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Abstract 
Moose (Alces alces) play an ecological keystone role in the boreal forest ecosystem 

and increasingly so during the last decades due to the large population increase. The growing 

moose population has a large impact on forage plant species, including commercially 

important tree species. Conversely, the quantity and quality of forage feedback on the body 

weight and condition of the moose, which is a key trait for moose managers.  To improve 

moose management it is central to estimate and monitor “carrying capacity” over time and on 

realistic management scales. In forest inventory remote sensing is extensively used with 

different tools, such as LiDAR (Light Detection and Ranging). 

This study examined the potential of LiDAR as a tool for remote sensing of moose 

forage biomass. The study was conducted on a 735 km2 area, within the counties of Telemark 

and Vestfold (N 59o20.285 E 9o39.664) in the south-eastern part of Norway. The field data 

used in this study were collected during a moose forage study carried out in August 2007. The 

field data included biomass data for 640 circular (2500 m2) plots. The LiDAR data used in 

this study were collected in the years 2008-2010 for multipurpose. Three modeling 

approaches were used: One model with only field inventory variables origin from forest 

inventories (Forest model), one model with only LiDAR derived variables (LiDAR model) 

and one model combining both forest and LiDAR variables. The aim was to asses if including 

LiDAR derived information resulted in better models for moose forage biomass. All models 

were mixed effects regression models.  

For all combination of tree species and seasons, one or more LiDAR variables were 

included in the best model. In the model validation the LiDAR + Forest models (r ranging 

from 0.38 to 0.51) generally performed better than the pure Forest models (r ranging from 

0.35 to 0.49) which again always performed better than the pure LiDAR models (r ranging 

from 0.21 to 0.37). Important LiDAR variables like Understory LiDAR Cover Density 

(ULCD) and Spacing Index (Spi) replaced forest variables such as cutting class in some of the 

model groups. This study concludes that LiDAR can improve the ability to predict moose 

forage biomass if variables from traditional forest inventory, such as site index, dominant tree 

species, and cutting class, are added. Still, the validation revealed that models had low 

generality. This study is based on field data with a relatively low spatial precision and with a 

temporal mismatch between LiDAR and field data sampling. Future studies should sample 

data simultaneously and with higher precision to investigate if large scale monitoring of 

moose forage with LiDAR may become an operative tool in management.  
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Sammendrag 
Elg (Alces alces) spiller en rolle som økologisk nøkkelart i det boreale 

skogøkosystemet med sin økende populasjonsstørrelse de siste tiår. Den økende elgbestanden 

har stor påvirkning på beiteplantene inkludert kommersielle treslag. Og motsatt, den 

kvantitative og kvalitative effekten av beitet på kroppsvekt og kondisjon hos elg er sentralt i 

elgforvaltningen. For å forbedre elgforvaltningen står estimering og overvåking av bæreevnen 

over tid, på realistiske forvaltningsenheter, sentralt. I skogtakseringer er fjernregistrering mye 

bruk med ulike verktøy, slik som LiDAR (Light Detection and Ranging). 

Denne studien undersøkte potensiale av LiDAR som verktøy for fjernregistrering av 

biomasse elgbeite. Studien ble utført på et 735 km2 stort studieområde i fylkene Telemark og 

Vestfold (N 59o20.285 E 9o39.664) i det sør-østlige Norge. Feltdataene benyttet i denne 

studien ble samlet inn gjennom et elgforingsprosjekt i august 2007. Felt dataene inkluderte 

data fra 640 sirkulære (2500 m2) plot. LiDAR dataene ble innhentet 2008-2010 til forskjellige 

formål. Tre modelltilnærminger ble benyttet: En med kun feltvariabler (fra tradisjonell 

skogtaksering) kalt Forest modell. En med kun LiDAR variabler (LiDAR model) og en som 

kombinerte både felt- og LiDAR variabler. Formålet var å vurdere hvor vidt inkludering av 

LiDAR utledet informasjon forbedret modellenes evne til å predikere biomasse elgmat. Alle 

modeller var blanda effekt regresjonsmodeller.  

For alle kombinasjoner av treslag og årstider, ble en eller flere LiDAR variabler 

inkludert i sluttmodellene. I modellvalideringen presterte LiDAR + Forest modellene (r fra 

0,38 - 0,51) generelt bedre enn Forest modellene (r fra 0,35 - 0,49) som igjen alltid presterte 

bedre enn de rene LiDAR modellene (r fra 0,21 - 0,37). Viktige LiDAR variabler som 

Understory LiDAR Cover Density (ULCD) og Spacing Index (Spi) erstattet variabler som 

hogstklasse i noen modeller. 

Denne studien konkluderer med at LiDAR kan forbedre evnen til å predikere  

biomasse elgbeite hvis variabler fra tradisjonell skogtaksering, slik som bonitet, dominerende 

treslag og hogstklasse blir lagt til. Allikevel, valideringen avdekket at modellene hadde lav 

grad av generalitet. Denne studien baserte seg på feltdata med relativt lav romlig presisjon og 

med tidsforskyvning mellom LiDAR- og feltdata innhenting. Framtidige studier bør innhente 

data parallelt og med høyere presisjon hvis storskala kartlegging av elgbeite med LiDAR skal 

bli et operativt forvaltningsverktøy.  
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Introduction  

Background  

Moose (Alces alces) play an ecological keystone role in the boreal forest ecosystem 

and may affect the abundance and competitive interactinos between tree species (Edenius et 

al. 2002; Mathisen & Skarpe 2011). In recent years, there has been a popular debate in 

Scandinavia about the relationship between the growing moose population and its browsing 

plants (Solbraa 2005; Solbraa 2008; Aanesland 2009), and how large the carrying capacity is.  

