Test av konkurranseindeks i ung blandingsskog

A test of competition indices in young mixedwoods

Trygve Westrum Solem
Forord

Dette er en avsluttende masteroppgave innenfor studieretningen skogfag ved Universitetet for miljø- og biovitenskap på Ås.

Jeg vil rette en stor takk til professor Andreas Brunner ved institutt for naturforvaltning for god veiledning og oppfølgjing gjennom oppgaven. Jeg vil også rette en takk til min far Arne Solem for verdifull hjelp i forbindelse med feltarbeidet.

Universitetet for miljø- og biovitenskap, Ås, Mai 2010

Trygve Westrum Solem
Sammendrag

Oppgaven hadde som mål å teste ut et utvalg enkle konkurranseindeks i ung blandingsskog. Kunnskap om økologisk konkurranse mellom individuelle trær er et nyttig hjelpemiddel blant annet i forbindelse med planlegging og fremskriving av skog. Det ble utført registreringer i to ungskogsbestand i Ås kommune i det søroste Norge. Begge bestandene besto av et nedre sjikt av gran (*Picea abies*), og et øvre sjikt av hovedsakelig bjørk (*Betula pubescens* og *Betula pendula*). Hvert enkelt tre ble kartlagt, og det bel registrert data om både høyde- og diamertilvekst. Fem tradisjonelle konkurranseindeks ble testet ut, i tillegg til en sjette konkurranseindeks som ble tatt med for å representere underjordisk konkurranse om vann og næringsstoffer. Potensiell tilvekst ble beregnet som en funksjon av utgangshøyde/utgangsdiameter. Forventet tilvekst ble beregnet som potensiell tilvekst begrenset av en eller flere konkurranseindeks. For høydetilvekst ble best resultat oppnådd med diameter/avstand-konkurranseindeks i kombinasjon med underjordisk konkurranseindeks ($R^2_{Adj} : 0,8948$). For diamertilvekst ble best resultat oppnådd med konkurranseindeks basert på vinkelsum av konkurrenttrær, i kombinasjon med underjordisk konkurranseindeks ($R^2_{Adj} = 0,9060$). Overjordisk konkurranse hadde størst betydning i bestand 1, mens underjordisk konkurranse hadde størst betydning i bestand 2.
Abstract

The aim of this study was to test the predictive value of a selection of simple competition indices in young mixed stands of Norway spruce (*Picea abies*) and birch (*Betula pubescens* and *Betula pendula*). Knowledge of ecological competition between individual trees can act as a helpful tool in forest planning and for predicting future growth. Field measurements were made in two young stands located in Ås municipal in the south-eastern part of Norway. Both stands were made up of a two-storied mixture of Norway spruce under a shelter of mainly birch. Field measurements included tree coordinates, and measurements of height- and radial increment. Five well known competition indices were selected for testing, in addition to a sixth competition index which was intended to represent competition for belowground resources like water and nutrients. Potential increment was described as a function of initial height/diameter. Expected increment was then described as potential increment limited by one or more competition indices. Best results in predicting height increment was achieved with a competetion index based on dbh-ratio weighted by distance, combined with the belowground competition index ($R^{2}_{Adj}=0.8948$). For radial increment, best results was achieved with a competition index based on the sum of the horizontal angels of the competitors, combined with the belowground competition index ($R^{2}_{Adj}=0.9060$). Aboveground competition was most pronounced in stand 1, while belowground competition seemed to be of most importance in stand 2.
Innholdsfortegnelse

1. Innledning.........................................................................................................................6
2. Materiale og metode.......................................................................................................8
   2.1 Studieområde..............................................................................................................8
   2.2 Datainnsamling..........................................................................................................9
   2.3 Analyser....................................................................................................................10
   2.4 Angående diameterberegning..................................................................................13
3. Resultater.........................................................................................................................14
   3.1 Høydertilvekst..........................................................................................................14
   3.2 Diameterertilvekst......................................................................................................17
4. Diskusjon.........................................................................................................................21
   4.1 Metodikk...................................................................................................................21
   4.2 Høydertilvekst..........................................................................................................22
   4.3 Diameterertilvekst......................................................................................................24
   4.4 Vurdering av distanseavhengige og distanseuavhengige konkurranseindekser........25
   4.5 Vurdering av overjordisk og underjordisk konkurranse.......................................25
   4.6 Avsluttende bemerkninger.....................................................................................26
5. Referanseliste.................................................................................................................27
6. Vedlegg
   6.1 Vedlegg 1. Høydertilvekst
   6.2 Vedlegg 2. Diameterertilvekst
1. Innledning


Bjørk og andre pionertreslag som tas ut under unngskogpleie blir i liten grad utnyttet kommersielt, men vil i de fleste tilfeller bli liggende i skogen. Ved å utsette eller eventuelt dele opp unngskogpleien til bjørka når større dimensjoner, vil det være mulig å utnytte denne ekstra biomassen til bioenergi. I tillegg til den miljømessige gevinsten, vil en slik avsetningsmulighet trolig stimulere flere skogeiere til å gjennomføre unngskogpleie på sine eiendommer.

Et avgjørende spørsmål ved denne driftsformen er hvilke blandingsforhold og tetthetsnivåer som gir best utnyttelse av voksestedets potensial, og hvordan kunnskap om dette kan brukes for å framkalle bestandets vekst. Konkurranse i et plantesamfunn oppstår når ressursgrunnlaget i
plantesamfunnet når et nivå der optimal vekst ikke lenger kan opprettholdes for to eller flere planter (Holmes og Reed 1991). Fra tidligere studier vet vi at dette avhenger av faktorer som tetthets- og høydeforhold mellom de ulike individer, voksessedegenskaper, og treslagsammensetning (Berger et al. 2008). Dette er faktorer som påvirker det konkurransetrykket som utøves trærne imellom. For å predikere bestandets utvikling er det derfor nødvendig å finne fram til et mål som beskriver konkurranseforholdet mellom de to tresjiktene, og mellom de enkelte grantrærne slik at det kan uttrykkes i målbar enheter.


Målet med denne oppgaven er å teste ut et utvalg enkle konkurranseindeks i ung tosjiktet blandingsskog av gran og bjørk. Ved å teste ut ulike kombinasjoner av konkurranseindeks, er målet videre å finne fram til en modell som gir et pålitelig estimat av granas tilvekt under ulike konkurransebelastninger.
2. Materiale og metode

2.1 Studieområde

Feltarbeidet ble gjennomført i tidsrommet juli – august 2009 i Ås kommune, Akershus fylke.


Bestand 1 (Holstad) ble vurdert til å tilhøre vegetasjonstypen storbregneskog (Fremstad 1997), og boniteten ble vurdert til B20. Bestandet var kjennetegnet av et forholdsvis høyt grunnvannsnivå, og bar flere steder tegn til forsumpning. Det foreligger ikke informasjon om behandlingshistorien i bestandet, men ut fra strukturen og treslagssammensetningen kan det sluttes at både bjørken og grana er etablert ved naturlig fornyelse. Denne slutningen er basert på at grantrærne ikke vokser i noe tydelig forband, samt at det er betydelig spredning i utviklingsnivå mellom både gran og bjørk. Frømaterialet granforyngelsen er basert på stammer trolig både fra de omkringliggende bestand, og fra enkeltstående frøproduserende trær innenfor bestandet. Under registreringsarbeidet ble det flere steder påvist stubbeavskjær, hvilket tyder på at det på et tidspunkt har blitt gjennomført en avstandsregulering i bestandet.

2.2 Datainnsamling

Det ble samlet inn data fra totalt 6 prøveflater, hvorav 4 i bestand 1, og 2 i bestand 2. Deskriptiv informasjon om de to bestandene er vist i tabell 1. Det ville vært ønskelig med et større datamateriale, men dette lot seg ikke gjennomføre på grunn av tidsforbruket. Prøveflatene var sirkulære, med et areal på 250 m² (8,92 m radius). Sentrum av prøveflatene ble tydelig merket. Innenfor hver prøveflate ble følgende data registrert:

- kompassretning og avstand til flatesentrum for samtlige trær.
- Høyde på samtlige grantrær.
- Brysthøydediameter (1,3 m) for alle trær der dette var mulig.
- Høyde på et representativt utvalg bjørk (dette ble vurdert skjønnsmessig).

Innenfor en radius på 5,64 m fra flatesentrum (100 m²) ble det i tillegg gjort målinger av de siste ti års toppskuddelengder, og samlet inn stammeskiver fra samtlige grantrær høyere enn 1,3 m. Dette innebar i praksis en todeling av prøveflatene. Dette var nødvendig for å unngå feil i modelltilpasningen som følge av kanteffekter.

Utstyret som ble brukt i forbindelse med datainnsamlingen besto av kompass, høyde/avstandsmåler av merket Vertex, 5 m teleskopisk målestokk, klave, og tilvekstbor.

