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  Abstract 

 

In a study conducted in five willow ptarmigan (Lagopus lagopus) areas in central Norway we 

found a total predation rate on artificial nests with common quail (Coturnix coturnix) eggs 

ranging from 39.8% to 50.7% over three years. The most dominating egg predators were 

ravens (Corvus corax), pine martens (Martes martes) and hooded crows (Corvus cornix). 

Predators that showed a low predation rate on the artificial nests were magpies (Pica pica), 

red foxes (Vulpes vulpes), stoats (Mustela erminea) and least weasels (Mustela nivalis). 

Evaluating the influence of human activity on the predation rates we found that the total 

predation rate increased with increasing road - and path density. Pine marten predation was 

negatively associated with density of roads and paths while raven predation was positively 

associated with density of roads and paths. The total predation rate increased with increasing 

settlement density. There was a negative relationship between raven predation and settlement 

density whereas there was a positive relationship between hooded crow predation and 

settlement density. In other words; the dominating mammalian species showed a negative 

association with overall human activity, while the two dominating corvid (Corvus spp.) 

species showed a positive association with overall human activity with the exception of 

ravens´ negative association with settlement density. It seems that in some way human 

activity and infrastructure facilitate access to resources for the corvid species; leading to 

higher corvid densities;- possibly leading to higher predation rates on nests in vicinity to 

settlement and infrastructure. We found however no relationship between total predation rate 

and willow ptarmigan density. This finding can be due to the difficulties of transferring 

predation rates on artificial nests to predation rates on natural nests where the predation rate 

by mammals probably is higher. Most of the predation from pine marten took place in birch 

habitat whereas most of the predation by corvids occurred in the more open low-alpine habitat 

and edge habitat. Although there was no clear relation between predation patterns on artificial 

nests and predator density measured using cameras, our results showed that we could expect 

higher densities of potential ptarmigan predators in association with human activity, 

settlement and infrastructure. Planning e.g. new cabin resorts areas, this should be taken into 

account, to avoid setting up resorts areas in high productive willow ptarmigan habitat. Small 

rodent abundance was positively related to total predation.  



Sammendrag 
 

I et forsøk gjennomført i fem lirypeområder (Lagopus lagopus) i Midt-Norge fant vi at totale 

predasjonsrater på falske reir med vaktelegg (Coturnix coturnix) varierte fra 39.8 % til 50.7 % 

over tre år. De vanligste eggpredatorene var ravn (Corvus corax), mår (Martes martes) og 

kråke (Corvus cornix). Noen predatorarter utførte lite predasjon på de falske reirene. Disse 

artene var skjære (Pica pica), rødrev (Vulpes vulpes), røyskatt (Mustela erminea) og snømus 

(Mustela nivalis). Da vi vurderte predasjonsratene opp mot menneskelige påvirkninger fant vi 

at den totale predasjonsraten økte i samsvar med økende tettheter av vei og sti. Det var en 

negativ sammenheng mellom predasjon fra mår og tettheter av vei og sti, mens det var en 

positiv sammenheng mellom predasjon fra ravn og disse variablene. Den totale 

predasjonsraten økte med økende tetthet av bygninger. Vi fant et negativt forhold mellom 

predasjon fra ravn og tetthet av bygninger, mens forholdet mellom predasjon fra kråke og 

tetthet av bygninger var positivt. Dette vil med andre ord si at den dominerende pattedyrarten 

(mår) var negativt påvirket av menneskelig aktivitet, mens de to dominerende kråkefuglene 

(Corvus spp.) var positivt påvirket av total menneskelig aktivitet, med unntak av ravnens 

negative sammenheng med tetthet av bygninger. Det kan virke som om menneskelig aktivitet 

og infrastruktur gir økt ressurstilgang til kråkefuglene, noe som fører til høyere tetthet av 

kråkefugl. Dette kan igjen føre til høyere predasjonsrater på reir i nærheten av bygninger eller 

annen infrastruktur. Den største andelen av predasjon fra mår ble utført i skogshabitatet mens 

den største andelen av predasjon fra kråkefugl ble utført i det mer åpne lavalpine habitatet og i 

skoggrensa. Vi fant derimot ingen sammenheng mellom total predasjonsrate og tetthet av 

lirype. Dette kan skyldes vanskelighetene med å overføre predasjonsrater på falske reir til 

predasjonsrater på ekte reir hvor predasjonen fra pattedyr sannsynligvis er høyere. Selv om vi 

ikke kunne se noen klar sammenheng mellom predasjon på falske reir og tetthet av predatorer 

målt ved hjelp av kameraer viste resultatene våre at vi kan forvente høyere tettheter av 

potensielle predatorer på ryper i nærheten av menneskelig aktivitet, bygninger og 

infrastruktur. Dette bør det tas hensyn til i planleggingen av for eksempel nye hytteområder 

for å unngå å oppføre slike hytteområder i områder hvor det er høy produksjon av liryper. Vi 

fant en positiv tilknytning mellom forekomst av smågnagere og total predasjon. 
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Introduction

 
Willow ptarmigan (Lagopus lagopus) population densities in northern Fennoscandia show 

considerable variation in time and space. It is believed that these fluctuations in population 

size are caused mainly by variations in reproductive success (e.g. Zwickel 1975, Myrberget 

1985, Steen et al. 1988a), which in turn is dependent on factors related to predation and 

climate (Steen et al. 1988a). Predation on eggs and chicks is recognised as the most important 

factor influencing reproductive failure in populations of many tetraonid birds (Steen et al. 

1988a, Wegge and Storaas 1990), but weather and temperature can also affect production of 

eggs and chicks (Erikstad and Andersen 1983, Steen et al. 1988b, Swenson et al. 1994). Steen 

and Erikstad (1996) ranked demographic parameters that affected the number of breeding 

willow ptarmigan hens by using sensitivity/elasticity analysis. They found that winter survival 

of juveniles had the largest impact followed by egg survival and chick survival that also had 

great impact. Cold and wet weather during the pre-laying period of Hazel grouse (Bonasa 

bonasia) influence the availability of nutritious food which may lead to reduced reproductive 

success (Swenson et al. 1994).  

 

Human disturbances can act as a strong stressor in various species of wild animal populations 

in their natural habitats (Barja et al. 2007). A number of studies have investigated the impacts 

of human activities on bird populations (e.g. Andrén 1992, Kurki et al. 1998, Watson and 

Moss 2004, Marzluff and Neatherlin 2006). The human activity could for instance be related 

to agriculture, roads, paths, houses and cottages. Traffic and roads can have major ecological 

effects on animals (Forman and Alexander 1998, Spellerberg 1998), for instance trough direct 

losses of animal lives (hit by vehicles) or influence animals` movement patterns (Forman and 

Alexander 1998). Increasing numbers of outdoor recreationists lead to higher impacts on 

wildlife and wildlife habitat directly through disturbance of animals and less directly through 

discarded food and other items (Boyle and Samson 1985). In Norway, new cabin areas are 

opened and existing cabin areas are expanding to meet demands from the general public 

(Kaltenborn et al. 2005). Cabins in mountain areas are particularly popular, and this 

development has imposed concerns about the impacts on neighbouring natural ecosystems 

(Pedersen et al. 2006). Many of these cabins are placed in important willow ptarmigan areas 

in the transition zone between forests and treeless mountains which may enforce willow 



ptarmigan habitat loss (Støen et al. 2010), and favour generalist predators such as foxes 

(Vulpes spp.) and corvids (Corvus spp.) (Storch and Willebrand 1991). American crows 

(Corvus brachyrhynchos) and ravens (Corvus corax) in Washington State (USA) have higher 

reproduction near human settlement and recreation (Marzluff and Neatherlin 2006) and red 

fox (Vulpes vulpes) is potentially able to cause elevated predation pressure in landscapes 

fragmented by human activities (Kurki et al. 1998). Andrén (1992) suggested that increased 

corvid activity in fragmented landscapes can be due to many omnivores finding reliable food 

sources around farms and other human settlements. The red fox can use paths and roads for 

movements in the landscape, and there is often a greater activity of red fox in areas close to 

infrastructure and settlement (Røhnebæk 2004, Pedersen and Karlsen 2007). Asmyhr (2008) 

found a relationship between human activity and predation on artificial nests by some species. 

He found that pine marten (Martes martes) avoided (depredated less in) areas with human 

activity, while raven and hooded crow (Corvus cornix) depredated more in vicinity to human 

activity. 

 

Potential avian predators of willow ptarmigan in the north boreal and low alpine zone are 

raven, hooded crow, black billed magpie (Pica pica) (Pedersen et al. 1983, Hjeljord 2008), 

goshawk (Accipiter gentilis), gyrfalcon (Falco rusticolus), eagle owl (Bubo bubo) and golden 

eagle (Aquila chrysaetos) (Hagen 1952). Raven, hooded crow and black billed magpie are 

primarily nest and chick predators (Hjeljord 2008), while goshawk, gyrfalcon, eagle owl and 

golden eagle prey upon juvenile and adult ptarmigan (Hagen 1952). Birds rely on their sight 

to locate food sources and some individuals can specialize on locating nests and thus be 

responsible for considerable egg losses within their territory or home range (Erikstad et al. 

1982). Territorial hooded crows on Tranøy in the north of Norway apparently located 

ptarmigan nests by watching hens move to and from their nests (Erikstad et al. 1982). 

Territorial crows were the single most important nest predators on the island Tranøy, and nest 

losses decreased significantly when the territorial crows were removed (Erikstad et al. 1982). 

A corvid removal study was also conducted on another island in northern Norway, Karlsøy 

(Parker 1984). Here all hooded crows, ravens and magpies were removed over four years in a 

willow ptarmigan and black grouse habitat. The removal took place during nesting and early 

brooding of the tetraonids. During the study period estimated willow ptarmigan nest loss was 

lower in only 1 of 4 years, while production, nesting density and chick mortality were 



unaffected. Parker (1984) stressed that the study was conducted during years with unusual 

high chick survival, high production and a rapid increase in willow ptarmigan breeding 

stocks, despite the high nest losses. Parker (1984) believed that the corvid removal might have 

led to different results during a period of willow ptarmigan decline. 

 

Potential mammalian predators of willow ptarmigan in the northern boreal and low alpine 

zone are the specialists least weasel (Mustela nivalis) (Hjeljord 2008) and stoat (M. erminea), 

while the generalist predators are red fox, pine marten (Pedersen et al. 1983) and American 

mink (M. lutreola) (Hjeljord 2008). The least weasel, stoat and American mink are all 

predators mainly on ptarmigan eggs or chicks, while pine marten and red fox also prey on 

adult individuals. There is a link between predation on ptarmigan and ptarmigan density 

(Myrberget 1988, Steen et al. 1988a). That the red fox can have high influence on prey 

populations was observed during the epidemic outbreak of the sarcoptic mange (Sarcoptes 

scabei) in the mid 1970ties (Lindström et al. 1995, Smedshaug et al. 1999). During this period 

the red fox population experienced a considerable decline, while the hunting bag of central 

small game species like mountain hares (Lepus timidus) and grouse increased (Lindström et 

al. 1995, Smedshaug et al. 1999). In a one-year experimental study using artificial nests in 

three willow ptarmigan areas Asmyhr (2008) observed that predation on artificial nests were 

related to ptarmigan densities, with lowest predation rates where there were highest ptarmigan 

densities.  