At the same time, the focus in moose management has mostly been on the number of moose 

individuals (Solberg & Saether 1999; Ronnegard et al. 2008; Månsson et al. 2011)  and forest 

damages as a result of browsing (Andrèn & Angelstam 1993; Ericsson et al. 2001; Ball & 

Dahlgren 2002; Siipilehto & Heikkilä 2005; De Jager & Pastor 2010;). When it comes to the 

spatial distribution and quantity of the preferred forage species, good tools for mapping large 

areas is missing 

Moose and moose forage 

 The Norwegian moose population has increased exponentially in the last century with 

the number of moose harvested ranging from less than 100 in the first part of the 20th century 

to almost 40 000 individuals at the top in 1999. The number was in 2012 reduced to 35 000 

moose harvested annual. At the same time, average annual increment from pine was in 2007-

2011 almost 6 million m3 in Norway. The productive forest represents 22 % of the total 

Norwegian land area and pine(Pinus sylvestris)  dominated forests represent 21 % of the 

productive forest (Statistisk-Sentralbyrå 2013). Combining moose and timber production, 

especially pine, a preferred winter food, can be challenging. An economic study reports that 

90 % of the value from moose-timber management comes from the timber part of the 

production (Wam et al. 2005). Wam et al. (2005) also suggest that moose population should 

be kept at a 70 % lower level in management regimes that combine timber and moose 

production compared with a regime that only focus on timber production. Browsing damages 

clearly have a big economic impact on forest owners in areas with dense moose populations. 

In a wildlife management perspective, knowledge about the forage recourses is of 

considerable interest. Studies investigating changes in forage input with the response in 

biomass production in the moose population has revealed that forage ability is positively 

correlated whit increasing body mass in the population (Milner et al. 2012). In second order, 
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the increasing body mass on moose cows is positively correlated with the number of calves in 

the population (Sæther & Haagenrud 1985).  

The spatial distribution of moose in the landscape is correlated with the distribution of 

forage and cover. Moose habitat selection is often described with a multi-scale approach 

(Herfindal et al. 2009). In a landscape scale moose select species and habitats with large 

volume of biomass, within home-range scale moose select quality over quantity (van Beest et 

al. 2010). Species- and habitat selection also vary between seasons. (Nikula et al. 2004). Most 

Norwegian moose migrate between summer and winter browsing habitats. Summer habitats 

are in general evenly spread out in the landscape, but winter habitats are more clustered. A 

typical winter habitat is at low altitude, often along riversides on the valley (Andersen 1991; 

Histol & Hjeljord 1993; Ball et al. 2001; Ball & Dahlgren 2002). Knowledge about the spatial 

and temporal distribution of moose in the landscape together with the number of individuals is 

two key factors in moose management. Information about the quantity and the spatial 

distribution of the forage species in the landscape is the third factor necessary to effectively 

manage the moose population. A lack of methods for quantifying forage biomass on a 

landscape scale complicates this.  

Remote sensing of resources  

 Using remote sensing to quantify and map resources is becoming increasingly 

common, both for research and applied purposes (Koch 2010). Airborne LiDAR (Light 

Detection and Ranging) is one remote sensing technique that has been used for forest 

inventory purposes since 1991 (Næsset et al. 2004; Næsset 2004). The research has mostly 

been on forestry and quantifying forest resources suitable for timber production (Næsset 

2004; Gobakken & Næsset 2004; Næsset & Bjerknes 2001; Yamamoto et al. 2011). More 

recent LiDAR research has also been conducted on biodiversity topics (Bater et al. 2009; 

Muller & Brandl 2009; Bassler et al. 2011; Tattoni et al. 2012) and biomass prediction in 

forest ecosystems for bioenergy purpose (Andersen et al. 2011; Hauglin et al. 2012). Airborne 

LiDAR technology relies on laser pulses which are transmitted from an airborne laser 

scanner. The scanning system can transmit up to 100 000 pulses per second to the surface of 

the landscape. The pulses reflect on vegetation, buildings and ground surface. The echoes (the 

reflected pulse) are received in a sensor placed on the scanner. The sensor measures the time 

of travel for each pulse and calculates the distance from the aircraft to the point of reflection 

with the accurate knowledge of aircraft position and movement, the distance measurements 

are converted to a dataset of points in space. The typical point density in forest inventory 
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scanning ranges from 0.1 -10.0 pulses m-2 ( Wehr & Lohr 1999; Næsset 2004; Næsset et al. 

2004) Predictive models can be developed using regression techniques based on field 

variables and LiDAR variables (Næsset et al. 2005).  

In management of other species, such as reindeer (Rangifer tarandus tarandus), 

knowledge about the pasture resources and the number of animals is a central part of the 

management (Colpaert et al. 2003). Remote sensing of reindeer pasture in alpine environment 

using satellite data is a common practice in Scandinavia as a tool for managing reindeer both 

wild and tame (Edenius et al. 2003; Gilichinsky et al. 2011).  The same type of information 

could be useful in moose management as well, for a more accurate approach to quantification 

of carrying capacity on realistic management scales (such as management area scale). A 

Norwegian study that investigated the spatial and quantitative distribution of forage species 

and related this to moose habitat selection, resulted in predictive models for forage biomass 

based on variables origin from forest planning tools (van Beest et al. 2010).  

The aim of the present study is to explore the potential role of LiDAR in predicting 

moose forage biomass. The study uses a subset of the data used in van Beest et al. (2010), and 

the concrete question is whether adding LiDAR variables can improve on the predictive 

models used therein, and how pure LiDAR models compare to these.   

 

Material and methods  

The study area 

This study was conducted on a 735 km2 area, within the counties of Telemark and Vestfold  

(N 59o20.285 E 9o39.664) in the south-eastern part of Norway (figure 1). The area belongs to 

the boreonemoral vegetation zone (Moen et al. 1998) and it is mostly covered by commercial 

managed forests. The composition of tree species is 26 % pine 72 % spruce (Picea abies) and 

3 % deciduous species. The group deciduous species consist of downy birch (Betula 

pubensence), silver birch (Betula pendula), rowan (Sorbus aucuparia), willow (Salix spp.) 

and aspen (Populus tremula). The field layer is dominated by species from the heather family 

(Ericaceae) particularly Vaccinium spp. In areas with disturbed vegetation, such as clear-cuts, 

the pioneers fireweed (Epilobium angustifolium) and raspberry (Rubus idaeus) occur 

clustered.  
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Figure 1: The location of the study area in south-eastern Norway. 

