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“Life histories lie at the heart of biology; no other field brings you closer to the underlying 

simplicities that unite and explain the diversity of living things and the complexities of their 

life cycles.”  

 

Stephen C. Stearns (1992) 
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The objective of this study was to compare among-tributary variation in life-history and 

migration in brown trout (Salmo trutta L.) living in the Leira river system, Nannestad 

municipality. The results were to be discussed in both a general biological context as well as 

potential management implications, with special emphasis on the Water Framework Directive. 

Data was sampled in four tributaries and one river station over six sampling rounds during 2012 

and 2013. The fish were sampled using electrofishing and fyke nets. The fish were tagged with 

PIT-tags and the resulting mark-recapture data were modelled under a Cormack-Jolly-Seber 

model structure. Two PIT antennas were mounted to monitor large-scale migrations within the 

main river, but they did only function for a short period during the last part of the study. Scales 

were retrieved for age and growth analyses. 

There were population differences in summer survival, second-and third-year growth and 

maturation sizes. In general, the Leira brown trout displayed a short life cycle, characterized by 

rapid early-life growth, early maturation and short life-span (< 6 years). There was a general 

trend with more rapid life cycles the further downstream. We suggest this gradient to be caused 

by increasing environmental stress (reduced water quality and increased inter-specific 

competition) downstream and possible lack of habitat. The population displaying the most rapid 

life cycle (Rotua) seems to have little suitable habitat for >0+ individuals and possibly also 

experience thermal stress in warm summers due to little vegetation coverage. An interesting find 

pertinent to management institutions is that we found no 0+ in the main river indicating that 

recruitment exclusively takes place in the tributaries. In accordance with this, we did find 

evidence of fluvial-adfluvial potamodromy, but the two larger tributaries seem to predominantly 

hold stationary or fluvial potamodromous individuals. 

The findings are clearly in line with general life-history theory that predicts rapid early-life 

growth and high adult mortality in relation to juvenile mortality to result in early maturation. 

Furthermore, the unpredictable and highly variable Leira system favors early maturation and 

short life cycles with high reproductive effort.  

Based on our findings the brown trout population density seem to provide information sensitive 

the water quality, but since there is an inter-specific competition aspect into this as well, an 

eventual brown trout water quality assignment index will need to take this into account. Since 

most migration interpretations in this thesis are only circumstantial a continuation of the PIT-

antenna monitoring program should be secured so as to complete a full-year monitoring. 



 

Life-history traits are generally tightly linked to fitness and hence also to population viability 

(Stearns 1992). Understanding what is behind both temporal and spatial (i.e., among populations) 

variation in such traits is therefore pertinent to both ecological and evolutionary studies (Stearns 

and Hoekstra 2005). In the study of a species’ life-history strategy there are many traits to 

consider. Size at birth, growth pattern, size- and age at maturation, semelparous- or iteroparous 

reproduction and longevity are some of the main features to evaluate (Stearns 1992). Either if you 

are working as a wildlife manager in terrestrial- or fish manager in aquatic environments a 

profound knowledge about an organism’s life-history is crucial to be able to make good decisions 

and recommendations to management institutions regarding developments, stipulating quotas for 

game or preservation of nature resources. A profound knowledge of life-history aspects is 

particularly important regarding the latter when there is a general consensus that the environment 

is imposing detrimental threats like pollution, destruction of habitats and human-induced climate 

change (Primack 2012). When making management decisions, it is also important to understand 

the dynamics between environmental changes and the adaptations in the different species. A 

species or a population is considered to have local adaptations where certain trait values 

potentially would maximize fitness according to the current environmental conditions (Stearns 

and Hoekstra 2005). Human or natural alterations of the environment could lead to new 

adaptations for the species by “adjusting” certain traits to maximize fitness (Grant and Grant 

1995, Haugen 2000). It is thus important to acknowledge the local adaptations in the involved 

populations when making management decision that affect habitat quality and/or harvesting 

regimes. In line with this, you must take into account that your decisions as a manager potentially 

could alter the current local adaptations in the species.  

 

Life-history traits are considered evolutionary compromises between costs and benefits where the 

mean is to maximize fitness (Hutchings et al. 1999). The way these and other traits (e.g., 

behavioral traits like migration) combine, creates the diversity of life-histories that we see in 

nature (Stearns 1992). Life-history theory seeks to explain these major features of a life cycle and 

how they affect fitness through natural-selection processes (Stearns 1992, Campbell et al. 2008). 

These selection processes are believed to vary over different stages of the organisms’ life cycle, 



such as periods of high mortality rates, e.g. in early life stages, during winter-, draught-, and 

flood periods or post spawning period (Conover and Schultz 1997). The basic idea is that 

evolution through natural selection “favors” certain life-history traits, under given 

environmentally conditions, to enhance an organism’s chances to survive and reproduce with 

success, i.e., the organism’s fitness (Campbell et al. 2008), with a genetic and/or phenotypic basis 

(Roff 2002). The diversity of traits is bound together in constraining relationships of trade-offs 

(Stearns 1992). Moreover, measured phenotypical variations between populations could be a 

result of adaptations (i.e., genetic differentiation) and/or phenotypic plasticity (i.e., the same 

genotype has different phenotypic values across environmental gradients) (Schlichting and Smith 

2002).  

 

The diversity of life-histories among plants and animals are often very difficult to generalize 

because the natural world is so dynamic and stochastic both in time and space, which in turn will 

have a considerable effect on the demography of the populations (Charlesworth 1994, Haugen 

2000), and the organisms have to constantly adapt to the changes in the environment (Campbell 

et al. 2008). These variations in life-history patterns and traits are not only common at species 

level but also at population- and individual level (Roff 2002), which has been observed in the 

family of Salmonidae, among others (Klemetsen et al. 2003, Jonsson and Jonsson 2011).  

 

In many animals, migration and life-history are closely connected (Roff 2002). Migration is here 

distinguished from dispersal, which most often means a spreading of individuals away from 

others (Begon et al. 2006). Dispersal is a trait of greatest importance as regards species 

persistence and evolution, and is central in metapopulation theory (Clobert et al. 2001, Hanski 

and Gaggiotti 2004). Migration, as defined by Lucas and Baras (2001), is «a strategy of adaptive 

value, involving movement of part or all of a population in time, between discrete sites existing 

in an n-dimensional hypervolume of biotic and abiotic factors, usually but not necessarily 

involving predictability or synchronicity in time, since inter-individual variation is a fundamental 

component of populations». The potential benefits of migration give us three principal categories: 

reproductive, feeding and refuge migration (Lucas and Baras 2001). Hence, we can see how these 

are directly linked to important life-history traits like reproduction (timing and extent), growth 

and survival. However, there are also costs associated with migration, and whether the best 



strategy is to stay or move depends on what gives the greatest fitness effect after benefits and 

costs have been balanced (Jonsson and Jonsson 1993). For instance, moving to a new habitat may 

mean better access to food, but at the same time it can increase the risk of predation.  

 

Studies on life-history have been conducted on numerous species – both in aquatic- and terrestrial 

environments (Stearns 1992). Brown trout (Salmo trutta L.) is regarded to be well suited for these 

types of study (Olsen 2000), and an important freshwater fish receiving a lot of management 

attention in Norway (Qvenild 1994). The variability in growth, maturation and longevity, its 

diversity in migratory behavior- and strategy, great ability to move through steep rivers and 

disperse and establish populations in new watercourses, marked homing behavior and diverse 

environmental tolerances, make the brown trout to a species with one of the most diverse and 

complex life-histories (Jonsson 1989, Klemetsen et al. 2003, Jonsson and Jonsson 2011). Brown 

trout was earlier considered to be divided up in about 50 different species (Behnke 1986, Elliott 

1994, Klemetsen et al. 2003), which gives an idea of the ecological variations in the brown trout 

(Elliott 1994).  

 

The age and size at sexually maturation in brown trout varies greatly (Klemetsen et al. 2003), and 

the variation is especially high among individuals and populations where the fish has access to 

many potentially feeding habitats (Jonsson 1989, Jonsson and Jonsson 2011). Temperature plays 

an important role in the maturation and it has been observed a gradient in age from south to north 

in Europe (Jonsson and Jonsson 2011). In addition, it has been observed that brown trout mature 

at a higher age in cold mountain lakes than lowland sites (Jonsson et al. 1991b, Klemetsen et al. 

2003). A general consensus states that an early maturation (i.e., small size and low age) increases 

the probability to reproduce before dying (Bell 1980). An early maturation in brown trout yields a 

short juvenile stage, which is considered to be a critical period with typically high mortality rate 

(e.g., predation, competition) (Bell 1980, Olsen 2000). Moreover, an early maturation could also 

mean less time spent in unfavorable habitats (e.g., feeding migrations in lakes and estuaries) 

relative to predation- and disease risk (Jonsson and Gravem 1985, Jonsson 1989, Klemetsen et al. 

2003). The costs of early maturation include a shorter lifespan, probably due to high cost of 

reproduction in terms of post spawning mortality (Wootton 1998). In addition, an early 

maturation normally will decrease fecundity and egg size in female brown trout which will affect 



the reproductive output (Gregersen et al. 2006). It has been found a positive correlation between 

both fecundity and egg size and the size of mature females, thus it is suggested that increased size 

therefore increases female fitness (Klemetsen et al. 2003). The maturity age and size also varies 

between the sexes where males usually mature at a younger age and more varied size than the 

females (Klemetsen et al. 2003). This corresponds with the often observed predominance of 

females among the migrating individuals in brown trout, suggesting that females have a higher 

selective benefit from a migration-induced higher growth rate than males (Klemetsen et al. 2003). 

Age at maturity is typically correlated with longevity where long lived brown trout matures at 

higher ages than those with a short life span (Jonsson and L'Abée-Lund 1993).  It has also been 

observed a negative correlation between growth rate and age at maturity within  brown trout 

populations (Alm 1959, Jonsson and Jonsson 2011). The longevity of brown trout is influenced 

by temperature (Pauly 1980). Accordingly, Jonsson et al. (1991a) found a significant trend on 

increased longevity towards north.  