 

The willow ptarmigan is an alternative prey species to many predators in northern 

Fennoscandia which has voles (Microtus and Myodes spp.), lemmings (Lemmus and 

Dicrostonyx spp.) or other rodents as their main prey (Angelstam et al. 1984). The density 

fluctuations in willow ptarmigan populations in many areas within the northern boreal and 

low alpine zone are believed to be caused by varying predation pressure (Steen et al. 1988a), 

which in turn may be related to fluctuations in local abundance of voles and lemmings (Hagen 

1952). When vole densities are low the nest losses are higher than at high vole densities 

(Angelstam et al. 1984, Myrberget 1984, Myrberget 1988, Steen et al. 1988a, Wegge and 

Storaas 1990). There also exists support for a hypothesis concerning rodent cycles being 



subjected to a bottom-up control rather than controlled by predation (e.g. Selås 1997, Seldal et 

al. 1994). It is suggested that 3-4 year small rodent cycles are initiated by mast-induced 

changes in plant chemistry (Selås 1997), and thus only modified by predation (Selås 2006).  

 

A commonly used method for studying the impact of different predator species on breeding 

success in birds is to use artificial nests with eggs (e.g. Angelstam 1986, Andrén 1992, Moore 

and Robinson 2004). There are however biases that should be considered when setting up 

experiments with artificial nests (e.g. Angelstam 1986, Willebrand and Marcström 1988, King 

et al. 1999, Moore and Robinson 2004). Moore and Robinson (2004) pointed out that 

differences between predation on artificial nests and natural nests can be caused by varying 

attraction to the two types of nests by different predator species. The difference in attraction 

versus avoidance of predator species on artificial nests could occur because predators access, 

locate and depredate eggs in different manners depending on whether the nest is natural or 

artificial. It is important to notice that it is not possible to make direct inferences about 

predation on natural nests based on predation on artificial nests (Zanette 2002). 

 

Most often predation rates are higher on artificial nests than on natural nests (Major and 

Kendal 1996, King et al. 1999, Burke et al. 2004). It is also established that natural nests are 

mainly depredated by mammalian predators while birds often are responsible for most 

artificial nests depredation (Willebrand and Marcström 1988, MacIvor et al. 1990). Artificial 

nests have greater conspicuousness than natural nests (King et al. 1999), and especially 

artificial nests with grease, as used in our study, may be easier to detect for a bird in the air, 

than for a mammal on the ground (Angelstam 1986). The smell of the grease or of the humans 

handling the nests could also make mammals sceptical and make them avoid the “grease-

nests”. It is also speculated that the hens scent and trail to the nest cause a higher mammalian 

predation rate on natural nests (Willebrand and Marcström 1988, O`Reilly and Hannon 1989, 

MacIvor et al.1990). Despite biases; there are several factors that make artificial nests 

experiments a very valuable research method. The technique is less time consuming than 

finding natural nests (O`Reilly and Hannon 1989, Burke et al. 2004), and makes it possible to 

gather large quantities of data on spatial and temporal predation on eggs from ground nesting 

birds without disturbing any incubating hen (Klausen et al. 2009). The advantage of using 

artificial nests, and especially “grease nests”, is that it makes it possible to identify the 

predator (Angelstam 1986). This can be very difficult when it comes to predation on real nests 



because there are usually no signs after successful predation (Angelstam 1986). Other 

advantages with the method is that it provides estimates on predator occurrence in it self 

(Miller and Hobbs 2000) as well as giving an opportunity to investigating their search patterns 

(O`Reilly and Hannon 1989), e.g. in relation to habitat and human influence. We argue that 

for detecting relationships between human activity and predation patterns from different 

predator species this is a useful method.  

 

The aim of this study was to investigate species specific predation rates on artificial nests in 

different habitats (birch forest-, tree line- and low-alpine habitat) and in context to human 

activity and infrastructure, as well as differences in relative predator abundance measured by 

cameras with bait. These relationships were studied in five areas with dissimilar ptarmigan 

densities. We also included an index variable on small rodent abundance to control for 

possible influence of their abundance. Based on earlier studies we predict that: a) predation 

rates on artificial nests will be lower in areas with higher ptarmigan densities, b) avian 

predators will be more important than mammalian predators and account for most egg 

removal in the open low-alpine habitat, c) the different predators’ predation rates will be 

correlated to human activity; pine marten will avoid human activity while corvids will be 

attracted to human activity, and d) according to the alternative prey hypothesis we expect 

predation rates to be lower when voles are abundant.  

 

 

 

 



2. Materials and methods  

2.1. Study areas 

The study was completed in five areas in central Norway (Fig. 1). They are all mountainous 

areas located between 700 and 1140 m above sea level, with similarities in bedrock, 

vegetation and composition of the predator community. Mastukåsa/Åslia and Råtåsjøhø is 

situated in Hedmark County. The study site in Gåvålia is situated on the boarder between 

Oppland and Sør-Trøndelag County. Dindalen is located in Sør-Trøndelag County and 

Grødalen in Møre og Romsdal County. For comparable information about longitudes and 

latitudes, ptarmigan densities, mean June temperatures and precipitations, dominating 

bedrocks and vegetation in addition to the presence of potential ptarmigan predators, see 

Table 1. Moen (1999) characterized the northern boreal zone as a zone dominated by birch 

woodland and some stunted coniferous woodland. The coniferous woodland is comprised of 

Scots pine (Pinus sylvestris) (on dry ground) and Norway spruce (Picea abies). In the 

northern boreal zone you find aspen (Populus tremula), species of willow (Salix spp.) and 

rowan (Sorbus aucuparia) forming groups with scattered, low-growing trees. The zone has 

minerothropic mires covering large areas. The upper boundary of the northern boreal zone is 

placed at the climatic woodland limit which is defined as a line drawn through the uppermost, 

or northernmost, woodland stands, where the climate determines the uppermost extent of 

woodland (Moen 1999). But there is also an actual woodland limit that may be determined by 

topological factors, impact of man and soil factors. The actual woodland limit is often situated 

considerably lower than the climatic woodland limit. In our study we used the actual 

woodland limit, and called this the edge habitat. The low alpine zone is the zone above the 

woodland limit. The lack of woodland is the most important characteristic of the zone. This 

zone is characterized by bilberry heath (Vaccinium myrtillus), juniper (Juniperus), dwarf birch 

scrub (Betula nana) and willow communities (Moen 1999). The low alpine zone extend as far 

up as bilberry, blue heath (Phyllodoce caerulea) or scrub vegetation are found.  



 

Figure 1: Map of Norway which illustrates the location of the counties in which the study areas are situated 
(Møre og Romsdal, Hedmark, Oppland and Sør-Trøndelag). Box to the right shows a more detailed map with 
approximate locations of the study areas (Dindalen, Mastukåsa/Åslia, Råtåsjøhø, Gåvålia and Grødalen). (NGU 
2010 II). 

Table 1. Longitudes- and latitudes, mean ptarmigan densities (2009), mean June temperatures and precipitations 
(Meteorologisk institutt 2010 I-IV), dominating bedrocks (NGU 2010 I) and vegetation in addition to the camera 
recorded presence of potential ptarmigan predators (2009) for all study areas.   

  Råtåsjøhø Mastukåsa/Åslia Grødalen Dindalen Gåvålia 

Latitude and longitude 
62° 12` - 62° 15`N, 

9° 44` – 9° 51`E 
62° 35` - 62° 39`N, 
10° 55` - 11° 01`E 

62° 32` - 62° 35`N, 
8° 52` - 8° 57`E 

62° 31` - 62° 33`N, 
9° 18` – 9° 24`E 

62° 14` - 62° 17`N, 
9° 37` - 9° 42`E 

Estimated mean 
ptarmigan density/km² 

24.0 18.0 5.0 25.0 9.0 

Mean June temperature 10.0°C 10.3°C 12.3°C 10.5°C 10.5°C 

Mean June precipitation 51 med mer 59 mm 42 mm 49 mm 49 mm 

Dominating bedrock Phyllite Paragneiss Migmatite Migmatite Igneous rock 

Dominating vegetation 
Poaceae, Betula 
nana, Juniperus 

Vaccinium 
myrtillus, Betula 
nana, Salix spp. 

Poaceae, Ericaceae 
without Vaccinium 

myrtillis 
Ericaceae  

Poaceae, Betula 
nana 

Species (events per 14 
camera trap days): 

     

Red fox 0.62 1.16 0.18 0.91 1.89 

Pine marten 0.36 0.49 0.00 0.00 0.06 

Hooded crow 1.61 4.24 0.00 5.46 3.15 

Raven 0.00 0.13 0.00 0.70 2.40 

Magpie 0.18 0.06 0.00 0.00 0.06 

 



2.2. Study design 

In each of the five study areas we distributed twelve transects, all consisting of three track 

boards, which were placed along the landscape gradient: birch – edge – low alpine. The 

transects were placed in a relatively straight line 90 degrees on the tree line, with one track 

board in the forest habitat, one at the edge (tree line) and one in the low alpine habitat (Fig. 2). 

The distance between each track board was approximately 100 m, which make the total length 

of one transect 200 m. Transects were originally placed at random in the landscape, and the 

distances between transects range from approximately 400 m to 3 km. The different distances 

between transects was adjusted to avoid the roughest terrain and from logistics reasons as we 

were depending on easy access to the individual transects by foot. 

 

 

Figure 2: Transect design with position of the track boards along the landscape gradient (birch, edge and low 

alpine). 

 

2.2.1. Artificial nests 

The method of using baited track boards to examine predation has been developed by 

Angelstam (1986) and Andrén (1992). More recently this study design has for instance been 

used by Asmyhr (2008), Klausen et al. (2009) and Pedersen et al. (2009). The artificial nests 



consisted of a track board, grease, soil and two common quail (Coturnix coturnix eggs (Fig. 

3). Common quail eggs and willow ptarmigan eggs have a similar colour and they are both 

heavily pigmented, but the willow ptarmigan eggs are larger in size than the common quail 

eggs (O`Reilly and Hannon 1989). The artificial nests are not supposed to imitate natural 

willow ptarmigan nests, they are simply just a tool to make it possible to identify potential egg 

predators and predation rates in the study areas. The track boards were made of Huntonitt and 

measured 60 times 60 cm and were about 3 mm thick. On each of the boards we smeared a 

thin layer, approximately 2-3 mm, of non-toxic lubrication grease (Mobile grease FM 102). 

This kind of grease is normally used for large scale kitchen machines. On top of the grease we 

strewed a thin layer of soil. The soil was supposed to cover the white grease to make the track 

board less visible. In the centre of each track board we put two common quail eggs. The 

grease had two functions; it made the eggs stick to the track board and also made it possible to 

see the footprints of potential predators. Transferring of human scent to the track boards could 

be a problem (Whelan et al. 1994). To reduce the transferring of human scent we used plastic 

gloves when we handled all the parts of the artificial nests. The position of each artificial nest 

was saved on a GPS unit (Garmin).  

Figure 3: Left: Track board covered with grease and soil and baited with two common quail eggs. Right: 
Predated track board with one common quail egg missing and a foot print from the predator. 

Each track board was checked for egg depredation after two consecutive trial periods. The 

first trial periods started during the first half of June in all three years. In year 2007 there were 

two study areas and hence 24 transects with a sum of 72 track boards while in year 2008 and 



2009 there were five study areas and hence a total of 60 transects with a sum of 180 track 

boards. The total number of track boards for all years and both periods pooled was 864. The 

consecutive periods lasted for 10 days in 2007 and 7 days in 2008 and 2009. This change was 

done for practical reasons. A depredation event was recorded if one or both of the eggs of one 

board were missing or damaged. If there had been a depredation event we examined the 

footprints and noted which animal that could have caused the depredation. We used hand 

books for determining mammal tracks (Bang and Dahlstrøm 2000). Avian predators were 

determined according to Pedersen et al. (2009). If it was not possible for us to determine the 

predator species the predation was recorded as an unspecified predation event. Least weasel 

and stoat were pooled together in one group, since it is difficult to distinguish their foot print. 

In case of predation, new common quail eggs were placed on the track boards for the second 

trial period. If needed, additional grease and soil were added to the boards. Between the first 

trial period and the second trial period we moved all the artificial nests 50 m along the tree 

line (all nests in each transects were moved in the same direction), so the predators should not 

find the boards at the exactly same place as the first time. The moving of the nests was done 

because experiments have shown that predators can concentrate their food search in areas 

where earlier searches have been successful (O`Reilly and Hannon 1989). Nests disturbed by 

domesticated animals (mainly sheep) were registered as missing data (n=81) and not included 

in further analysis.   