Innenfor hver prøveflate ble det også gjort målinger for å fastslå bonitet etter H40-systemet. Det ble utelukkende brukt bjørk til bonitering, ettersom all gran innenfor bestandene i større eller mindre grad var undertrykt.

De innsamlede stammeskivene ble senere brukt til å anslå årlig diametertilvekst. Dette ble gjort ved å måle bredden på hver enkelt årring ved hjelp av et måleapparat med forstørrelse og telleverk. Årringene ble målt i to retninger med en 90° vinkel i forhold til hverandre.
Tabell 1. Deskriptivt verdier for datamaterialet. Standardavvik står oppført i parentes.

<table>
<thead>
<tr>
<th>Bestand</th>
<th>N</th>
<th>n/ha Totalt</th>
<th>n/ha Gran</th>
<th>n/ha Andre</th>
<th>Gjennom snittlig høyde Gran (cm)</th>
<th>Gjennom snittlig høyde Bjørk (cm)</th>
<th>Gjennom snittlig dbh Gran (mm)</th>
<th>Gjennom snittlig dbh Bjørk (mm)</th>
<th>Bonitet (H40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>12460</td>
<td>8630</td>
<td>3830</td>
<td>199 (±137)</td>
<td>1074 (±329)</td>
<td>22.23 (±18.28)</td>
<td>76.86 (±35.55)</td>
<td>B20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>14880</td>
<td>10200</td>
<td>4680</td>
<td>225 (±125)</td>
<td>1129 (±366)</td>
<td>19.22 (±14.34)</td>
<td>63.23 (±34.16)</td>
<td>B20</td>
</tr>
</tbody>
</table>

2.3 Analyser


En utfordring med datamaterialet i denne oppgaven er at en stor andel av trærne var kortere enn 1,3 m. Som en konsekvens av dette, var det ikke mulig å registrere brysthøydediameter på disse trærne. Samtlige av konkurranseindeksene som er testet i denne oppgaven tar utgangspunkt i det enkelte tres brysthøydediameter. For å gjøre det mulig å beregne overjordisk konkurranseindeks for disse trærne ble de tildelt en minimumsdiameter. Denne minimumsdiameteren ble beregnet ved sammenlikne konkurransebidraget fra trær med kjent brysthøydediameter med konkurransebidraget fra trær med manglende brysthøydediameter ved ulike minimumsdiametre.

konkurrenter for hvert fokustre, uavhengig av treslag. Modellene ble vurdert på bakgrunn av justert R²-verdi, og visuell vurdering av residualplot.

Mange distanseavhengige konkurranseindekser forutsetter at det defineres en søkeradius rundt fokustreet. Denne søkeradiusen er avgjørende for hvilke trær som regnes som konkurrenter, og som dermed inkluderes i beregningen av konkurransttrykket. Grunnet utformingen av prøveflatene kan denne søkeradiusen maksimalt være 3,28 meter. I analysene er det konsekvent benyttet 3 meters søkeradius.

Kokkurranseindekse som ble testet i denne oppgaven er vist i tabell 2. Konkurranseindekse som ble valgt ut etter flere kriterier. En ønsket egenskap var at de skulle være basert på faktorer som er forholdsvis enkle å måle i felt. En annen egenskap var at de burde enkelt oppbygd, og tilsvarende enkle å regne ut. Dette fordi enkle registreringsprosedyrer og beregninger gjør konkurranseindekse mer tilgjengelige og anvendbare for personer i forvalterroller. Med lett målbare faktorer menes i denne sammenheng egenskaper som diameter, høyde, treslag, treantall og avstand mellom trær. Dette er en egenskap som innehas av svært mange konkurranseindekser, og det var derfor nødvendig å foreta et utvalg. Konkurranseindekse som ble valgt ut for testing oppfyller kriteriene ovenfor, og har alle blitt testet ut før i andre studier.

Tabell 2. Konkurranseindekser testet

<table>
<thead>
<tr>
<th>Konkurranseindeks</th>
<th>Ligning</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI₁</td>
<td>KI = Σ (DBHᵢ/DBHⱼ)/Aᵢⱼ</td>
</tr>
<tr>
<td>KI₂</td>
<td>KI = Σ (DBHⱼ/DBHᵢ)</td>
</tr>
<tr>
<td>KI₃</td>
<td>KI = Σ DBHⱼ/Aᵢⱼ</td>
</tr>
<tr>
<td>KI₄</td>
<td>KI = Σ DBHⱼ</td>
</tr>
<tr>
<td>KI₅</td>
<td>KI = Vinkelsum</td>
</tr>
<tr>
<td>KI₆</td>
<td>Σ Nⱼ</td>
</tr>
</tbody>
</table>

KI er Konkurranseindeks, DBHⱼ er brysthøydediameter på konkurrenttre, DBHI er brysthøydediameter på subjekttre, Aⱼ er horisontal avstand mellom subjekttre og konkurrenttre, Hⱼ er høyde på konkurrenttre, Hᵢ er høyde på subjekttre, Nⱼ er antall konkurrenter innenfor søkeradiusen.
I Norge er det utviklet vekstmodeller som beskriver både høyde- og volumtilvekst for de fleste kommersielle treslag (Tveite 1977, Strand og Li 1990). Disse modellene er imidlertid basert på trær i ensjiktede og ensartede bestand, og er dermed ikke umiddelbart overførbare til datamaterialet i denne oppgaven (Frivold og Frank 2002). Det ble derfor besluttet å tilpasse en egen vekstmodellmodell på bakgrunn av det innsamlede datamaterialet.

Følgende modell ble brukt for å estimere grantrærnes potensielle tilvekst.

\[ \Delta \text{pot} = b_1 \times \text{utgangsverdi} \times b_2 \]

Der \( \Delta \text{pot} \) er potensiell tilvekst, og utgangsverdi er utgangsverdier ved begynnelsen av perioden. I denne oppgaven er det benyttet utgangsverdier for høyde og brysthøydediameter fra henholdsvis fire og tre år tilbake.

De ulike konkurranseindeksenenes effekt på tilveksten ble estimert etter følgende formel.

Høydetilvekst:

\[ \Delta = \Delta \text{pot} \times \exp (a_1 \times \text{KIO} + a_2 \times \text{KIU} + a_3 \times \text{KIO} \times \text{KIU}) \]

Diametertilvekst:

\[ \Delta = \Delta \text{pot} \times \exp (a_1 \times \text{KIO} + a_2 \times \text{KIU}) \]

Der \( \Delta \) er estimert tilvekst, KIO er overjordisk konkurranseindeks, og KIU er underjordisk konkurranseindeks.

Premissene for modellen er at potensiell tilvekst beregnes ut fra utgangshøyden/utgangsdiameter. Dette potensialet begrenses av effekten av konkurranseindeksene. Dette er en velutprøvd måte å modellere tilvekst under ulike konkurransebelastninger (Pretzsch et al. 2002).

Under analysene av høydetilveksten i bestand 2 ble det i residualplottene oppdaget en systematisk overestimering av høydetilveksten hos trær med liten utgangshøyde. Denne overestimeringen ble forsøkt motvirket med å føyte til et interaksjonsledd i vekstmodellen, som kombinerer effekten av den overjordiske og den underjordiske konkurranseindeksen.
2.4 Angående diameterberegning

Under arbeidet med måling av årringbredder unnløt jeg uheldigvis å måle bredden av 2009-årringene. Dette skyldes rett og slett at jeg ikke trodde denne årringen ville ha betydning i og med at innsanking av stammeskive foregikk i vekstsesongen. Dette medførte visse problemer i analysestadiet da det ble klart at 2009-årringen var nødvendig for å beregne utgangsdiameteren. Det mest korrekte ville i dette tilfellet vært å komplimentere datamaterialet ved å måle samtlige stammeskiver på nytt. Dette lot seg imidlertid ikke gjennomføre av hensyn til tidsforbruk. Problemet ble håndtert ved å måle 2009-årringene på et utvalg stammeskiver, for deretter bruke denne informasjonen til å estimere 2009-tilveksten for de resterende trærne. Av stammeskivene som ble benyttet til estimeringen ble det valgt ut 5 fra begynnelsen av feltperioden, og 6 fra sluttet av feltperioden. De utvalgte stammeskivene utgjorde et representativt utvalg i forhold til resten av stammeskivene med hensyn til størrelsesfordeling. Årringbreddene på de utvalgte stammeskivene ble brukt til å tilpasse følgende lineære regresjonsmodell:

\[ \text{Tilvekst 09} = \text{Bestand} + \text{Gjennomsnittstilvekst 06-08} \]

Denne modellen ble brukt til å beregne den potensielle tilveksten for 2009. Modellen ble deretter tilført en korreksjonsfaktor for å kompensere for forskjellene i innsamlingstidspunkt. Korreksjonsfaktoren ble regnet ut på følgende måte:

\[ \frac{\text{(Innsamlingstidspunkt} - 189)}{240 - 189} \]

3. Resultater

3.1 Høydetilvekst

Gjennomsnittlig tilvekst i de to bestandene er vist i tabell 3. Som tabellen viser, var høydetilveksten noe større i bestand 2 enn i bestand 1.


