

North boreal spruce forests, rich in nutrients, are found mainly in the south-facing, low-lying areas to 

the south of Gravfjellet. The valley north of Gravfjellet is dominated by different constellations of 

wetlands. Mountain birch forests dominate east and west of Gravfjellet, with elements of wetlands 

in moist areas. Mountain vegetation types dominate in the higher elevated areas, with little soil or 

vegetation on the highest mountain tops. In poorly drained areas, wetlands are found almost all the 

way to the top of the mountain, since biomass production is still high enough for the creation of peat 

at this elevation. 

Table 2 Monthly mean temperatures (°C) and precipitation (mm) for the meteorological station that is 
closest to the study area, Løken in Volbu (521 m a.s.l.). Temperature is the monthly normal from 1961 to 
1990, while precipitation is the monthly normal from 2003 to 2012. Distance to study area is approximately 
10 km. Meteorological data from eKlima (eKlima). 

2.1.3 Cultural influence 
The study area is located in a region that for many centuries has been extensively utilized for 

traditional summer dairy farming (Bryn & Daugstad 2001). Animals have grazed within the area, 

fodder-plants have been utilized for haymaking and firewood has been collected. This has had large 

impact on the vegetation in the region (Hemsing & Bryn 2012). Regrowth of trees has effectively 

been hindered by domestic grazing, giving more open areas and a lower forest line than what is given 

by nature (Axelsen 1975). This tradition of using all available resources in the outlands has been in 

retreat the last 50 years (Almås et al. 2004; Ihse 2007; MacDonald et al. 2000), causing semi-natural 

landscapes to be overgrown by young, reappearing forests (Bryn et al. 2013; Ihse 2007). 

There used to be three summer dairy farms within the study areas, all located in southern parts of 

the frame-areas (Axelsen 1975). Two of these were abandoned before 1975 (Axelsen 1975), and 

currently there is no summer dairy farm that receives economic support in the area (Beitelag - seter). 

 Jan Feb March April May June July Aug Sept Oct Nov Des 

Temperature -9.9 -8.4 -4.1 0.8 6.8 11.7 13.1 11.8 7.1 2.7 -4.1 -8.4 

Precipitation 43 27 32 24 44 64 74 70 59 64 52 37 
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However, some in-fields in the south of the study area are still in use for production of grass, six 

fields are located in the frame-area for training and three in the frame-area for projection. Cattle are 

grazing in some of these fields. Sheep also graze freely in the area, but there are not enough animals 

to avoid regrowth. A number of new holiday cottages have been built within the study area, mostly 

located in the southern parts. However, ignoring the area immediately surrounding the cottages, 

these do not hinder regrowth. The main changes in cultural influence have not happened recently, 

and effects of regrowth have been seen for more than 40 years (Axelsen 1975). The vegetation in the 

study area has not yet reached its climax; regrowth is slowly changing the vegetation and landscape 

in the region (Hemsing & Bryn 2012).  

2.2 Environmental variables 
Nine environmental variables were used for training the models and for projection of the models to 

the neighboring frame-area for independent evaluation (Table 3). The modeling resolution was 5 x 5 

m for all variables. No relevant digital map layers of soil nutrients or soil moisture existed, so the 

closest proxies available were used (Table 3).  

Table 3 Environmental variables used in the study, where they originated from, how they were created and 
the environmental processes they were assumed to be proxies for. All the environmental variables were on a 
continuous scale. 

Environmental 

variable 

Generated from Original 

resolution 

Transformation to 

5 x 5 m resolution 

Proxy for 

DEM (m) LiDAR* 1 x 1 m Aggregate Temperature, 
topographic variation 

Vegetation 
height (m) 

LiDAR* 1 x 1 m Aggregate Vegetation height 

Slope (°) DEM, Slope-
function in 
ArcMap 10.1 

1 x 1 m Aggregate Soil moisture, soil 
characteristics  

Curvature (0.01 
m) 
 

DEM, Curvature-
function in 
ArcMap 10.1 

50 x 50 
m** 

Aggregate and 
resample 

Exposure to wind, 
water and soil nutrient 
runoff direction 

IR-photos in 3 
bands (RGB-color 
values) 

Color infrared 
(CIR) aerial 
photos*** 

0.3 x 0.3 m Resample Land cover variation, 
vegetation productivity 

Intensity (watts) LiDAR* 1 x 1 m Aggregate Ground/vegetation 
cover 

Wetness index Single flow 
algorithm on a 
digital terrain 
model**** 

25 x 25 m Resample Groundwater 

*The LiDAR scanning was done in 2007/08 and had an average of 0.7 points/m2. Frauke Hofmeister at TNFLI 
processed the LiDAR data. 
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**When creating the curvature layer, the DEM was first aggregated to 50 x 50 m resolution, and then 
resampled back to 5x5m after creating the layer. The curvature function in ArcMap only considers 9 raster 
squares at a time. The aggregation was done in order to portray the curvature in all areas, also those that are 
weakly curving, in a way that optimizes modeling results. 
*** CIR-pictures provided by Blom Geomatics AS, the details for the photos are the same as for the aerial 
photos used for mapping (Appendix 4). 
**** The wetness index was created by Eva Solbjørg Flo Heggem at TNFLI. 

The CIR aerial photos were split into three separate bands, each band representing the color value of 

red, green or blue for each raster cell. If joined as one layer, all the variation present in the photo 

would not be communicated. 

3 Methods 

3.1 Vegetation mapping 
Vegetation in both frame-areas, making up the study area, was mapped by Heidrun A. Ullerud in the 

beginning of August 2012. Both frame-areas were mapped using the standard of TNFLI (Rekdal & 

Larson 2005). This standard has 54 categories of vegetation, of which 44 are vegetation types and 10 

are other land cover categories. Additional signs were used to identify other types of variation in 

nature. Mosaics were used when two vegetation types occurred interchangeably together in an area 

and they both covered more than 25 percent of the area. According to the guidelines, vegetation 

types covering areas smaller than 0.01 km2 should not be included in the mapping unless they were 

part of a mosaic. In order to portray more of the variation, smaller polygons were allowed in the 

mapping, the smallest with an area of 0.002 km2. Of the mapped polygons, 15 percent cover less 

than 0.01 km2. The largest polygon was 0.4 km2. 