 

To get an idea of the influence the track board had on the predator’s ability to find our 

artificial nests, eggs without track boards were also distributed in our study areas in 2009. 

These “extra eggs” were placed in pairs directly on the ground 20 m away from selected track 

boards, 90 degrees on the tree line. We positioned a total of 60 pairs with “extra eggs” in all 

areas and both periods pooled, and marked their location with small paper strips tied to nearby 

vegetation and saved the position on a GPS unit. The “extra eggs” were checked and moved 

along with the track boards from the first period to the second period.  

 

Our study has great resemblance to the study of Asmyhr (2008), who completed his fieldwork 

in 2007. He used data from only one year in three separate study areas, while we used data 



from three years (2007-2009) and five different study areas (Table 2). The data we used from 

2007 is extracted from Asmyhrs` (2008) data. Asmyhr (2008) did not move the track boards 

from their position in the first period to a new position in the second period as we did. For 

practical reasons we also used shorter trial periods; Asmyhr (2008) had two consecutive 

periods on ten days, while we had two consecutive periods on seven days. We did not adjust 

for the different length of the trial periods in the analysis since no good method for doing such 

an adjustment is developed. In addition we used more predictor variables than Asmyhr (2008) 

in the model selection (see 2.2.7 Statistical tests). 

 

Table 2: Study areas used by Asmyhr (2008) = X, study areas used in our study = Y. (We have not included 
Asmyhr’s (2008) third study area Raudfjellet in this table because this area was not included in the field work of 
2008 and 2009 and is hence not a part of our study). 

 
 

 

 

2.2.2. Presence of potential ptarmigan nest predators 

To get a measure of relative predator abundance, two automatic cameras (Stealth Ocam, 

Prowler DVS, STC-DVSIR5) with bait were set up in each study area. The purpose of these 

specific cameras was to document the potential ptarmigan predator species and differences in 

their relative abundance within our study areas. The bait used to attract potential predators to 

the camera was roadkills of moose (Alces alces), roe deer (Capreolus capreolus) and red deer 

(Cervus elaphus). The distance between the camera pairs ranged from approximately 2.7 km 

to 5.3 km (average 4.7 km) depending on topography and where proper camera sites could be 

found. The camera studies were carried out from March to July/August in 2009.  

 

The cameras were equipped with 2GB memory chips to ensure capacity to record every 

approaching animal, and were checked with 14-64 days intervals. Memory chips were 

  
Råtåsjøhø Mastukåsa/Åslia Grødalen Dindalen Gåvålia 

2007 XY XY    

2008 Y Y Y Y Y 

2009 Y Y Y Y Y 



replaced with empty ones whenever cameras were checked, the bait was replaced if most of 

the meat had been eaten. We set the cameras to take a series of three pictures (2 second 

intervals between pictures) when triggered by movement, and we chose the lowest possible 

interval between picture series (1 minute). The date and time appear at the bottom of each 

picture. The appearance of a predator in the pictures was counted as a separate “event” when 

there was > 1hour between appearances by individuals of the same species. The total number 

of events by each predator was pooled for the entire period and for each area separately. To 

get a relative estimate of abundance we corrected for number of trap days. In order to 

compare camera events with predation events on the track boards we chose to present the data 

as “camera events per 14 trap days” because the track board study lasted for 14 days.  

 

2.2.3. Human activity 

As indices of human activity we measured distance from all track boards to the closest road, 

the closest path and the closest settlement. To estimate human activity we included indices of 

road density, path density and settlement density. Forman and Alexander (1998) claimed that 

road density, e.g. measured as length of roads in km/km², is a useful index of ecological 

effects of roads. For the density indices we measured variables on three scales from each track 

board; number of buildings, total length of paths and total length of roads within circles with 

radius 1 km, 3 km and 5 km from each track board.  

To measure distances from track boards to closest building, closest path and closest road we 

used the program Map Source version 6.13.7 (1999-2008 Garmin Ltd. or its subsidiaries), 

with the maps Topo Adventures and Topo Pro for all study areas. In these instances the two 

types of maps gave the exact same results for distance to human activities. We measured the 

linear distance with a ruler tool. 

To measure the density indices of human activity a GIS-program called PostGIS 1.5 (an 

extension of PostgreSQL 8.4) with N50 maps was used. The Euclidean 2 dimensional 

distances were measured.  

Buildings included in the term settlements were houses, cabins, agriculture buildings, 

industrial buildings and campgrounds. The term path included unmarked trails (there were no 



marked trails in the areas). The term roads included all roads denoted as roads in the N50 

maps (e.g. European route E6 and national roads) 

 

2.2.4. Ptarmigan density 

In the latest years willow ptarmigan surveys have been conducted in selected areas in Norway 

(Solvang et al. 2007). The method used is counting of ptarmigan along census lines. Pointing 

dogs are used by the observers. The observers and the dogs are searching for ptarmigan along 

the line. In advance of the surveys the placement of the census lines has to be decided. It is 

important that the quality of the areas adjacent to the census lines reflects the quality of the 

study area as a whole. 

Two different methods to measure ptarmigan density have been used by us to see if there is 

any relationship between ptarmigan density and predation rate on artificial nests. The first 

method called “Distance sampling” was used in the three study areas Råtåsjøhø, 

Mastukåsa/Åslia and Grødalen. When ptarmigan are being found using this method the 

distance from the line to the place of the ptarmigan residence are measured. The probability to 

observe ptarmigan are depending on the distance between the census lines and the ptarmigan. 

If the ptarmigan is positioned close to the census line the probability to observe it is higher 

than if it is positioned further away. For the density estimation three values need to be 

measured; the length of the census line, the distance from the line to an observation and the 

number of birds per observation. To estimate the ptarmigan densities a statistic program 

called “Distance sampling” is used (Buckland et al. 2007). The program shows consideration 

for the probability to observe ptarmigan in relation to distance between census lines and 

ptarmigan. Volunteers (often small game hunters and dog owners) have joined the ptarmigan 

surveys as observers, and the “Grouse Managament Project 2006-2011” has calculated the 

ptarmigan densities using the “Distance sampling” method. 

In the study areas Dindalen and Gåvålia we obtained estimates on ptarmigan densities by the 

second approach. The estimates of ptarmigan density were conducted in relation to a 

monitoring program for terrestrial ecosystems (TOV) by NINA (Norwegian Institute for 

Nature Research) (Framstad and Kålås 2005). Also this method of measuring ptarmigan 

density uses census lines walked by observers with pointing dogs. To calculate ptarmigan 



density using the methods of the TOV project the values needed is number of ptarmigan 

observed, the total length of the census line, the width of the census line and a coefficient of 

detectability of ptarmigan within the area. In this instance the width of the census line was set 

to 100 m and the detectability was set to 80% (Pedersen et al. 1999). In 2009 both methods 

were used in census of willow ptarmigan in Gåvålia giving approximately the same density 

estimates (Distance: 13 ptarmigan/km² and 3.3 chicks/hen, TOV: 16 ptarmigan/km² and 3.0 

chicks/hen). For both methods the observers registered the number of juveniles and the 

number of adult ptarmigan. From these numbers the chick/hen-ratio is estimated.  

 

2.2.5. Tree density 

At each transect we used a “relascope like” method to estimate the number of trees within 

360° radius of the transect line. We used a “home made” relascope with a small rectangular 

piece of hard plastic with the same width as the opening of the original relascope, tightened to 

a thin rope. Because we lost this measure instrument we had to use our outstretched arm 

(equivalent to the string), and our little finger acted as the blade in Gåvålia 2009. The trees 

that were visible when our finger was placed directly in front of them were counted, thus 

giving us a relative measurement of trees in the nearby area of the transect line. This was done 

every 10th m (a total of 21 stations along each transect), starting by the track board in the 

forest habitat and finishing by the track board in the low-alpine habitat. We pooled all tree 

species and had therefore only one category including both deciduous and coniferous trees. 

When performing the model selection we pooled the seven stations closest to each track board 

to get the tree density in the respective habitats. The use of different approaches for measuring 

tree density is not optimal, we believe however that the relative difference is good enough, 

and the results seem ecologically sound. 

 

2.2.6. Small rodent abundance 

The data on trapped small rodents per 100 trap days from Åmotsdalen was used as an index of 

small rodent abundance in our study. We got the data on small rodent abundance for 

Åmotsdalen 2009 from Erik Framstad (pers. comm.). Data from 2007 was extracted from 

Framstad (2008) while data from 2008 was extracted from Framstad (2009). Åmotsdalen is 



situated in Oppdal municipality and is centred between the study areas with Mastukåsa/Åslia 

as the outlying study area with longest distance to Åmotsdalen. Year 2007 was a peak year in 

the small rodent populations with 65 small rodents per 100 trap days, whereas in 2008 no 

small rodents were trapped (low year) and in 2009 two small rodents were trapped per 100 

trap days (low year). Small rodent population fluctuations at separate localities within regions 

occur with high degree of synchrony, (e.g.; Kalela 1962, Myrberget 1973, Korpimäki and 

Krebs 1996, Lambin et al. 2006), especially the high peaks in small rodent abundance are 

common over entire regions (Hjeljord 2008). In the study year 2009 we also recorded signs of 

small rodent activity systematically within all study areas, and in connection to each transects, 

to account for possible population differences (peak, crash, low); recording rodent tunnels, 

lairs, faeces as well as small rodent bite marks on vegetation on every m along a 50 m 

measuring tape (50 measuring units pr transect). Other studies using similar methods have 

shown that such small rodent activity is proportional to local abundance (Lambin et al. 2000). 

These signs of activity occurred in relatively equal frequencies between the study areas, and 

as this was only done in 2009, we used only the one regionally estimate on small rodent 

abundance i.e. in our study the data from Åmotsdalen.   

 

2.2.7. Statistical tests 

Lewis (2004) examined different types of statistical tests used to analyse artificial nest data. 

He concluded that logistic regression is the most appropriate form of the generalized linear 

models for analysing artificial nest data with a binary or proportional response variable. Based 

on Lewis (2004) we are using logistic regression to analyse our data. We performed the 

logistic regression in JMP® 4.0.0. (SAS Institute Inc 2000).  

In our study the outcome variable was predation/not predation on the track boards. We were 

studying the outcome in six groups: total predation, predation by mammals, predation by 

birds, predation by pine martens, predation by ravens and predation by hooded crows. With 

exception from the first mentioned group we were studying predation in the different groups 

in relation to the overall predation. Total predation was studied in relation to all available 

track boards. The predictor variables were: year, location, period, habitat (birch, edge or low-

alpine), distance to closest settlement, distance to closest path, distance to closest road, 



ptarmigan density, chicks/hen, number of trees (using relascope from each track board), small 

rodent index, number of buildings within a circle with radius 1 km, 3 km and 5 km from each 

track board, total length of paths within a circle with radius 1 km, 3 km and 5 km from each 

track board and total length of roads within a circle with radius 1 km, 3 km and 5 km from 

each track board. I.e. we have three different scales for each predictor variable for human 

activity (1km, 3 km and 5km).   

The predictor variables year and location was treated as random effects. Location turned out 

to be a biased and zeroed variable and was hence not included in any models (Hosmer and 

Lemeshow 2000). Distance to closest settlement and chicks per hen did not contribute enough 

to be included in any of the three best models to explain predation in the different groups. 