<table>
<thead>
<tr>
<th>Bestand</th>
<th>N observasjoner</th>
<th>Gjennomsnittlig tilvekst (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>437</td>
<td>12,45 (± 8,7)</td>
</tr>
<tr>
<td>2</td>
<td>199</td>
<td>12,93 (± 9,46)</td>
</tr>
</tbody>
</table>

Tabellene i vedlegg 1 viser regresjonsresultatene for høydetilvekst ved ulike kombinasjoner av konkurranseindeks. Overjordisk og underjordisk konkurranseindeks er testet både selvstendig og i kombinasjon med hverandre. Testene er utført selvstendig i begge bestand, og for begge bestandene samlet.

Samtlige modeller var signifikante med Pr > F <0,0001. Som det går fram av tabellene var det enkelte modellkombinasjoner som resulterte i ikke-signifikante parameterestimater. $R^2_{adj}$ - verdiene varierte fra 0,8591 til 0,9169. Høyest $R^2_{adj}$ ble oppnådd i bestand 2 ved full modell, og KI 2 som overjordisk konkurranseindeks. Lavest ble oppnådd i bestand 2 med kun KI 4 som konkurranseindeks.


<table>
<thead>
<tr>
<th>Bestand</th>
<th>Modell</th>
<th>$R^2_{adj}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KI 1 + KI 6</td>
<td>0,9070</td>
</tr>
<tr>
<td>2</td>
<td>KI 2 + KI 6 + KI 2 * KI 6</td>
<td>0,9169</td>
</tr>
<tr>
<td>Komb</td>
<td>KI 1 + KI 6</td>
<td>0,8948</td>
</tr>
</tbody>
</table>

Tabell 4 viser en oversikt over modellene med best forklaringsevne i bestand 1 og bestand 2, og for begge bestandene kombinert. Ved testing av begge bestandene kombinert ble best resultat oppnådd med KI 1 i kombinasjon med underjordisk konkurranseindeks, men uten interaksjonsledd ( $R^2_{adj}$ = 0,8948). Resultatet av denne modelltilpasningen er vist i figur 1. Det ble heller ikke påvist systemastiske avvik i residualfordelingen (figur 2).
Figur 1. Figuren viser høydetilveksten som en funksjon av utgangshøyden ved ulike nivå av konkurranse. I figuren er det for KI1 benyttet verdier på 0 til 600. KI6 er gitt verdier på 30 til 80. Hver av konkurranseindeksene er delt inn i fem like store klasser. Hver av disse klassene er representert med en farget linje i figuren. Den øverste svarte linjen viser høydetilvekst ved KI1 0 og KI6 30. Den neste svarte linjen viser høydetilvekst ved KI1 120 og KI6 40 osv. En kan se av figuren at KI1 har større effekt enn KI6.
Figur 2. Residualer i forhold til predikerte verdier for modellen med KI1 + KI6.

Som vist i tabell 2, er konkurranseindeksene KI1 og KI2 likt konstruert, med unntak av avstandsfaktoren som ikke er inkludert i KI2. Det samme er tilfellet for KI3 og KI4. KI1 hadde høyere $R^2_{adj}$ enn KI2 i samtlige modellkombinasjoner, med unntak av i bestand 2, hvor KI2 hadde høyere $R^2_{adj}$ både med modellen med kun overjordisk konkurranseindeks, og med den fulle modellen. KI4 hadde høyere $R^2_{adj}$ enn KI3 i modellen som kombinerer overjordisk og underjordisk konkurranseindeks uten interaksjonsledd. Med unntak av disse tilfellene hadde modellene med distanseavhengige konkurranseindekser høyere $R^2_{adj}$ enn de med distanseuavhengige konkurranseindekser.

Sammenlikning mellom modeller med kun overjordisk konkurranseindeks og kun underjordisk konkurranseindeks tyder på at det er visse forskjeller mellom de to bestandene. I bestand 1 ga samtlige overjordiske konkurranseindekser med unntak av KI4 høyere $R^2_{adj}$-verdi enn hva tilfellet var med kun underjordisk konkurranseindeks. Det motsatte var tilfelle i bestand 2, hvor den underjordiske konkurranseindeksen resulterte i høyere $R^2_{adj}$-verdi sammenliknet med samtlige overjordiske konkurranseindekser, med unntak av KI1. For begge bestandene kombinert gav de overjordiske konkurranseindeksene KI1, KI2, og KI3 høyere $R^2_{adj}$-verdi enn den underjordiske
konkurranseindeksen KI6.

### 3.2 Diametertilvekst

Gjennomsnittlig tilvekst i de to bestandene er vist i tabell 5. Som tabellen viser, var diametertilveksten noe større i bestand 1 enn i bestand 2.

<table>
<thead>
<tr>
<th>Bestand</th>
<th>N observasjoner</th>
<th>Gjennomsnittlig tilvekst (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>199</td>
<td>1,43 (± 0,54)</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
<td>0,98 (± 0,44)</td>
</tr>
</tbody>
</table>

Tabellene i vedlegg 2 viser regresjonsresultatene for diametertilvekst ved ulike kombinasjoner av konkurranseindekser. Overjordisk og underjordisk konkurranseindeks er testet både selvstendig og i kombinasjon med hverandre. Testene er utført selvstendig i begge bestand, og for begge bestandene samlet.

Av de konkurranseindekser som lot seg tilpasse til modellen, var samtlige signifikante med Pr > F <0,0001. Som det går fram av tabellene var det enkelte modellkombinasjoner som resulterte i ikke-signifikante parameterestimater. $R^2_{adj}$ - verdiene varierte fra 0,8870 til 0,9167. Høyest $R^2_{adj}$ ble oppnådd i bestand 2 med kun KI6 som konkurranseindeks. Lavest ble oppnådd i bestand 2 med kun KI 3 som konkurranseindeks.

<table>
<thead>
<tr>
<th>Bestand</th>
<th>Modell</th>
<th>$R^2_{adj}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KI 5</td>
<td>0,9167</td>
</tr>
<tr>
<td>2</td>
<td>KI 4 + KI6</td>
<td>0,9274</td>
</tr>
<tr>
<td>Komb</td>
<td>KI 5 + KI 6</td>
<td>0,9060</td>
</tr>
</tbody>
</table>

Tabell 6 viser en oversikt over modellene med best forklaringsevne i bestand 1 og bestand 2, og for begge bestandene kombinert. Ved testing av begge bestandene kombinert ble best resultat oppnådd med KI 5 i kombinasjon med underjordisk konkurranseindeks (KI6) ($R^2_{adj} = 0,9060$). Resultatet av denne modelltilpasningen er vist i figur 3. Det ble ikke påvist systematiske avvik i residualfordelingen (fig 4).
Residualplot diametertilvekst

Figur 4. Residualer i forhold til predikerte verdier for modellen K15 + K16.

To av de overjordiske konkurranseindeksene (K11 og K12) lot seg ikke tilpasse til modellen slik den i denne oppgaven er brukt for å illustrere forholdet mellom diametertilvekst og konkurranse. Dette viste seg i praksis ved at parameteren $b_2$ ble negativ. Dette innebar at den potensielle tilveksten ble uttrykt som en dalende kurve, hvilket er motsatt av hva som er forventet. Årsakene til dette avviket ble undersøkt ved å se på forholdet mellom konkurranse uttrykt gjennom konkurranseindeksen, og den forklarende variablen utgangsdiameter. Dette forholdet er vist i figur 5. Som det går fram av figuren er utgangsdiameteren sterk korrelet med konkurranseindeksen. Dette forholdet resulterer i at konkurranseindeksen ikke virker modererende på den potensielle tilveksten. Figur 6 viser tilsvarende informasjon om K15. Dette er en velfungerende konkurranseindeks, og figuren er tatt med for å vise kontrasten i forhold til K12. Figur 6 viser en langt svakere korrelasjon mellom konkurranseindeks og utgangsdiameter enn hva tilfellet er for K12.
**Korrelasjon mellom KI2 og utgangsdiameter**

![Korrelasjon mellom KI2 og utgangsdiameter](image1)

Figur 5. Korrelasjon mellom KI2 og utgangsdiameter.

**Korrelasjon mellom KI5 og utgangsdiameter**

![Korrelasjon mellom KI5 og utgangsdiameter](image2)

Forskjellene i forklaringsevne mellom den distanseavhengige konkurranseindeksen K13, og den distanseavhengige K14 var mindre fremtredende enn hva tilfellet var for høydetilvekst. K13 hadde høyere $R^2_{adj}$ - verdi enn K14 i bestand 1, mens det motsatte var tilfelle i bestand 2. For begge bestandene kombinert resulterte de to konkurranseindeksene i samme $R^2_{adj}$ - verdi når de ble brukt selvstendig. I kombinasjon med den underjordiske konkurranseindeksen oppnådde K13 høyre $R^2_{adj}$ - verdi enn K14.