The vegetation polygons were drawn in field, using a portable lens stereoscope and dual color aerial 

photos from September 2010 (Appendix 4), printed in a scale of 1:25 000. Aerial photos were used to 

help in the delineation of polygons and to aid in the interpretation of the distribution of the 

vegetation types. However, the registration of the vegetation type was done by direct field-

inspection. In this project the vegetation was mapped by a person with little experience in mapping 

vegetation. Supervision during the field-work by two independent, experienced mappers was 

provided to ensure quality of mapping. The resulting map was also compared with a map created by 

an experienced mapper to eliminate mistakes. 

The aerial photos with manual registering of vegetation types were scanned, orthorectified and 

digitalized. The digitalization of the maps was done in FYSAK (Version E20). After digitalization the 

polygon borders were corrected by comparing the digitized map with high resolution orthophotos.  
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Six vegetation types were chosen for detailed studies through a predefined study design. There were 

three ecosystems present within the study area; wetland, forest and mountain. Two vegetation types 

were selected from each ecosystem; one widespread and one rare within the study area (Table 4). All 

the six vegetation types for detailed studies were present in both frame-areas; the frame-area for 

training and frame-area for projection. 

Table 4 Name and code of the six modeled vegetation types, the ecosystem they belong to, as well as the 
occurrence of each within the study area. The proportion of the study area covered by each vegetation type 
is also included. 

Vegetation type Ecosystem Occurrence Proportion of study area (%) 

Lichen heath Mountain Rare 4 

Dwarf shrub heath Mountain Common 27 

Blueberry birch forest  Forest Common 24 

Meadow spruce forest Forest Rare 4 

Fen Wetland Common 9 

Mud-bottom fens and bogs Wetland Rare 2 

 

3.2 Distribution modeling 
Several methods are available for DM. Maximum entropy modeling, a method for presence-only DM, 

was used in this study. It is often described as a machine learning method (Phillips et al. 2006), but 

can also be explained as a maximum likelihood method (Halvorsen 2012b). The software Maxent 

(version 3.3.3k, October 2011) was used for creating the maximum entropy models. Given presence-

only records of a specific target and environmental variables for the study area, Maxent creates a 

model for the distribution of the target with parameters based on the value of the environmental 

variables in the presence-cells (Elith et al. 2011; Phillips & Dudik 2008). This model is used to predict 

areas where the target might be present.  

Using ArcMap 10.1, sets of presence-only records were generated from the vegetation map of the 

frame-area for training, one set for each vegetation type (Table 5). Polygons that fulfilled the criteria 

for each specific vegetation type were the base for the generation of points, and in these polygons 

presence-points were laid in a grid with a square size of 10 m. Points were also generated in mosaic 

polygons where the vegetation type to be modeled was the main vegetation type in the mosaic, as 

well as in some of the polygons with additional signs (column 3 in Table 5). Types with mosaics or 

additional signs originating from a different ecosystem than the vegetation type targeted for 

modeling, for example trees in wetlands, were not used to create presence-points (Table 5). Polygons 

with bare ground were not used to create presence-points for Lichen heath, while polygons with high 
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lichen-cover were used. Polygons with high lichen-cover were also used to create presences in Dwarf 

shrub heath, but polygons with trees, Salix spp, or bare ground were not. In Blueberry birch forest, 

polygons with Norway spruce (Picea abies) were used to create presences, while polygons with 

sparse forest were not, as they would give a wrong representation of the vegetation height for 

forests in general. In Meadow spruce forest, polygons with deciduous trees were used to create 

presences as the types are not fundamentally different and this was also a necessity in order to give 

large enough areas for the modeling. For Fen and Mud-bottom fens and bogs only mosaics with 

other wetland types were used to create presences in addition to the specific vegetation type itself. 

Table 5 The number of training points generated in each vegetation type, as well as which mosaics and 
additional signs that were, and were not, used when creating the set of presence-points for each type. The 
same rules for use of mosaics and additional signs were applied when generating evaluation points in the 
frame-area for projection. Codes are explained in Appendix 1 and 2. 

Vegetation type No. of 

points 

 Mosaics and signs 

used when creating 

presences 

Excluded mosaics and 

signs 

Lichen heath 1286  2c, 2cv, 2cx 2cv<, 2cv>, 2cx> 

Dwarf shrub heath 11614  2e, 2ev, 2ex 2es, 2e&, 2e}, 2e* 

Blueberry birch forest  9728  4b, 4b*, 4b/c 4b], 4b]> 

Meadow spruce forest 2122  7c, 7c& None 

Fen 2708  9c, 9c/a, 9c/b, 9c/d 9c&, 9c/2e&, 9c/3bs, 
9c/4c, 9c/8d& 

Mud-bottom fens and bogs 1170  9d, 9d/a None 

 

Maxent models, one for each vegetation type, were run with the created set of presences and the 

environmental variables for the frame-area for training. Model selection was done by integrating 

internal model assessment methods in a backwards stepwise selection process (Halvorsen 2012a). In 

this study the main purpose was to find a model that best predicts the spatial distribution of different 

vegetation types when projected to a neighboring geographical area. The area under the curve (AUC) 

of the receiver operating characteristic (ROC) (Phillips et al. 2006), given by Maxent, was used for 

distinguishing between the models relative predictive ability (Franklin 2009; Halvorsen 2012a; Pearce 

& Ferrier 2000). The ROC curve is obtained by plotting the species’ true positive rate on the y-axis, 

and the false positive rate on the x-axis for all possible thresholds (Phillips et al. 2006). Maxent 

compensates for lack of absences by characterizing a random sample of background cells as (pseudo-

)absences (Elith et al. 2011). The training AUC can be described as a value of the model’s ability to 

differentiate between presences and (pseudo-)absences, and give presences a higher relative 
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predicted probability of presence (Halvorsen 2012a; Stokland et al. 2011). Data resubstitution 

(Jackknifing) was used to find variables that did not contribute to the model (Halvorsen 2012a). 

Explanatory variables that contributed less than 0.005 to the AUC-value were excluded, following 

Stokland et al. (2011). 