Number of buildings within a circle with radius 1 km, 3 km and 5 km from each track board 

were strongly correlated variables. Maximum one of these variables was included in each 

model. The same principle goes for the total length of paths within a circle with radius 1 km, 

3 km and 5 km from each track board and the total length of roads within a circle with radius 

1 km, 3 km and 5 km from each track board. To decide which scale to use on the predictor 

variables in the models we evaluated AICc-values for the full models and chose the scale that 

gave the models with the lowest AICc-value. We accepted the scale to be different for the 

different types of human activity variables (settlement, road and path) in each model if this 

gave the model with lowest AICc-value. We listed the three best models for each predator 

group and did not include new models with the only change being switching one scale of a 

human activity predictor variable with one of the other two scales for the same predictor 

variable giving a model with higher AICc-value. Variables with p-values < 0.1 in the 

multivariable models were considered to be included in the models. To avoid biased models 

we compared the size of the variable coefficients between univariable models and 

multivariable models (for univariable estimates see Appendix 1). If the variable coefficients 

had changed markedly in magnitude, or had changed from a positive to a negative value or 

opposite, the variable was not included in the model (Hosmer and Lemeshow 2000). We also 

compared the ratio of the size of the standard errors of the parameter estimates to the size of 

the parameter estimates and excluded variables with ratios greater than 0.6 or lower than -0.6. 

As a model-building strategy we used variable selection (Hosmer and Lemeshow 2000). 

When analysing predation rates we pooled all study areas and all years.  

To select the best models we used Akaikes information criterion corrected for small sample 



size (AICc) and Akaike weights (w AICc). In the tables listing the three best models for the 

predator groups in the result part we only show the predictor variables used in these models. 

The best model was the model with lowest AICc-value and highest w AICc-value. To assess 

the relative merits of the models we treated models with AICc   2.0 as models with 

substantial support while models with AICc   4.0 had substantial less support (Burnham 

and Anderson 2004). Based on advices from Anderson and Burnham (2002) we listed these 

values for each of the models in the result-part; the maximized log-likelihood (Max. logl.), 

number of estimable parameters (k), AICc-value, AICc and the Akaike weights (w AICc). In 

addition we also listed p-values, estimates (reg. coef.), standard errors (SE) and variable 

importance (VI) of the predictor variables (Anderson and Burnham 2002).  

In the model selection part of the results the predictor variable terms “road”, “path” and 

“settlement” are used for the distance from track boards to the closest road, path and 

settlement respectively. The terms “settlement 1km”, “path 1km”, “road 1km”, “settlement 

3km” etc. are used for the number of buildings within circles with the given radius from each 

track board and the total length of paths and roads within circles with the given radius from 

each track board respectively.  

To reveal if there was any relationship between total predation rate and ptarmigan density in 

the different study areas in the various years we performed a simple linear regression in JMP 

4.0.0. The outcome variable was total predation rate and the predictor variable was ptarmigan 

density.  



3. Results 

3.1. Predator assemblage 

In all study areas and all years pooled five different predator species were identified as 

predators on the track boards. In addition, stoats or least weasels or both had been on the track 

boards, but it was not possible to distinguish these two species. We also included a group with 

unknown predators where we could not identify the species. There were not enough predation 

events by red fox (n=8), stoats/least weasels (n=9) and magpies (n=15) to perform any model 

selection on predation by these species separately. Raven (n=109) was the most common 

predator followed by pine marten (n=73) and hooded crow (n=72). Depredation rates pooled 

for all years by the different predator species in the study areas is presented as percentage of 

available nests in the study areas depredated (Fig. 4). A more thorough summary of the data 

on predation by the different species distributed on location, habitat and year is given in 

Appendix 2. 
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Figure 4: Depredation rates (%) by our identified species pooled over all years on the different study locations. 



 
Of the available nests in the different habitats; 42.4% (n=255) were depredated in the birch 

habitat, 40.6% (n=256) were depredated in the edge habitat and 44.9% (n=272) were 

depredated in the low alpine habitat. The different predator species had different depredation 

rates depending on the type of habitat. Most of the pine marten depredation was done in the 

birch habitat, while most of the raven and hooded crow depredation was done in the low 

alpine habitat (Fig. 5).  

Depredation by species in different habitats
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Figure 5: Depredation rate by pine marten, raven and hooded crow in the different habitats.  

 

There was also a yearly difference in predation rates of available nests by the three 

dominating predator species pooled together for all study areas (Fig. 6). Of the available nests 

in the different years pine martens depredated 12.3 % (n=138) in 2007, 12.9% (n=326) in 

2008 and 4.4 % (n=319) in 2009. Raven depredated 27.5 % (n=138) in 2007, 13.5 % (n=326) 

in 2008 and 8.5 % (n=319) in 2009, while hooded crow depredated 2.9 % (n=138) in 2007, 

5.5 % (n=326) in 2008 and 15.7 % (n=319) in 2009.  



Depredation rates by the dominating species in the different years

0

5

10

15

20

25

30

2007 2008 2009

Year

D
ep

re
da

tio
n 

ra
te

s 
(%

) o
f a

va
ila

bl
e 

ne
st

s

Pine marten

Raven

Hooded crow

Figure 6: Yearly variations in depredation rates (%) of available nests by the dominating predator species. 

 

 

None of the “extra eggs” placed in the vicinity of the track boards were subjected to 

predation.  

 



3.2. Presence of potential nest predators 

A comparison between the total number of predation events on the track boards and total 

number of camera events by each predator species showed no consistent relationships (Table 

3). Within some of the study areas there was however some concurrence between these two 

datasets.    

 
 
Table 3: Number of predation- and camera events per 14 trap days in the different study areas and by the 
different predator species in 2009. The predation- and camera events are adjusted to present the respectively 
proportions of events over each study area.  
 

SPECIES METHOD     AREA     

    Råtåsjøhø Mastukåsa/Åslia Grødalen Dindalen Gåvålia 

Red fox Camera 0,22 0,19 1,00 0,13 0,25 

 Track board 0,00 0,15 0,00 0,00 0,00 

Pine marten Camera 0,13 0,08 0,00 0,00 0,01 

 Track board 0,40 0,69 0,03 0,00 0,00 

Hooded crow Camera 0,58 0,70 0,00 0,77 0,42 

 Track board 0,20 0,15 0,82 0,75 0,38 

Raven Camera 0,00 0,02 0,00 0,10 0,32 

 Track board 0,10 0,00 0,15 0,00 0,58 

Magpie Camera 0,06 0,01 0,00 0,00 0,01 

  Track board 0,30 0,00 0,00 0,25 0,04 

 

The red fox occurred on the cameras in all five areas, while red fox predation was only 

recorded in Mastukåsa/Åslia. Mastukåsa/Åslia and Råtåsjøhø were the two areas were pine 

marten events occurred both on the track boards and on the pictures. Hooded crows were 

recorded both by cameras and on track boards in all areas except from in Grødalen, where 

events were only recorded on track boards. Number of predation events of hooded crow in 

Grødalen was also the highest recorded in this study. Raven occurred on both cameras and 

track boards only in Gåvålia, but occurred in all areas either on track boards or camera. 

Magpie events were recorded by both methods only in Gåvålia and Råtåsjøhø, but occurred 

also on track boards in Dindalen and on cameras in Mastukåsa/Åslia 

. 

 

 



3.3. Total predation 

The total predation rate over all study areas and all years pooled was 42.7% (n=783). The 

three best models to explain total predation included the predictor variables year, period, road, 

small rodent index, settlement 1 km, path 5 km and road 3 km (Table 4). All the three best 

models have substantial support compared to each other ( AICc   2.0).      

 

Table 4: The three best models explaining total predation ranked from best to third best (the best model is 

indicated in bold letters). Settl. = settlement, Small rod. = small rodent index.  

Model Max logl. k AICc AICc w 
(AICc) Variable Reg. coef. SE P-value VI 

1 -518,45 6 1049,01 0,00 0,26 Year -0,244268 0,104379 0,0189 0,59 

      Period (1) -0,194869 0,073970 0,0082 1,00 

      Road -0,000341 0,000149 0,0199 1,00 

      Settl. 1km 0,004661 0,002441 0,0546 0,67 

      Road 3km 0,000016 0,000009 0,0650 0,26 

      Constant 490,00 209,67   

2 -518,69 6 1049,49 0,48 0,20 Year -0,262798 0,103108 0,0106 0,59 

      Period (1) -0,195437 0,073952 0,0080 1,00 

      Road -0,00035 0,000147 0,0153 1,00 

      Settl. 1km 0,004261 0,002491 0,0853 0,67 

      Path 5km 0,000009 0,000005 0,0874 0,49 

      Constant 527,35 207,09   

3 -519,72 5 1049,52 0,51 0,20 Period (1) -0,190954 0,073772 0,0094 1,00 

      Road -0,000380 0,000148 0,0086 1,00 

      Small rod. 0,008801 0,003038 0,0037 0,41 

      Settl. 1km 0,005329 0,002415 0,0261 0,67 

            Constant -0,162633 0,168728     

 

The total predation rate decreased over the years from 50.7% (n=138) in 2007, to 42.0% 

(n=326) in 2008 and to 39.8% (n=319) in 2009. In the first trial periods the predation rates 

were lower (38.1%, n=383) than in the second trial periods (47.0%, n=400). There was a 

negative association between distance to road and predation. The average distance from a 

depredated track board to the closest road was 838 m (±27 SE), while the average distance 

from a track board that was not depredated to the closest road was 967 m (±29). The year with 

the highest small rodent index (year 2007) had the highest predation rate. The numbers of 



buildings within a circle with radius 1 km from each track board was positively associated 

with predation. The average number of buildings within these circles at depredated track 

boards was 21 (±2), while at not depredated track boards the number of buildings was 14 

(±1). Total length of paths within a circle with radius 5 km from each track board was 

positively associated with predation. The average total length of paths within these circles at 

depredated track boards was 39.53 km (±0.80), while the average total length of paths was 

36.55 km (±0.69) at not depredated track boards. Total length of roads within a circle with 

radius 3 km from each track board was also positively associated with predation. The average 

total length of roads within these circles at depredated track boards was 30.74 km (±0.45), 

while the average total length of paths was 28.82 km (±0.45) at not depredated track boards. 

 

3.4. Mammalian predation 

In the category mammalian predation we included the species pine marten, red fox and 

stoat/least weasel. Predation from mammals occurred at 11.5% of the available track boards 

(n=783) over all years and all study areas pooled together. The three best models to explain 

the mammalian depredation among the depredation events included the predictor variables 

year, habitat, path, number of trees registered (using relascope) and paths 3 km (Table 5). 

Model 2 and 3 have considerably less support ( AICc   4.0) than model 1. Therefore we will 

only discuss model 1 as a good model explaining predation by mammals.   

 

 

 

 

 

 

 

 

 



 

Table 5: The three best models explaining predation by mammals ranked from best to third best (the best model 

is indicated in bold letters). Hbt. = habitat, Nu. trees = number of trees registered (using relascope). 

Model Max 
logl. 

k AICc AICc w 
(AICc) 

Variable Reg. coef. SE P-value VI 

1 -159,88 6 331,87 0,00 0,89 Year -0,766779 0,195143 0,0001 1,00 

      Hbt. alpine -0,552250 0,204267 <0,0001 0,96 

      Hbt. birch 0,915134 0,190469 <0,0001 0,96 

      Path 0,000576 0,000214 0,0070 0,94 

      Path 3 km -0,000089 0,000021 <0,0001 0,99 

      Constant 1539,66 391,82   

2 -163,52 5 337,12 5,25 0,06 Year -0,627000 0,183678 0,0005 1,00 

      Hbt. alpine -0,567690 0,203631 <0,0001 0,96 

      Hbt. birch 0,928802 0,187818 <0,0001 0,96 

      Path 3 km -0,000102 0,000020 <0,0001 0,99 

      Constant 1259,58 368,86   

3 -164,11 5 338,30 6,43 0,04 Year -0,883869 0,197583 <0,0001 1,00 

      Path 0,000686 0,000211 0,0010 0,94 

       Nu. trees  0,014365 0,003571 0,0001 0,04 

      Path 3 km -0,000084 0,000021 <0,0001 0,99 

            Constant 1774,19 396,69     

 

Depredation rates by mammals among all depredation events decreased over the years. In 

2007 the mammalian depredation rate was 32.9% (n=70), in 2008 the rate was a bit higher 

with 35.0% (n=137) while in 2009 the rate sank to 15.0% (n=127). Mammals showed 

selectivity in habitat use in relation to depredation rate. Of the track boards depredated by 

mammals (n=90) 53.3% were situated in the birch forest, 23.3% were situated in the edge 

habitat and 23.3% were situated in the low alpine habitat. There was a positive relationship 

between distance to closest path and depredation on track boards. The average distance from a 

track board depredated by mammals to the closest path was 828 m (±81). Total length of 

paths within a circle with radius 3 km from each track board was negatively associated with 

depredation rates. The average total length of paths within these circles at track boards 

depredated by mammals was 13.16 km (±0.72).  