I bestand 1 resulterte de overjordiske konkurranseindeksene K13 og K15 i høyere $R^2_{adj}$ - verdi enn den underjordiske konkurranseindeksen K16. I bestand 2 gav imidlertid K16 høyere $R^2_{adj}$ - verdi enn noen av de underjordiske konkurranseindeksene. Det samme var tilfelle for begge bestandene kombinert.

4. Diskusjon

4.1 Metodikk

Økologisk konkurranse i skogøkosystemer har vært gjenstand for omfattende studier, og antallet tilnærningsmåter er mangfoldige. Distanseavhengige enkeltstrommeler, som behandles i denne oppgaven, har vært under utvikling i mer enn 30 år, og også innenfor dettefeltet er metodeutvalget omfattende (Berger et al. 2008). Ved et studie av det omfang som er behandlet i denne oppgaven må det nødvendigvis gjøres visse begrensninger med hensyn til metodevalg både hva gjelder datainnsamling og analysearbeid. En åpenbar konsekvens av dette er omfanget av datamaterialet. De fire prøveflatene i bestand 1 gir trolig en bra representasjon av bestandet, ettersom dette var av forholdsvis lite areal. I bestand 2 hadde jeg av tidsmessige årsaker kun anledning til å gjøre registreringer i to prøveflater. Her kunne det trolig være gunstig med flere registreringer. Bestandet var omtrent av samme størrelse som bestand 1, men likt antall prøveflater i hvert bestand ville gjort sammenlikninger mellom de to bestandene sikrere.

Selve registreringene som er utført på prøveflatene vil være behøftet med et visst element av målefeil, men ingenting i resultatene tyder på annet enn at denne feilen kun er av tilfeldig karakter. Særlig ved målingene av trærnes kompasskurs i forhold til prøveflatesentrum vil det ha forekommet mindre avvik fra sann verdi.
Målingene av trehøyder og toppskuddlengder på trær lavere enn fem meter er utført med stor grad av nøyaktighet, ettersom det ble brukt teleskopisk målestokk. For trær høyere enn fem meter er det imidlertid benyttet vertex høydemåler. Disse målingene er trolig behedt med tilfeldige feil, ettersom enkelte av prøveflatene var svært tette og med dårlig sikt. Av samme grunn ble det besluttet ikke å måle høyden på samtlige løvtrær innenfor prøveflaten, men kun på et representativt utvalg. Som en konsekvens av dette ble det besluttet å utelate konkurranseindekser som tar utgangspunkt i trehøyder fra analysene. Denne typen konkurranseindekser ville i så fall ikke bare være behedt med tilfeldige målefeil, men også usikkerhet i forbindelse med regresjonsestimering av trehøyder.

Under datainnsamlingen ble det kun utført diametermåling i brysthøyde. Dette resulterte i visse problemer under analysearbeidet, ettersom et stort antall av trærne ikke hadde nådd brysthøyde. Ved å beregne en minimumsdiameter for disse trærne var det likevel mulig å la dem inngå i konkurranseindekser basert på brysthøydediameter. Dette problemet kunne vært unngått ved å måle diameter for eksempel ved rothalsen eller noe lenger opp på stammen, i tillegg til i brysthøyde.

Når det gjelder målingene av årringtykkelse, ble det benyttet måleutstyr med høy grad av nøyaktighet. Et betydelig feilelement i forbindelse med analysene av diametertilvekst utgjøres av estimeringen av 2009-årringen. Selv om regresjonsestimeringen trolig gir en troverdig gjengivelse av diametertilveksten slik den beskrives av Henttonen et al. (2009) og Mäkinen et al. (2003), vil det likevel være knyttet et element av usikkerhet til disse anslagene. Av denne grunn ble det besluttet ikke å regne om diametertilveksten til grunnflatetilvekst. Dette fordi denne regneoperasjonen innebærer en kvadrering av diameteranlaget, og dermed også en kvadrering av feilen knyttet til dette.

4.2 Høydetilvekst

Best resultat ble oppnådd med KI1 i kombinasjon med KI6. Som vist i figur 1 resulterte denne kombinasjonen i en ganske oversiktelig modell. Mangelen på overlapp mellom klasselinjene tyder på at KI1 har større innflytelse i modellen enn KI6.

Selv om konkurranseindeksen er velkjent og godt utprøvd, har det ikke lykkes meg å finne mange studier der den har blitt brukt til å forklare høydetilvekst. Biging og Dobberting (1992), fant at en variant av denne konkurranseindeksen fungerte like bra som mer kompliserte konkurranseindekker der også kronevolum og kroneareal ble tatt med i likningen. Dette studiet tok imidlertid for seg blandingsskog på den amerikanske vestkysten, og dette konkrete resultatet gjaldt for hvitgran (*Abies concolor*). Overføringsverdien til resultatene som er kommet fram i denne oppgaven er derfor begrenset.

Braathe (1988) studerte hvordan konkurransebelastning fra bjørk påvirket både høyde- og diametertilveksten hos gran i tidlige utviklingsstadier. Den problemstillingen er svært sammenfallende med det som blir behandlet i denne oppgaven. I Braathes studier er det benyttet en tilsvarende modell som i denne oppgaven, ved at potensiell høydetilvekst er en funksjon av utgangshøyde, og at realisert høydetilvekst er en funksjon av konkurranseindeksens reduksjon av den potensielle høydetilveksten. Konkurranseindeksen benyttet i Braathes studier har likhetstrekk med KI1, men benytter høydeforskjell mellom konkurrent og fokustre, istedetfor diametforhold. Denne typen konkurranseindeks ble ikke forøkt testet ut, ettersom usikkerheten forbundet med regresjonsestimering av trehøyder ble vurdert til å være for stor. Et mulig ankepunkt mot denne konkurranseindeksen er at kun trær som er höyere enn fokustreet bidrar til nedsatt høydetilvekst. Braathe begrenser dette med å vise til planteavstandsforsøk som viser at granas høydetilvekst er lite påvirket av tetthet så lenge vekstforholdene er gode. Dette står i kontrast til mine resultater, som viser at tetthet i form av underjordisk konkurranseindeks (KI6) har tildels stor betydning for høydetilveksten hos gran. Dette til tross for at vekstforholdene i begge bestandene må betegnes som
gode, vurdert ut fra bonitet. Konkurranseindeksen har likefullt vist seg effektiv, og i framtidige studier ville det vært interessant å teste den ut i kombinasjon med en underjordisk konkurranseindeks.

Selv om K11 var den overjordiske konkurranseindeksen som gav best resultat i form av justert $R^2$-verdi, var det generelt svært liten variasjon mellom de ulike modellkombinasjonene.

4.3 Diametertilvekst

Best resultat ble etter en helhetsvurdering oppnådd med K15 i kombinasjon med K16. Som vist i figur 3 er det i denne modellen stor grad av overlapp mellom linjene som representerer konkurransebelastning. Dette er en konsekvens av at K16 har større innflytelse enn K11, noe som gir overlapp mellom de seks klassene av K11.

Den konkurranseindeksen som selvstendig hadde størst betydning for diametertilveksten var K16. At underjordisk konkurranse hadde større betydning for diametertilvekst enn for høydetilvekst, er et påfallende faktum som vil bli behandlet i et senere avsnitt.


Siden leddet med høydeforhold er utelatt, baseres konkurranseindeksen kun på konkurrentenes dimensjoner, og avstand mellom konkurrent og fokustre. Konkurranseindeksen ble ikke testet ut med høydeforholdsfaktoren, siden det ikke ble registrert trehøyde for samtlige løtvær.

Det er verdt å merke seg at kun konkurranseindeks basert på konkurrentenes dimensjoner (med eller uten avstandsfaktor) resulterte i funksjonelle modeller. Årsakene til dette er som vist i resultatkapitlet at konkurranseindeksene basert på diameterforhold er for tett korrelert med utgangsdiameteren.
4.4 Vurdering av distanseavhengige og distanseuavhengige konkurranseindekser


Når en ser utelukkende på bruk av overjordiske konkurranseindekser, er det et påfølgende faktum at distanseavhengige konkurranseindekser fungerte best i bestand 1, mens distanseuavhengige fungerte best i bestand 2. Dette er tilfelle både for høydertilvekst og for diametertilvekst. Som vist i tabell 1, var det i bestand 1 generelt noe mer variasjon i tredimensjoner enn hva tilfellet var i bestand 2. Bestand 2 var også betydelig tettere, både hva angår gran og løvtrær. Samlet sett støtter dette opp om hypotesen om at distanseavhengige konkurranseindekser presterer best i ujevne bestand, og distanseavhengige konkurranseindekser best i homogene bestand. Forskjellene i justert $R^2$-verdi mellom de distanseavhengige og de distanseuavhengige konkurranseindeksene var imidlertid små, og det samme var tilfelle for forskjellene i dimensjonsfordeling mellom de to bestandene. Det er derfor vanskelig å trekke noen klar konklusjon i dette spørsmålet.