The same settings in Maxent were used for all six vegetation types. To avoid model overfitting, the 

regularization multiplier was set to eight. This value was chosen based on experiences made when 

modeling with this dataset. The raw output format was used, as it represents the Maxent 

exponential model without any transformation (Phillips et al. 2005). Maxent creates model 

parameters based on the environmental variables and transformations of these. Three types of 

transformations were permitted; linear, threshold and quadratic. Linear features are the continuous 

environmental variables without any transformations, while threshold allow fitting of more arbitrary 

functions based on the environmental variables (Phillips & Dudik 2008). Threshold features gives the 

value one if the variable is above, and zero if the variable is below a given threshold (Phillips et al. 

2006). The quadratic transformation is the square of the linear environmental variable (Phillips & 

Dudik 2008). These transformations were selected in order to reduce the number of parameters 

created for each model, while still allowing enough complexity to model the actual responses 

represented in nature. Product- and hinge transformations, other functions that are available in 

Maxent, were not activated. 

Maxent uses the models created in the frame-area for training and the environmental variables for 

the frame-area for projection to generate map representations of model predictions for the frame-

area for projection (extrapolation).The Maxent prediction results based on presence-only data are 

given as relative predicted probability of presence (RPPP), and in order to translate these to 

predicted probability of presence (PPP), the predictions were evaluated with independent data. The 

independent data were generated from the vegetation map by spreading random points in the 

frame-area for projection, and attaching information on presence and absence of vegetation types to 

each point. The same rules for additional signs and mosaics used when generating presence-points 

for training were also applied when assigning presence or absence to the random points in the 

evaluation (Table 5). The evaluation was done twice, first with 2000, then with 4000 random points, 

in order to increase the robustness in the results. 

The PPP AUC-value is a measure for the predicted probability of presence. Models with AUC-values 

below 0.5 are no better than a random model, and models with a value of 1.0 predicts presences 

only where actual presences are found (Fielding & Bell 1997). Following Araújo et al (2005), a five-

grade scale was used to classify model results by categorizing the AUC-values (Table 6).  
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Table 6 Five-grade scale used for classifying model results based on the AUC-value (Araujo et al. 2005) 

Category/model value Fail Poor Fair Good Excellent 

AUC-values < 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 > 0.9 

 

The values of the environmental variables of 1170 training-points from each vegetation type were 

used to analyze the internal variation in the vegetation types. ANOVA, with the environmental 

variable as the dependent variable and vegetation type as the independent variable, was used for all 

nine environmental variables to test if the variance was similar across the six vegetation types. A 

Tukey Post Hoc test was used to show which specific vegetation types that did not differ significantly 

in variation of the environmental variables. A numerical measure of the variation in the 

environmental variables (MVEV) for each vegetation type was created by ranking the standard 

deviations (SDs) within each environmental variable, and calculating the average ranking value of the 

environmental variables that were included in the final model. The smallest possible value of MVEV 

was one, and the largest six. 

The AUC-values were tested to search for significant differences in the predictive value of the models 

based on MVEV, ecosystem or occurrence. The Shapiro-Wilk normality test indicated normality for 

the different types of AUC-values and the MVEV, but not for the number of presence-points for 

training, nor the number of parameters in the models. Ecosystem and occurrence were tested using 

ANOVA. Linear regressions were used to investigate relationships between the AUC-values of the 

models and MVEV, as well as relationships between the AUC-values and the number of points used 

to train the models. Linear regressions were also used to examine if there were relationships 

between the AUC-values and the number of parameters in the final models, and between the 

number of parameters in the final models and the number of points used for training the models. A 

significance level of 0.05 was applied when interpreting the results. All statistics was done using 

RStudio Version 0.97.318. 

4 Results 
AUC-values of the modeled vegetation types varied from 0.905 to 0.634 after training (Table 7). With 

one exception, AUC-values for all vegetation types increased after evaluation with independent data. 

The PPP AUC-values varied from 0.973 to 0.819 (Table 7). The maximum increase was 0.232 for 

Dwarf shrub heath, changing the model result from poor to good. Also the model for Blueberry birch 

forest changed from a poor to a good model after evaluation with independent data. The AUC-value 

for the model for Meadow spruce forest increased from good to excellent, while the AUC-value for 
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the model for Mud-bottom fens and bogs reduced from excellent to good after evaluation with 

independent data. 

The final models differed in which and how many environmental variables were used, with a 

maximum of six, and a minimum of two (Table 7). Also, the contributions of the environmental 

variables to the models varied for each vegetation type. DEM was the only variable included in all 

models, and it was the most important variable in five of the models (Table 7). Vegetation height was 

included in three models. Curvature was included in two models, and was the variable that 

contributed the most to the model for Fen. The number of parameters in the final models also varied 

greatly (Table 7). 

Table 7 AUC-values from model training and after projection with 2000 and 4000 random points as well as 
the number of parameters in the final models (obtained from the lambda-file created by Maxent). The 
models are categorized based on the PPP AUC-values. The table also shows how many and which 
environmental variables were used in the final models, and the percent contribution of each.  

 Lichen 

heath 

Dwarf 

shrub 

heath 

Blueberry 

birch 

forest 

Meadow 

spruce 

forest 

Fen Mud-

bottom 

fens and 

bogs 

AUC – training 0.905 0.634 0.667 0.857 0.788 0.903 

AUC proj. 2000 0.970 0.857 0.819 0.957 0.874 0.860 

AUC proj. 4000 0.973 0.866 0.833 0.961 0.885 0.839 

Model category Excellent Good Good Excellent Good Good 

# parameters 6 13 39 5 15 7 

Percent contribution of environmental variables 

DEM 90 55.1 50.3 98 8.7 48.9 
Vegheight  44.9 49.7  21.8  
Slope     22.7 41.9 
Curvature     31.5 9.2 
IR – Blue 4.4    6  
IR – Green     9.4  
IR – Red 5.6      
Intensity    2   
Wetness       
Total 100 100 100 100 100 100 
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The ANOVAs gave p-values smaller than 2e-16 for all vegetation types and showed that the 

environmental variation differed across vegetation types. The Tukey Post Hoc test showed that only 

some variables for a few vegetation types did not differ significantly (Table 8). The MVEV was 

smallest for the wetland types, while the largest MVEV was found for Blueberry birch forest (Table 8). 

Table 8 
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None of the AUC-values were significantly related to the MVEV (Figure 2). Although not significant, 

the RPPP AUC-values seemed to decrease with increasing MVEV (Figure 2). 