 

The brown trout is well-known for its migratory behavior, particularly its strong homing behavior 

– both anadromous and freshwater resident brown trout tend to return to their natal areas for 

spawning (Harden Jones 1968, Jonsson and Jonsson 2011). They also exhibit feeding migration, 

as when juveniles leave their natal stream to grow large in a nearby lake, and refuge migration to 

avoid periods of unfavorable conditions, like a stream drying out in the summer. The different 

habitat preferences change during the life cycle and individual fish can minimize fitness 

reduction if they move between these habitats at the right times (ontogenetic niche shifts) (Lucas 

and Baras 2001). Studies on brown trout also show examples of how life-history traits can affect 

migration patterns. For example, juvenile growth rate can have an effect on when or if a brown 

trout will smoltify and migrate to sea (Jonsson 1985). Migration should not be considered as a 

single strategy, but rather as a strategy that can be expressed along a continuum in time and space 

(Lucas and Baras 2001, Cucherousset et al. 2005). Anadromy gets much attention as a migratory 

strategy in brown trout, but potamodromy – migrations occurring entirely in freshwater – is a 

common and diverse trait in this species (Northcote 1997). All potamodromous categories, 

defined by Nothcote (1997), are found in brown trout: fluvial potamodromy refers to migration 

within a stream or river, fluvial-adfluvial potamodromy refers to migration between a main stem 

river and tributaries, lacustrine-adfluvial refers to migrations between a lake and rivers or streams 



feeding that lake, and allacustrine potamodromy refers to the same except that the fish migrates 

to rivers or streams flowing out of the lake. The ultimate drivers behind all these migratory 

strategies remain enigmatic, but are likely to be complex and not necessarily congruent among 

different systems. Pertinent to management, migrations between habitats of different 

environmental qualities, such as good water-quality habitats in nursery streams versus lower 

water-quality habitats in main-river stretches utilized by larger individuals, impose challenges in 

terms of using brown trout as indicator species in water framework directive related monitoring 

programs. 

 

In this study, we compare subpopulations of brown trout that all live at least most of their 

juvenile lives in respective tributaries that all empty into the same main river. The water quality, 

in terms of phosphorus loading and water turbidity, decreases as one moves down-stream. In 

particular, we will explore the following questions: 

• Are there inter-population differences in life-history traits?  

o If so: Are there systematic associations between environmental conditions and 

life-history trait values? 

• Are there inter-population differences in migration (i.e., fluvial-adfluvial potamodromy) 

tendency? 

o If so: Are there associations between life-history traits and migration tendency? 

Finally, we will explore the management relevance of the findings. 



 

Our study species in this study on inter-population variation in life-history traits and migration is 

the brown trout (Figure 1). The study site is situated in an inland area (Figure 3) without access to 

coastal areas, and since the nearest accessible lake (Øyeren) is located several tens of kilometers 

downstream our study site, it is reasonable to assume that in this current system we are dealing 

with stream-dwelling brown trout. The latter will thus chiefly be described here although several, 

if not all, varieties overlap when it comes to life-history strategies.  

The brown trout belongs in the family of Salmonidae. The species is iteroparous and it is 

identified as a fish with high ecological variability (Klemetsen et al. 2003). From having its 

origin chiefly in Europe and being confined to a few refuges during the last ice age it is now 

considered having a worldwide geographical distribution. The brown trout’s success as a 

disperser is due to a wide environmental tolerance and migratory behavior, but the ultimate cause 

for the worldwide geographical distribution is introductions by humans (Klemetsen et al. 2003, 

Jonsson and Jonsson 2011). 

            Figure 1. Brown trout captured in Tøla during field work. 



 
The brown trout is well known to have a wide variation in size, growth rate, food- and habitat 

preference both within and among water courses, and is considered to be one of the most well-

adapted fishes in northern waters (Klemetsen et al. 2003, Jonsson and Jonsson 2011). The water 

temperature is one of the major factors that constraints the distribution of brown trout 

(MacCrimmon and Marshall 1968, Elliott 1994, Jonsson and Jonsson 2011). According to a study 

of Forseth et al. (2009) the lower- and upper temperature limit of  for growth was measured to 5 

°C and 23 °C, respectively, with the optimal growth temperature being about 13-18 °C, although 

Elliott et al. (1995) found a lower and upper temperature limit of 3.8 °C and 21.7 °C, 

respectively, through a water tank experiment. For the development of embryo the optimal 

temperature is between 0 °C and 15 °C (Elliott 1981, Jonsson and Jonsson 2011). Sufficient 

oxygen saturation in the water is also an important factor, especially during embryo development, 

and low water velocity with combination of sedimentation of silt and clay can be detrimental for 

embryo survival (Soulsby et al. 2001, Wood and Budy 2009, Jonsson and Jonsson 2011).  

The brown trout normally starts its life cycle in a stream or a river, although spawning in lakes 

occurs occasionally in some populations (Scott and Irvine 2000, Brabrand et al. 2002, Klemetsen 

et al. 2003). Spawning occurs typically from September to December, but also as late as 

November to March, depending on altitude, latitude and water temperature (Armstrong et al. 

2003). In addition, the time periods of incubation and endogenous larval feeding are both 

negatively temperature dependent (Crisp 1988, Elliott and Hurley 1998, Klemetsen et al. 2003). 

Hatching occurs in the successive spring, and during the first few weeks the alevins feed on their 

yolk sac before emerging from the gravel approximately 20 mm long (Klemetsen et al. 2003). 

The fry can be quite sedentary at first and will often start feeding in the proximity of the hatchery 

area, but if the environmental conditions are harsh, they can migrate to more favorable areas 

(Nordwall et al. 2001, Klemetsen et al. 2003). The young brown trout is known to be aggressive 

and territorial where intense competition for the resources is very common (Kalleberg 1958, 

Heland 1999, Lahti et al. 2001, Klemetsen et al. 2003). 

The preference of habitat is related to physical factors such as substrate, water depth, water 

velocity and shelters (Heggenes 1989, Heggenes et al. 1999, Saltveit and Heggenes 2000). The 

choice of habitat depends on the availability and intraspecific competition often constrains the fry 

to utilize shallow areas close to shore while larger and older dominant individuals colonize 



deeper and slow-flowing pools constituting more energy-conserving microhabitats (Bagliniere 

and Champigneulle 1982, Heggenes et al. 1999, Saltveit and Heggenes 2000). Studies have 

shown that brown trout juveniles prefer areas where the snout water velocity does not exceed 20 

cm s-1, and preferably between 0 and 10 cm s-1 (Greenberg et al. 1996, Heggenes et al. 1999, 

Heggenes 2002, Jonsson and Jonsson 2011). Another factor affecting not only the habitat choice, 

but also the diurnal activity, is seasonal variation in light and temperature (Jonsson and Jonsson 

2011). While brown trout tend to be active throughout the day during the summer, this seems to 

change in the winter where the general activity level drops (Klemetsen et al. 2003, Jonsson and 

Jonsson 2011). Activity during winter is chiefly time spent on feeding and this is usually a 

nocturnal activity where the brown trout chooses slow-flowing areas as backwaters, pools and 

areas near the riverbank (Heggenes et al. 1993, Saltveit and Heggenes 2000). During day time it 

tends to seek to refuges in a coarse bottom substrate with overhead cover and snout water 

velocity close to 0 cm s-1 (Saltveit and Heggenes 2000).     

After the yolk stage the fry are dependent on habitats that allow for catching drifting invertebrates 

with low risk of getting caught by other predators. Typically, at this stage the brown trout 

exploits coarse stony shallow areas with moderate water velocity where they can take shelter 

while monitoring the drift of invertebrates (Heggenes et al. 1999, Saltveit and Heggenes 2000, 

Klemetsen et al. 2003, Jonsson and Jonsson 2011). A coarse substrate also restrains the brown 

trout’s aggressive behavior against other individuals because of visual isolation (Saltveit and 

Heggenes 2000).  

The brown trout is an opportunistic predator where all types of benthos are potentially part of the 

diet, but this varies according to the size and the experience of the individuals (Bridcut and Giller 

1995, Saltveit and Heggenes 2000, Klemetsen et al. 2003, Jonsson and Jonsson 2011). At the 

early stage of the brown trout’s life span larvae of chironomids (Chironomidae) are very 

important in the diet and can become a bottleneck for the young of the year as the competition for 

the chironomids can be substantial, not the least from other species (Saltveit and Heggenes 2000). 

As mentioned earlier the size, age at maturity and longevity vary greatly and are to a high extent 

connected together and with choice of habitat (Southwood 1977, 1988, Poff and Ward 1990, 

Jonsson and Jonsson 2011). In 4-year old fish a range in size from 20 gram for stream-dwelling 

individuals to 500-1000 gram for piscivorous and anadromous individuals is not unusual 



(Jonsson and Sandlund 1979, Jonsson 1985, Klemetsen et al. 2003). There is an evident sexual 

difference in both size and age at maturity where males often attain maturity at smaller size and 

earlier age than females. According to Jonsson and Sandlund (1979) males can attain maturity 

with a size below 10 cm and one year of age. This is in accordance with the well-known sneak 

strategy in males where size is suggested to be an independent factor in reproductive fitness 

(Gross 1984, Jonsson and Jonsson 2011). 

 

The study was conducted in the river Leira with tributaries (south-east Norway, 60°20’N, 10° 

98’E) (Figure 3A). From an elevation around 700 meters in Gran municipality, Oppland county, 

the river runs 100.7 km to its outlet around 100 meters above sea level in river Nitelva, just 

upstream the large lake Øyeren (NVE 2013). Mean water discharge in the outlet is 13.3 m3 s-1 

(Pettersson 2005). The total catchment area comprises 662.6 km2 (NVE 2013), of which 380 km2 

is covered in marine deposits, including thick layers of clay (Vannregion Glomma 2012). The 

higher parts are dominated by conifer forests, mainly on granite or syenite rock, or moraine 

deposits (NGU 2013a, b). This area consists of many lakes and the water here is clear. The river 

enters the area of marine deposits, which is dominated by agriculture, at Vollaugmoen about 200 

meters above sea level. Downstream from here the water gets more and more turbid. Average 

concentration of suspended sediment at Krokfoss is calculated to be 122 mg L-1 (Bogen et al. 

2002). However, the sediment transport varies a lot within and among years. In general, the 

sediment transport follows the fluctuations in water discharge, which because of hardly 

permeable grounds in the catchment area tends to increase rapidly after rainfall and snowmelt. 

The wettest periods are in the fall, and five months have an average temperature below freezing 

(Figure 2). Leira is mostly slow-flowing after Vollaugmoen, interrupted by some waterfalls. After 

Krokfoss there are no more waterfalls and the river gets highly meandering toward its outlet. 

Leira is a protected water course and there are no power stations in the river, which is virtually 

unregulated (Nannestad kommune 2009).  



 
 

Figure 2. Mean (black), average of maximum (red) and average of minimum (blue) air temperature, and 

average precipitation (grey bars) at Gardermoen (5-6 km east of Leira, see Figure 3). Data from 

Meteorologisk Institutt (2013). 