 

 

The climate is normal for this south-eastern part of Norway with 1008 mm annual 

precipitation and average summer temperature (Jun-Aug) 15.3oC and winter temperature 

(Dec-Feb) -4.3oC. All climate values are average values from three weather stations within the 

study area (Siljan, Skien-Geiteryggen and Lardal) (Met.no). Moose density in the study area 

is approximately 1.3 moose/km2 (Milner et al. 2012). The average annual harvest was 198 

individuals during the years 1986-2012 (Siljan, Lardal and Skien municipalities) (Statistisk-

Sentralbyrå 2013). Large predators capable of killing moose are virtually absent in this part of 

Norway (Wabakken et al. 2010; Wabakken et al. 2008; Wabakken et al. 2009). 
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Forage biomass-study design and field data 

The field data used in this study were collected during a moose forage study carried 

out in 2007-2008 (van Beest et al. 2010) as a part of a large moose project in the southern part 

of Norway (Milner et al. 2012). In August 2007, biomass data were collected by sampling 50 

individual trees from six target tree species. From this, biomass models were developed and 

made it possible to predict canopy biomass from easily measured tree characteristics, such as 

shape and size (van Beest et al. 2010). The target tree species were rowan, aspen, willows, 

silver birch, downy birch and pine. Rowan, aspen and willow were referred to as a group: 

RAW. RAW are known as high quality species and are highly preferred by moose (Solbraa 

2002; Månsson et al. 2007; Wam & Hjeljord 2010) .  

The second phase in the study by van Beest et al. (2010) was to sample target tree 

characteristics from a number of plots stratified on forest characteristics to predicting biomass 

over the entire study area. This was conducted as a field inventory during June and July 2008. 

From this data 640 plots in 128 different forest stands were within the area covered by LiDAR 

data (see LiDAR data below) and could be used in my study.  In each stand, one main plot 

consisted of five subplots (figure 2). The five subplots were 50 m2 circular plots. One placed 

in the center of the main plot and the four remaining was placed 25 m from the center in each 

cardinal direction. In each subplot, biomass was predicted as summer biomass (leaf) or winter 

biomass (twigs).  

 

 

Figure 2: The study design used to quantify moose forage biomass-one main plot consist of 5 subplots. 

2500m2 



H.P. Ruud (2013): LiDAR as a tool for remote sensing of moose (Alces alces) forage biomass 

6 
 

In the last phase van Beest et al. (2010) modeled biomass as a function of standard 

forest parameters originating from an earlier forest inventory. These parameters were cutting 

class (1-5), dominant tree species (deciduous, pine and spruce stands), stand productivity 

(high or low), altitude (m), slope (o), aspect (N, W, S, E), hill shade (index of solar incidence) 

and sky view (percentage of sky not obstructed by terrain features). For more details se van 

Beest et al. (2010).  

Target species selected for the present study was RAW, pine and the total amount of 

biomass. The total biomass included biomass values calculated from all target species and 

species from the field layer such as fireweed, raspberry and bilberry (Vaccinium myrtillus).  

The Betula spp. was excluded because of the small sample size after selecting plots that only 

corresponded with LiDAR data. For forest characteristics see appendix 1. 

 

LiDAR data 

The LiDAR data used in this study was collected in the years 2008-2010 for 

multipurpose. The data covers the municipalities of Skien, Siljan and Porsgrunn in Telemark 

county and Lardal in the county of Vestfold.  The Norwegian Mapping Authority was 

principal in this project and BLOM Geomatics AS was responsible for the scanning 

performance. Table 1 shows the sub-projects in detail. All scanning flights were conducted 

during early summer. The flying altitude ranged from 690 m to 1700 m and average point 

density from 0.7 m2 to 10.0 m2. The point clouds had been processed and digital terrain model 

subtracted, so that each point were specified by x/y coordinates, and dz (the height above the 

ground).  

 

Table 1: Detail summary of the different LiDAR projects used in this study  

 

Project name Skien/Siljan 2010 Lardal 2009 Skien  Porsgrunn

Project code BNO10019 BNO097010 BNO08752 BNO08765

Date of flight 02.06.2010 21-25.05.2009 05.05.2008 05.05.2008

Scanningsystem Optech ALTM Gemini Optech ALTM05SEN180 and ALTM04SEN161  -  -

Flying altitude 1600m 690 m 1700m 1400m

Puls repetition freq. 70 000 Hz 125 000 Hz 70000Hz 70000Hz

Scan freq.  - 70 Hz 31 Hz 34 Hz

Average point density 0.7/m2 10.0 /m2 0.7/m2 0.7/m2
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 LiDAR data was obtained for the 128 main field plots used by van Beest et al. (2010). 

Because the central coordinate of the field plots were recorded by handheld GPS (van Beest 

pers. comm.), accurately extracting LiDAR data corresponding to the sub-plots was not 

possible. Instead of risking misrepresentation at the scale of the small sub-plots, LiDAR data 

was extracted from a 2500 m2 circle corresponding to an area roughly covering all the field 

plots (figure 2 & 3) and associated with all five subplots. All echoes lower than 0.5 m were 

classified as ground echoes. Also, dz ≤ 0 was assumed to be ground hits. The remaining first 

and last echoes were considered to be canopy hits. Therefore, echoes above 0.5 dz was 

classified as vegetation hits. A various number of variables were derived from the echoes 

between ground (dground) and the highest dz value (hmax), such as density variables, height 

percentiles and measures of the height variation (table 2). Understory LiDAR Cover Density 

(ULCD) is a variable that describes the cover of the understory vegetation. The variable is 

modified from (Wing et al. 2012) and (Martinuzzi et al. 2009). In my study, ULCD is 

calculated as the ratio of understory (dus) (>0.5 to 2.0dz) echoes to the total number of 

understory and ground echoes (dground) (Eq. 1).  