 

Figure 2 Linear regression results for the relationship between AUC-values and the measure of variation in 
environmental variables (MVEV). The measure of variation in environmental variables (MVEV) is the average 
ranking value of the variables included in the final Maxent model (Table 8). A small value shows that the 
vegetation type had small SD’s compares with the other models SD’s. 

The relationship between AUC and occurrence was significant for the RPPP-values, but not significant 

for the PPP-values (Table 9). There was no significant relationship between the AUC-values and 

ecosystem (Table 9).  

Table 9 ANOVA-results for relations between ecosystem (mountain, wetland and forest), occurrence 
(common and rare) and AUC-values for the vegetation types.  

 Training 2000pts 4000pts 
Independent variable F-value P-value F-value P-value F-value P-value 
Occurrence 15.12 0.018 4.249 0.108 1.924 0.238 
Ecosystem 0.209 0.823 0.203 0.826 0.336 0.738 
 

There was a significant relationship between the RPPP AUC-values and the number of points used to 

train the model (Figure 3). This relationship was no longer significant after converting AUC-values 

from RPPP to PPP (Figure 3).  
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Figure 3 Linear regression results for the relationship between RPPP AUC-values (upper graph) as well as PPP 
AUC-values (lower graph) and number of training points. Only the PPP-values generated with 2000 points is 
shown, but the regression for the 4000 points PPP AUC-values showed similar results. 

The AUC-values had no significant relation to the number of parameters in the final models, neither 

the RPPP-, nor the PPP-values. There was also no significant relationship between the number of 

points used to train the models and the number of parameters (Table 10). 

Table 10 Linear regressions results between the AUC-values from training (RPPP), both projected values 
(PPP) and the number of parameters in final models (Table 7), as well as result of regression between the 
number of parameters in the final models and the number of points used to train the models (Table 5). 

Dependent 
variable 

Independent 
variable 

Intercept β1 R2 F DF P-value 

RPPP AUC Parameters 0.88 -0.006 0.45 3.24 4 0.146 
PPP AUC – 2000 Parameters 0.94 -0.003 0.51 4.13 4 0.112 
PPP AUC - 4000 Parameters 0.93 -0.003 0.36 2.24 4 0.209 
        
Parameters Points 1626 225 0.39 2.51 4 0.188 

5 Discussion 

5.1 High performance in distribution modeling of vegetation types 
The results of this study showed that vegetation types can be modeled and projected into an 

ecologically comparable neighboring area by use of presence-only DM. The evaluation of the 

projection with independent data showed that the projection was successful; all models for the six 

different vegetation types were described as good or excellent following the guidelines of Araujo et 

al. (2005). The results indicated that there is a potential for training models and subsequently use 

them as a basis for vegetation maps in new areas close to the training area. This is especially 

interesting as mapped plots of the AR18x18 system exist throughout Norway. The result of this study 

suggests a potential for using these plots to train models that can indicate the vegetation types in an 
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area surrounding each plot. However, the mapped plots in the AR18x18 system are smaller than the 

frame-area used for training in this study, and the area between the plots is larger than the frame-

area for projection in this study (Strand 2013). This gives less data for training using AR18x18 data 

(compared with the projection area), which also subsequently leads to larger degree of 

extrapolation. Whether the entire area between the plots will be possible to model in a good way 

has so far not been tested, but is a possible task for further studies. 

The ANOVA between RPPP AUC-values and occurrence showed that models for locally rare 

vegetation types have better predictive capacity than models for common types. This result is 

supported by many DM studies for different targets (Elith et al. 2011; Lobo et al. 2008; Merckx et al. 

2011; Stokland et al. 2011). However, the ANOVA results were not significant for any of the PPP AUC-

values. The relationship found between RPPP AUC-values and occurrence was probably an effect of 

the negative relationship between RPPP AUC-values and the number of points used to train the 

model. Evaluation with independent data makes the AUC-values more independent of the 

characteristics of the training-points, showing that evaluation is necessary in DMs using AUC as the 

main model selection criteria (Edvardsen et al. 2011).  

The DEM was clearly the most resourceful environmental variable when modeling vegetation types 

in this area. The vegetation type to be modeled and its characteristics decided which other variables 

were used. Four of the six vegetation types in this study were modeled using only variables derived 

from LiDAR data. If DM is to be used in a large scale for Norway, LiDAR data with a resolution of at 

least 5 x 5 m for the entire Norway would represent a great advantage. Presently however, LiDAR is 

only available for a few regions in Norway, and this could hinder the progress of DM. 

This study adds to the knowledge of DM of targets originally located in polygons. This is useful also 

outside the field of nature/vegetation types mapping, for example for DM of animals with a large 

home range (Franklin 2009). The study also improves the knowledge of evaluation with independent 

data, and supports the findings by Lobo et al. (2008) that vegetation types with a low RPPP AUC-

value, can give good projection results. 

5.2 Variation within the vegetation types 
The survey vegetation types were not very homogenous, compared with the types in more detailed 

mapping systems, as they were mapped at a fairly coarse scale with few types. Some areas had 

vegetation types with elements from several other types, and no rules could be set that covered 

them all. Exclusion of some mosaics and non-typical types was in this study seen as a necessity in 

order to train the model to recognize typical types, and this probably increased the resulting models’ 

predictive performances. 
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There is no common practice for calculating the internal variation of the modeled target, so there are 

no values available for comparison with the values for variation found in this study. The MVEV 

quantified only the variation in the variables included in the final models, and was probably also 

affected by which mosaics and non-typical vegetation types were included in the model training 

data. The sequence obtained by the MVEV coincides with experience from field, and the variation 

was also in accordance with the description of the vegetation types provided by the field-guide 

(Rekdal & Larson 2005). However, the magnitude of variation was not as expected. The MVEV for 

Dwarf shrub heath was expected to be as high as for Blueberry birch forest. Vegetation height was 

one of two variables used to model these types. The variation in Dwarf shrub heath could be 

artificially low since all types with Salix spp and trees were excluded from Dwarf shrub heath. For 

Lichen heath the variation was larger than expected. This could be because two out of three 

explanatory variables were IR-bands and although areas with bare rock were excluded, the 

vegetation type still includes areas with and without high lichen cover, and the color values will 

differ. 