 



3.5. Avian predation 

In the category avian predation we included the species raven, hooded crow and magpie. Over 

all study areas and all years 25.0% of the available track boards (n=783) were depredated by 

avian predators. The three best models explaining avian predation among the depredated track 

boards included the predictor variables period, habitat, path 1 km and road 1 km (Table 6). 

Model 3 has considerably less support ( AICc   4.0) than model 1 and model 2. Therefore 

we will only discuss model 1 and model 2 as good models explaining predation by birds.   

 

Table 6: The three best models explaining total predation by avian predators ranked from best to third best (the 

best model is indicated in bold letters). Hbt. = habitat. 

Model Max 
logl. k AICc AICc w 

(AICc) Variable Reg. coef. SE P-value VI 

1 -197,22 5 404,52 0,00 0,68 Period (1) 0,231108 0,124277 0,0611 0,68 

      Hbt. alpine 0,537828 0,171171 <0,0001 1,00 

      Hbt. birch -0,756673 0,171942 <0,0001 1,00 

      Path 1km 0,000397 0,000073 <0,0001 1,00 

      Constant -0,522161 0,198088   

2 -198,98 4 406,01 1,49 0,32 Hbt. alpine 0,538253 0,170318 <0,0001 1,00 

      Hbt. birch -0,746444 0,170899 <0,0001 1,00 

      Path 1km 0,000386 0,000072 <0,0001 1,00 

      Constant -0,531930 0,197242   

3 -203,73 5 417,54 13,02 0,00 Period (1) 0,218730 0,121485 0,0700 0,68 

      Hbt. alpine 0,556798 0,168144 <0,0001 1,00 

      Hbt. birch -0,765705 0,168618 <0,0001 1,00 

      Road 1km 0,000240 0,000055 <0,0001 0,00 

            Constant -0,512834 0,230786     

 

In the first trial period 63.0% of all depredated track boards (n=146) were predated by birds 

while in the second trial period 55.3% of all depredated track boards (n=188) were predated 

by birds. Of the track boards predated by birds (n=196) 22.4% was situated in birch habitat, 

33.7% in edge habitat and 43.9% in low alpine habitat. Avian depredation was positively 

related to average length of paths within a circle with radius 1 km from each track board. The 

average total length of paths within these circles at track boards depredated by avian was 2.87 



km (±0.13). 

3.6. Predation by pine martens 

Of the available track boards (n=783) over all study areas and all years 9.3% was depredated 

by pine martens. To explain the pine marten depredation among the depredation events the 

three best models included the predictor variables year, habitat, path, number of trees 

registered (using relascope), path 3 km and road 1 km (Table 7). Model 1 and model 2 have 

substantial evidence compared to each other ( AICc   2.0), while model 3 has less support 

( AICc=3.28).  

 

Table 7: The three best models explaining predation by pine marten ranked from best to third best (the best 

model is indicated in bold letters). Hbt. = habitat, Nu. trees = number of trees registered (using relascope).  

Model Max logl. k AICc AICc w 
(AICc) Variable Reg. coef. SE P-value VI 

1 -138,09 7 290,32 0,00 0,43 Year -0,756117 0,215682 0,0005 1,00 

      Hbt. alpine -0,648604 0,229539 <0,0001 0,48 

      Hbt. birch 0,966297 0,205986 <0,0001 0,48 

      Path 0,000622 0,000231 0,0071 0,96 

      Path 3km -0,000077 0,000026 0,0033 0,90 

      Road 1km -0,000151 0,000089 0,0914 1,00 

      Constant 1518,17 433,05   

2 -139,13 6 290,37 0,05 0,42 Year -0,926960 0,222234 <0,0001 1,00 

      Path 0,000702 0,000228 0,0021 0,96 

      Nu. trees 0,019086 0,004122 <0,0001 0,52 

      Path 3km -0,000058 0,000026 0,0225 0,90 

      Road 1km -0,000251 0,000094 0,0078 1,00 

      Constant 1860,63 446,17   

3 -141,76 5 293,60 3,28 0,08 Year -0,911729 0,218669 <0,0001 1,00 

      Path 0,000731 0,000229 0,0014 0,96 

      Nu. trees 0,019661 0,004074 <0,0001 0,52 

      Road 1km -0,000356 0,000085 <0,0001 1,00 

            Constant 1829,49 439,00     

 

The depredation rate by pine martens among all the depredation events decreased over the 

years. In 2007 the pine marten depredation rate was 24.3% (n=70), in 2008 the rate was 

30.7% (n=137) and in 2009 the rate was 11.0% (n=127). In other words there was not a 



decline in depredation rate from 2007 to 2008, but there was a big decline to the year 2009. 

The pine martens showed a preference in type of habitat to conduct depredation. Of the track 

boards with predation events performed by pine martens (n=73) 56.2% of the track boards 

were situated in birch habitat, 23.3% were situated in edge habitat and 20.5% were situated in 

low alpine habitat. Depredation rate by pine martens increased with distance to closest path. 

The average distance to the closest path from track boards predated by pine martens was 900 

m (±91) (Table 8). Number of trees estimated from each track board using relascope was 

positively associated with depredation rate by pine martens. The average number of trees 

estimated using relascope at track boards predated by pine martens was 45 (±5). Total average 

length of paths within a circle of 3 km from each track board was negatively associated with 

predation rate by pine martens. The average total length of paths within these circles at track 

boards depredated by pine martens was 12.53 km (±0.79). Total length of roads within a 

circle with radius 1 km from each track board was also negatively associated with predation 

rate by pine martens. The average total length of roads within these circles at track boards 

depredated by pine martens was 2.69 km (±0.26). 

 

Table 8: Settlement 1 km, path 1 km, road 1 km etc. are the average number of settlements and average length 
of paths and roads within circles with the given radius from each track board respectively. Settlement, path and 
road are the distance from a depredated track board to the closest situated settlement, path and road. The average 
numbers of the variables for all track boards depredated by the three most common species in our study are 
listed; the standard errors are given in parenthesis.  

  Raven Pine marten Hooded crow 

Settlement 1 km 11 ( 2) 17 (±4) 44 ( 6) 

Settlement 3 km 95 ( 9) 121(±15) 211 ( 21) 

Settlement 5 km 270 ( 18) 318 (±19) 379 ( 28) 

Path 1 km 3.17 km ( 0.17) 1.56 km (±0.20) 2.59 km ( 0.19) 

Path 3 km 18.78 km ( 0.51) 12.53 km (±0.79) 17.01 km ( 0.77) 

Path 5 km 44.95 km ( 10.42) 31.58 km (±1.88) 41.07 km ( 1.68) 

Road 1 km 4.13 km ( 0.19) 2.69 km (±0.26) 4.68 km ( 0.26) 

Road 3 km 32.91 km ( 0.70) 27.67 km (±1.05) 31.28 km ( 0.95) 

Road 5 km 93.08 km ( 2.01) 77.39 km (±2.96) 77.83 km ( 2.33) 

Settlement 1.02 km ( 0.04) 934 m (±63) 692 m ( 51)  

Path 461 m ( 47) 900 m (±91) 557 m ( 79) 

Road 955 m ( 40) 963 m (±68) 650 m ( 54) 

 



3.7. Predation by ravens 

Ravens depredated 13.9% of the available track boards (n=783) all years and all study areas 

pooled. To explain the depredation rate by ravens among all depredation events these 

predictor variables were included in the three best models: year, habitat, ptarmigan density, 

small rodent index, settlement 3 km, path 1 km and road 5 km (Table 9). Model 1 and model 

2 have great support compared with each other. Model 3 is also accepted ( AICc=2.88), but 

this model has less support than the two best models.  

 

Table 9: The three best models explaining predation by ravens ranked from best to third best (the best model is 

indicated in bold letters). Hbt. = habitat, Settl. = settlement, Small rod. = small rodent index, Pt. dens. = 

ptarmigan density.  

Model Max logl. k AICc AICc w 
(AICc)

Variable Reg. coef. SE P-value VI 

1 -163,35 7 340,84 0,00 0,59 Year -0,446498 0,185273 0,0152 0,61 

      Hbt. alpine 0,530723 0,186798 0,0002 0,91 

      Hbt. birch -0,824260 0,214490 0,0002 0,91 

      Settl. 3km -0,005542 0,001317 <0,0001 0,97 

      Path 1km 0,000383 0,000090 <0,0001 1,00 

      Road 5km 0,000020 0,000007 0,0033 0,97 

      Constant 893,82 372,17   

2 -164,15 7 342,44 1,60 0,27 Hbt. alpine 0,529179 0,186144 0,0002 0,91 

      Hbt. birch -0,814838 0,213488 0,0002 0,91 

      Small rod. 0,010618 0,005121 0,0382 0,27 

      Settl. 3km -0,005788 0,001316 <0,0001 0,97 

      Path 1km 0,000398 0,000090 <0,0001 1,00 

      Road 5km 0,000019 0,000007 0,0049 0,97 

      Constant -2,957220 0,584318   

3 -164,79 7 343,72 2,88 0,14 Hbt. alpine 0,529384 0,185807 0,0002 0,91 

      Hbt. birch -0,823336 0,212594 0,0002 0,91 

      Pt. dens. 0,021651 0,012507 0,0826 0,12 

      Settl. 3km -0,004635 0,001451 0,0007 0,97 

      Path 1km 0,000389 0,000089 <0,0001 1,00 

      Road 5km 0,000024 0,000007 0,0003 0,97 

            Constant -3,822870 0,715569     

 

 



Raven depredation rate among all depredation events decreased over the years. In 2007 the 

raven depredation rate was 54.3% (n=70), in 2008 the rate was 32.1% (n=137) and in 2009 

the rate was 21.3% (n=127). Predation rate by ravens was differing between the different 

types of habitats. Of the track boards predated by ravens (n=109) 16.9% was situated in the 

birch habitat, 36.9% was situated in the edge habitat and 46.2% was situated in the alpine 

habitat. Raven depredation was positively associated with the ptarmigan density. On track 

boards depredated by ravens the ptarmigan density in the area was on average 27 ptarmigan 

per km² (±1). Most of the raven depredation took place in the small rodent peak year (2007). 

That makes the raven depredation positively associated with the small rodent index, at track 

boards depredated by ravens the average small rodent index was 23 small rodents per trap day 

(±3). Depredation by ravens was negatively associated with the numbers of buildings within a 

circle with radius 3 km from each track board. At track boards depredated by ravens the 

average number of buildings was 95 (±9). There was a positive relationship between average 

lengths of paths within a circle with radius 1 km from each track board and raven depredation 

rate. The average lengths of paths within these circles at track boards predated by ravens were 

3.17 km (±0.17). Raven depredation was also positively associated with length of roads 

within circles with radius 5 km from each track board. The average length of roads within 

these circles at track boards predated by ravens was 93.08 km (±2.01).  