 

       (1)  

                      

A variable specially made for this study is the spacing index (spi) variable. The spi is 

an attempt to describe gaps in the canopy. Gaps in the canopy make more light available at 

the ground level and these places are therefore more amenable sites for understory vegetation 

(Long et al. 2004; Smith et al. 1997), such as vegetation important for moose forage. In the 

spi variable the gaps are weighted with the height of the canopy. Gaps have to be bigger (in 

cross section) in tall stands to let through the same amount of light to the forest floor as in 

lower stands. To make the spi variable it was first necessary to make a canopy density 

variable (cpd). Cpd is the proportion of echoes >2.0 m (CP) out of the total number of echoes 

(NT) (Eq. 2). Dz = 2.0 are assumed to represent the border between the understory and the 

canopy (Nilsson 1996). To get the spi variable cpd is then multiplied with h90 (the 90th 

percentile of the canopy height) (Eq. 3). For more details of the LiDAR data see appendix 2. 
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       (2) 

 

                                 (3)                   

               

 

Table 2: Description of the variables extracted from LiDAR data 

 

 

 

Description
dground Proportion of all echoes < 0.5 dz 
d0.5 Proportion of all echoes between 0.5 and 2.5 dz 
d2.5 Proportion of all echoes between 2.5 and 4.5 dz 
d4.5 Proportion of all echoes > 4.5 dz 
h0 
h10 
h20 
h30 
h40 Heights of the 0-90th percentile of the echo height distirbution
h50 
h60 
h70 
h80 
h90 
hmax Maximum echo height
hcv Coefficient of variation for echo heights 
hsd Standar deviation  for echo heights 
cpd Canopy density 

(The porportion of echoes >2.0 m out of the total number of echoes)
ulcd Understory lidar cover densityratio of understory

Ratio of understory (>0.5 to 2.0dz) echoes to the total number of understory and ground echoes 
spi Spacing index (cpd *h90)

Variables
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Figure 3: A 3D visualization of the LiDAR-data from plot nr. 114 made in ArcScene 10.1.  

For variable codes see table 2.  

 

Statistical analyses 

The two datasets (Field- and LiDAR data) were joined together and 20 % of the data 

were randomly sampled and withheld for model validation. The remaining 80 % of the data 

were used to parameterize the models. All the covariates were tested for collinearity. If 

exceeding the threshold value r>0.6 one of the variables in the correlated pair was censored 

from further analyses (retaining the one with the lowest AIC (Akaike`s Information 

Criterion)) in univariate tests. Following the approach of van Beest et al. (2010),  I used 

mixed effects models with log link function where forage biomass was the response variable, 

stand number was included as a random effect (Bolker et al. 2009) and a combination of field 

and LiDAR derived variables served as predictor variables. I fitted 15 candidate models, three 

within each target species (RAW, pine and the total amount of forage biomass) and seasons 

(winter or summer forage). Pine models for summer were not investigated because moose 

only browse pine in the winter (Fremming 1999; Solbraa 2002). Within each tree 

species/season group I fitted three suites of models: Forest model, LiDAR model and LiDAR 

+ Forest model. The forest model included only variables describing forest characteristics, 

available from traditional forest inventories. The LiDAR models included only LiDAR 

derived variables. LiDAR + Forest models combine variables from both LiDAR model and 

forest model.  

23.4m  

r = 28.11 m 

Plot 114
hmean 9.8
hmax 23.4
cpd 0.7
ulcd 0.1
spi 10.9

0.0 m  

Height 
 (dz) 
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 Stepwise backwards model selection was used to select the best models. In every 

selection step the least significant variable was removed, repeating until the model consisted 

only of significant variables (p<0.05). After this, the three best models within each suite 

(RAW, pine, total biomass, etc.) were compared using likelihood ratio tests. The mixed 

effects regression analysis was performed using the lme4 packages (Bates 2012) implemented 

in R (R-Core-Team 2012). 

To test the predictive ability of the final models Pearson´s product-moment 

correlation, r (Pearson), was calculated for the relationship between predicted and observed 

biomass values for the 20 % of the data retained for validation. Finally, the models were 

ranked after highest correlation, in total and within groups. All statistical analyses were 

performed in R (R-Core-Team 2012) and map example (Appendix 3) was created in ArcMap 

(Esri 2012) .  
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Results 

Modeling available forage 

Adding LiDAR variables improved the models based on only forest properties from a 

field based forest inventory. Testing for the improvement of the LiDAR + Forest model over 

the Forest model showed a significant improvement for the models predicting RAW-summer 

biomass (p=0.002), pine biomass in winter (p<0.001) and the models predicting the total 

amount of biomass summer (p=0.007) and winter (p<0.001). The likelihood ratio test did not 

support inclusion of LiDAR variables for the models of RAW biomass in winter (p=1) (table 

3). Table 4-8 shows the estimates of the best models predicting available biomass of RAW 

species during summer (table 4), RAW in winter (table 5), pine winter (table 6) and the total 

amount of biomass summer (table 7) and winter (table 8).  For each table the three model 

groups are compared (Forest, LiDAR and LiDAR +Forest) and AIC values are compared 

 

 

Table 3: Comparing AIC values and p-value for log-likelihood test within target species using Forest model as 
the baseline model. 

 

 

 

The LiDAR-variables that improved the pure forest model were the height percentile-

variables (h20-h70). The ULCD variable was retained in 6 out of 10 models with LiDAR 

variables. ULCD was not present in LiDAR and LiDAR + Forest models predicting Pine 

biomass in winter (table 6). ULCD was also missing in the LiDAR + Forest models predicting 

total biomass summer and winter (table 7 and 8). The Spi variable was present in 9 out of 10 

LiDAR based models. Spi was not retained in the total biomass summer model (table 7). 

When predicting RAW biomass, summer and winter, cutting class was excluded from the best 

model when LiDAR variables were added to the Forest model (table 4 and 5). 

Total biomass Total biomass
summer winter

Forest model 4917.9 3163.0 2462.0 4704.0 5346.4

LiDAR + Forest  
Model 
p-values 0.0020 1.0000 0.0000 0.0076 0.0003

3171.0 4698.9 5335.1

Model group

Target species

RAW summer RAW winter Pine winter

4910.7 2456.9
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Table 4: Summer available RAW biomass. Comparison of three different mixed effects regression models 
predicting available RAW species forage during the summer including a model with variables from forest 
inventory, a model with LiDAR variables and a combined model which includes both categories of variables. 
The likelihood ratio test compares and ranks the tree models with p-values. *Reference= cutting class 1.           
** Reference = deciduous. *** Reference =high site index. 