 

This study focuses on the lower middle parts of the river, in Nannestad municipality, Akershus 

county (Figure 3B). Within this area, four stations in separate tributaries were chosen for fish 

sampling and tagging. Those are (from north to south): Tøla (TØL), Eskerudbekken (ESK), 

Rotua (ROT) and Nordbybekken (NOR). The stations are given the same name as the stream they 

are part of. One short stretch of the main river was also electrofished in all sampling rounds. This 

station was named Kringlerstryket (KRI). All stations will be described in more details below. In 

addition, three stretches of the main river (LEI_1, LEI_2 and LEI_3) were electrofished with boat 

at one occasion (see 2.3.1. Fish sampling). The main river is within the study area classified as a 

fifth order river upstream the conjunction with Rotua and as a sixth order river downstream (NVE 

2013). Downstream from this river stretch there are several waterfalls which may act as migration 

barriers for fish. The landscape is characterized by large fields intersected with a number of 

ravines formed by streams eroding in the marine deposits. Eutrophication is considered a problem 

in this part of Leira, and the extent of it increases in a downstream direction (Borch et al. 2008, 

Haaland and Gjemlestad 2012). The main anthropological sources are thought to be agriculture 

runoff and sewage, in addition to the natural source of phosphorus in the clay. 
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Figure 3. Maps showing the catchment area of Leira (A) and the study area (B). Stretches that were electrofished are marked in 

red. The asterisks (*) indicate main river waterfalls. The black lines at Låkedalen and Homledalen indicate the location of PIT 

antennas. Map source: Statens Kartverk (The Norwegian Mapping Authority). 



The lower part of Leira has a very high diversity of fish species by Norwegian standards, due to 

the fact that it runs into the lake Øyeren. This lake holds the highest number of fish species (ca. 

25) of any lake in Norway (Brabrand 2002). In the middle part of Leira the diversity is lower. 

During the study, six other species were observed in addition to trout. Eurasian minnow 

(Phoxinus phoxinus) and European brook lamprey (Lampetra planeri) were found in the main 

river and in all the tributaries. Alpine bullhead (Cottus poecilopus) was found in the main river 

and all tributaries apart from Nordbybekken. In Eskerudbekken, one individual of arctic char 

(Salvelinus alpinus) (in bad condition) was found. Chub (Leuciscus cephalus) and ruffe 

(Gymnocephalus cernuus) (one individual) were found only in the main river, downstream 

Låkedalen. Common dace (Leuciscus leuciscus) is also believed to be found here (Toverud 

2001), but was not found by us. According to local inhabitants, Northern pike (Esox lucius) is 

found all the way up to the Ånesruddalen waterfall, possibly as far upstream as Låkedalen (pers. 

comm. Karl Henrik Laache, 01.10.2013). 

 

Habitat characterizations were performed in May and June 2013. The characterization results are 

summarized in Table 1 and in the following paragraphs. The descriptions of the stations are more 

or less subjective and approximate for many of the dimensions, but nonetheless they should give 

a correct impression of the stream sections in question, particularly for comparisons among the 

stations. All the characterizations were performed by us. The dimensions that were characterized 

may vary by many factors, especially as a result of water discharge. The water discharge in the 

main river at Kringlerdalen (available from the Norwegian Water Resources and Energy 

Directorate) the day of characterization is therefore given as a proxy of water discharge in the 

tributaries. Stream gradient within a station was calculated using the length of the station, as 

measured in field, together with approximate elevation difference obtained from digital map with 

a contour interval of one meter (The Norwegian Mapping Authority, www.norgeskart.no). The 

structure of a stream section was separated into pools and riffles. Temperature recorders 

(iButton® Thermochron DS1921Z-F5) were mounted in all stations during June 2013 to October 

2013. The recorded temperatures are plotted in Figure 4 together with air temperature data from 

the weather station at Gardermoen. Unfortunately, the Nordbybekken temperature logger did not 

provide data due to technical problems.
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Table 1. Values obtained from habitat characterizations of the sampling stations in Tøla, 

Eskerudbekken, Rotua and Nordbybekken. 

aDate of characterization: 30.05.2013 (discharge at Kringlerdalen: 11.8 m3/s) 
bDate of characterization: 31.05.2013 (discharge at Kringlerdalen: 10.6 m3/s) 
cDate of characterization: 06.06.2013 (discharge at Kringlerdalen: 12.8 m3/s) 
dStrahler (1957) 
eNVE (2013) 

 



Tøla (Figure 5) is the 

northernmost of the tributaries 

included in the study. Most of it 

drains areas above marine 

deposits, but the sampling station 

was located below this boundary. 

Here, the stream is mostly slow-

flowing and the substrate is 

dominated by fine-grained 

particles. Undercut banks are 

common and woody debris jams 

somewhere form impoundments. 

The riparian zone is narrow, but mostly intact. It is dominated by grey alder (Alnus incana) 

and bird cherry (Prunus padus). The station ends at a large culvert under a road, where a 

tributary named Åsbekken enters, and starts 100-200 meters downstream the point where 

another tributary, Vikka, enters. The lowest parts of these two tributaries were included in the 

third sampling round, in October 2012. In total, 52 

and 18 trout were captured and tagged in Vikka 

and Åsbekken, respectively. 

Eskerudbekken (Figure 6) is the smallest of the 

four tributaries. The station ends at the outlet into 

Leira. A small waterfall, potentially a fish 

migration barrier, marks the start. The riparian 

vegetation is dominated by grey alder and bird 

cherry. Overhanging vegetation is substantial and 

so is woody debris within the stream. Gravel 

dominates the substrate and undercut banks are 

common. 

 

 

 

Figure 5. Woody debris jam in Tøla. 

Figure 6. Eskerudbekken. 



Rotua (Figure 7) is by far the 

largest of the tributaries. Its 

sources comprise several lakes 

upon the woody hills and most 

of its stretches are located above 

the marine deposits limit. The 

sampling station though is 

located below this limit, ending 

about 300 meters upstream the 

outlet and starting where the 

tributary Elgbekken enters. The 

sampling station is characterized 

by long riffles with coarse substrate. The riparian zone is also here dominated by grey alder 

and bird cherry, but the vegetation is more varied, with elements of Norway spruce (Picea 

abies), birch (Betula pubescens) and rowan (Sorbus aucuparia). Overhanging vegetation and 

woody debris are far scarcer than in the other tributaries. 

Nordbybekken (Figure 8) 

originates from two small lakes 

just above the marine deposits 

limit. The stream therefore runs 

almost entirely through marine 

deposits. This is particularly 

apparent in the lower part, where 

clay is common in the substrate 

and the water easily gets turbid by 

suspended particles. Also, the 

amount of overhanging vegetation 

and woody debris is substantial 

Figure 7. Rotua. 

Figure 8. Nordbybekken.



here. Grey alder and bird cherry dominate the riparian vegetation. The stream runs through a 

ravine, occasionally with very steep sides. In the middle of the station there is a steep section 

of small step pools which may be hard for fish to pass. 

 

Kringlerstryket (Figure 9) in the main river Leira was not habitat characterized in detail as the 

other stations. The station is no longer than 100 meters and has many of the same 

characteristics as the station in Rotua, but with even less overhanging vegetation and woody 

debris. 

Figure 9. Kringlerstryket. 

 

 



 

A total of 1091 trout were captured (including recaptures) between May 2012 and October 

2013 (Table 2). Out of these, 799 were tagged with individual passive integrated transponder 

(PIT) tags. In total, 54 of the tagged fish were later recaptured and their PIT-tag successfully 

scanned. The 243 trout not tagged were either small (< 120 mm) or captured in the last 

sampling round. Length structures based on capture site and sampling round are shown in 

Figure 10 and Figure 12.  

The fish were captured using a portable backpack electroshocking gear (Steinar Paulsen: 1983 

FA2 No. 7, 700/1400 volt, 35-70 Hz, pulsed-DC) (Figure 11). This is one of the most 

important sampling gears for fish in wadeable running waters (Bohlin et al. 1989, Forseth and 

Forsgren 2009). The catchability and risk of injury is affected by a range of environmental 

factors, the size of the fish (Bohlin et al. 1989, Borgstrøm and Qvenild 2000) and the 

experience and skills of the personnel (Forseth and Forsgren 2009). It has been demonstrated 

that the catchability increases exponentially with the fish size (Bohlin et al. 1989). 

During a sampling round all stations were electrofished once (one pass) in an upstream 

direction by two or three persons. One person performed the electroshocking and the fish 

were retrieved using dip nets handled by all in the personnel. The captured fish were stored in 

a black 20 liters bucket. The person with the shocking gear walked in front and performed 

electroshocking in pulses of five to ten seconds. To maintain sufficient temperature and 

oxygen-levels fresh water was regularly added to the bucket with fish. Large leafs were added 

on the surface to minimize visual stress for the fish and preventing it from jumping out of the 

bucket. In addition, the density of fish carried in the bucket was held low – also to minimize 

the stress.  

 

 

 

 

 



Table 2. Overview of number of brown trout captured, tagged, recaptured and captured, but not tagged during 

the study. 



Figure 10. Length histograms for brown trout based on station and sampling round (number provided 

in the top row of the respective panel headers). 
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                                         Figure 11. Electrofishing in Rotua.



Figure 12. Station-specific length histograms of brown trout captured during electrofishing with 

boat in Leira. The dashed lines represents the smallest and largest upper length limit for October 

0+ brown trout in the tributaries, as decided from length distributions based on station and year.  

 

          Figure 13. Electrofishing with boat in Leira. 
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During the field work, we experienced difficulties in using the portable shocking device in the 

main river due to high water velocity and discharge. We therefore decided to use a boat with 

integrated electroshocking gear for one of the sampling rounds (Figure 13). This was achieved 

by hiring expertise from Norwegian Institute for Nature Research (NINA). This method was 

performed by drifting more or less passively downstream, and two persons (i.e., the two of us) 

were placed on each side of the bow where both controlled the electroshocking independently 

of each other and also captured the fish using dip nets. One person (Jon Museth, NINA) held 

the boat on course with the bow facing downstream by using a set of oars. The fish were 

contained in two 50 liters water tanks where fresh water was added regularly to keep the 

oxygen level high and the temperature low. The method is described in detail in Museth et al. 

(2013). Because the electroshocking device in the boat recorded the number of seconds it was 

giving pulses, we were able to get a rough estimate of fish density in terms of number of fish 

captured per minute of electroshocking. Station LEI_1 resulted in 2.64 brown trout per minute 

(if considering only the most upstream stretch of this station the number gets 3.66 per 

minute), LEI_2 resulted in 2.82 per minute, and LEI_3 resulted in 1.26 per minute. 