The vegetation types that cover large areas and are common often have the same characteristics as 

generalist species; they can tolerate a larger range of environmental conditions. For generalist 

species Maxent does not necessarily manage to discriminate between the values of the 

environmental variable that the types tolerate and what they do not tolerate, making them harder to 

model (Lobo et al. 2008; Merckx et al. 2011; Stokland et al. 2011), and the same results were 

expected for vegetation types with a large MVEV. The results of this study did not show any 

significant relationship between AUC-values and MVEV. However, this result was opposed by a 

significant relationship between the RPPP AUC-values and number of points used to train the model, 

and that the mean RPPP AUC for rare vegetation types was significantly higher than the mean RPPP 

AUC for common types. The area covered and the occurrence can be seen as proxies for the internal 

environmental variation, since the internal variation is likely to increase with a larger distribution. 

These relationships were not significant for the PPP-values, thus confirming that environmental 

variation was not what determined the models prediction performance for vegetation types in this 

study. 

Although the relation between AUC and MVEV was not significant, the two vegetation types with the 

highest MVEV obtained the lowest AUC-values, and their RPPP-value was categorized as poor. Lobo 

et al. (2008) found that high internal variation caused by tolerance for a large variety of 

environmental variables can give a low AUC-value, although the model predictions are valid. This was 

also the case in this study; the types with the largest MVEV were the models with the largest increase 

in AUC-values when evaluated with independent data. 
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5.3 The effect of ecosystem 
The results of this study show that type of ecosystem does not affect the modeling ability, neither in 

PPP or RPPP results. Thus, there were no particular properties of any of the ecosystems that made 

them harder to model than the others, and probably the distribution of the vegetation types in the 

three different ecosystems was determined largely by the same environmental variables. Since the 

vegetation types within the same ecosystem have some characteristics in common, vegetation types 

from the same ecosystem were expected to have similar predictive value. The PPP AUC-values for 

the vegetation types from forest ecosystems differed by at least 0.107, and the AUC-values for 

vegetation types from mountain ecosystems by 0.138. To my knowledge, no previous study has 

investigated the effect of differing ecosystems on predictive performance of vegetation type DM, but 

Roy et al. (2006) created a land cover map for India using a Holdridge life zone model. They found 

differing accuracies in the land cover map for different forest types. This supports my results, the 

differences in predictive value of vegetation types within an ecosystem can be as large as the 

differences between vegetation types belonging to different ecosystems. 

The models for vegetation types from wetland ecosystems had similar predictive performance. This 

probably reflects that the two selected wetland types were ecologically similar, and that their 

distribution was regulated by the same environmental variables. However, the small difference 

between these types is not necessarily a sign that all wetland vegetation types can be modeled with 

the same predictive performance. Other wetland types have characteristics that differ from the two 

types modeled in this study, for example Bog can in some cases be more similar to Dwarf shrub 

heath than to Fen and Mud-bottom fens and bogs (Rekdal & Larson 2005). A model for Bog would be 

expected to have a lower predictive performance than the wetland types had in this study. 

5.4 Model selection criteria 
Maximum entropy modeling was chosen as the modeling method in this study, since it has been 

found to be among the better methods for DM (Elith et al. 2006; Ortega-Huerta & Peterson 2008). 

The Maxent software was chosen since it performs well with presence-only samples (Elith et al. 

2011), as well as being freeware and user-friendly. Maxent also provides several methods for internal 

model assessment such as the AUC-value (Halvorsen 2012b). AUC-value is one of the most common 

ways of reporting predictive performance (Elith et al. 2006). Researchers disagree on how high an 

AUC-value must be before the model is good, maybe due to a lack of theoretical foundation 

(Halvorsen 2012b). The AUC-scales are also dependent on the modeling purpose and data properties, 

and cannot necessarily be adopted by other studies (Swets 1988). However, most studies agree that 

models with AUC-values of above 0.8, as all PPP-values in this study, do have predictive value 

(Halvorsen 2012b; Merckx et al. 2011). 
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Using the AUC-value as the only model-selection criterion has been criticized (Lobo et al. 2008). The 

study in this thesis avoids being subject of this criticism in at least two ways; the extent of the study 

was limited (Lobo et al. 2008) and many presence-points were used to train the model. Though many 

points were used for all vegetation types, the number of training-points still varied, and this might 

affect the AUC-value. The default number of pseudo-absences was used for all models, and though 

the number varied between the models, it did not hinder a lower prevalence rate for the rare 

vegetation types. The prevalence is the proportion of presences in relation to the total number of 

points used to train the model (Franklin 2009). The number of absences was not reduced to balance 

the presences for rare vegetation types, as Stokland et al. (2011) found that keeping a low 

prevalence-rate for rare species gave more accurate predictions, with a more natural span in 

probability of presence. 

With presence-only data, the maximum AUC-value that can be obtained is lower than one, and 

decreasing with the area covered by the species (Elith et al. 2011). A model with many presence-

points needs to have better predictive value in order to obtain the same AUC-value as a model with 

fewer points (Stokland et al. 2011). Merckx et al. (2011) have found that the AUC-value decreases 

with the number of training points for a random model if no validation is applied. This study supports 

these findings, as there was a statistically significant relationship between the RPPP AUC-value and 

the number of points used to train the model. Vegetation types with many points, especially 

Blueberry birch forest and Dwarf shrub heath, cover large areas and the models representing them 

had the lowest AUC-values. Also, the vegetation types with the fewest points, Mud-bottom fens and 

bogs and Lichen heath had the highest AUC-values. This is a challenge when using the AUC-value as a 

model selection criterion. 

5.5 Evaluation with independent data 
Both the frame-area for training and the frame-area for projection were mapped following the same 

method and with the same material, making the results comparable with respect to accuracy and 

resolution. The frame-areas were mapped by the same mapper in the same period of field-work, 

ensuring similar understanding of the vegetation, and the same decision criteria being used for non-

typical types in both frame-areas. As the mapping was based on the vegetation only, the data were 

still independent. There might have been small elements of other vegetation types than the targeted 

vegetation type in the polygons used to create presence-points, and the converse in the polygons 

used to create absence-points. However, the effect of this was assumed to be small, so the quality of 

the collected data was considered to be presence-absence. Using half of the data as presence-only 

was done by ignoring the absence-observations. This allowed for investigation of the technical 

problems related to RPPP AUC-values as well as comparisons between RPPP and PPP AUC- values. 
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The PPP AUC-values showed that the predictions of the created models were valid also outside the 

frame-area where the models were trained. The AUC-values for the frame-area for projection did not 

show the same relationship with the number of training points as the RPPP AUC-values. This supports 

the theory that the PPP-value is a better measure for the quality of the model than the RPPP-values 

(Merckx et al. 2011). The criticisms of RPPP AUC-values as the only model selection criteria, are less 

likely to apply to PPP AUC-values. However, the number and distribution of the points might still 

affect the AUC-values for the projected area.  