 

 

 

RAW-summer
LiDAR  + Forest model

Fixed effects
β SE β SE β SE

Intercept 2.414 0.544 -0.548 0.833 0.140 0.964
Cuttingclass*

2 -0.423 0.516   -  -   -  -
3 -1.230 0.497   -  -   -  -
4 -0.054 0.521   -  -   -  -
5 -0.937 0.554   -  -   -  -

Treespecies**

pine -1.956 0.443   -  - -1.963 0.496
spruce -0.842 0.424   -  - -0.863 0.443

Siteindex***

Low 1.101 0.421   -  - 0.889 0.424

h20   -  - 1.215 0.536 1.245 0.506
h40   -  - -2.515 1.185 -2.569 1.111
h50   -  - 1.865 0.846 1.961 0.796
ulcd   -  - 17.011 4.377 12.281 4.301
spi   -  - -0.327 0.101 -0.389 0.097

Random effects
Stand number

Likelihood ratio test Df AIC BIC logLik χ2 χ2 df Pr(>χ2)

LiDAR model 7 4920.2 4950 -2453.1

Forest model 9 4917.9 4956 -2450.0 6.2873 2 0.0431

Forest + LiDAR model 10 4910.7 4953 -2445.3 9.2292 1 0.0024

Forest  model LiDAR model
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SD SD SD
1.724 1.797 1.678
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Table 5: Winter available RAW biomass. Comparison of three different mixed effects regression models 
predicting available RAW species forage during the winter including a model with variables from forest 
inventory, a model with LiDAR variables and a combined model which includes both categories of variables. 
The likelihood ratio test compares and ranks the tree models with p-values.  *Reference= cutting class 1.          
** Reference = deciduous. *** Reference =high site index. 

 

 

 

 

 

 

 

 

RAW-winter
LiDAR  + Forest model

Fixed effects
β SE β SE β SE

Intercept 2.211 0.621 -1.765 0.856 0.189 0.954
Cuttingclass*

2 -0.637 0.592   -  -  -  -
3 -1.402 0.574   -  -  -  -
4 -0.361 0.599   -  -  -  -
5 -1.129 0.637   -  -  -  -

Treespecies**

pine -2.460 0.506   -  - -1.904 0.523
spruce -1.652 0.485   -  - -1.519 0.510

Siteindex***

Low 0.942 0.482   -  -  -  -
h20   -  -   -  -  -  -
h40   -  -   -  -  -  -
h50   -  - 0.393 0.147 0.395 0.139
h70   -  -  -  -  -  -
ulcd   -  - 19.550 4.452 13.130 4.518
spi   -  - -0.323 0.106 -0.348 0.100

Random effects
Stand number

Likelihood ratio test Df AIC BIC logLik χ2 χ2 df Pr(>χ2)
LiDAR model 5 3172.1 3193.3 -1581.0
Forest model 9 3171.4 3209.6 -1576.7 0.00 2 1.0000

Forest+ LiDAR model 7 3163.0 3192.7 -1574.5 13.07 2 0.0015

LiDAR modelForest  model

Li
DA

R 
va
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SD
1.942

SD
2.034

SD
1.913
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Table 6: Available pine winter forage. Comparison of three different mixed effects regression models predicting 
available pine forage during the winter including a model with variables from forest inventory, a model with 
LiDAR variables and a combined model which includes both categories of variables. The likelihood ratio test 
compares and ranks the tree models with p-values. *Reference= cutting class 1. ** Reference = deciduous.      
*** Reference =high site index. 

. 

 

 

 

 

 

Pine-winter
LiDAR  + Forest model

Fixed effects
β SE β SE β SE

Intercept -4.434 1.053 0.862 1.300 -2.043 1.017
Cuttingclass*

2 2.318 0.828   -  - 2.287 0.800
3 0.040 0.836   -  - 0.764 0.822
4 -0.339 0.892   -  - 0.505 0.927
5 -0.369 0.914   -  - 0.302 0.902

Treespecies**

pine 3.765 0.744   -  - 3.533 0.706
spruce -0.604 0.830   -  - -0.985 0.831

Siteindex***

Low 1.332 0.845   -  -  -  -
h20   -  - 1.826 0.780   -  -
h40   -  -  -  -   -  -
h50   -  - -2.614 1.037   -  -
h70   -  - 1.223 0.594   -  -
ulcd   -  -  -  -   -  -
spi   -  - -0.423 0.176 -0.229 0.089

Random effects
Stand number

Likelihood ratio test Df AIC BIC logLik χ2 χ2 df Pr(>χ2)
LiDAR model 6 2505.4 2530.8 -1246.7
Forest model 9 2462.0 2500.1 -1222.0 49.41 3 1.065E-10

Forest + LiDAR model 9 2456.9 2495.1 -1219.5 5.06 0 2.2E-16

Forest  model LiDAR model

Fo
re

st
 in
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nt

or
y 
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SD
2.271

SD
3.158 2.188

SD
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Table 7: Total available summer forage. Comparison of three different mixed effects regression models 
predicting total available forage during the summer including a model with variables from forest inventory, a 
model with LiDAR variables and a combined model which includes both categories of variables. The likelihood 
ratio test compares and ranks the tree models with p-values.  *Reference= cutting class 1.                                    
** Reference = deciduous. *** Reference =high site index. 