During field period number three (October 2012), a fyke net originally designed for eel 

(Anguilla anguilla) was used in each tributary (two in Rotua) to capture spawning individuals 

of brown trout (Figure 14). This catching gear had an entrance with a funnel that lead the fish 

into an enclosed area that hinder escape after entrance. The fyke nets were used four nights in 

each of the streams, except in Rotua, where it was used three nights only because of 

difficulties with high water discharge. The fyke net was placed in a pool or behind a rock in a 

backwater with low water velocity to prevent captured fish from getting exhausted and 

stressed by the currents. The fyke net was fixed to the stream bottom using rebars and rocks, 

and we stretched chicken wire from the stream edges to the fyke net to lead the fish into the 

trap. This passive capture technique is dependent on the organism being in activity 

(Borgstrøm and Qvenild 2000), which was the case for the migratory brown trout heading for 

the spawning areas. According to Borgstrøm and Qvenild (2000) the fyke net will in theory 

have approximate equal catchability for fish larger than a certain size to a upper limit 

dependent on the diameter of the funnel. 



Figure 14. Set-up of fyke net in Rotua. Photo: Thrond O. Haugen. 



Following capture, the fish were measured and tagged. The fish were held in a black 20 liter 

plastic bucket with fresh water that got supply of oxygen from an air pump. The fish was 

sedated by moving it to a plastic bucket with benzocaine in an ethanol solution with mixing 

ratio of 5-7 ml per 10 liter of water. The brown trout was regarded sedated when showing no 

reflex to a gentle pressure to the caudal peduncle. The sedated fish was then moved over to 

the measuring board where the total length was measured. An ethanol-disinfected PIT tag was 

inserted into the fish after first applying a 2-3 mm surgical incising into the abdominal cavity 

between the pelvic fins using a scalpel (Figure 15). The size of the PIT tag used was selected 

based on the fish size. For fish in the 70-120 mm length interval 12.0 mm x 2.12 mm PIT tags 

(HDX ISO 11784/11785) manufactured by Oregon RFID (http://www.oregonrfid.biz/) were 

used. For fish larger than 120 

mm a 23 mm long and 3.65 mm 

in diameter PIT-tag was used 

(ISO 11784/11785 compatible, 

Oregon RFID). Before insertion 

of the tag the unique numeric 

ID code was read from the tag 

using a handheld HDX/FDX 

reader (Agrident APR 350, 

http://www.agrident.com/Produ

cts/APR350.html). Fish smaller 

than 50 mm were not tagged. 

The sex and maturity stage was also registered if possible. Finally, the adipose fin was cut to 

ease the separation of the marked individuals from the unmarked during field rounds two 

through six. From field round three through five we also took samples of 4 to 10 scales from 

fish >120 mm. The scales were dried in envelopes holding information about each individual. 

The scales were collected from the area above the lateral line between the dorsal fin and 

adipose fin, corresponding to the area where the first few scales usually form (Borgstrøm 

2000). The fish was then placed in a bucket holding fresh water to recover from the 

anesthesia. When the trout was able to swim actively on its own it was released back to the 

stream in an area with low turbulence and water velocity, preferably in the proximity of where 

Figure 15. Use of scalpel before PIT tag is inserted. 



it was captured. All the recaptures were registered during field round two through six. None 

of the individuals in round six was tagged.  

According to Roussel et al. (2000), “the PIT tag itself is an encapsulated glass cylinder that 

consists of an integrated circuit chip, chapacitor and antenna coil, which needs an external 

energy source to operate. An electromagnetic field generated by the reading device (e.g., 

handheld or a PIT antenna) induces current in the antenna coil which energizes the integrated 

circuit, which transmits its signal to the reading device.” PIT tagging has been used in CMR 

studies since the mid-1980s, and is a powerful tool today when monitoring mobile fishes like 

salmonids (Acolas et al. 2007). Generally speaking, many studies have shown a high tag 

retention rate, and no significant effect on the mortality- and growth rate (Ombredane et al. 

1998, Gries and Letcher 2002), although some studies have shown opposing results 

(Sigourney et al. 2005, Dieterman and Hoxmeier 2009). 

Two stations with PIT antennas were placed in the main river in July 2013 to identify 

potential migratory pattern among the individuals of brown trout. One was placed in 

Låkedalen (Figure 16) which is situated in the middle section of the study area between the 

stream Eskerudbekken and Rotua, while the second antenna was placed in Homledalen which 

is in the lower section of the study area between Rotua and Nordbybekken. These areas were 

picked on the basis of minimizing the risk of damage to the antenna unit in case of high water 

discharge and maximize the potential rate of detection, but also based on which areas in the 

main river we considered important regarding pollution in terms of leakage of nutrients from 

agricultural land and sewage. The two antennas were mounted as horizontal loops at the 

bottom. Both were wired to remote tuner boards that were connected to an antenna reader box 

(TIRIS RI-CTL MB2A; Oregon RFID, USA) and supplied with an 110Ah 12V battery or a 12 

V charger (Vanson 60W) attached to the mains, creating a magnetic field in the antenna loop, 

covering the total water column. When a tagged fish passed over the antenna loop the tag was 

energized, and the antenna number, date, time, and tag number were recorded by the reader 

box (Zydlewski et al. 2006). The PIT antennas’ ability to detect the tagged brown trout was 

dependent on that the fish swam close to the antenna loop that covered the riverbed. 

According to Roussel et al. (2000) the antennas can detect tags from a distance up to one 

meter, but when we tested the device in the field the detection distance was no more than 25-

30 cm. The antennas in Låkedalen and Homledalen were operative from September 4th and 



November 12th 2013, respectively, and were still running when this thesis got published 

December 16th 2013. 

 

                  Figure 16. Installation of PIT antenna in Låkedalen.

 



To determine the age and back-calculate the growth of the brown trout, we used the scales 

collected during sampling round three through five. For some individuals, we only had 

samples of regenerated scales. Regenerated scales are usually assumed to be unusable when 

analyzing growth and age because the growth data prior the regeneration of the scale is 

“eroded”. In agreement with the supervisor, we decided to use regenerated scales with the 

assumption that the first growth year was “lost”. The scales were placed between two 

microscope slides and an image was recorded by using a stereoscopic microscope (Leica 

MS5, 16x magnification) with a mounted digital camera (Leica DFC320, 0.63x 

magnification), and the image-capture program Image-Pro Express version 6.3.0.531 for 

Windows XP/Vista (Media Cybernetics, Inc.).  

Image-Pro Express was further used to assign age and back-calculate the growth of each 

specimen. To do so, we measured the radius of the scale, from the focus to the outer edge, 

followed up by locating and marking the transition between the outer edge of the winter 

growth and the beginning of the 

spring growth, known as the 

“winter zone” (Figure 17). The 

winter- and summer growth were 

identified from areas with small 

inter-circuli distances and wide 

inter-circuli distances, 

respectively. Together they 

represent one growth year and 

each of the “winter zone” 

markings represent a completed 

year of life (Haraldstad 2011). 

The distance from the focus to 

each completed year of life in 

addition to the measurement of 

the distance from the focus to the 

outer edge of the scale was used in an equation to back-calculate growth in all the years since 

hatching. The growth of the scale is considered to be a proportional reflection of the growth of 

the fish (Borgstrøm 2000). The summer- and winter bands are both comprised of circuli. As 

Figure 17. Scale with two winter zones, sampled from brown 

trout in Rotua. 



the fish grows the circuli accumulates on the scale (Dahl 1910, Borgstrøm 2000). A low 

growth rate gives few circuli and also a short distance between them. This is normally the 

case in the winter when access to food is low compared to spring and summer. Many circuli 

with long distance between them is a typical sign of good growth (Dahl 1910, Borgstrøm 

2000). 

 

Meteorological data was obtained from the Norwegian Meteorological Institute and their 

climate database “eKlima” (Meteorologisk Institutt 2013). Air temperatures were retrieved 

from a weather station at Gardermoen (No. 4780) and snow data from the weather station at 

Ukkestad (No. 4740). Since no data was available for ice cover on rivers and streams, snow 

cover data was used as a proxy for this. “Snow-off day” was defined as the day in the spring 

when snow for the first time did not cover the entire ground. Short periods with snow cover 

later in the spring were ignored, so was periods with bare ground in the winter. “Bare-ground 

days” was defined as the number of days from snow-off day to the first day of lasting snow 

cover in the following autumn.  



    

The capture-mark-recapture (CMR) data were analyzed using the software MARK version 6.1 

(White and Burnham 1999). Due to a low recapture rate (54 out of 799 marked individuals 

were recaptured once or more) the data did not allow for advanced model structures with 

many parameters to be estimated. Even though the sampling design was a multi strata one 

(sensu Arnason 1973), we collapsed all spatial structure and used an ordinary Cormack-Jolly-

Seber (CJS) approach (Lebreton et al. 1992) with station identity as a group effect. This could 

be justified by the fact that none of the recaptured individuals were recaptured in other 

stations than the one they were initially tagged. CJS models account for variation in recapture 

probabilities (p), but cannot separate mortality from emigration when estimating survival 

probabilities. Hence, survival estimates under this modeling approach constitute “apparent 

survival”, denoted φ (phi). Owing to just one recapture in Kringlerdalen, data from this station 

was not included in the CMR analyses. Neither was the two individuals recorded by PIT 

antenna. 

A CJS analysis is conducted based on individual capture histories that comprise an array of 1s 

and 0s, one number for each sampling occasion. A “1” denotes that the individual has been 

recaptured at a given occasion and a “0” that it was not recaptured. Under the assumptions 

that all capture histories are independent and individuals within a group (e.g., age group 

and/or station) behave similarly probabilities for recapture and apparent survival can be 

estimated at given occasions/periods using the maximum log likelihood method (Lebreton et 

al. 1992).  

The parameterization of CJS models can be visualized in a fate diagram (Figure 18). From the 

fate diagram, we can follow individuals tagged at occasion k that are captured and released at 

subsequent occasions. In the diagram, we follow the Markovian steps describing survival and 

recapture processes involved over four capture occasions (Figure 18A). φ1 represents the 

apparent survival probability between the first sampling to the second occasion. p2 represents 

the recapture probability at occasion 2. In panel B of Figure 18, parameterization with a 

tagging-age structure is demonstrated. Here, φa=1 represents survival over the first period 

following tagging. This parameter can be estimated to be similar over all survival periods (but 

only for newly tagged individuals) or to vary over all periods (i.e., φa=1,k). The same applies to 

the p-parameter.   



Parameters were fitted using the maximum log likelihood method. All parameters can in 

theory be estimated as being constant over all occasions/periods or time dependent. In 

addition, and more ecologically relevant, the parameters can be estimated as functions of 

covariates of interest. These covariates can both be occasion-specific (e.g., density, water 

discharge) and individual-specific (e.g., size). The most supported model structure was 

selected based on AICc (Burnham and Anderson 1998). 