A very small number of points and skewed prevalence rate can affect the AUC-value directly if the 

prevalence rate is below 0.01 or above 0.99 (Jimenez-Valverde et al. 2009). This relationship was 

found for the training data, but could also be valid for the data-sets used in evaluation. In this study 

there were few presences relative to absences in the sets used for evaluation. For Mud-bottom fens 

and bogs the number of presences gives prevalence immediately above and below 0.01 for 2000 and 

4000 random points respectively. An effect could be that this result is less robust than the others, 

and that the decrease observed for this vegetation type when changing from RPPP to PPP AUC-values 

should not be emphasized. 

Jimenez-Valverde et al. (2009) also found that modeling results for models trained with less than 70 

points of either presences or absences have lower predictive value. For the evaluation based on 2000 

random points, three of the six vegetation types had less than 70 presence-points, while this was the 

case for only one type when evaluated with 4000 random points. The difference in projected AUC-

values created with 2000 and 4000 points was small, yet the trend was clear. For all vegetation types 

except Mud-bottom fens and bogs, the PPP AUC-value created with 4000 points was higher than the 

PPP AUC-value created with 2000 points. The values from the 4000-point evaluation might have 

better predictive value due to larger sample sizes, however the increase in AUC-values could be 

interpreted as a sign of spatial auto-correlation, making the values artificially high (Halvorsen 2012a). 

This study does not provide enough information to conclude on which evaluation is best, and this 

could be a topic for further studies. 

5.6 Spatial challenges 
A common bias of point distribution is disproportionately many presence observations in easily 

accessible areas (Halvorsen 2012a; Reddy & Davalos 2003). By creating training points from the 

polygons of the vegetation map this type of bias was avoided. Each polygon was represented with 

many points to limit the influence of elements of non-typical vegetation types. A distance of ten 

meters between the training-points gave enough data to describe the relation to the environmental 

variables for each type, and portrayed the variation at a fine scale. Due to within-type variation in 
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most of the vegetation types, the points were not necessarily auto-correlated, and this was 

supported by the evaluation with independent data. However, polygons for Mud-bottom fens and 

bogs had small internal variation. The observed reduction in AUC-value for Mud-bottom fens and 

bogs after evaluation, could be due to auto-correlation in the training dataset causing the RPPP AUC-

value to be artificially inflated (Merckx et al. 2011). Future studies modeling vegetation types with 

differing variances should consider accommodating this by using different densities of training 

points. 

The frame-area for training and the frame-area for projection were in this study located nearby each 

other, so the results are spatially correlated. This correlation was intended, as the model will work 

best for areas close to where the model was trained. Barry and Elith (2006) argue that if auto-

correlation is included in a model, many samples should be used in order to ensure correct 

specification of the model, while Halvorsen (2012a) argue that several points from the same polygon 

will cause validation by non-independent data. Though using fewer points for evaluation than for 

training in this study, there were still several points from each polygon. Including several points in 

the same polygon was a way of testing if Maxent managed to predict well for all environmental 

variables displayed within the same polygon. The projected AUC-values would probably have been 

lower if the projected area was situated further away, since the vegetation and the factors regulating 

it are likely to differ more the further from the training area your projection area is situated.  

The resolution of the environmental variables might also have affected the results. Guisan et al. 

(2007) found that a coarser resolution reduced the predictive performance of created DMs. The 

LiDAR screening provided enough points in each 5 x 5 m square for the resulting environmental 

variable layers to be robust, while still portraying the variation at a fine scale. The high contribution 

of the variables derived from LiDAR supports that this was the right resolution for modeling at this 

scale. The wetness index originally had a resolution of 25 x 25 m, and was created from a DEM with 

this resolution. This might have been too coarse for modeling at the scale of this study, and could be 

a reason why the wetness index did not contribute to any of the models. 

5.7 The effect of model complexity in Maxent 
For modeling with the intention of explaining ecological relationships, the models should be simple in 

order to be able to understand the output. In DM for projection, the model that best explains the 

distribution is the best model, and more complexity can be allowed (Halvorsen 2012a). However, 

complex models are more likely to be overfit, making predictions for other areas less accurate 

(Merckx et al. 2011). In this study the goal was to predict distribution for a neighboring area, so there 

was a tradeoff between predictive-value and complexity (Halvorsen 2012a, Fig. 15).  
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Using default settings have become the standard procedure for Maxent modeling, and recent 

research has indicated, and this study supports, that these settings gives overfit models (Halvorsen 

2012b). Maxent is by many considered an objective method for modeling. This is opposed by 

Hemsing and Bryn (2012, Table 6) due to the large effects caused by subjectively choosing different 

settings. Experience with the vegetation type datasets in this study showed that the settings used in 

the final models hindered the models from becoming unnecessarily complex, while still not 

restricting them so much that the predictive performance was greatly reduced. Excluding the hinge 

transformation reduced the number of parameters with between 3 and 34 parameters. This caused a 

maximum reduction in the AUC-training values of 0.002. Excluding the product transformation 

removed a maximum of four variables, and did not change the AUC-training value for any model. 

These two types of transformations were also excluded because they are the hardest to relate to 

ecological responses, the hinge is an arbitrary function, while product creates interaction variables. 

The regularization multiplier was increased to eight to avoid overfitting. This made the response 

curves smoother and limited the saw-toothed fitting to the values of the environmental variables. 

This was especially useful where the training-data had few observations for a specific range without 

any logical environmental reason. The increase in regularization multiplier caused a reduction of 

between 69 and 18 parameters in the different models, and a maximum decrease in the AUC-training 

values of 0.011. There was still potential for reducing the number of parameters further by increasing 

the regularization multiplier even more. However, this would have caused more decrease in the AUC-

training value that had already had the largest loss. 