 

 

 

 

 

 

 

Total biomass-summer
LiDAR  + Forest model

Fixed effects
β SE β SE β SE

Intercept 3.1744 0.3032 3.249 0.208 4.134 0.460
Cuttingclass*

2 0.1048 0.2857   -  - -0.036 0.282
3  -0.8838 0.275   -  - -0.880 0.267
4  -0.3637 0.2908   -  - -0.170 0.291
5  -1.0424 0.3082   -  - -0.943 0.301

Treespecies**

pine  -0.6435 0.2458   -  - -0.712 0.240
spruce  -0.4725 0.2377   -  - -0.481 0.231

Siteindex***

Low 0.805 0.235   -  - 0.671 0.234
h20   -  -   -  -  -  -
h40   -  -   -  -  -  -
h70   -  -   -  - -0.081 0.030
h50   -  -   -  -  -  -
ulcd   -  - 4.293 1.740  -  -
spi   -  - -0.092 0.024  -  -

Random effects
Stand number

Likelihood ratio test Df AIC BIC logLik χ2 χ2 df Pr(>χ2)
LiDAR model 4 4710.9 4727.8 -2351.4
Forest model 9 4704.0 4742.1 -2343.0 16.87 5 0.0047

Forest + LiDAR model 10 4698.9 4741.2 -2339.4 7.13 1 0.0076

Forest  model LiDAR model
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SD
0.971

SD
1.047

SD
0.942
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Table 8: Total available winter forage. Comparison of three different mixed effects regression models predicting 
total available forage during the winter including a model with variables from forest inventory, a model with 
LiDAR variables and a combined model which includes both categories of variables. The likelihood ratio test 
compares and ranks the tree models with p-values. *Reference= cutting class 1. ** Reference = deciduous.      
*** Reference =high site index. 

 

 

 

 

 

 

 

 

 

 

 

Total biomass-winter
LiDAR  + Forest model

Fixed effects
β SE β SE β SE

Intercept 2.046 0.445 2.868 0.317 3.021 0.495
Cuttingclass*

2 0.794 0.416   -  - 0.776 0.396
3 -0.794 0.404   -  - -0.474 0.394
4 -0.515 0.428   -  - 0.069 0.437
5 -1.019 0.449   -  - -0.634 0.440

Treespecies**

pine -0.413 0.356   -  - -0.818 0.355
spruce -1.337 0.348   -  - -1.524 0.336

Siteindex***  -
Low 1.287 0.347   -  - 1.220 0.331
h20   -  -   -  -  -  -
h40   -  -   -  -  -  -
h50   -  -   -  -  -  -
h70   -  -   -  -  -  -
ulcd   -  - 7.914 2.659  -  -
spi   -  - -0.193 0.037 -0.134 0.036

Random effects
Stand number

Likelihood ratio test Df AIC BIC logLik χ2 χ2 df Pr(>χ2)
LiDAR model 4 5362.3 5379.2 -2677.1
Forest model 9 5346.4 5384.6 -2664.2 25.83 5 9.61E-05

Forest + LiDAR model 10 5335.1 5377.4 -2657.5 13.36 1 0.00026
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Forest  model LiDAR model

SD SD SD
1.3291.5781.400
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Model evaluation summarized 

The fit of the models and the models ability to predict available biomass moose forage 

are expressed as the Pearson's product-moment correlation of the model fit and for the 

correlation between observed and predicted values within the validation data (20%) (Table 9). 

In general, we can say that the r (Pearson) for predicted and observed values was low for all 

models, ranging from 0.21 to 0.51.  Nevertheless, adding LiDAR variables to the forest model 

(LiDAR + Forest) improved the prediction ability to some extent.  The prediction ability (r for 

observed and predicted biomass) is basis for the ranking. The LiDAR + Forest model was in 

general highest raked within all groups of species and seasons (sub ranking).  

The best models invariably fitted the data well (r ranging from 0.86 to 0.89). However, 

the correlation between predicted and observed values in retained 20 % of the data 

(validation) was much lower. In this model validation the LiDAR + Forest models (r ranging 

from 0.38 to 0.51) always performed better than the pure Forest model (r ranging from 0.35 to 

0.49) which again always performed better than the pure LiDAR models (r ranging from 0.21 

to 0.37) (table 9, figure 4 and 5). The prediction ability (r for observed and predicted biomass) 

is basis for the ranking. The LiDAR + Forest model was in general highest ranked within all 

groups of species and seasons (sub ranking in Table 9).  

 

Table 9: Model evaluation. Comparison of three different mixed effects regression models predicting available 
forage including models with variables from forest inventory, model with LiDAR variables and a combined 
model including both categories of variables. The rankings are based on r (Pearson) observed /predicted from 
validation dataset, 20 %). 

  

r (pearson) Sub 
obs/pred ranking

LiDAR + Forest model 0.38 1 8
Forest model 0.35 2 11
LiDAR model 0.21 3 15
LiDAR + Forest model 0.46 1 3
Forest model 0.38 2 9
LiDAR model 0.37 3 10
LiDAR + Forest model 0.51 1 1
Forest model 0.49 2 2
LiDAR model 0.29 3 12
LiDAR + Forest model 0.42 1 4
Forest model 0.41 2 5
LiDAR model 0.27 3 13
LiDAR + Forest model 0.41 1 6
Forest model 0.40 2 7
LiDAR model 0.26 3 14

Ranking

Pine-winter

Total biomass-summer

Total biomass-winter

Forage Model

RAW-winter

RAW-summer
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Figure 4: Plotted values for predicted and observed biomass (validation dataset, 20 %) within different target 
species and seasons. (1) RAW species summer, (2) RAW species  winter and (3) Pine winter. Forest 
models (a), LiDAR models (b) and Forest + LiDAR models (c).  
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Figure 5: Plotted values for predicted and observed biomass (Validation dataset, 20%) within different target 
species and seasons. (4) Total biomass summer and (5) Total biomass  winter. Forest models (a), LiDAR 
models (b) and combined models (c). 

Discussion 
 

Quantifying forage availability  

This study found that LiDAR could improve previous models describing forage 

biomass at a regional scale. LiDAR variables significantly contributed to explain variation in 

moose forage biomass for all tree species and seasons, and always increased the prediction 

ability on independent data although in some cases only marginally. My study is, to date, the 

only study that has investigated this possibility of using LiDAR to remotely sense forage 

biomass in a boreal forest landscape. Although the LiDAR variables improved the 

explanatory power of models of van Beest (2010), they did not produce adequate models 

when used on their own. The models using only LiDAR variables had the poorest fit to the 

dataset and made the least usable model out of the three model types. The forest inventory 

data most difficult to replace may be the species type. LiDAR have trouble to detect and 

distinguish between tree species which requiring high point densities (Li et al. 2013).  
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In some ecosystems, remote sensing of resources is an established and frequently used 

method. In reindeer management remote sensing of pastures is a common practice in order to 

maintaining an appropriate population size relative to the carrying capacity of the pasture 

species (Colpaert et al. 2003; Johansen & Karlsen 2005). These techniques use satellite based 

infrared (IR) images to recognize vegetation and lichen cover based on calibration from field 

data (Gilichinsky et al. 2011). The method also performs well in predicting lichen biomass 

using vegetation indices (Nordberg & Isrse 1998). A major challenge associated with remote 

sensing of selected resources on the ground is to measure the relevant components and ignore 

the irrelevant components. Nordberg & Isrse (1998) reported that the lichens had to represent 

more than 50 % of the total vegetation cover to give a reliable result. 