4.5 Vurdering av overjordisk og underjordisk konkurranse

Resultatene viser at den underjordiske konkurranseindeksen hadde til dels stor betydning. Dette var i større grad tilfelle for modellene som beskriver diametertilvekst enn for modellene som beskriver høydertilvekst. Denne betydningen var også klart mer fremtredende i bestand 2 enn i bestand 1. I mange studier har betydningen av underjordisk konkurrance om vann og næringsstoffer ofte blitt nedprioriteret i forhold til betydningen av overjordisk konkurrance om lys. Mye tyder imidlertid på at

Datamaterialet og analyseresultatene gir indikasjoner på hvorfor underjordisk konkurranse var mer fremtredende i bestand 2 enn i bestand 1. Begge bestandene var av middels høy bonitet, og vegetasjonstypen ble i begge bestand bedømt til å være av de mer produktive. Den tydeligste forskjellen mellom de to bestandene var at bestand 2 hadde en langt høyere tetthet, både med hensyn til gran og løvtrearter. En sansynlig forklaring er at den høye tettheten i bestand 2 førte til at konkurransen om underjordiske ressurser var mer avgjørende enn konkurransen om lys.

I denne oppgaven er det benyttet et svært enkelt uttrykk for å beskrive underjordisk konkurranse om vann og næringsstoffer. En rekke andre metoder er tenkelige, blant annet bestandstetthetsindeks (Reineke 1933), eller mer kompliserte tilnærminger basert på økologisk felt teori (Miina og Pukkala 2002).

4.6 Avsluttende bemerkninger

De to anbefalte modellkombinasjonene for henholdsvis høydertilvekt og diametertilvekt ga begge en bra gjengivelse av veksten i de to bestandene under ulike konkurransebelastninger. Det faktum at både overjordisk og underjordisk konkurranse er tatt med i modellene, gjør dem også ganske fleksible. Resultatene som er framskaffet i denne oppgaven har imidlertid begrenset global anvendbarhet, ettersom de kun er basert på registreringer i to bestand. For å øke nytteverdien av modellene er det nødvendig med et langt større datamateriale, som også omfatter et bredere spektrum av vekstforhold og bestandsstrukturer enn det som er behandlet i denne oppgaven.
5. Referanseliste


6. Vedlegg

6.1 Vedlegg 1. Høyde tiltvekst

Regresjonsresultater ved ulike modell kombinasjoner av overjordisk og underjordisk konkurranseindeks.

Modellen som ligger til grunn er:

\[ \Delta \text{ pot} = b_1 \ast \text{ utgangshøyde} \ast b_2 \]
\[ \Delta = \Delta \text{ pot} \ast \exp (a_2 * \text{ KIO} + a_3 * \text{ KIU} + a_4 * (\text{KIO} \ast \text{ KIU})) \]

Modell angir hvilke konkurranseindeks som er benyttet. Best angir hvilket bestand beregningene er gjort for. Pr > F er modellens signifikansverdi. R²(adj) er justert multippel korrelasjonskoeffisient for modellen. a₁ - b₂ er parameterestimater (a₁ = overjordisk KI, a₂ = Underjordisk KI, a₃ = interaksjon av overjordisk og underjordisk KI, b₁ og b₂ = potensiell vekst.). a₁S - b₂S er standardavvikene til parameterestimatene. Pr > t er parameterestimatenes signifikansnivå angitt fra <0,001 til ns for ikke-signifikant.

Regresjonsresultater ved ulike modell kombinasjoner av K11 og K16.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R²(adj)</th>
<th>a₁</th>
<th>a₂</th>
<th>Pr &gt; t</th>
<th>a₁S</th>
<th>a₂S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>K11</td>
<td>1</td>
<td>&lt;0,0001</td>
<td>0.80310</td>
<td>-0.00315</td>
<td>0.00031</td>
<td>&lt;0,001</td>
<td>1.30300</td>
<td>0.28940</td>
<td>&lt;0,001</td>
<td>0.53840</td>
<td>0.04000</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K16</td>
<td>1</td>
<td>&lt;0,0001</td>
<td>0.88310</td>
<td>-0.00205</td>
<td>0.00095</td>
<td>&lt;0,001</td>
<td>0.30740</td>
<td>0.52800</td>
<td>ns</td>
<td>0.82500</td>
<td>0.02970</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16</td>
<td>1</td>
<td>&lt;0,0001</td>
<td>0.90700</td>
<td>-0.00215</td>
<td>0.00084</td>
<td>&lt;0,001</td>
<td>1.43100</td>
<td>0.30530</td>
<td>&lt;0,001</td>
<td>0.54910</td>
<td>0.03830</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16 + Retur</td>
<td>1</td>
<td>&lt;0,0001</td>
<td>0.90680</td>
<td>-0.004240</td>
<td>0.000750</td>
<td>&lt;0,001</td>
<td>1.693900</td>
<td>0.387600</td>
<td>&lt;0,001</td>
<td>0.530200</td>
<td>0.039400</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11</td>
<td>2</td>
<td>&lt;0,0001</td>
<td>0.88530</td>
<td>-0.00089</td>
<td>0.00119</td>
<td>&lt;0,001</td>
<td>0.98740</td>
<td>0.49180</td>
<td>&lt;0,001</td>
<td>0.62270</td>
<td>0.08390</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K16</td>
<td>2</td>
<td>&lt;0,0001</td>
<td>0.87680</td>
<td>-0.01240</td>
<td>0.00196</td>
<td>&lt;0,001</td>
<td>0.06620</td>
<td>0.02110</td>
<td>&lt;0,01</td>
<td>1.16480</td>
<td>0.06530</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16</td>
<td>2</td>
<td>&lt;0,0001</td>
<td>0.90310</td>
<td>-0.006430</td>
<td>0.00109</td>
<td>&lt;0,001</td>
<td>0.91000</td>
<td>0.41210</td>
<td>&lt;0,05</td>
<td>0.70990</td>
<td>0.06030</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16 + Retur</td>
<td>2</td>
<td>&lt;0,0001</td>
<td>0.91000</td>
<td>0.009690</td>
<td>0.002220</td>
<td>&lt;0,001</td>
<td>0.03940</td>
<td>0.002720</td>
<td>&lt;0,01</td>
<td>0.61000</td>
<td>0.25400</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11</td>
<td>Komb</td>
<td>&lt;0,0001</td>
<td>0.87900</td>
<td>-0.00443</td>
<td>0.00039</td>
<td>&lt;0,001</td>
<td>1.06000</td>
<td>0.22290</td>
<td>&lt;0,001</td>
<td>0.58130</td>
<td>0.03820</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K16</td>
<td>Komb</td>
<td>&lt;0,0001</td>
<td>0.87260</td>
<td>-0.00761</td>
<td>0.00087</td>
<td>&lt;0,001</td>
<td>0.22530</td>
<td>0.03540</td>
<td>&lt;0,01</td>
<td>0.89140</td>
<td>0.02710</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16</td>
<td>Komb</td>
<td>&lt;0,0001</td>
<td>0.89480</td>
<td>-0.00349</td>
<td>0.00036</td>
<td>&lt;0,001</td>
<td>0.05320</td>
<td>0.00080</td>
<td>&lt;0,001</td>
<td>1.15380</td>
<td>0.23140</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16 + Retur</td>
<td>Komb</td>
<td>&lt;0,0001</td>
<td>0.88470</td>
<td>-0.003060</td>
<td>0.000883</td>
<td>&lt;0,001</td>
<td>-0.000010</td>
<td>0.000015</td>
<td>ns</td>
<td>1.11500</td>
<td>0.234900</td>
<td>&lt;0,001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R²(adj)</th>
<th>a₁</th>
<th>a₂</th>
<th>Pr &gt; t</th>
<th>a₁S</th>
<th>a₂S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>K11</td>
<td>3</td>
<td>&lt;0,0001</td>
<td>0.87900</td>
<td>-0.00443</td>
<td>0.00039</td>
<td>&lt;0,001</td>
<td>1.06000</td>
<td>0.22290</td>
<td>&lt;0,001</td>
<td>0.58130</td>
<td>0.03820</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K16</td>
<td>3</td>
<td>&lt;0,0001</td>
<td>0.87260</td>
<td>-0.00761</td>
<td>0.00087</td>
<td>&lt;0,001</td>
<td>0.22530</td>
<td>0.03540</td>
<td>&lt;0,01</td>
<td>0.89140</td>
<td>0.02710</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16</td>
<td>3</td>
<td>&lt;0,0001</td>
<td>0.89480</td>
<td>-0.00349</td>
<td>0.00036</td>
<td>&lt;0,001</td>
<td>0.05320</td>
<td>0.00080</td>
<td>&lt;0,001</td>
<td>1.15380</td>
<td>0.23140</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>K11 + K16 + Retur</td>
<td>3</td>
<td>&lt;0,0001</td>
<td>0.88470</td>
<td>-0.003060</td>
<td>0.000883</td>
<td>&lt;0,001</td>
<td>-0.000010</td>
<td>0.000015</td>
<td>ns</td>
<td>1.11500</td>
<td>0.234900</td>
<td>&lt;0,001</td>
</tr>
</tbody>
</table>