The same transformations were used for all models and the effects of selected settings differ 

between the vegetation types based on factors that determine their distributions. For the final 

models in this study, the minimum number of parameters was five, and the most complex model had 

39 parameters. The number of parameters needed for a model to be considered complex or 

overfitted is not much investigated. A model of 73 parameters was considered to be overfitted in a 

study by Auestad (2013). How the model behaves when evaluated with independent data is probably 

the clue to finding out if a model is overfit or not (Halvorsen 2012b). In this study five of six AUC-

values increased when evaluating with independent data. This is a sign that the models were not 

overfit (Merckx et al. 2011). In future, Maxent might be improved by implementing an internal model 

assessment criterion that penalizes models with many parameters in the way that for example 

Akaike Information Criteria (AIC) does. 
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5.8 Limitations posed by proxies and non-existing map layers 
The number of available digital variables and maps is increasing rapidly (Franklin 2009), however 

finding variables that influence the targets’ distribution at the right resolution is still a challenge in 

many DM studies (Franklin 2009). Large-scale DM often includes climatic variables, while on a small 

scale the proxy-approach is more common (Franklin 2009). Soil nutrients and water availability, as 

well as heat and radiation, are known to be baseline explanatory variables for vegetation distribution 

(Guisan & Zimmermann 2000). If these variables could have been included in the study, they might 

have improved the models, although this is not much studied (Franklin 2009). Newton-Cross et al. 

(2007) compared models based on digital datasets and variables collected in field, and found that the 

models based on digital datasets were as good as or better than the other models. This is supported 

by the results of this study as the models created were based on digital datasets only, and they all 

had good predictive value. 

As in the study by Stokland et al. (2011), the variables’ percent contributions varied greatly for 

different targets. The contributions partly correspond with the ecology and characteristics of the 

vegetation types as they are described in the survey mapping guidelines (Rekdal & Larson 2005). The 

variance of the individual environmental variables seems to be an important factor for how much the 

different variables contribute to the models, and if they were included in the final model. When the 

amount of variation is a characteristic of the vegetation type, as expected for Blueberry birch forest 

and Dwarf shrub heath, the variation in vegetation should have been expressed as an environmental 

variable so that Maxent could use it in the models. 

Topographic variables have been found to be highly useful in many modeling studies (Guisan & 

Zimmermann 2000), and this was supported by the models created in this study. Two main gradients 

affect the pattern of vegetation in Norway; the first is temperature from north to south and from 

lowland to highland, the second is precipitation (Bakkestuen et al. 2008). The altitude provided by 

the DEM was expected to be a proxy for temperature, and it had a fairly high percentage 

contribution in all models. The high contribution of the DEM in this study could be a result of 

temperature being one of the main gradients affecting vegetation. The DEM was also one of the 

environmental variables with the greatest differences in both mean and SD. The SD was largest for 

Fen, and this was also the model where DEM contributed the least. This makes ecological sense 

since, as long as the biomass production does not drop too much, the distribution of wetlands is not 

decided by the altitude. However, in the model for Mud-bottom fens and bogs, the percent 

contribution of the DEM was high. This was probably because the polygons of this vegetation type in 

the frame-area for training were found in a very limited range of elevations, creating a model that 

focused on random variables that were important only in this specific data-set. Maxent did not 



25 
 

manage to find the variables that determine distribution on a general basis. This was supported by 

the reduction seen in AUC-value for Mud-bottom fens and bogs when projecting the model. 

Vegetation height, a variable provided by LiDAR, was expected to separate forests from the non-

forest ecosystems in the distribution models. The mean of the vegetation height variable across all 

training points was 0.89 m for Blueberry birch forest and 1.14 m for Meadow spruce forest, while the 

forest by definition within the vegetation mapping guidelines in this study is above 2.5 m (Rekdal & 

Larson 2005). The quality of the data was not good enough to have the intended explanatory effect. 

The time of year of the shooting might have affected the quality, due to reduced foliage early and 

late in the season. It could also be because the forests were sparse, causing the LiDAR beams not to 

hit the top of the trees. The mean value was used when aggregating the vegetation height variable to 

the resolution used in this study. Probably the maximum value would have given more 

representative results, especially for forests. In spite of the faults of the vegetation height variable it 

contributed to three of the models. This could be because it provides a way of separating otherwise 

similar types. Blueberry birch forest and Dwarf shrub heath are often bordering types. Vegetation 

height is the main difference between them, and was an important variable in both models.  

Curvature contributed to the models, but only for the wetland types. This was probably because 

curvature represents a proxy for landscape formations where water drainage is mirrored across the 

contour intervals, giving wet areas, rich in nutrients, suitable for fens in landscape depressions. 

Curvature was also expected to represent a proxy for the gradient of wind exposure. As Lichen heath 

often forms the dominating vegetation type on wind exposed ridges where snow is absent and the 

soils are dry during summer time (Fremstad 1997), curvature was expected to have a large percent 

contribution to the model for Lichen heath. When curvature does not contribute to this model, it 

could be a sign that the variable as used in this study was a better representation for concave than 

convex land forms, or that the resolution is too coarse for representing the narrow ridges where 

Lichen heath is found. Another possible reason for curvature not to be included in the model for 

Lichen heath could be that there was a large variation in this variable. The SD’s in curvature for the 

two wetland types were small in comparison. 

Slope was expected to be a proxy for soil moisture and soil characteristics. This would make it an 

important variable for vegetation types that demand soils rich in nutrients, such as Meadow spruce 

forest. Slope contributed but, like curvature, only to the two wetland type-models. This indicates that 

slope only worked as a topographic variable. Fens occur in flat to gently sloping areas, whereas Mud-

bottom fens and bogs are found in flat areas (Rekdal & Larson 2005). This is confirmed by the low 

means and small SDs in the slope variable for wetlands. For Meadow spruce forest the slope variable 
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had, as expected since it is found at the bottom of slopes, a high mean. However, the variable also 

had a high SD, making the influence less clear and probably also more difficult to base a model on.  

The IR-environmental variables only contributed to the models for Lichen heath and Fen, and they 

did not contribute by very much in either of the models. The reason for this could be technical errors 

in splitting the photos into 3 bands, or there being a smaller color variation in the photos than 

expected. What time of the year the photos were taken affects how the vegetation is portrayed (Ihse 

2007). The IR-photos used in this study were from late September. Summer is optimal, and photos 

from late September are likely to have low interpretability both for deciduous trees and general 

vegetation mapping (Ihse 2007). This could be an important reason for why the IR-layers did not 

contribute more to the final models. 