The challenging part of remote sensing of moose forage is due to the fact that a major 

part of the moose forage is in a forest landscape with more or less closed canopy (Edenius et 

al. 2002). The moose forage is a part of the forest canopy or the understory and the task is 

therefore to use LiDAR to separate forage biomass information from the rest of the forest 

biomass. In a Swedish study by Kalén & Bergquist (2004) biomass available for browsing 

were  predicted using tree morphological variables. The study found a relationship between 

increasing tree height and browse available biomass up to 4 m height for pine. The approach 

to predict biomass using tree characteristics is more or less similar to the method which was 

basis for the biomass prediction in van Beest (2010) and basis for my field data. Models using 

tree height could be used combined with LiDAR for prediction of forage biomass, this 

because of the ability of LiDAR to predict tree heights (Nilsson 1996; Næsset & Bjerknes 

2001; Yamamoto et al. 2011). There is, however, not a simple straight forward way to 

distinguish individual trees using LiDAR. The use of individual tree crown (ITC) techniques 

may detect individual trees but the method is weak when it comes to predicting small trees 

such as forage trees for moose (Breidenbach et al. 2010; van Leeuwen & Nieuwenhuis 2010; 

Larsen et al. 2011)  

 

 

 



H.P. Ruud (2013): LiDAR as a tool for remote sensing of moose (Alces alces) forage biomass 

21 
 

LiDAR contribution to improvement   

 The species selected as target species were selected with the knowledge of moose 

preferred browsing species from previous studies (Fremming 1999; Edenius et al. 2002; 

Månsson et al. 2007; Wam & Hjeljord 2010). After joining the LiDAR and field data together 

the number of plots (a number of field plots was without LiDAR cover) with birch species 

was so low that it was decided to exclude birch from further analyses. Birch is a highly 

preferred forage species during the summer period, especially if they occur in large quanta in 

the landscape (Hörnberg 2001; van Beest et al. 2010; Wam & Hjeljord 2010). It would be 

important to predict also birch biomass in LiDAR models of forage and with the inclusion of 

more field plots with birch, the same modeling exercise could be done also for birch.  

The LiDAR variables included in the best models capture relevant physical and 

ecological aspects of the habitat. The moose differs from other grazing herbivore being a 

browsing herbivore utilize the higher parts of the understory vegetation typically in the area 

0,5 -2,5 above ground (Kalén & Bergquist 2004) and being selective among tree species and 

individual trees (Shipley et al. 1998). The main part of the tree species preferred by moose is 

light-demanding pioneer species (den Herder et al. 2009) most frequently found on disturbed 

areas, such as clear-cuts, or under a less dense canopy (Gromtsev 2002). There is therefore 

obvious that the understory vegetation plays an important role as moose forage.   Previous 

research has focused on the cover of the understory vegetation, but less on the volume aspect 

of the understory. Kerns & Ohmann (2004) used climatic and topological information as 

explanatory variables to develop regression models for predicting the cover of deciduous 

shrub cover in Oregon coastal province. Wing et al. (2012)  had the same approach but used 

LiDAR metrics as explanatory variable. The method was applicable to predict the cover of 

understory Ponderosa pine (Pinus ponderosa) using an understory LiDAR cover density 

variable. A modified version of the same variable was also used in my study and was present 

in 6 out of 10 LiDAR based models. Martinuzzi et al. (2009) also used LiDAR for mapping 

the understory shrubs and also snags. The approach was also here the presence or absence of 

understory vegetation.  

A quantification of gaps from the LiDAR data also provided valuable model input. To 

approach the  canopy 3D aspect Suchar & Crookston (2010) investigated the hypothesis of the 

relationship between canopy density and the presence of the understory. They found no 

relationship between the canopy cover and the understory cover. Nevertheless, Smith et al. 

(1997) discuss the effects of canopy gaps and the effects of the size and spatial placement of 
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the gap on understory vegetation. It seems that the size of the gap and the height of the 

surrounding canopy play an important role in the understanding of the effects of canopy gaps 

and the presence of understory vegetation. This is reflected in the LiDAR derived variable 

spacing index (Spi) used in my study. Here, the size of the gap is weighted by the height of 

the canopy, the rationale being that a gap surrounded by a tall canopy is less important for the 

occurrence of understory vegetation than the same size gap surrounded by a lower canopy. 

The variable present completely different information from that available in the forest 

inventory variables and turned out to be important in 9 out of 10 LiDAR models in the present 

study. Bater et al. (2009) reported that LiDAR metrics such as height percentiles was a 

promising variable for predicting dead trees in a forest landscape. The advantages of height 

percentiles and also coefficient of variation (hcv) of height echoes made it possible to detect 

and distinguish trees without foliage from the rest of the stand.  Height percentiles variables 

were also present in my models predicting RAW biomass in winter, which is a season without 

foliage for the RAW species.  

Models prediction ability  

The lack of predictability is most likely due to the differences in spatial resolution 

between the LiDAR data and the field data. The field data was sampled for a different purpose 

not requiring the same accuracy. Using field plot locations obtained with differential GPS 

(accuracy < 1 dm) would be more appropriate for accurate spatial matching with LiDAR data. 