 

3.8. Predation by hooded crows 

Over all years and study areas pooled 9.2% of the available track boards (n=783) were 

depredated by hooded crows. The three best models explaining predation by hooded crows 

among the depredated track boards included the predictor variables year, habitat, settlement 1 

km, settlement 3 km and road 1 km (Table 10). Model 2 and 3 have considerably less support 

( AICc   4.0) than model 1. Therefore we will only discuss model 1 further on as a good 

model explaining predation by hooded crows.   

 

 

 



 

Table 10: The three best models explaining predation by hooded crows ranked from best to third best (the best 

model is indicated in bold letters). Hbt. = habitat, Settl. = settlement.   

Model Max 
logl. 

k AICc AICc w 
(AICc) 

Variable Reg. coef. SE P-value VI 

1 -140,22 5 290,52 0,00 0,90 Year 1,184979 0,248217 <0,0001 1,00 

      Hbt. alpine 0,562029 0,205906 0,0067 0,92 

      Hbt. birch -0,621047 0,240148 0,0067 0,92 

      Settl. 1 km 0,015335 0,003444 <0,0001 0,88 

      Constant -2381,66 498,54   

2 -144,70 3 295,43 4,91 0,08 Year 1,161799 0,242889 <0,0001 1,00 

      Settl. 3km 0,013970 0,003364 <0,0001 0,08 

      Constant -2334,99 487,84   

3 -143,79 5 297,66 7,14 0,03 Year 1,379049 0,243222 <0,0001 1,00 

      Hbt. alpine 0,482303 0,200205 0,0193 0,92 

      Hbt. birch -0,540469 0,230187 0,0193 0,92 

      Road 1km 0,000224 0,000063 0,0003 0,03 

            Constant -2771,92 488,56     

 

Depredation rates by hooded crows among all depredation events increased over the years. In 

2007 the hooded crow depredation rate was 5.7% (n=70), in 2008 the rate was 13.1% (n=137) 

and in 2009 the rate was 39.4% (n=127). Hooded crow showed selectivity in choice of habitat 

for predation events. Of all depredation by hooded crows (n=72) 20.1% was performed in 

birch habitat, 31.9% in edge habitat and 47.2% in alpine habitat. Depredation by hooded 

crows was positively associated with the number of buildings within a circle with radius 1 km 

from each track board. The average number of buildings within these circles at track boards 

predated by hooded crow was 44 (±6). 

 

 

 

 



3.9. Relationship between total predation rate and ptarmigan density  

The simple linear regression showed no relationship between total predation rate and 

ptarmigan density (n=12, R2 =0.6%, p=0.814) among all study areas and all years (Fig. 7 and 

Table 11). 

 
Table 11: M/Å = Mastukåsa/Åslia, R=Råtåsjøhø, D=Dindalen, Grø=Grødalen and Gå=Gåvålia. Estimated mean 
ptarmigan density/km² and total predation rates (%) on the available nests in different locations and different 
years.  
 

Year Location Mean 
ptarmigan 

density/km² 

Total predation 
rate (%) 

2007 M/Å 40,0 43,3 
2007 R 25,0 57,7 
2008 M/Å 43,0 24,6 
2008 R 24,0 52,9 
2008 D 22,0 62,3 
2008 Grø 3,0 22,2 
2008 Gå 45,0 51,7 
2009 M/Å 18,0 62,5 
2009 R 9,0 17,4 
2009 D 25,0 10,7 
2009 Grø 5,0 52,2 
2009 Gå 15,5 52,8 

Relationship between total predation rate and 
ptarmigan density
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Figure 7: Plot of ptarmigan density/km2 versus total predation rate for all study areas and all years. Red circles 
are Råtåsjøhø, green circles are Mastukåsa/Åslia, turquoise circles are Grødalen, orange circles are Dindalen and 
blue circles are Gåvålia.



4. Discussion 

4.1. The methodological approach; using artificial nests 

Artificial nest experiments have been claimed to favour avian predators, and has been proven 

to sometimes exclude certain mammalian predators (Willebrand and Marcström 1988, 

MacIvor et al. 1990). Two out of three main predators in our experiments were birds (raven 

and hooded crow), and these two species together were responsible for more than 54.2% of all 

predation events. Red fox is also believed to be an important predator on small game species, 

but out of all our identified species it were responsible for the smallest amount of depredated 

nests, and occurred as egg predator only in one area in 2009. However, red fox camera events 

occurred in all areas, thus determining that this species exist in the study areas at least part of 

the year. It is very likely that some red foxes still inhabit the study areas during spring and 

summer, even though they are not captured by any cameras during this period. This supports 

the assumption that some mammalian predators may be more sceptic of robbing artificial 

“grease-nests”. Conversely, the pine marten was responsible for the second most predation in 

our study, emphasizing the importance of the great variations in scepticism, foraging 

behaviour and ability to locate nests that exist between the mammalian species. A study 

conducted in northern Norway by Klausen et al. (2009) found a low predation rate by red fox 

on track boards, similar to our results. This is contrary to another similar experimental study 

in northern Norway where red fox caused high predation rates (Pedersen et al. 2009). Klausen 

et al. (2009) suggested that the discrepancy in red fox depredation between these two studies 

can be caused by different phases of the vole cycle. The study of Klausen et al. (2009) 

appeared to be conducted in a pre-peak year for voles in the region, whereas predators are 

expected to have the highest predation rates on alternative prey (such as ground nests) in the 

decline phase of small rodents (Hagen 1952, Angelstam et al. 1984). Our study did however 

also include a year with a decline phase of small rodents (year 2008), but still the red fox 

predation rate was very low (1.5%, n=326). This could possibly be due to differences in the 

shyness of the red fox between our study area and the study area of Pedersen et al. (2009). 

The red foxes in our area may have been hunted more by humans, and therefore be more 

sceptical to objects associated with humans. If we had been able to get more red fox predation 

in this study, we could have been able to determine the relationship between occurrence of red 

fox and human activity in our study areas. These data were however not obtained, since the 

number of red fox predation events was too few, and we are left with merely speculations 



related to this subject.  

 

 

It is important to note that none of the ”extra eggs” were predated during the study in 2009. 

They were placed directly on the ground 20 m away from the nearest track board, and were of 

the same type as the eggs used in the rest of the project. The lack of predation on the “extra 

eggs” clearly points out that these natural looking artificial nests are more difficult to locate 

than eggs displayed on a track board. Lack of predation incidents could be tied to the absence 

of an incubating hen, since predators probably use the hen to locate real nests (Willebrand and 

Marcström 1988, O`Reilly and Hannon 1989, MacIvor et al.1990). Our track boards may 

compensate for this by being so clearly visible in the landscape. The scent of the grease could 

also attract mammalian predators using olfactory cues, but the extra eggs did in our opinion 

have a quite notable scent and should therefore have attracted predators if scent is the key 

factor for attraction. As the extra eggs were not subjected to predation at all, we believe this 

indicate that it is the presence of an incubating hen that attracts most of the mammalian 

predators. The track boards seemed less visible from the sides than from directly above to the 

human eye, and would perhaps therefore also be easiest for avian predators to discover as they 

search for food from the sky.  

 

4.2. Presence of potential ptarmigan nest predators 

Our results showed no clear relationship between observations by the field cameras and 

predation events. Three of the areas had both the highest (or lowest) number of predation 

events and the highest (or lowest) number of camera events registered for the same species. 

Gåvålia, Mastukåsa/Åslia and Råtåsjøhø had the highest number of combined events of raven, 

pine marten and magpie respectively, while Grødalen and Dindalen had the lowest amount of 

events for both methods with the species magpie and pine marten respectively. There was, 

however, no area that showed the same trend for more than one species, nor did one particular 

species show the same trend for more than one area. It is nevertheless interesting to observe 

that in respect to determining what potential ptarmigan predators that can be found in the 

different areas, the two methods do to some extent complement each other. Camera events are 

recorded when predation events are absent (and vice versa) for all species in all areas except 

from pine marten in Dindalen and magpie in Grødalen where no event of any kind is 



documented. In respect to red fox, which is registered by cameras repeatedly in all areas, it is 

obvious that it is present in the study areas even though it has not been recorded at the track 

boards. Red foxes should have no more trouble in locating artificial nests than pine martens, 

so there are probably other factors that explain why it has shown this behaviour in our study. 

The recordings of hooded crow events in Grødalen are also interesting when considering that 

this is the area with most hooded crow predation and the only area completely without camera 

registrations of this species.  

 

Another bias related to our camera study is that recordings of predators decreased extensively 

when approaching spring, and only a very few registrations were made from April to July 

(Eide et al. unpublished). This implies that the total number of camera events does not 

necessarily mirror the presence of predators in the areas during the reproductive period of 

willow ptarmigan. The diet of animals is limited when snow is covering the ground and may 

therefore draw predators to constant and easy-accessed food sources like our baits, thus 

portraying an uncharacteristic composition- or density of the predator community. Some 

predators also have different behaviour in the different seasons (e.g hooded crows that appear 

in flocks during winter, but hold territories when reproducing).  

 

4.3. Human activities 

4.3.1. Roads 

When correcting for the effect of year and period, the total predation increased with 

decreasing distance to roads, and in the best model also with increasing road density within 3 

km from the artificial nests. This result was probably due to a higher risk of predation by 

avian predators, especially ravens. Among the track boards that were depredated, we found a 

positive relationship between raven predation and road density. Carrion feeders, as ravens, 

often move along roads in search of road kills (Austin 1971, Forman & Alexander 1998). The 

association we found between raven predation and road density can be due to ravens 

searching for road kills and therefore staying in areas close to roads. Common ravens were 

also the most frequently observed avian scavenger along a Canadian railway (Wells et al. 

1999). In our study raven was the most common predator on the artificial nests. According to 



Andrén (1992), data from Angelstam et al. (1984) and Angelstam (1986) indicate that raven is 

a much more important nest robber than could be expected from its relative density. He 

argued that it may pay for predators like ravens, which have a large home range and encounter 

many nests, to develop a search image for bird’s nests and become a nest robber specialist 

during the brooding time of their prey (Andrén 1992). If the ravens in our study areas had 

developed such a search image for track boards, this may explain the high predation rate by 

ravens.  

 

While we found a positive association between raven predation and road density, the best 

model for hooded crow predation did not include road as a predictor variable. We believe this 

finding is caused by larger home ranges used by ravens than by hooded crows (Hjeljord 

2008). This give ravens a greater opportunity to search for carcasses along long road 

distances. The ravens, in comparison to the other corvids, do also to a greater extent act as a 

carnivore (Hjeljord 2008).   

 

For pine marten there was a negative association between predation rate and the density of 

roads within 1 km from the track boards. However, since we tested this against all other 

predated nests, we cannot conclude that pine martens actually avoid roads. Pine martens do 

avoid open areas, possibly as an anti-predation behavior trait to avoid potential large predator 

species moving along roads (Lindström 1989). Several large predator species travel along 

roads that have little vehicular or people traffic (Forman & Alexander 1998). For prey species 

high road densities give higher risk of meeting predators and people (Forman et al. 2003). 

Roads can thus act as barriers for pine martens (Van Langevelde et al. 2009). It is also 

possible that the old forest areas, which pine martens are especially connected to (Lindström 

1989), are mainly situated further away from roads. In a study from Kainuu in Eastern Finland 

Helle and Nikula (1995) found a significantly lower road density in areas with the most pine 

marten tracks than in areas with less pine marten tracks. Noises from traffic can affect animals 

stress levels and lead to avoidance of areas with the loudest noise levels (May et al. 2007). 

Ideally a measure of traffic volume could have been used in the models for the road influence 

on predation rate from different species. On the other hand, Helle and Nikula (1995) argued 

that it is not necessarily the amount of traffic per se that play the most important role in 



whether or not animals avoid roads, but the local change in habitats and/or the increased 

activity in the areas by people. Most roads in their study were forestry roads that people might 

use to get easy access to areas for fishing, hunting and berry picking. 