K11 + K16 + Retur | Komb | <0,0001| 0.88470 | -0.003060 | 0.000883 | <0,001 | -0.000010 | 0.000015 | ns | 1.11500 | 0.234900 | <0,001 |

Modell angir hvilke konkurranseindeks som er benyttet. Best angir hvilket bestand beregningene er gjort for. Pr > F er modellens signifikansverdi. R²(adj) er justert multippel korrelasjonskoeffisient for modellen. a₁ - b₂ er parameterestimater (a₁ = overjordisk KI, a₂ = Underjordisk KI, a₃ = interaksjon av overjordisk og underjordisk KI, b₁ og b₂ = potensiell vekst.). a₁S - b₂S er standardavvikene til parameterestimatene. Pr > t er parameterestimatenes signifikansnivå angitt fra <0,001 til ns for ikke-signifikant.

Regresjonsresultater ved ulike modell kombinasjoner av K11 og K16.
### Regresjonsresultater ved ulike modellkombinasjoner av KI2 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R²_mj</th>
<th>a₁</th>
<th>n₁</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>a₂ S</th>
<th>Pr &gt; t</th>
<th>a₃</th>
<th>a₃ S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₁ S</th>
<th>P-verdi</th>
<th>b₂</th>
<th>b₂ S</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI2</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,9011</td>
<td>-0,00217</td>
<td>0,00022</td>
<td>&lt;0,001</td>
<td>-0,00986</td>
<td>0,00095</td>
<td>&lt;0,001</td>
<td>1,30140</td>
<td>0,30070</td>
<td>&lt;0,001</td>
<td>0,55820</td>
<td>0,04160</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI6</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,88310</td>
<td>-0,00194</td>
<td>0,00022</td>
<td>&lt;0,001</td>
<td>-0,00333</td>
<td>0,00086</td>
<td>&lt;0,001</td>
<td>0,30740</td>
<td>0,05280</td>
<td>&lt;0,001</td>
<td>0,82550</td>
<td>0,02970</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI2 + KI6</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,90430</td>
<td>-0,002580</td>
<td>0,000538</td>
<td>&lt;0,001</td>
<td>-0,004160</td>
<td>0,001060</td>
<td>&lt;0,001</td>
<td>1,37430</td>
<td>0,30600</td>
<td>&lt;0,001</td>
<td>0,55350</td>
<td>0,04010</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI2 + KI6 + KI7</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,90440</td>
<td>-0,002580</td>
<td>0,000538</td>
<td>&lt;0,001</td>
<td>-0,004160</td>
<td>0,001060</td>
<td>&lt;0,001</td>
<td>1,37430</td>
<td>0,30600</td>
<td>&lt;0,001</td>
<td>0,55350</td>
<td>0,04010</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI2</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,89550</td>
<td>-0,00680</td>
<td>0,00088</td>
<td>&lt;0,001</td>
<td>-0,01240</td>
<td>0,00196</td>
<td>&lt;0,001</td>
<td>0,30740</td>
<td>0,05280</td>
<td>&lt;0,001</td>
<td>0,55820</td>
<td>0,04160</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,87680</td>
<td>0,007210</td>
<td>0,001770</td>
<td>&lt;0,001</td>
<td>0,007340</td>
<td>0,003080</td>
<td>&lt;0,005</td>
<td>-0,000240</td>
<td>0,000035</td>
<td>&lt;0,001</td>
<td>0,668000</td>
<td>0,285800</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI2 + KI6</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,90150</td>
<td>-0,00501</td>
<td>0,00083</td>
<td>&lt;0,001</td>
<td>-0,00708</td>
<td>0,00186</td>
<td>&lt;0,001</td>
<td>1,06450</td>
<td>0,51690</td>
<td>&lt;0,005</td>
<td>0,669000</td>
<td>0,086600</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI2 + KI6 + KI7</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,91690</td>
<td>0,007210</td>
<td>0,001770</td>
<td>&lt;0,001</td>
<td>0,007340</td>
<td>0,003080</td>
<td>&lt;0,005</td>
<td>-0,000240</td>
<td>0,000035</td>
<td>&lt;0,001</td>
<td>0,668000</td>
<td>0,285800</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Regresjonsresultater ved ulike modellkombinasjoner av KI3 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R²_mj</th>
<th>a₁</th>
<th>n₁</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>a₂ S</th>
<th>Pr &gt; t</th>
<th>a₃</th>
<th>a₃ S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₁ S</th>
<th>P-verdi</th>
<th>b₂</th>
<th>b₂ S</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI3</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,88320</td>
<td>-0,00044</td>
<td>0,00007</td>
<td>&lt;0,001</td>
<td>-0,00598</td>
<td>0,00095</td>
<td>&lt;0,001</td>
<td>0,30740</td>
<td>0,05280</td>
<td>&lt;0,001</td>
<td>0,668000</td>
<td>0,285800</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI6</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,88310</td>
<td>-0,00227</td>
<td>0,00007</td>
<td>&lt;0,001</td>
<td>-0,00418</td>
<td>0,00108</td>
<td>&lt;0,001</td>
<td>0,37790</td>
<td>0,06550</td>
<td>&lt;0,001</td>
<td>0,82550</td>
<td>0,02970</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI3 + KI6</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,88660</td>
<td>-0,00041</td>
<td>0,00015</td>
<td>&lt;0,01</td>
<td>-0,00733</td>
<td>0,00299</td>
<td>&lt;0,05</td>
<td>0,00000</td>
<td>0,00000</td>
<td>ns</td>
<td>0,43210</td>
<td>0,09030</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI3 + KI6 + KI7</td>
<td>1</td>
<td>&lt;0,001</td>
<td>0,88690</td>
<td>-0,00041</td>
<td>0,00015</td>
<td>&lt;0,01</td>
<td>-0,00733</td>
<td>0,00299</td>
<td>&lt;0,05</td>
<td>0,00000</td>
<td>0,00000</td>
<td>ns</td>
<td>0,43210</td>
<td>0,09030</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI3</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,86160</td>
<td>-0,00035</td>
<td>0,00014</td>
<td>&lt;0,05</td>
<td>-0,01240</td>
<td>0,00196</td>
<td>&lt;0,001</td>
<td>0,06660</td>
<td>0,02770</td>
<td>&lt;0,005</td>
<td>1,16430</td>
<td>0,56300</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,87680</td>
<td>-0,00001</td>
<td>0,00013</td>
<td>ns</td>
<td>-0,01240</td>
<td>0,00196</td>
<td>&lt;0,001</td>
<td>0,06660</td>
<td>0,02770</td>
<td>&lt;0,005</td>
<td>1,16430</td>
<td>0,56300</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI3 + KI6</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,87620</td>
<td>0,000024</td>
<td>0,000039</td>
<td>ns</td>
<td>-0,00800</td>
<td>0,00530</td>
<td>ns</td>
<td>-0,00001</td>
<td>0,00001</td>
<td>ns</td>
<td>0,05590</td>
<td>0,02230</td>
<td>&lt;0,05</td>
<td>1,16000</td>
<td>0,56510</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>KI3 + KI6 + KI7</td>
<td>2</td>
<td>&lt;0,001</td>
<td>0,87620</td>
<td>0,000024</td>
<td>0,000039</td>
<td>ns</td>
<td>-0,00800</td>
<td>0,00530</td>
<td>ns</td>
<td>-0,00001</td>
<td>0,00001</td>
<td>ns</td>
<td>0,05590</td>
<td>0,02230</td>
<td>&lt;0,05</td>
<td>1,16000</td>
<td>0,56510</td>
<td>&lt;0,001</td>
</tr>
<tr>
<td>KI3</td>
<td>Komb</td>
<td>&lt;0,001</td>
<td>0,86920</td>
<td>-0,00044</td>
<td>0,00006</td>
<td>&lt;0,001</td>
<td>-0,00761</td>
<td>0,00087</td>
<td>&lt;0,001</td>
<td>0,26480</td>
<td>0,04220</td>
<td>&lt;0,001</td>
<td>0,88300</td>
<td>0,02680</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI6</td>
<td>Komb</td>
<td>&lt;0,001</td>
<td>0,87260</td>
<td>-0,00021</td>
<td>0,00006</td>
<td>&lt;0,001</td>
<td>-0,00580</td>
<td>0,00101</td>
<td>&lt;0,001</td>
<td>0,26480</td>
<td>0,04220</td>
<td>&lt;0,001</td>
<td>0,88300</td>
<td>0,02680</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI3 + KI6</td>
<td>Komb</td>
<td>&lt;0,001</td>
<td>0,87500</td>
<td>-0,00021</td>
<td>0,00006</td>
<td>&lt;0,001</td>
<td>-0,00580</td>
<td>0,00101</td>
<td>&lt;0,001</td>
<td>0,26480</td>
<td>0,04220</td>
<td>&lt;0,001</td>
<td>0,88300</td>
<td>0,02680</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KI3 + KI6 + KI7</td>
<td>Komb</td>
<td>&lt;0,001</td>
<td>0,87480</td>
<td>-0,00021</td>
<td>0,00006</td>
<td>&lt;0,001</td>
<td>-0,00580</td>
<td>0,00101</td>
<td>&lt;0,001</td>
<td>0,26480</td>
<td>0,04220</td>
<td>&lt;0,001</td>
<td>0,88300</td>
<td>0,02680</td>
<td>&lt;0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Regresjonsresultater ved ulike modellkombinasjoner av KI4 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R² adj</th>
<th>a₁</th>
<th>Vått</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI4</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.88110</td>
<td>-0.00036</td>
<td>0.00006</td>
<td>&lt;0.001</td>
<td>-0.00598</td>
<td>0.00095</td>
<td>&lt;0.001</td>
<td>0.31590</td>
<td>0.05710</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.88110</td>
<td>-0.00013</td>
<td>0.00110</td>
<td>ns</td>
<td>-0.00045</td>
<td>0.00145</td>
<td>&lt;0.001</td>
<td>0.33030</td>
<td>0.05930</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4 + KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.88330</td>
<td>-0.00014</td>
<td>0.00014</td>
<td>ns</td>
<td>-0.00145</td>
<td>0.00014</td>
<td>&lt;0.001</td>
<td>0.33480</td>
<td>0.07820</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