LiDAR data was obtained 2 years after the field sampling. This may have affected the results 

to some extent. The effect is probably minor, but the target species in this study are early 

successional species with rapid juvenile growth (Smith et al. 1997) so there could be some 

changes from one year to the next. Johnson & Gillingham (2008) reported that prediction 

success was strongly influenced by sampling bias and positional errors. This is consistent with 

the relatively low prediction ability of my models. Future projects should strive for accurate 

spatial positioning. A suitable approach to field data sampling in future research within this 

topic would be to use the biomass approach like the one used in van Beest et al. (2010) and 

Kalén & Bergquist (2004) in combination with national forest inventory data as the field  

training- and validation data. The national forest inventory data is data captured with high 

accuracy (Skogoglandskap 2008) and will therefore solve the problem with differences in 

spatial accuracy between field data and LiDAR data. The second consideration is to also 

capture data parallel in time.    
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The use of remote sensing is a trade-off between quality requirements and data capture 

cost. LiDAR data with high point density are expensive but could improve the ability to 

classify tree species significantly (Li et al. 2013). If we disregard the cost-level, LiDAR has 

several possibilities. The combination with optical data is promising and is already in use for 

different purposes such as in combination with color infrared (CIR) orthophoto  to predict 

stem volume (Straub et al. 2009) or tree species identification (Holmgren et al. 2008). This 

type of data is referred to as multi-sensorial data  and will in the future also include hyper 

spectral data such as the promising EnMap (Environmental Mapping and Analysis Program) 

(Koch 2010). This is a satellite based system that delivers high resolution data and are 

expected to improve species identification significantly (Schwind et al. 2012; Koch 2010). 

More accurate species identification could replace forest inventory variables such as dominant 

tree species used in the Forest models in my study.  

Conclusion and management implications 

I suggest that the main reason for a low performance in the field validation is lack of 

spatial precision of the field data. The lack of predictability inhibits the use of existing 

multipurpose LiDAR data and existing field validation data sampled with handheld GPS. To 

know if we can achieve models with much better predictability, which is needed for 

managers, new data with improved spatial resolution needs to be sampled. My thesis is a 

promising first attempt, also internationally, to use LiDAR to model the food abundance and 

distribution of a forest dwelling large herbivore. For national wildlife management, it is a 

starting point in implementing LiDAR as a tool to quantify regional carrying capacity of 

moose. Taking into account that the LiDAR data is expensive it is necessary to capture data 

for more than one purpose. Data necessary for predicting forage biomass is a by-product from 

already systematized scans in connection with forest inventories. The models could therefore 

be implemented in ordinary forest inventory and make forage biomass data available in forest 

plans alongside traditional forest resources. This study concludes that LiDAR can improve the 

ability to predict moose forage biomass if variables from traditional forest inventory, such as 

site index, dominant tree species and cutting class, are added. More research is needed to 

reveal the full potential of LiDAR as a tool for remote sensing of moose forage biomass.  
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Appendix 1 
Table 10: Field data attributes.   

 

 

 

Characteristics Range Mean n

Training data (80 %)
Bonitet  8-23 13,4

high (8-14) 131
low (17-23) 381

Dominant treespecies
Decidious 12

Pine 205
Spruce 181

Cuttingclass
1 80
2 118
3 130
4 97
5 87

Altitude (m)  20-660 308,6
Hillshadea  41-246 173
Slope ( o )  0-35 12,7
Skyviewb  72-94 84,3

Validation data (20 %)
Bonitet  8-23 12,8

high (8-14) 29
low (17-23) 99

Dominant treespecies
Decidious 29

Pine 60
Spruce 39

Cuttingclass
1 30
2 22
3 40
4 23
5 13

Altitude (m)  20-583 313,9
Hillshadea  41-246 174
Slope ( o )  0-35 11,7
Skyviewb  74-98 83,9
aindex of solar incidence 
 bpercentage of sky not obstructed by terrain features



H.P. Ruud (2013): LiDAR as a tool for remote sensing of moose (Alces alces) forage biomass 

30 
 

Appendix 2 
Table 11: The LiDAR data attributes 

Training data (80 %) Validation data (20 %)  
LiDAR 
variables Range Mean Range Mean 

dground 0.089 
 
- 0.983 0.482 0.089 

 
- 0.977 0.467 

d0.5 0.002 
 
- 0.209 0.042 0.002 

 
- 0.146 0.040 

d2.5 0.001 
 
- 0.214 0.065 0.002 

 
- 0.137 0.063 

d4.5 0.004 
 
- 0.828 0.411 0.005 

 
- 0.828 0.431 

h0 0.500 
 
- 0.710 0.510 0.500 

 
- 0.710 0.511 

h10 0.536 
 
- 9.084 3.137 0.540 

 
- 5.970 3.208 

h20 0.602 
 
- 11.542 4.645 0.630 

 
- 8.665 4.767 

h30 0.670 
 
- 13.315 5.869 0.670 

 
- 10.670 6.080 

h40 0.950 
 
- 14.800 6.971 1.060 

 
- 12.580 7.250 

h50 1.060 
 
- 16.890 8.083 1.360 

 
- 13.955 8.387 

h60 1.200 
 
- 18.840 9.193 1.750 

 
- 15.190 9.494 

h70 1.370 
 
- 20.580 10.416 3.020 

 
- 16.420 10.705 

h80 1.580 
 
- 22.470 11.802 3.400 

 
- 18.020 12.032 

h90 1.198 
 
- 24.840 13.600 4.000 

 
- 20.610 13.780 

hmax 9.201 
 
- 32.180 19.820 7.090 

 
- 29.520 19.820 

hcv 32.540 
 
- 123.070 50.420 34.270 

 
- 101.400 48.440 

hmean 1.340 
 
- 16.154 8.261 2.229 

 
- 13.179 8.465 

hqmean 2.124 
 
- 17.573 9.194 2.596 

 
- 14.164 9.381 

hsd 1.332 
 
- 6.918 3.972 1.332 

 
- 6.215 3.993 

cpd 0.008 
 
- 0.891 0.484 0.008 

 
- 0.891 0.501 

ulcd 0.004 
 
- 0.262 0.072 0.004 

 
- 0.262 0.070 

spi 0.018 
 
- 19.587 7.044 0.057 

 
- 18.248 7.245 
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Appendix 3 
Example of use: pine forage biomass mapped in ArcGIS after calculation in R (R-Core-Team 

2012) using raster calculator in the “raster” package (Hijmans & van Etten 2013). The raster 

is classified using quantil classification.  

 





 

 
 

 