 

4.3.2. Paths 

In the second best model for overall predation, there was a positive relationship between the 

predation risk and the length of paths within 5 km from the artificial nests. There was a 

positive relationship between raven predation rate and path density and a negative association 

between pine marten predation rate and path density. In addition, pine marten predation 

showed a positive association with distance to the closest path. We therefore conclude that 

also the positive relationship with paths in one of the overall predation models was due to 

increased egg predation by ravens. This is in accordance with the finding of Miller and Hobbs 

(2000) that birds attacked more nests near trails than away from trails, whereas mammals 

avoided robbing nests near trails. Miller and Hobbs (2000) hypothesized that the mammalian 

avoidance of trails can be partly due to canine scent from dogs taken for a walk by the owners 

on the trails. If the red fox uses paths for movements in the landscape, the pine marten 

avoidance of paths can also be an antipredator behavior trait to avoid red fox (Lindström 

1989). Corvids on the other hand have the ability to habituate to human activity (Knight et al. 

1987). Maybe also the trails work as a source of food for the ravens through garbage from the 

recreationalists.        

 

 

4.3.3. Settlement 

 

In all models, the total predation increased with increasing density of settlements within 1 km 

from the track board. Hooded crows seemed to be the predators responsible for this pattern. 

Among nests that were depredated, we found a positive association between settlement 

density and hooded crow depredation, while we found a negative association between 

settlement density and raven predation. A possible negative association for ravens might be a 

result of “shyness”. Ravens are considered to be typical wilderness birds that mainly avoid 

high settlement density and areas connected with a high human density (Haftorn 1971, Olstad 



and Sørensen 1981). The raven is, in contrast to the other corvids, vulnerable to persecution 

and hunting from humans which can explain this “shyness” (Olstad and Sørensen 1981). The 

hooded crow, on the other hand, is found in close association with humans. When land is 

cultivated and the settlement density is increased the hooded crow is getting better living 

conditions (Olstad and Sørensen 1981).  

 

Our findings regarding the hooded crow are in correspondence with the study of Marzluff and 

Neatherlin (2006). They found a strong association between American crow abundance and 

proximity to human settlements and campgrounds. The abundance and survival of American 

crows increased with decreased distance to these human activities. Ravens were moderately 

abundant both close to and further away from settlements and campgrounds, and their 

survivorship only mildly increased close to settlements and campgrounds (Marzluff and 

Neatherlin 2006). It turned out that crows relied more on anthropogenic food than ravens. 

Marzluff and Neatherlin (2006) found that crows made long, unidirectional movements from 

core use areas to distant anthropogenic food sources while ravens made multi-directional 

movements from core use areas to interior forests, rivers and clear cuts. The reason for these 

differences can be different behaviour of the two species. Crows can acquire knowledge of 

anthropogenic foods during flocking and migration away from their breeding areas to roosting 

sites (Smedshaug 2000), while ravens usually remain in their breeding territories (Olstad and 

Sørensen 1981). Crows also allowed intrusion by conspecifies into their breeding home 

ranges unlike ravens (Marzluff and Neatherlin 2006). Adult ravens strongly defend food 

sources (Marzluff and Heinrich 1991) and make it a risk to challenge this defence. If the 

positive association between American crows and human activities is transferable to hooded 

crows it may explain the positive association we found between settlement density and 

hooded crow depredation. Also a study from the Bavarian Alps, Germany, found that crows 

are attracted to settlement (Storch and Leidenberger 2003). This study examined the presence 

of corvids at cabin areas and control areas seldom visited by humans. Carrion crows (Corvus 

corone), magpies and jays (Garrulus glandarius) were significantly more numerous near huts 

than in control areas. Ravens, on the other hand, were present in most control and hut areas 

alike.  

 

Red foxes have been found to be more active in vicinity to cabins (Røhnebæk 2004). The red 

fox predation rate on the track boards in our study was too low to be analyzed, but in vicinity 



to cabins red foxes can probably be responsible for substantial predation on natural nests. A 

study performed in Ringsakfjellet examined the relationship between recreational cabin areas 

and red fox activity and found that red foxes showed significantly more tracks in vicinity to 

cabins (Røhnebæk 2004). 

  

4.4. Predation rates in relation to ptarmigan density 

We found no relationship between ptarmigan density and total predation rate on the artificial 

nests. Asmyhr (2008) found a negative correlation between ptarmigan density and predation 

rate, but he performed his research in three study areas only, and in only one year. We 

measured the ptarmigan density using two different methods. Only for Gåvålia in 2009 we 

had data on ptarmigan density using both the distance method and the method used for getting 

the TOV-data (see section 2.2.4.). Here, the ptarmigan density was relative similar regardless 

of the method used.   

 

To check if the lack of relationship between ptarmigan density and predation on artificial 

nests was due to the differences in methodology of estimating ptarmigan density, we 

performed a simple linear regression using only data from the study areas where the distance 

method was applied (i.e. Råtåsjøhø, Mastukåsa/Åslia and Grødalen). Still there was no 

relationship between total predation rate and ptarmigan density. But there may be other 

complicating factors linked to the artificial nest method that restrict us from finding such 

relationships. The difficulty of transferring predation rate on artificial nests to predation rate 

on natural nests is perhaps the most likely explanation. The predation rate by mammals is 

probably higher on natural nests in our study areas. For instance, the predation rate from red 

fox on the artificial nests was very low.   

 

4.5. Habitat and tree density  

We found that most of the pine marten depredation events took place in the forest habitat and 

believe this is consistent with the general view of pine marten as a habitat specialist associated 

primarily with forest (e.g. Pulliainen 1981, Angelstam 1986, Brainerd 1990, Storch et al. 

1990, Baltrûnaitë 2006). The population dynamics of pine martens seem to be governed by 



the availability of old-growth forest and occurrence of other predators (Lindström 1989). Pine 

martens are probably vulnerable to predation by eagle owls from the sky on illuminated nights 

in late winter and spring because they are easily detected on the white snow. In addition, the 

access to food may also be an important factor explaining the pine martens habitat choice 

(Brainerd 1990, Brainerd and Rolstad 2002). Pereboom et al. (2008) found that pine martens 

stayed close to the forest edge when venturing out into more open fields and are thus 

dependent on presence of trees in close vicinity. Brainerd and Rolstad (2002) found that pine 

martens in Varaldskogen (Norway) and Grimsö (Sweden) strongly avoided open habitats. 

This corresponds to our findings of pine marten predation rates being positively correlated 

with birch habitat and negatively correlated to low alpine habitat. However, occasionally pine 

marten has been observed in alpine habitat well above the tree-line preying on willow 

ptarmigan nests in Gåvålia (H. C. Pedersen, pers. comm.). Our results showed that pine 

marten predation rates were positively correlated with number of trees in immediate closeness 

to the track boards, which may relate to the findings of pine martens consistently preferring 

taller (spruce-dominated) forest and avoiding open habitats throughout the year in the study of 

Brainerd and Rolstad (2002). The red fox is often a habitat generalist which could have 

evened out the apparent separation in habitat choice between avian and mammalian predators. 

It is reason to believe that this species would have utilized all habitats, thus affecting the 

overall predation rates and illustrating the common agreement of mammalian predators being 

important nest robbers.  

 

As hypothesized, corvids were responsible for most predation in the open low alpine habitat 

during this study. The models “avian predation”, “predation by ravens” and “predation by 

hooded crows” all show that avian predation rates in this study is negatively correlated with 

birch habitat and positively correlated with open low-alpine habitat. This was expected on the 

basis of the study design and the artificial nests’ conspicuousness which is believed to favor 

avian predators. 

 

4.6. Variations in predation rates among study areas  

We were not able to implement the variable “location” in the model selection, but Fig. 4 in 



section 3.1, illustrates that there were high variation in the predation rates by raven, pine 

marten and hooded crow in the various locations. These variations can be caused by factors 

like differences in access to prey or other food sources (Angelstam 1986), varying hunting 

pressure, or a number of other ecological issues that could be different between the study 

areas. The time frame of this study did not allow us to explore this in further detail. But as an 

example we found that most of the predation by hooded crows took place in the study area 

Grødalen. This can be related to the high density of settlements in this area (mostly cabins). 

The mean “settlement density” in Grødalen, at every spatial scale (1km, 3 km and 5km), was 

much higher than the “settlement densities” in the other study areas. It is possible that hooded 

crows can utilize food scraps left in the areas with settlement (Marzluff and Neatherlin 2006). 

A large tourist cabin called “Vangshaugen fjellstue” (a cabin managed by “Kristiansund og 

Nordmøre turistforening”) is situated in close vicinity to our track boards in this location, and 

waste and food remains distributed by tourist visiting this cabin, and probably going for walks 

in the nearby areas, can thus provide food that crows can utilize.    

 

4.7. The significance of small rodent abundance, year and period  

The main reason for including year as a random factor in the models was to control for 

possible effects of variations in methodology, predator abundance or activity, and the 

availability of alternative food, when testing for the impact of human activity on predation 

rates. We found that the predation rates decreased over all three years. In 2007, each trial 

period lasted for 10 days, whereas in 2008 and 2009, each trial period lasted only for seven 

days. We therefore think that some of the high predation rates in 2007 might have been 

caused by the different durations of the trail periods.  

 

The decrease in predation rates over the years was mainly caused by decreased predation by 

raven and pine marten. Pedersen et al. (2009) also found a decrease in raven depredation, but 

this decrease only took place between the last two years of their study. Both our study and the 

study of Pedersen et al. (2009) found an increase in hooded crow predation from the first year 

to the second year, and then a dramatic increase from the second year to the third year. There 

is evidence for the ability of predator species to develop searching images when they are 



preying upon nests (Sonerud 1985, Sonerud and Fjeld 1987, Andrén 1992). Hence, we should 

expect total predation rates to be positively correlated with year of the study, as was possibly 

the case for hooded crow. Since we found the opposite result for marten and raven, we 

conclude that searching image from one year to another was not important for these predators.  

 

In 2007, small rodent populations showed a strong peak in central Norway, from 

Jotunheimen/Dovre to Børgefjell (Framstad 2009). According to the alternative prey 

hypothesis, predation on bird eggs should be less frequent in rodent peak years (Hagen 1952, 

Angelstam et al. 1984). However, our data showed the highest predation rate in 2007. The 

eggs on the track boards are probably much easier to detect than are natural nests. If the 

predators involved show a numerical response to rodent density, this may in fact lead to 

increased predation on artificial nests, which are easier prey than small rodents.  

 

We found that the predation rate increased from the first period to the second period. For the 

predator group avian (raven, hooded crow and magpie pooled) we found a small increase in 

predation rate from period 1 to period 2, but this increase was smaller than the increase in 

mammal predation and predation from unknown predators, therefore the regression 

coefficient for avian predation in period 1 is positive. Pedersen et al. (2009) did not find a 

consistent increase in predation within years for any of the corvid species, and argued that 

their findings were not consistent with a memory effect acting as the main cause of the 

temporally variable avian predation rates. Pedersen et al. (2009) suggested that compositional 

changes within the predator community took place and influenced the predation rates during 

the study periods and years. The results of our study may reflect the different predators' ability 

to develop search images for artificial nests. But increased predation during summer may also 

reflect that the hunting activity of the predators, mainly pine martens, increases, due to 

increased food demand of their broods.  

 

 



5. Conclusion  

In this three-year study using artificial nests, we found yearly total predation rates ranging 

from 39.8% to 50.7%. The most common predators were ravens, pine martens and hooded 

crows, which depredated 13.9%, 9.3% and 9.2% of available track boards respectively. We 

found no relationship between ptarmigan density and total predation rate on artificial nests, 

probably related to the fact that the experiment failed to reflect natural predation fully. 