### Regresjonsresultater ved ulike modellkombinasjoner av KI5 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R² adj</th>
<th>a₁</th>
<th>Vått</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI5</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.88390</td>
<td>-0.0074</td>
<td>0.0011</td>
<td>&lt;0.001</td>
<td>-0.0074</td>
<td>0.00225</td>
<td>&lt;0.001</td>
<td>0.37710</td>
<td>0.05888</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.88310</td>
<td>-0.0047</td>
<td>0.0012</td>
<td>&lt;0.001</td>
<td>-0.0039</td>
<td>0.0011</td>
<td>&lt;0.001</td>
<td>0.38540</td>
<td>0.06686</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.88710</td>
<td>-0.0074</td>
<td>0.00225</td>
<td>&lt;0.001</td>
<td>-0.0075</td>
<td>0.0031</td>
<td>&lt;0.001</td>
<td>0.44850</td>
<td>0.09510</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

### Regresjonsresultater ved ulike modellkombinasjoner av KI5 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R² adj</th>
<th>a₁</th>
<th>Vått</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI5</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.86170</td>
<td>-0.0057</td>
<td>0.0022</td>
<td>&lt;0.001</td>
<td>-0.0124</td>
<td>0.0020</td>
<td>&lt;0.001</td>
<td>0.06620</td>
<td>0.0211</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.87620</td>
<td>-0.0001</td>
<td>0.0020</td>
<td>ns</td>
<td>-0.0124</td>
<td>0.0023</td>
<td>&lt;0.001</td>
<td>0.05564</td>
<td>0.0222</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.87620</td>
<td>0.0039</td>
<td>0.0045</td>
<td>ns</td>
<td>-0.0079</td>
<td>0.0054</td>
<td>&lt;0.001</td>
<td>0.02680</td>
<td>0.06625</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6 + Kitt</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.86790</td>
<td>-0.0072</td>
<td>0.0009</td>
<td>&lt;0.001</td>
<td>-0.0076</td>
<td>0.0009</td>
<td>&lt;0.001</td>
<td>0.21600</td>
<td>0.03655</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

(| Kitt | KI5 + KI6 + Kitt | 2 | <0.0001 | 0.87260 | -0.0037 | 0.0010 | <0.001 | -0.0056 | 0.0010 | <0.001 | 0.26860 | 0.04260 | <0.001 |

### Regresjonsresultater ved ulike modellkombinasjoner av KI4 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R² adj</th>
<th>a₁</th>
<th>Vått</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI4</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.85910</td>
<td>-0.00021</td>
<td>0.00011</td>
<td>&lt;0.1</td>
<td>-0.0124</td>
<td>0.00196</td>
<td>&lt;0.001</td>
<td>0.06620</td>
<td>0.02110</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.86560</td>
<td>0.00067</td>
<td>0.00037</td>
<td>&lt;0.001</td>
<td>-0.0214</td>
<td>0.00269</td>
<td>&lt;0.001</td>
<td>0.03960</td>
<td>0.01340</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4 + KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.88520</td>
<td>0.00009</td>
<td>0.00052</td>
<td>&lt;0.05</td>
<td>-0.0214</td>
<td>0.00269</td>
<td>&lt;0.001</td>
<td>0.04100</td>
<td>0.01340</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4 + KI6 + Kitt</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.87220</td>
<td>0.00000</td>
<td>0.00013</td>
<td>ns</td>
<td>-0.00640</td>
<td>0.00382</td>
<td>&lt;0.1</td>
<td>0.02060</td>
<td>0.03470</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

### Regresjonsresultater ved ulike modellkombinasjoner av KI5 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>R² adj</th>
<th>a₁</th>
<th>Vått</th>
<th>Pr &gt; t</th>
<th>a₂</th>
<th>S</th>
<th>Pr &gt; t</th>
<th>b₁</th>
<th>b₂</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI5</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.86760</td>
<td>-0.00035</td>
<td>0.00005</td>
<td>&lt;0.001</td>
<td>-0.0076</td>
<td>0.00067</td>
<td>&lt;0.001</td>
<td>0.22530</td>
<td>0.03540</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.87320</td>
<td>-0.00003</td>
<td>0.00008</td>
<td>ns</td>
<td>-0.0072</td>
<td>0.00137</td>
<td>&lt;0.001</td>
<td>0.22850</td>
<td>0.03720</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.87220</td>
<td>0.00000</td>
<td>0.00013</td>
<td>ns</td>
<td>-0.00640</td>
<td>0.00382</td>
<td>&lt;0.1</td>
<td>0.22160</td>
<td>0.04720</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>
6.2 Vedlegg 2. Diametertilvekst

Regresjonsresultater ved ulike modellkombinasjoner av overjordisk og underjordisk konkurranseindeks.

Modellen som ligger til grunn er:

\[ \Delta \text{pot} = b_1 \times \text{utgangsdiameter} \times b_2 \]

\[ \Delta = \Delta \text{pot} \times \exp (a_1 \times \text{KIO} + a_2 \times \text{KIU}) \]

Modell angir hvilke konkurranseindekker som er benyttet. Best angir hvilket bestand beregningene er gjort for. Pr > F er modellens signifikansverdi. 
\( R^2_{adj} \) er justert multippel korrelasjonskoeffisient for modellen. \( a_1 \) - \( b_2 \) er parameterestimateter (\( a_1 \) = overjordisk KI, \( a_2 \) = Underjordisk KI, \( b_1 \) og \( b_2 \) = potensiell vekst.). \( a_i \) - \( b_i \) er standardavvikene til parameterestimatene. Pr > t er parameterestimatenes signifikansnivå angitt fra <0,001 til ns for ikke-signifikant.