 

A 

 
B 

Figure 18. A: Fate diagram with corresponding Cormack-Jolly-Seber parameterization. B: An example 

parameterization for the current study setting under an age-structured model. p1 cannot be estimated due to lack 

of preceding tagging information. su=summer, wi=winter, Ma=May, Au=August, Oc=October 
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All other statistics other than CMR-modelling was conducted using R (R Development Core 

Team 2012).Sex-specific among-station differences in age distribution were tested using 

contingency-table 2-tests under the null-expectation of homogenous distribution. This was 

done using the chisq-procedure in R. 

 

Effects from various continuous (e.g., temperature and length of growth season) and 

categorical (e.g., station/stream) variables on back-calculated growth rates and various size 

responses were quantified by fitting generalized linear models (GLM) (MacCullagh and 

Nelder 1989) using the glm-procedure in R. Corresponding anova effect tests were retrieved 

using the anova-procedure in R. Post-hoc contrast test conducted to explore among-group 

level differences (i.e., among stations) were performed using the Tukey Honest Significant 

Difference test (Yandell 1997) using the TukeyHSD-procedure in R. 

 

Model selection was conducted using Akaike’s Information Criterion (AIC) (Akaike 1974). 

This model selection tool avoids multiple testing and favors models that best balance bias and 

precision under the principle of parameter parsimony maximization (Burnham and Anderson 

1998). 



Program RELEASE goodness of fit tests showed no sign of lack of fit as all GOF-tests 

provided p-values larger than 0.05 (Table 3). We therefore concluded that core assumptions 

behind the CJS-model were fulfilled and continued with further analyses. 

 

Table 3. Goodness of fit test statistics for fully time-dependent CJS-model. Test 2 tests for deviation 

from assumptions relevant for the survival process and test 3 for the recapture process. 

 

 

The fitting of candidate models to the CMR data resulted in two most supported models with 

fairly similar AICc values. The ten most supported models are listed in Table 4. Since the 

difference between the top two models was marginal, we have chosen to present beta 

parameter estimates from both of them (Table 5 and Table 6). The model structure for 

recapture probability is identical for all of these ten models and was selected under a fully 

time-dependent apparent survival model.  
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The most supported model differentiated between apparent summer, autumn and winter 

(including spring) survival (Table 5). Apparent summer survival probability was fitted with a 

common intercept for all stations, but different effects of length at tagging. In Nordbybekken, 

there was no evidence for a length effect on apparent summer survival. Due to short survival 

period, apparent autumn survival was fixed to 1 for all stations. It should be mentioned that 

similar close-to-one parameter estimates resulted when fitting constant apparent autumn survival. 

For apparent winter survival, all populations had similar quadric effects of length at tagging. The 

most supported recapture probability model structure entailed a common intercept and common 

effect of fish length, but with stream- and sampling-round-specific effect of water discharge, 

except for Eskerudbekken that had a constant recapture probability. 

The second-most supported model had differential stream intercepts and length effects for 

apparent summer survival (Table 6). For Nordbybekken, apparent summer survival was fixed to 

1. Model structure was otherwise identical to the most supported model.  

The second-best model was not able to estimate the intercept for apparent summer survival in 

Eskerudbekken, and none of the models were able to estimate a reliable length effect on apparent 

summer survival for this station. 

Table 5. Beta estimates (logit scale) from the most supported CMR model (model 1). SU=Summer 

(round 1-2 & 4-5), AU=Autumn (round 2-3 & 5-6), WI=Winter (round 3-4). 

 



Table 6. Beta estimates (logit scale) from the second-most supported CMR model (model 2).

SU=Summer (round 1-2 & 4-5), AU=Autumn (round 2-3 & 5-6), WI=Winter (round 3-4). 

  



The recapture probability was negatively correlated with discharge and positively correlated with 

fish length (Figure 19). The model fitted the data best when not accounting for a discharge effect 

in Eskerudbekken. 

 
Figure 19. Predicted recapture probabilities in different stations, based on discharge and brown trout 

length. 95 % confidence intervals are shown with dashed lines. L=Large-sized trout (300 mm), 

M=Medium-sized trout (200 mm), S=Small-sized trout (100 mm). 
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According to the most supported model, fish length had a weak positive effect on apparent 

summer survival probability in Tøla, and a negative effect on the same trait in Rotua (Figure 20). 

However, the confidence intervals are wide for both stations. Apparent summer survival seems to 

be relatively high for all length classes in Nordbybekken. The model did not manage to calculate 

reliable apparent summer survival probabilities for Eskerudbekken. 

 
Figure 20. Predicted monthly apparent summer survival probability as an effect of brown trout length, 

based on the most supported model. 95 % confidence intervals are shown with dashed lines. 
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The most supported model estimated a combined apparent winter survival probability for the four 

stations (Figure 21). It shows a positive effect of fish length up to a point between 150 and 200 

mm, and a strong negative effect beyond these lengths, but the uncertainty is greatest for the 

largest lengths.     

Figure 21. Predicted monthly apparent winter survival probability, for all stations combined, as an 

effect of brown trout length. 95 % confidence interval is shown with dashed lines. 
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Length-at-age differed among stations (Figure 22). However, the data material is scarce for ages 

4 and 5 and varies among stations. No brown trout were determined to be older than 5 years and 

few reached lengths beyond 300 mm. The only significant length differences were found between 

brown trout in Tøla and Rotua. Two- and three-year old brown trout in Tøla were on average 25 

and 39 mm longer than brown trout at the same age in Rotua, respectively (Tukey HSD post-hoc 

tests: p < 0.001 and p = 0.004).

Figure 22. Empirical growth in five Leira brown trout populations in 2012 and 2013. Age was 

determined from scale analysis. 
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The number of 0+ brown trout captured in October 2013 was considerable lower than in October 

2012 (Figure 23). No 0+ were captured in Nordbybekken, Kringlerstryket or during boat 

electrofishing in the main river. 

Figure 23. Length distributions for October 0+ brown trout captured in Tøla, Eskerudbekken and 

Rotua in 2012 and 2013. 

 

The variation in 0+ lengths (Figure 23) was best explained by a fully factorial model with station 

and year as explanatory variables (Table 7). There were significant differences to be found both 

between stations and year (Table 8 and Figure 24). 
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Table 7. AIC table for models fitted to the empirical October 0+ length data. 

 

 

Table 8. Parameter estimates and corresponding ANOVA test statistics for the linear model testing 

station and year effects on October 0+ lengths. R2
adj = 0.171. 

 



Figure 24. Predicted October 0+ lengths with 95 % confidence interval (vertical bars), as function of 

station and year. Different letters indicate significant difference (based on Tukey HSD post-hoc tests). 

Predictions were derived from the most supported model – provided in Table 8.  
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In general, the brown trout in the Leira system show rapid growth during their first two years of 

life (Figure 25). Differences in growth among stations for the three first years are presented in 

Figure 26. 

Figure 25. Box-and-whiskers plots of back-calculated length as function of age (A), and back-

calculated growth rate as function of growth year (B). The boxes entail 50% of the observations and the 

whiskers span 90% of the observations. Thick horizontal lines represent the median value. 
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Figure 26. Box-and-whiskers plots of back-calculated length at age 1 as function of station (A), back-

calculated second-year growth rate as function of station (B), and back-calculated third-year growth 

rate as function of station (C). The boxes entail 50% of the observations and the whiskers span 90% of 

the observations. Thick horizontal lines represent the median value. 
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Variations in back-calculated length at age 1 were best explained by two nearly equally supported 

models fitted effects from March and April temperatures, and March and June temperatures, 

respectively (Table 9). Both models explain almost 28 % of the variation – a relatively high value 

for growth models with two explanatory variables. The two models have almost identical AICc 

values, and we have therefore chosen to present parameter estimates and plots derived from both 

models (Table 10-Table 11 and Figure 27-Figure 28). According to the models, mean March 

temperature has a large positive effect on length at age 1, but the effect seems to be reduced by 

high April or June temperatures. However, if the mean March temperature is low, then high April 

or June temperatures seem to have a positive effect on length. 

 

Table 9. The ten most supported models, based on AICc, to explain variations in back-calculated length at 

age 1.  



Table 10. Parameter estimates and corresponding ANOVA test statistics for the general linear model 

testing the effect of mean March and April temperatures on back-calculated length at age 1. R2
adj = 

0.278.

 

Figure 27. Predicted back-calculated length at first winter (shown as isoclines) as function of mean 

March and April air temperatures. Predictions were derived from the most supported model – provided 

in Table 10. 
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Table 11. Parameter estimates and corresponding ANOVA test statistics for the general linear model 

testing the effect of mean March and June temperatures on back-calculated length at age 1. R2
adj = 0.278. 

 

 

Figure 28. Predicted back-calculated length at first winter (shown as isoclines) as function of mean 

March and June air temperatures. Predictions were derived from the second-most supported model – 

provided in Table 11. 

 

 

Mean June temperature, °C

M
ea

n 
M

ar
ch

 te
m

pe
ra

tu
re

, °
C

13 14 15 16

-2

-1

0

1

2

3

4



Variations in back-calculated second-year growth were best explained by an additive model 

taking into account snow-off day and station (Table 12). Station was included in all of the five 

most supported models. The most supported model predicts high second-year growth rates for 

later snow-off days (Table 13, Figure 29 and Figure 30). The growth is apparently better in Tøla 

and Eskerudbekken than in Rotua and Kringlerstryket, with Nordbybekken being the station with 

the lowest second-year growth rate. However, confidence intervals for Nordbybekken and 

Kringlerstryket are large. 

 

Table 12. The ten most supported models, based on AICc, to explain variations in back-calculated 

second-year growth rate. 



Table 13. Parameter estimates and corresponding ANOVA test statistics for the general linear model 

testing the effects of snow-off day and station on back-calculated second-year growth rate. R2
adj = 0.286.

Figure 29. Predicted second-year growth rate as a function of snow-off day and station. Predictions 

were derived from the most supported model – provided in Table 13. 
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Figure 30. Predicted second-year growth rate as a function of snow-off day and station. Each station is 

here plotted separately with 95 % confidence interval (dashed lines). Predictions were derived from 

the most supported model – provided in Table 13. 

Variations in back-calculated third-year growth rate were best explained by only taking number 

of bare ground days into account (Table 14). According to this model, the number of bare ground 

days has a weak negatively effect on third-year growth (Table 15 and Figure 31). The second- 

and third-most supported models also include one explanatory variable only – snow-off day and 

station, respectively. Snow-off day and bare ground days are correlated (r = -0.872, p < 0.001), 

and the effect of snow-off day on third-year growth is relatively similar to the effect of snow-off 

day on second-year growth. The third most supported model shows a significant difference in 

third-year growth between brown trout in Eskerudbekken and Rotua (Table 16 and Figure 32). 
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Table 14. The ten most supported models, based on AICc, to explain variations in back-calculated 

third-year growth. 