LiDAR intensity contributed in only one model, by two percent in the model for Meadow spruce 

forest. The poor results from intensity could be due to small differences in feedback from different 

vegetation types. The wetness index did not contribute to any of the models, although it was 

expected to be an important variable for the wetland types. The variable had large variations for the 

wetland types and this could be an explanation of why it did not contribute. The wetness index could 

also be correlated to the curvature variable as they showed similar trends, though the values were 

opposite; negative values for dry areas in the wetness index and positive values for dry areas in 

curvature. If correlated, including both would cause disturbance in the data. The curvature variable 

had lower variation, and this could be a reason it was chosen instead of the wetness index. A possible 

cause of the large variation is that the values of the wetness index were multiplied by 100 by the 

creator in order to avoid used of float-values in a large raster. This should have been reversed before 

using the index for modeling, as it might affect the results. Lastly, the wetness index might not have 

been made in a way that makes it a suitable proxy for groundwater availability in modeling of 

vegetation types. 
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6 Conclusion 
This study has shown that distribution modeling of survey vegetation types based on presence-only 

data is possible. The models can be projected locally, and the model predictions are good for all the 

six vegetation types in this study. The results of this study confirm that the training AUC-value is 

negatively related to the number of points used to train the model, making evaluation by 

independent data necessary for the AUC-value to be a valid measure of the models predictive value. 

Occurrence was not found to affect the prediction performance of the models, and there was no 

relationship between the AUC-values and the variation in the environmental variables. The measure 

for variation in environmental variables used in this study was based on the variables included in the 

final models. High variance in an environmental variable for a vegetation type seemed to make the 

variable less likely to contribute to the final model, and this could explain why the measure of 

variance in the environmental variables was not found to affect the predictive performance of the 

models. The modeling ability was not found to be affected by what ecosystem the vegetation type 

belongs to. 

The most important environmental variable when modeling vegetation was found to be the DEM. 

Other valuable variables depended on the vegetation type to be modeled. Four of the six vegetation 

types in this study were modeled using only environmental variables generated from LiDAR-data. 

This study should be repeated in other areas of Norway and in different vegetation zones to examine 

if the same factors determine vegetation elsewhere. LiDAR-data should be made available as wall-to-

wall maps in order to facilitate increased use of modeling. Further studies should be conducted to 

find how far the models for survey vegetation types can be projected and still be valid, as well as to 

find what other vegetation types can be modeled. 
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Appendices 
Appendix 1 – List of all 16 vegetation types that were mapped, with the total area covered, as well as 

area covered in each of the two frame-areas of the study area. The total percentage coverage is also 

provided.  

Vegetation type Total area 
covered (m2) 

Frame-area 
training (m2) 

Frame-area 
projection (m2) 

Proportion 
of study 
area (%) 

2c - Lichen heath 296444 152007 144437 4 
2e - Dwarf shrub heath 2155866 1199038 956828 27 
3b - Tall forb meadow 50196 - 50196 1 
4b - Blueberry birch forest 1934303 1031210 903093 24 
4c - Meadow birch forest 735535 320311 415224 9 
7b - Blueberry spruce forest 485481 135262 350219 6 
7c - Meadow spruce forest 318731 215904 102827 4 
8c - Poor swamp forest 15933 - 15933 0 
8d - Rich swamp forest 2021 2021 - 0 
9a – Bog 723315 337408 385907 9 
9b - Deer-grass fen 46710 - 46710 1 
9c – Fen 726133 275664 450469 9 
9d - Mud-bottom fens and bogs 161276 118825 42451 2 
9e - Sedge marsh 18062 7209 10853 0 
11a - Cultivated land 36845 36845 - 0 
11b - Pastures 164433 74373 90060 2 
Water 90658 50749 39909 1 
Total 7961942 3956826 4005116 100 
 

Appendix 2 – Additional symbols used to describe variation within the same vegetation type.  

Sign Described variation 
& Deciduous trees, unspecified 
+ Scots pine 
* Norway spruce 
j More than 50 % cover of Juniperus communis 
! 25-50 % cover of Salix sp. 
s More than 50 % cover of Salix sp. 
g More than 50 % cover of grass 
v 25 – 50 % cover of lichens 
x More than 50% cover of lichens 
< 25 – 50 % of area < 30 cm soil thickness/ 25-75 % cover of bare ground 
> > 50 % of area < 30 soil thickness / 25-75 % cover of bare ground 
{ 25-50 % cover of stone block 
} 50-75 % cover of stone block 
] 25-50 % cover of trees 
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Appendix 3 – The number of presence-points and the prevalence (number of presences divided by 

the sum of all presence and absence points) used in training and projection for each vegetation type. 

Explanations of the codes for the vegetation types are given in Appendix 1. 

 
Vegetation 
type 

Training Projection and evaluation by independent data 
2000 points 4000 points 

Presences Background 
points 

Prevalence Presences Prevalence Presences Prevalence 

2c 1286 11206 0.11 61 0.03 110 0.03 
2e 11614 20906 0.56 455 0.23 912 0.23 
4b 9728 19128 0.51 383 0.19 806 0.20 
7c 2122 11977 0.18 51 0.03 91 0.02 
9c 2708 12542 0.22 176 0.09 313 0.08 
9d 1170 11094 0.11 21 0.01 39 0.01 
 

Appendix 4 – Details about the aerial photos used in the mapping in field. The IR-photos are from the 

same flight. 

Company Blom Geomatics AS 
Date of photography 28th September 2010 
Series name Sogn 2010 
Coverage number BNO10044_01_04 
Resolution 0.5 m 
Pictures Band 64, pictures 1521 - 1523 and 1821 

Band 65, pictures 1390 - 1392 
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Appendix 5 – Vegetation map for the study area generated during field-work, the frame-area for 

training to the left and the frame-area for projection and evaluation by independent data to the 

right. The vegetation map is simplified to improve readability; each vegetation type is represented by 

one color, and mosaics and additional signs are not included.  
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Appendix 6 – The predictions created by Maxent for Lichen heath; the frame-area for training below 
to the left and the frame-area for projection to the right. Warmer colors show higher probability of 
presence. 

  

Appendix 7 – The predictions created by Maxent for Blueberry birch forest; the frame-area for 
training below to the left and the frame-area for projection to the right. Warmer colors show higher 
probability of presence. 

  