Predation rates varied between the habitats; birds were clearly the most common predators in 

the low-alpine habitat, whereas pine martens were responsible for most of the predation in the 

birch habitat, while the nests in the edge habitat was predated by several species. Predation 

rates increased with influence of human activity for most predators, except for pine marten. 

We had however too few data to make conclusions about red fox. 

Our findings indicate that development of infrastructure in mountainous areas may result in 

increased corvid density, thus probably also causing increased predation pressure in the 

surrounding areas. Small game species such as willow ptarmigan may therefore be subjected 

to population decrease in close vicinity to settlements in mountainous areas. When planning 

to develop e.g. new cabin resort areas, important willow ptarmigan habitat should be avoided. 

Around existing settlements measures could probably prevent establishment of predators. It is 

reason to believe that human activity give access to additional food resources which result in 

higher predator densities. Awareness of this could motivate actions, e.g. establishing 

renovation plans also in second home areas. To reveal the true predation rates of potential 

ptarmigan predators we propose that research should be done by using real ptarmigan nests in 

combination with field cameras, although expenses and efforts has to be considerably 

increased. 
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Appendix 1

Estimates and p-values for the predictor variables in univariable models, for all predator groups and predator 
species. P-values  <  0.0500 are indicated in bold letters.   

Total predation      Mammal predation     

       Estimate          p-value          Estimate           p-value 

Year -0.198860 0.0450  Year -0.524758 0.0015 

Period -0.182150 0.0119  Period 0.020335 0.8700 

Habitat alpine 0.091520 0.6133  Habitat alpine -0.514578 <0.0001 

Habitat birch -0.010167 0.6133  Habitat birch 0.832876 <0.0001 

Closest settlement 0.000026 0.8702  Closest settlement 0.000142 0.5994 

Closest path -0.000171 0.1171  Closest path 0.000613 0.0006 

Closest road -0.000423 0.0013  Closest road 0.000428 0.0854 

Ptarmigan density 0.005198 0.3292  Ptarmigan density 0.013618 0.1627 

Chicks/hen 0.037214 0.2602  Chicks/hen 0.080539 0.1216 

Num of trees rel. 0.002478 0.2061  Num of trees rel. 0.009501 0.0026 

Small rodents 0.006114 0.0376  Small rodents 0.005128 0.2658 

Settlement dens. 1km. 0.006666 0.0025  Settlement dens. 1km. -0.003332 0.3393 

Settlement dens. 3km. 0.001310 0.0331  Settlement dens. 3km. -0.000204 0.8226 

Settlement dens. 5km. -0.000163 0.6863  Settlement dens. 5km. 0.000663 0.2751 

Path dens. 1 km. 0.000052 0.1919  Path dens. 1 km. -0.000278 0.0001 

Path dens. 3 km. 0.000026 0.0178  Path dens. 3 km. -0.000091 <0.0001 

Path dens. 5 km. 0.000014 0.0049  Path dens. 5 km. -0.000040 <0.0001 

Road dens. 1 km. 0.000089 0.0047  Road dens. 1 km. -0.000232 0.0001 

Road dens. 3 km. 0.000024 0.0031  Road dens. 3 km. -0.000045 0.0028 

Road dens. 5 km. 0.000003 0.3003  Road dens. 5 km. -0.000012 0.0242 

 

 

 

 

 

 

 

 

 

 

 

 

 



Avian predation      Pine marten predation     

        Estimate          p-value          Estimate          p-value 

Year 0.122123 0.4103  Year -0.479892 0.0065 

Period 0.159606 0.1559  Period -0.032501 0.8079 

Habitat alpine 0.521427 <0.0001  Habitat alpine -0.601913 <0.0001 

Habitat birch -0.724095 <0.0001  Habitat birch 0.871744 <0.0001 

Closest settlement -0.000103 0.6731  Closest settlement 0.000247 0.3937 

Closest path -0.000581 0.0007  Closest path 0.000732 0.0001 

Closest road -0.000013 0.9543  Closest road 0.000647 0.0148 

Ptarmigan density -0.011419 0.1959  Ptarmigan density 0.014938 0.1529 

Chicks/hen 0.032025 0.5060  Chicks/hen 0.065827 0.2378 

Num of trees rel. -0.011817 0.0001  Num of trees rel. 0.010280 0.0019 

Small rodents 0.006361 0.1429  Small rodents 0.002095 0.6756 

Settlement dens. 1km. 0.002542 0.4046  Settlement dens. 1km. -0.005029 0.1959 

Settlement dens. 3km. 0.000552 0.5012  Settlement dens. 3km. -0.000714 0.4754 

Settlement dens. 5km. 0.000264 0.6328  Settlement dens. 5km. 0.000474 0.4678 

Path dens. 1 km. 0.000379 <0.0001  Path dens. 1 km. -0.000362 <0.0001 

Path dens. 3 km. 0.000092 <0.0001  Path dens. 3 km. -0.000101 <0.0001 

Path dens. 5 km. 0.000039 <0.0001  Path dens. 5 km. -0.000045 <0.0001 

Road dens. 1 km. 0.000222 <0.0001  Road dens. 1 km. -0.000325 <0.0001 

Road dens. 3 km. 0.000053 0.0001  Road dens. 3 km. -0.000059 0.0003 

Road dens. 5 km. 0.000019 0.0002  Road dens. 5 km. -0.000014 0.0201 
   

Raven predation      Hooded crow predation   

        Estimate           p-value       Estimate          p-value 

Year -0.733504 <0.0001  Year 1.310840 <0.0001 

Period 0.009773 0.9338  Period 0.126075 0.3452 

Habitat alpine 0.457302 0.0003  Habitat alpine 0.393851 0.0321 

Habitat birch -0.693389 0.0003  Habitat birch -0.479722 0.0321 

Closest settlement 0.000887 0.0006  Closest settlement -0.001411 <0.0001 

Closest path -0.000655 0.0013  Closest path -0.000193 0.3635 

Closest road 0.000722 0.0025  Closest road -0.001144 0.0001 

Ptarmigan density 0.032593 0.0005  Ptarmigan density -0.062253 <0.0001 

Chicks/hen 0.209582 <0.0001  Chicks/hen -0.420310 <0.0001 

Num of trees rel. -0.016193 <0.0001  Num of trees rel. -0.002029 0.5771 

Small rodents 0.018015 <0.0001  Small rodents -0.024888 0.0001 

Settlement dens. 1km. -0.016167 0.0001  Settlement dens. 1km. 0.017602 <0.0001 

Settlement dens. 3km. -0.003454 0.0004  Settlement dens. 3km. 0.004735 <0.0001 

Settlement dens. 5km. -0.001258 0.0338  Settlement dens. 5km. 0.002343 0.0003 

Path dens. 1 km. 0.000368 <0.0001  Path dens. 1 km. 0.000073 0.3153 

Path dens. 3 km. 0.000099 <0.0001  Path dens. 3 km. 0.000024 0.2392 

Path dens. 5 km. 0.000044 <0.0001  Path dens. 5 km. 0.000009 0.3122 

Road dens. 1 km. 0.000080 0.1089  Road dens. 1 km. 0.000195 0.0006 

Road dens. 3 km. 0.000050 0.0007  Road dens. 3 km. 0.000010 0.5238 

Road dens. 5 km. 0.000031 <0.0001  Road dens. 5 km. -0.000012 0.0341 
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Appendix 2  

Summary of predation by different species distributed on locations, habitats (B=birch habitat, E=edge habitat 
and L=low-alpine habitat) and years. Treatments are the number of track boards available for predation, i.e. track 
boards not disturbed by domestic animals. Mast./Å. = Mastukåsa/Åslia, Tot. = total,  pred. = predation.  

Predator community Location and habitat                     

  Råtåsjøhø   Mast./Å.   Grødalen   Dindalen   Gåvålia   

  B E L B E L B E L B E L B E L 

2007                         

Red fox 0 0 0 0 1 0               

Pine marten 7 2 1 5 2 0               

Stoat/least weasel 1 1 1 1 0 1               

Raven 5 6 10 3 6 8               

Hooded crow 0 1 1 0 1 1               

Magpie 1 3 0 0 0 0               

Unidentified 0 0 1 0 0 0               

Total predation   41     29                 

Treatments   71     67                 

Tot. mammal pred. (%)   18,3     14,9                 

Tot. avian pred. (%)   38,0     28,4                 

Tot. pred. (%)   57,7     43,3                 

2008                               

Red fox 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 

Pine marten 2 1 0 8 3 2 2 3 1 8 4 8 0 0 0 

Stoat/least weasel 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Raven 6 10 14 0 0 0 0 0 0 0 0 2 3 4 5 

Hooded crow 0 1 2 0 0 2 1 1 0 0 3 3 1 1 3 

Magpie 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

Unidentified 0 0 0 0 1 0 2 1 3 1 2 2 6 4 2 

Total predation   36     16     16     38    31   

Treatments   68     65     72     61    60   

Tot. mammal pred. (%)   4,4     20,0     11,1     36,1    3,3   

Tot. avian pred. (%)   48,5     3,1     2,8     18,0    28,3   

Tot. pred. (%)   52,9     24,6     22,2     62,3    51,7   

2009                               

Red fox 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

Pine marten 4 0 0 4 2 3 1 0 0 0 0 0 0 0 0 

Stoat/least weasel 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 

Raven 0 0 1 1 3 3 1 3 1 0 0 0 2 6 6 

Hooded crow 1 1 0 1 5 3 9 8 10 0 0 3 2 1 6 

Magpie 1 1 1 1 2 0 0 0 0 1 0 0 1 0 0 

Unidentified 0 0 2 7 3 4 0 1 0 0 2 0 1 2 1 

Total predation   12     45     36     6    28   

Treatments   69     72     69     56    53   

Tot. mammal pred. (%)   5,8     16,7     4,3     0,0    0,0   

Tot. avian pred. (%)   8,7     26,4     46,4     7,1    45,3   

Tot. pred. (%)   17,4     62,5     52,2     10,7     52,8   
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Summary of predation by different species distributed on habitats (B=birch habitat, E=edge habitat and L=low-
alpine habitat), periods and years. Treatments are the number of track boards available for predation, i.e. track 
boards not disturbed by domestic animals. Tot. = total, pred. = predation.   

Predator community   Periode and habitat 

Period 1   Period 2 

B E L B E L 

2007 

Red fox 0 1 0 0 0 0 

Pine marten 5 1 0 7 3 1 

Stoat/least weasel 1 0 2 1 1 0 

Raven 4 6 7 4 6 11 

Hooded crow 0 0 0 0 2 2 

Magpie 0 2 0 1 1 0 

Unidentified 0 0 0 0 0 1 

Total predation   29     41   

Treatments   70    68   

Tot. mammal pred. (%)   14,3    19,1   

Tot. avian pred. (%)   27,1    39,7   

Tot. pred. (%)   41,4     60,3   

2008          

Red fox 1 0 2 1 1 0 

Pine marten 10 4 5 10 7 6 

Stoat/least weasel 0 0 0 0 0 1 

Raven 6 8 11 3 6 10 

Hooded crow 2 3 6 0 3 4 

Magpie 2 0 0 1 0 0 

Unidentified 0 1 0 9 7 7 

Total predation   61     76   

Treatments   166    160   

Tot. mammal pred. (%)   13,3    16,3   

Tot. avian pred. (%)   22,9    16,9   

Tot. pred. (%)   36,7     47,5   

2009          

Red fox 1 0 0 1 0 0 

Pine marten 3 1 2 6 1 1 

Stoat/least weasel 0 1 0 1 0 1 

Raven 2 2 2 1 10 10 

Hooded crow 5 9 10 8 6 12 

Magpie 1 3 1 3 0 0 

Unidentified 5 2 6 3 6 1 

Total predation   56     71   

Treatments   147    172   

Tot. mammal pred. (%)   5,4    6,4   

Tot. avian pred. (%)   23,8    29,1   

Tot. pred. (%)   38,1     41,3   