Table 15. Parameter estimates and corresponding ANOVA test statistics for the general linear model 

testing the effects of bare ground days on back-calculated third-year growth. R2
adj = 0.067. 

 



Figure 31. Predicted third-year growth rate with 95 % confidence interval (dashed lines), as a function 

of bare ground days. Predictions were derived from the most supported model – provided in Table 15. 

Table 16. Parameter estimates and corresponding ANOVA test statistics for the general linear model 

testing the effects of station on back-calculated third-year growth. R2
adj = 0.104. 
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Figure 32. Predicted third-year growth rate with 95 % confidence interval (vertical bars), as a function 

of station. Predictions were derived from the third-most supported model – provided in Table 16. 
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There was a significant among-station variation in age distribution of mature males (Table 17). In 

general, mature males in Rotua were younger than in Tøla and Eskerudbekken.  

 

Table 17. Contingency table with expected (Exp) and observed (Obs) numbers of mature males in 

different age classes, with corresponding 2-statistics.  

Our data had few age-determined mature females, and we found no significant among-station 

variation in age distribution for this group (Table 18). 

Table 18. Contingency table with expected (Exp) and observed (Obs) numbers of mature females in 

different age classes, with corresponding 2-statistics.  



The length distribution for mature individuals varied greatly among stations for both sexes 

(Figure 33). Accordingly, the most supported model analysing variation in length of mature fish 

comprised an additive station and sex effect (Table 19). Parameter estimates from this model are 

presented in Table 20. As visualised in the prediction plot (Figure 34), mature individuals in the 

upper tributary stations (Tøla and Eskerudbekken) were larger than in the lower ones. The same 

upstream-downstream pattern was apparent also for the main-river stations (i.e., LEI_1 and 

LEI_2 > LEI_3). 

Figure 33. Density plot based on length, of immatures, mature males and mature females in each of 

the stations. 
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Table 19. AIC table for models fitted to the data of length of mature fish.

Table 20. Parameter estimates and corresponding ANOVA test statistics for the general linear model 

testing the effect of sex and station on length of mature brown trout. R2
adj = 0.195. 



Figure 34. Predicted length of mature males and females as a function of station. Predictions were derived from 

the most supported model – provided in Table 20. 
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Eskerudbekken 25.10.2012 was recorded by the PIT-antenna in Låkedalen 05.11.2013. One 

brown trout tagged in the northernmost station in the main river (LEI_1) 30.09.2013 was 

recorded by the PIT antenna in Låkedalen 26.10.2013. 
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In our study on brown trout inter-population life-history variation in the Leira river system, we 

found evidence of significant among-stream variation in most traits. The key findings were 

differential summer survival (low in Rotua), differential individual growth (less sustained growth 

in lower stations) and differential maturation (earlier maturation in lower stations). In addition, 

but less convincing, we found evidence of differential degree of fluvial-adfluvial potamodromy. 

These findings will be discussed in light of life-history theory, habitat- and environmental 

gradients in the river system. 

 

According to the most supported models, apparent summer survival is quite different among 

stations, but the uncertainties here are large (Figure 20). Tøla and Nordbybekken seem to provide 

a high summer survival probability for all length classes. Both these streams are characterized by 

a relatively good access of deep pools (Table 1). This can be crucial for brown trout survival in 

hot and dry summers. Under such conditions the water-covered area available for fish and 

drifting food is reduced, which in combination with low oxygen concentrations and high 

temperature can increase mortality (Elliott et al. 1997, Jonsson and Jonsson 2011). Also, one can 

imagine that less water in the stream will make the fish more vulnerable to terrestrial predators, 

e.g. mink (Mustela vison), which is present in this area (Heggenes and Borgstrøm 1988). Pools 

can provide needed refuges from such detrimental factors. It should be mentioned that the 

summer of 2013 was very dry, and this could be a possible explanation of the low number of 0+ 

captured in autumn 2013. Tøla and Nordbybekken also provide considerable shelter opportunities 

due to well-developed vegetation canopy, and good access to large woody debris and undercut 

banks, which have been found to have a significant positive effect on survival in brown trout 

(Finstad et al. 2007). In Rotua, this kind of shelter is much scarcer, and the pool frequency is also 

considerable lower (Table 1). Furthermore, the summer temperature in Rotua is notably higher, 

and with considerably higher diel variation, than Tøla and Eskerudbekken (Figure 4). More solar 

radiation because of less overhanging vegetation cover is probably the most important reason for 

this. These observations can be part of the explanation why the survival probability is lower in 



Rotua. However, it is important to keep in mind that what we have estimated is apparent 

survival. Only one stretch in every station was electrofished. In Rotua, this stretch account for 

approximately 4.3 percent of the total stream length. It is plausible that small-scale within-stream 

movements result in low encounter rate. Within the station there are few good spawning grounds, 

due to the dominating substrate being too coarse, so a possible explanation could be that mature 

individuals migrate further upstream to more suitable spawning grounds. Or, they migrate 

downstream into Leira (for summer/winter refuges). The same within-stream movement may as 

well be the case for Tøla, but the access to suitable spawning substrate is higher here than in 

Rotua.  

Our models were not able to calculate good estimates of apparent summer survival probability for 

brown trout in Eskerudbekken. The reason is probably little data. No individuals were captured 

there during the first sampling round and the majority was captured in the two autumn rounds, 

which included large proportions of mature individuals and yearlings. However, the models 

predicted low survival probability in small Eskerudbekken individuals and high probability in 

large individuals. Eskerudbekken was regarded the easiest stream to cope with in relation to 

recaptures and internal migration. The reasons for this were low discharge and that we sampled 

all the entire area from the outlet up to a waterfall considered to block further upstream fish 

movement. Non-recaptured individuals are therefore very likely to have either died or emigrated 

to the main river. Our deduction is that Eskerudbekken is a pronounced nursery tributary where 

mature brown trout enter, spawn, and leave in autumn. The yearlings probably emigrate before 

their first winter or during early spring in their second year. This explains the low over-summer 

apparent survival of small individuals (Figure 20). If survival is zero for small individuals (as 

indicated in the figure) – the population would be in big problems! Early emigration from the 

natal stream as an adaptation to avoid detrimental hydrological conditions is known from other 

salmonid streams (Borgstrøm and Heggenes 1988, Titus and Mosegaard 1989, 1992). 

Eskerudbekken is small with few deep pools and drought and bottom freezing might be a limiting 

factor during summer and winter, respectively. 

The selected winter-survival model predicted survival to decrease from lengths around 200 mm 

and beyond – in all study tributaries Figure 21. The increase in mortality rate for larger (i.e., 

older) individuals, a process called ageing (e.g., Partridge and Mangel 1999), is most likely a 



result of post-reproductive mortality, considered a cost of reproduction. These findings are in 

accordance with the scale-reading results of short life spans and early maturity in the Leira brown 

trout populations. A survival cost of reproduction has been documented in many salmonids 

studies (Bell 1980, Hutchings et al. 1999, Dmitriew 2011). Investment in current reproduction is 

a trade-off situation resulting in diminished probability for future reproduction (Stearns 1992). 

Hutchings et al. (1999) showed that reproductive males and females of brook trout (Salvelinus 

fontinalis) have significantly larger over-winter lipid depletion than non-reproductive individuals, 

and that this depletion strongly affects over-winter survival. They also provided evidence that 

lipid losses increase with increasing body size in reproducing individuals, but not for non-

reproducing individuals. This is especially evident in post-spawning males who normally have 

the highest over-winter lipid depletion.  

 

A lower winter survival rate for small individuals is as expected – the disadvantages of being 

small are many. One is the combination of lower energy reserves and higher metabolism (Biro et 

al. 2004). Small individuals live under a higher risk of predation (Milinski 1993), and will often 

loose against larger, more dominant conspecifics in the competition for the most favorable 

positions in the stream (Bohlin 1977, Jonsson and Jonsson 2011). Another mortality factor that 

can be highly relevant in Leira is flooding. Floods are most detrimental for alevins and during the 

first week of emergence, but juveniles are vulnerable to floods throughout their first year (Jensen 

and Johnsen 1999, Jonsson and Jonsson 2011). A flood may not kill the fish, but displace it 

further downstream to less favorable conditions. Such a flood displacement scenario may not 

only affect displaced individuals’ survival (imposed by poorer conditions), but will also affect 

our apparent survival estimates as displaced individuals will be modelled as dead (unless 

reappearing in the station at later sampling rounds). 

 

In general, the brown trout in the Leira system showed rapid growth in their first two year of life 

(Figure 25). It should be emphasized that growth is a complex process influenced by a wide range 

of factors – both biotic and abiotic (Baerum et al. 2013). This is especially valid in poikilothermic 

organisms with indeterminate growth, like brown trout (Blueweiss et al. 1978, Baerum et al. 



2013), where ontogenetic niche shifts coupled with migrations play an important role in the 

growth pattern (Fuiman and Higgs 1997).  

Rotua brown trout constitute the most divergent individuals when it comes to growth. Unlike 

second- and third-year growth, first-year growth in Rotua individuals was just as good as in Tøla 

and Eskerudbekken (Figure 26). In Rotua, we observed many suitable habitats (i.e., shallow areas 

with coarse substrate and low water velocity (Heggenes et al. 1999)) for brown trout 0+, even in 

periods with little precipitation and thus low water discharge. However, as mentioned earlier 

there was a rather low availably to pools in Rotua. This may comprise a limiting factor for larger 

than 0+ individuals in this stream and thus partly explain the less sustained growth pattern. 

Furthermore, since Rotua individuals have a low age at maturation (Table 17 and Table 18) they 

will likely face growth costs and thus result in the observed reduction in post 0+ growth (Figure 

26). 

Spring conditions seem to play an important role in first-year growth of Leira brown trout. All the 

best models predicting length at age 1 include either mean March temperature or snow-off day 

(Table 9). Around March, the yearlings of brown trout are still positioned in the gravel, either as 

eggs or as newly hatched alevins, feeding of their yolk sac (Klemetsen et al. 2003). Size of 

alevins and fry is considered to be important in areas that are regarded as unfavorable in terms of 

resource competition (i.e., food and habitat) (Biro et al. 2004), as the subsequent winter can be a 

survival bottleneck as a consequence of lipid depletion as pointed out with rainbow trout 

(Onchorhynchus mykiss) (Biro et al. 2004). According to Flemming and Gross (1990) and 

Jonsson and Jonsson (1999), the yolk-to-body tissue conversion efficiency decreases with 

increasing temperature. As a consequence, larval size at hatching decreases with increasing 

incubation temperature. Based on this, we hypothesize that high March and April temperatures 

are negative for the alevin development and hence first-year growth (Figure 27). 