Regresjonsresultater ved ulike modellkombinasjoner av KI3 og KI6.

| Modell | Best | Pr > F | \( R^2_{adj} \) | \( a_1 \) | \( a_1 S \) | Pr > t | \( a_2 \) | \( a_2 S \) | Pr > t | \( b_2 \) | \( b_2 S \) | Pr > t | \( b_3 \) | \( b_3 S \) | Pr > t |
|--------|------|-------|----------------|--------|-----------|-------|--------|-----------|-------|--------|--------|-------|--------|-------|-------|-------|
| KI3    | 1    | <0,0001 | 0.91570       | -0.00035 | 0.00008 | <0,001 | -0.00360 | 0.00121 | <0,01  | 1.95510 | 0.22150 | <0,001 | 0.26420 | 0.03180 | <0,001 |
| KI6    | 1    | <0,0001 | 0.91160       | -0.00007 | <0,05    |       | -0.0179 | 0.00132 | ns     | 2.04840 | 0.24200 | <0,001 | 0.25770 | 0.03210 | <0,001 |
| KI3 + KI6 | 2     | <0,0001 | 0.88700       | -0.00028 | 0.00009 | <0,005 | -0.01570 | 0.00164 | <0,01  | 1.32060 | 0.23630 | <0,001 | 0.29400 | 0.03680 | <0,001 |
| KI6    | 2    | <0,0001 | 0.92190       | -0.00008 | 0.00009 | ns     | -0.01640 | 0.00183 | <0,01  | 2.58080 | 0.38450 | <0,001 | 0.25440 | 0.03020 | <0,001 |
| KI3    | Komb | <0,0001 | 0.89910       | -0.00053 | 0.00007 | <0,001 | -0.00853 | 0.00103 | <0,01  | 2.04640 | 0.19680 | <0,001 | 0.27540 | 0.02470 | <0,001 |
| KI6    | Komb | <0,0001 | 0.90120       | -0.00053 | 0.00007 | <0,001 | -0.00853 | 0.00103 | <0,01  | 2.01810 | 0.18380 | <0,001 | 0.26160 | 0.02490 | <0,001 |
| KI3 + KI6 | Komb | <0,0001 | 0.90540       | -0.00028 | 0.00007 | <0,001 | -0.00616 | 0.00118 | <0,01  | 2.32820 | 0.22110 | <0,001 | 0.25810 | 0.02420 | <0,001 |
Regresjonsresultater ved ulike modellkombinasjoner av KI4 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>$R^2_{adj}$</th>
<th>$a_1$</th>
<th>$s_1$</th>
<th>Pr &gt; t</th>
<th>$a_2$</th>
<th>$a_2$S</th>
<th>Pr &gt; t</th>
<th>$b_1$</th>
<th>$b_1$S</th>
<th>Pr &gt; t</th>
<th>$b_2$</th>
<th>$b_2$S</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI4</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.9116667</td>
<td>-0.00024</td>
<td>0.00008</td>
<td>&lt;0.01</td>
<td>-0.00360</td>
<td>0.00121</td>
<td>&lt;0.01</td>
<td>1.93390</td>
<td>0.26060</td>
<td>&lt;0.001</td>
<td>0.26730</td>
<td>0.03300</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.9116467</td>
<td>-0.00360</td>
<td>0.00121</td>
<td>&lt;0.01</td>
<td>-0.00360</td>
<td>0.00121</td>
<td>&lt;0.01</td>
<td>1.77430</td>
<td>0.20270</td>
<td>&lt;0.001</td>
<td>0.29510</td>
<td>0.03340</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4 + KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.9116790</td>
<td>-0.00213</td>
<td>0.00181</td>
<td>ns</td>
<td>-0.00213</td>
<td>0.00181</td>
<td>ns</td>
<td>1.81620</td>
<td>0.25840</td>
<td>&lt;0.001</td>
<td>0.25980</td>
<td>0.03350</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.8902000</td>
<td>-0.00036</td>
<td>0.00011</td>
<td>&lt;0.005</td>
<td>-0.01570</td>
<td>0.00164</td>
<td>&lt;0.001</td>
<td>1.75480</td>
<td>0.37540</td>
<td>&lt;0.001</td>
<td>0.32410</td>
<td>0.03650</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.9219000</td>
<td>-0.01200</td>
<td>0.00210</td>
<td>&lt;0.001</td>
<td>-0.01200</td>
<td>0.00210</td>
<td>&lt;0.001</td>
<td>2.72890</td>
<td>0.36430</td>
<td>&lt;0.001</td>
<td>0.29010</td>
<td>0.02950</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4 + KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.9274000</td>
<td>0.00441</td>
<td>0.00011</td>
<td>&lt;0.001</td>
<td>-0.02100</td>
<td>0.00210</td>
<td>&lt;0.001</td>
<td>1.88710</td>
<td>0.30950</td>
<td>&lt;0.001</td>
<td>0.27010</td>
<td>0.02890</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4</td>
<td>Komb</td>
<td>&lt;0.0001</td>
<td>0.8991000</td>
<td>-0.00043</td>
<td>0.00006</td>
<td>&lt;0.001</td>
<td>-0.00865</td>
<td>0.00103</td>
<td>&lt;0.001</td>
<td>2.25510</td>
<td>0.24650</td>
<td>&lt;0.001</td>
<td>0.27400</td>
<td>0.02520</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>Komb</td>
<td>&lt;0.0001</td>
<td>0.9012000</td>
<td>-0.00043</td>
<td>0.00006</td>
<td>&lt;0.001</td>
<td>-0.00865</td>
<td>0.00103</td>
<td>&lt;0.001</td>
<td>2.01810</td>
<td>0.18380</td>
<td>&lt;0.001</td>
<td>0.26160</td>
<td>0.02490</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI4 + KI6</td>
<td>Komb</td>
<td>&lt;0.0001</td>
<td>0.9021000</td>
<td>-0.00018</td>
<td>0.00009</td>
<td>&lt;0.05</td>
<td>-0.00057</td>
<td>0.00161</td>
<td>&lt;0.001</td>
<td>2.23610</td>
<td>0.23480</td>
<td>&lt;0.001</td>
<td>0.26290</td>
<td>0.02480</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

Regresjonsresultater ved ulike modellkombinasjoner av KI5 og KI6.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Best</th>
<th>Pr &gt; F</th>
<th>$R^2_{adj}$</th>
<th>$a_1$</th>
<th>$s_1$</th>
<th>Pr &gt; t</th>
<th>$a_2$</th>
<th>$a_2$S</th>
<th>Pr &gt; t</th>
<th>$b_1$</th>
<th>$b_1$S</th>
<th>Pr &gt; t</th>
<th>$b_2$</th>
<th>$b_2$S</th>
<th>Pr &gt; t</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI5</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.9167000</td>
<td>-0.00592</td>
<td>0.00131</td>
<td>&lt;0.001</td>
<td>-0.00368</td>
<td>0.00121</td>
<td>&lt;0.01</td>
<td>2.00400</td>
<td>0.22800</td>
<td>&lt;0.001</td>
<td>0.26360</td>
<td>0.03160</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.9116000</td>
<td>-0.00360</td>
<td>0.00121</td>
<td>&lt;0.01</td>
<td>-0.00360</td>
<td>0.00121</td>
<td>&lt;0.01</td>
<td>1.77430</td>
<td>0.20270</td>
<td>&lt;0.001</td>
<td>0.25510</td>
<td>0.03340</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6</td>
<td>1</td>
<td>&lt;0.0001</td>
<td>0.9168000</td>
<td>-0.00508</td>
<td>0.00148</td>
<td>&lt;0.001</td>
<td>-0.00147</td>
<td>0.00134</td>
<td>ns</td>
<td>2.08280</td>
<td>0.24630</td>
<td>&lt;0.001</td>
<td>0.25830</td>
<td>0.03190</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.8874667</td>
<td>-0.00474</td>
<td>0.00199</td>
<td>&lt;0.05</td>
<td>-0.01570</td>
<td>0.00164</td>
<td>&lt;0.001</td>
<td>1.35510</td>
<td>0.24480</td>
<td>&lt;0.001</td>
<td>0.29300</td>
<td>0.03670</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.9219000</td>
<td>-0.01570</td>
<td>0.00164</td>
<td>&lt;0.001</td>
<td>2.73890</td>
<td>0.36410</td>
<td>&lt;0.001</td>
<td>0.25010</td>
<td>0.02950</td>
<td>&lt;0.001</td>
<td>0.25430</td>
<td>0.03020</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6</td>
<td>2</td>
<td>&lt;0.0001</td>
<td>0.9217000</td>
<td>0.00129</td>
<td>0.00155</td>
<td>ns</td>
<td>-0.01640</td>
<td>0.00185</td>
<td>&lt;0.001</td>
<td>2.58000</td>
<td>0.33870</td>
<td>&lt;0.001</td>
<td>0.26430</td>
<td>0.03020</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5</td>
<td>Komb</td>
<td>&lt;0.0001</td>
<td>0.9004000</td>
<td>-0.00862</td>
<td>0.00107</td>
<td>&lt;0.001</td>
<td>-0.00862</td>
<td>0.00107</td>
<td>&lt;0.001</td>
<td>2.08230</td>
<td>0.19630</td>
<td>&lt;0.001</td>
<td>0.27480</td>
<td>0.02450</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI6</td>
<td>Komb</td>
<td>&lt;0.0001</td>
<td>0.9012000</td>
<td>-0.00862</td>
<td>0.00107</td>
<td>&lt;0.001</td>
<td>-0.00862</td>
<td>0.00107</td>
<td>&lt;0.001</td>
<td>2.01810</td>
<td>0.18380</td>
<td>&lt;0.001</td>
<td>0.26160</td>
<td>0.02490</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>KI5 + KI6</td>
<td>Komb</td>
<td>&lt;0.0001</td>
<td>0.9060000</td>
<td>-0.00495</td>
<td>0.00118</td>
<td>&lt;0.001</td>
<td>-0.00057</td>
<td>0.00119</td>
<td>&lt;0.001</td>
<td>2.36030</td>
<td>0.22440</td>
<td>&lt;0.001</td>
<td>0.25810</td>
<td>0.02410</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>