 

The model explaining length at age 1 by March and April temperatures is only slightly better (in 

practice identical) than the model using March and June temperatures (Table 9). The predictions 

from this second-most supported model (Figure 28) could in part be related to the interplay 

between food availability and temperature. Brown trout has an optimal temperature for growth 

around 15 °C (Forseth et al. 2009), and if periods with this temperature coincides with an 



abundance of food, this will be very beneficial for growth. Furthermore, temperatures in excess 

of the evolved optimum value will increase metabolic rates and reduce maximum consumption 

rates, and if coinciding with low food availability this can be detrimental for growth (Arendt 

1997, Biro et al. 2007). An early spring (i.e., high March temperature) could mean early hatching 

of insects (Lillehammer 1986, Brittain and Eikeland 1988, Lillehammer et al. 1989). If so, the 

newly hatched brown trout would not be able to utilize this food source because they still reside 

in the gravel. A warm summer (i.e., high June temperature) could then be detrimental for the 

growth of the now emerged fry, because they have missed the peak of drifting insects and in 

addition have to cope with high temperatures that increase food demand.    

 

In general, one would expect an early spring and a long growth season to have a positive effect 

on fish growth rate in temperate regions. However, our results for second- and third-year growth 

showed the contrary, suggesting a late spring and a short growth season yield a positive effect on 

growth (Figure 29, Figure 30 and Figure 31). Our best explanation is that the mechanism behind 

this is much the same as discussed for first-year growth: If a late spring delays the peak time of 

invertebrate drift, and this means that the peak coincides with the period of optimum growth 

temperature for brown trout, then it may be beneficial for growth. Lillehammer (1986) found 

evidence that the incubation time for stoneflies (Plecoptera) showed great variation as a 

consequence of different temperature regimes. This finding was also supported by a study of 

Elliott (1988) on stoneflies in Britain. We do not know the diet of Leira brown trout, but similar 

temperature effects as the one reported in stoneflies are probably relevant to most potential food 

item invertebrates in this river system.  

 

Due to the one-pass sampling strategy applied in this study, our density estimates constitute 

minimum values. In addition, we do not have access to historical data on fish density. Hence, 

exploring effects from experienced density on individual growth is not possible and this must be 

kept in mind when discussing the growth results. Individual growth in brown trout has repeatedly 

been demonstrated to be density-dependent (Jenkins Jr et al. 1999, Grant and Imre 2005, Jonsson 

and Jonsson 2011), so not being able to explore this potential effect is unfortunate.  

 



As stated earlier, all brown trout in this study system (except Nordbybekken) lives in sympatry 

with at least three other species – Eurasian minnow, alpine bullhead and European brook 

lamprey, so interspecific resource competition is likely at play. Unfortunately, we do not possess 

adequate density data of these other fish species. Hence, exploring interspecific effects on brown 

trout growth is not feasible for our data. Olsen (2000) found evidence in his Ph.D. thesis that 

brown trout living in sympatry with alpine bullhead reached maturation early and did not become 

either big or old. However, he did not find evidence of a negative growth effect from alpine 

bullhead.  

 

On the whole, there is a gradient in growth rate where growth decreases downstream. This pattern 

is especially evident in second- and third-year growth rate (Figure 29 and Figure 32). The pattern 

can be spurious, but since it appears both within the main river as well as for the tributaries this 

could potentially reflect influence from a gradient mechanism. As the environmental condition in 

terms of degree of clay quantity, turbidity and eutrophication increases downstream (Haaland et 

al. 2011, Haaland and Gjemlestad 2012), one can suggest that the lower growth rate in 

downstream individuals are caused by a larger environmental-induced stress for these individuals 

(Bash et al. 2001). Inter-specific competition is also likely to increase downstream, as the number 

of fish species increases. Below the Låkedalen waterfall cyprinids like chub and common dace 

are found.  

 

Leira is a river which carries large amounts of clay particles, and the load is especially large after 

heavy rainfall and extensive snowmelt. The effects of suspended sediment on riverine fish have 

been investigated in many studies, and the findings have revealed negative effects on growth 

(Ryan 1991, Wood and Armitage 1997). There can be several underlying mechanisms. Shaw and 

Richardson (2001) experimentally tested the effects of sediment pulse duration on stream 

invertebrates and rainbow trout fry. In their study, total abundance of benthic invertebrates and 

family richness declined as sediment pulse duration increased. This can be an indirect negative 

effect of fine sediment on fish growth, by reducing the availability of prey. However, even 

though they found that the family richness of drifting invertebrates also declined, they found that 

the abundance of drifting invertebrates increased as sediment pulse duration increased, solely 

because of an increase in abundance of chironomids – an important prey for trout. They 



concluded that such indirect effects of fine sediment on trout growth were of minor importance 

compared to more direct effects, such as impaired vision leading to reduced prey capture success 

(Barrett et al. 1992, Vogel and Beauchamp 1999).  

 

Brown trout can be sensitive to biotic interactions with other fish species (Degerman and Sers 

1992, Eklov et al. 1999). The presence of both predators and competitors may decrease energy 

intake and increase energy consumption, hence reduce growth (Jonsson and Jonsson 2011). The 

presence of predators may result in a shift in habitat use, both spatially and temporally (more 

nocturnal activity) (Alvarez and Nicieza 2003). 

 

In general, brown trout in Leira mature early and at small sizes (i.e., at ages 1-3 years and 2-3 

years in males and females, respectively). As just discussed, brown trout in Leira also display 

rapid first-year growth and have short life-time expectancy. This is in accordance with life-

history theory, where fast growth, early maturation and short life-span link together (Alm 1959, 

Stearns and Koella 1986, Hutchings 1993, Roff 2002). Similar life-history strategies are also 

found elsewhere in brown trout stream populations (Jonsson 1985, 1989, Olsen 2000). 

As already stated, Rotua brown trout have a relatively good first-year growth, but then they slow 

down and 2- and 3-year old individuals are significantly smaller than in Tøla (Figure 22). From 

this we would expect that brown trout matures earlier in Rotua. This was supported by the age 

distribution of mature males (Table 17), where we found mature Rotua individuals to be 

significantly younger than individuals in both Tøla and Eskerudbekken, and also smaller than 

mature Tøla and Eskerudbekken individuals (Figure 33 and Figure 34). The survival in Rotua 

individuals was also consistent with the observed maturity pattern, as a high mortality rate of 

older individuals relative to younger ones favor early reproduction, and to devote a large 

proportion of resources the subsequent years to reproduction, thus leading to small adult body 

sizes (Kozłowski and Uchmanski 1987). 

As for growth, we observed a gradient in maturity size throughout the system, with decreasing 

size from upstream towards downstream (Figure 33 and Figure 34). These findings, we suggest, 



could be a result of an increasingly stochastic and hostile environment as one moves downstream, 

which favors early maturation to secure reproduction, as postulated in Roff (2002). The Leira 

system in general qualifies to the characteristic stochastic environment, with its large and rapid 

fluctuations in discharge and the resulting changes in sediment transport. This could partly 

explain the general life-history strategy in this system. In Rotua, where this life-history strategy is 

most extreme, the fluctuations in temperature (Figure 4) add another dimension to the instability. 

 

We believe the study tributaries are widely used as spawning and nursery habitats for Leira 

brown trout. As mentioned, we found clear signs of spawning migration from the main river to 

Eskerudbekken. There are also other signs pointing toward extensive fluvial-adfluvial 

potamodromy in this system. The fact that no 0+ brown trout were captured in the main river 

indicates that very limited, if any at all, spawning takes place here. A high proportion of mature 

individuals in the tributaries in autumn also support this. Poor spawning habitats within the main 

river, at least in the lower reaches, might be the main reason for this migratory pattern. Brown 

trout have certain habitat requirements for their spawning area, associated with water velocity, 

depth, substrate, cover, oxygen and temperature (Armstrong et al. 2003). Its preferred particle 

size in the spawning substrate lies broadly in the range 5-128 mm and it avoids sites with uniform 

particle size (Armstrong et al. 2003, Jonsson and Jonsson 2011). The main river is mostly slow-

flowing with fine-grained sediments. Some potential spawning habitats are probably present in 

the main river too, but the large transport of fine sediments here can be problematic for eggs and 

alevins (Lisle and Lewis 1992, Soulsby et al. 2001). Fine sediments can prevent sufficient 

permeation of oxygen into the interstitial spaces within the gravel where the eggs are buried, and 

efficient removal of metabolic waste (Armstrong et al. 2003). In addition, clay particles may 

reduce oxygen uptake for the embryos by creating a low-permeability seal around the eggs and/or 

physically block the micro-pore canals in the egg membrane (Greig et al. 2005). For brown trout 

alevins, fine sediments can cause problems both because of reduced oxygen availability and 

because intergravel movements get blocked (Sternecker and Geist 2010). We find it unlikely that 

there are good spawning habitats in the main river downstream from where we sampled, since 



eutrophic conditions and sediment concentration increases downstream (Haaland and Gjemlestad 

2012).  

Apart from one tagged individual in the main river upstream Kringlerdalen that subsequently got 

recorded by the PIT-antenna in Låkedalen, we have no indications of large-scale migration within 

the system. Long migrations are energetically costly and potential benefits of large-scale 

migrations in this system, which will involve passing one or more waterfalls, may not outweigh 

the costs (Kinnison et al. 2001, Kinnison et al. 2003). The fact that no brown trout were 

recaptured in another tributary than the one in which they got tagged is a sign of strong homing 

behavior in this system – a well-known behavior in brown trout (Harden Jones 1968, Jonsson and 

Jonsson 2011). Based on our findings, we are more inclined to suggest small-scale migratory 

pattern to be widespread, as indicated when discussing spawning migration in the tributaries. We 

suggest the low recapture rate is partly due to small-scale migrations resulting in a reduced 

probability of recaptures within the station. Especially in the larger tributaries, Rotua and Tøla, 

we find it likely that there are individuals that never or seldom enter the main river. If they do, we 

would have expected to have some recaptures in the main river, especially during the boat 

electrofishing survey in which relevant stretches of the main river were surveyed for both these 

tributaries. The low growth pattern in Rotua brown trout could indicate that they stay their entire 

life within the stream. Possibly, benefits from migrating to the main river become less 

pronounced for the lower reaches of the main river – due to low abundance of relevant habitats, 

poorer water quality and competition from other species.  

In contrast, Eskerudbekken individuals seem to spend a great proportion of their life time in the 

main river allowing for a more endured growth rate. The reason why larger brown trout do not 

reside in this tributary year-round is probably because of lack of suitable habitats due to its small 

size. In addition, the main river in this area may provide relatively unstressing environments 

compared to further downstream, where the environment is more hostile (i.e., more interspecific 

competition and poorer water quality). Unfortunately, during the boat electrofishing survey, we 

did not get access to main river sections located in the vicinity of the outlet of Eskerudbekken. 

We expect brown trout from this tributary to reside in this area, and indeed we did get a PIT 

antenna registration of an Eskerudbekken individual at Låkefossen – about 1 km downstream the 

tributary outlet. Rotua and Tøla may provide sufficient habitats year-round and also have own 



tributaries which can be utilized by the fish. However, it is not unlikely that these streams are 

utilized for spawning by brown trout individuals otherwise residing in the main river. Such a 

partial migration pattern is well-known from coastal streams, where a part of the population 

migrates to sea and others, of both sexes, stay (Jonsson 1989, Jonsson and Jonsson 1993). 

 

To wrap up our general findings, our study has shown that the general life-history strategy in 

brown trout from this part of the Leira river system is fast early-life growth, early maturation and 

a relatively short life span. There was inter-population variation within this life-history strategy 

with Rotua individuals displaying the most rapid life-history and a general increase in life-history 

rapidness as one moves downstream the main river. Brown trout in the upper parts are larger and 

have better and more persistent growth (Figure 22, Figure 29 and Figure 32). Age and length of 

mature fish also decreased downstream, both among stations in the tributaries and among main-

river stations (Table 17, Figure 33 and Figure 34). Although we do not have precise estimates of 

brown trout density, we have clear indications of decreasing density downstream. Most evident 

was the low density in Nordbybekken and the southernmost main river station (LEI_3). We 

hypothesize that these observed gradients in life-history traits and density reflect adaptations to 

the prevailing downstream environmental gradients of increased eutrophication, turbidity and 

number of fish species. 

Our findings suggest that small-scale migrations in the system are common and differ some in 

type among populations (Figure 35). Eskerudbekken brown trout displays fluvial-adfluvial 

potadromy in the form of spawning migration. In the larger tributaries, Rotua and Tøla, within-

stream migrations are likely to take place. Although further research is required to make well-

built conclusions, large-scale migrations in the system seem unlikely. The migration patterns can 

be explained by habitat characteristic and are reflected in life-history.

  



Figure 35. Schematic illustration of our hypothesized migration 

patterns of brown trout in the middle part of the Leira river system. 

The recapture probability was low, yet estimable, in this study. There might be several reasons 

for this. As expected, the probability increased with increasing fish size (Figure 19) (Bohlin et al. 

1989, Borgstrøm and Skaala 1993). There was also a clear relationship between the recapture 

probability and water discharge. This was especially true for the largest tributary, Rotua, which 

became quite cumbersome to electrofish at high discharges. In addition to the difficulty of 



covering all areas in the large quantities of water, high discharge was often accompanied by large 

amounts of suspended particles which made the water highly turbid, thus making it hard to 

perceive the fish. Dealing with a large population size and dispersal will also affect the recapture 

probability. This is especially valid for the Cormack-Jolly-Seber modelling approach undertaken 

in our study (Lebreton et al. 1992). A basic principle of this CMR-study is that we are dealing 

with apparent survival as stated earlier. It has already been stated that the mobility can be severe 

in brown trout. This has its complications both during and between field rounds. During a field 

round it is conceivable that the fish get startled and swim out of the station. This may be more 

common in the spring and summer when they are more active (Forseth and Forsgren 2009). In the 

autumn, when the temperature drops, the brown trout tends to be more nocturnal and it is more 

likely to remain in the shelter in the daytime regardless of any disturbances (Forseth and Forsgren 

2009).  

Between field rounds it is plausible to assume a movement out of the station for various reasons 

(e.g., foraging, altered behavior, avoiding unfavorable condition or spawning), especially 

considering the fact that only a fraction of each stream was electrofished. It was a considerable 

distance between the stations, which made it difficult to capture possible movements within the 

system. This was particularly true for Tøla and Rotua where a movement upstream is not 

inconceivable. In addition, two of the stations in the main river, the two PIT antennas in 

Låkedalen and Homledalen, were only (more or less) operative from September 4th and 

November 12th, 2013, respectively. Another key issue is that during electrofishing with boat in 

the main river we were not able to cover a section in Leira where Eskerudbekken empties into. 

As earlier stated we are rather sure of an evident seasonally migration pattern between 

Eskerudbekken and the main river, and electrofishing adjacent to the inlet of the stream could 

have confirmed our suggestions. One of our study objectives was to identify any large-scale 

migration in the system. In a system like this, with apparently extensive fluvial-adfluvial 

potamodromy behavior among brown trout, and since we got some ambiguous results on this 

matter, it would be interesting to identify a migrating pattern on a smaller scale. In this context it 

would be appropriate to add more stations, either by a set-up of PIT antennas (assuming they 

would function) in each stream to capture internal movement, alternatively it is possible to 

modify the stations with electrofishing, going from one to several stations in each stream.  



An adjustment in the electrofishing method as described in Forseth and Forsgren (2009), which 

gives good measurement of population density, could give stronger data to model density effects 

on the different trait values. Since we only had one station in each tributary, and the fact that in 

each field round we only electrofished the stretch one time, we attained no minimum estimates on 

brown trout density with low power for testing density effects on life-history trait values. 

However, we did see some indications of variation in density.  

One aspect in the life-history of brown trout in Leira that have not been considered to any extent 

is inter-population differences in reproductive effort in terms of fecundity and size of eggs. A 

natural cause for this was the low number of captured mature females during the field work. In 

theory, we would expect inter-population differences since we found a gradient of decreasing 

length downstream and size is an important trait regarding reproductive effort (Jonsson and 

Jonsson 2011). An extensive study on this matter would to some degree complement our 

understanding of the life-history of brown trout in Leira.     

Use of scales for age determination and back-calculation of yearly growth is regarded a very 

useful tool, but also a tool where a quality control is appropriate. Error in both measurements and 

reading of the scales is common and would result in error in interpretation of the data. A typical 

mistake is to underestimate the age of the fish, which is very common and often impossible to 

avoid in stunted fish without having other biological texture with information about the age (e.g., 

otoliths). We do, however, not think there is an underestimation problem for the Leira 

populations as the age structure very much reflects the high mortality rate observed in this 

system.  

The set-up with the PIT antennas in this study did not work in our favor, resulting in perhaps 

more questions than answers regarding the migratory behavior of brown trout in Leira. Assuming 

they will function properly in the future, this project should continue, creating a time series which 

would probably remove some of the gaps in the knowledge about large-scale migration of brown 

trout in Leira.  

 



A different and interesting aspect would be to do a research on potential gene flow among 

stations and detect any existence of in-stream genetic differentiation in potentially isolated sub-

populations. This will add a different view on migration in the system, in terms of gene flow.   

 

The objective of the EU Water Framework Directive is to establish a framework for the 

protection of water bodies (European Commision 2000). The management of water bodies shall 

be holistic and knowledge-based, and for inland surface water the main goal is that all water 

bodies shall, if not heavily modified, obtain or maintain at least “good ecological status” within a 

given time. Having failed to find a reliable quality element for ecological quality assignment in 

this system it has been proposed to use brown trout as an indicator species (Haaland et al. 2011). 

The brown trout is often associated with cold, clean and clear water, and does not thrive very well 

under warm, eutrophic and turbid conditions (Jonsson and Jonsson 2011), as illustrated in this 

study. It should therefore be well suited as an indicator of good water quality. This is supported 

by a study of Eklov et al. (1998), which compared stream fish communities between 1960s and 

1990s in southern Sweden in relation to improved water quality. One of their main findings was 

that brown trout abundance and distribution had increased as an effect of better water quality, 

including higher oxygen concentrations. Our finding of a gradient in brown trout life-history 

strategy and density accompanied by an environmental gradient adds further support to the brown 

trout’s suitability as an indicator species. Therefore, an expansion downstream of the brown trout 

distribution in Leira and/or an increase in abundance of existing populations could be interpreted 

as a result of improved water quality. However, since there is an inter-specific competition aspect 

into this as well, an eventual brown trout water quality assignment index will need to take this 

into account. In general, the use of brown trout as an indicator requires knowledge about its local 

life-history. This study has contributed to such knowledge, and one finding is that 0+ brown trout 

are likely to be present in the tributaries only – an important issue to consider when interpreting 

brown trout data from a monitoring station in the main river. However, if this age class later is to 

be found here it could be a clear sign of improved water quality. One cannot be totally sure if an 

individual captured in a given monitoring station has not spent most of its life under a better 

water quality elsewhere in the river system. However, we believe the probability is small since 



long migrations are unlikely and especially if the station is not located in the vicinity of a high-

water quality tributary. Further research could help clarify this. 

An important finding of our study is the importance of the tributaries as spawning and nursery 

habitats. During the fieldwork, we surveyed most of the streams in the study area without 

detecting brown trout to a significant degree. Wise management of tributaries that do hold brown 

trout is therefore essential for the conservation of the Leira population, which should be regarded 

a metapopulation where tributaries are important source populations. An important aspect of this 

management is riparian management. We observed that the riparian zones were virtually intact 

along all our tributary-stations. We stress the importance of letting them remain so. Riparian 

zones serve several functions important for fish: They stabilize the stream bank and greatly 

decrease erosion (Beeson and Doyle 1995), can attenuate floods by absorbing and storing water 

during and after high flow (Mitsch and Gosselink 2000), can help maintain good water quality by 

filtering, binding and transforming sediments, nutrients and pollutants (Barling and Moore 1994, 

Naiman and Decamps 1997), and they are crucial for fish food and habitat. By providing woody 

debris they can increase fish production both directly for fish by providing habitat and indirectly 

by providing habitat for invertebrates which serve as food for fish (Gregory et al. 1991, 

Degerman et al. 2004). Finstad et al. (2007) even suggested that that increased shelter availability 

may select for larger fish, because negative effects of shelter reduction increases with fish body 

size. Such an effect is probably welcomed by fishermen. Riparian zones also provide shelter in 

terms of overhanging vegetation, which in addition can have a positive effect on stream 

temperature, regarding brown trout, by reducing solar radiation in warm summer periods (Cross 

et al. 2013).  

In summary, management decisions must be based on knowledge of the brown trout life-history 

and its link to migration and habitat use. One must be aware that implementation of management 

decisions that change the environment is likely to affect life-history adaptations for the 

populations involved. There is a dynamic interplay between a species’ life-history and its 

environment, and humans and human actions comprise important components of this 

environment. 
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