Gran og bjørks påvirkning på jordens fysiske egenskaper og vannbalanse i leirjord

Picea abies and *Betula spp.*’s influence of the soil’s physical properties and water balance in clay soil.

Per-Ivar Hanedalen

Hovedfagsoppgave ved Institutt for plante- og miljøvitenskap
i samarbeid med Institutt for naturforvaltning

NLH
NORGES LANDBRUKSHØGSKOLE

2004
Forord

Denne hovedfagsoppgave markerer avslutningen på 5 års skogfagstudier ved Norges landbrukshøgskole. Ideen til denne oppgaven kom fra skogbrukssjef i Follo, Morten Lysø, men oppgavens tema har blitt noe endret i forhold til den opprinnelige ideen.

Som en følge av at jorddelen utgjør størstedelen av oppgaven, var det naturlig å skrive oppgaven ved jordfag på Institutt for Plante- og miljøvitenskap.

Det er mange personer som fortjener en stor takk i forbindelse med denne oppgaven, en spesielt stor takk rettes til veiledrene førsteamanuensis Lars Egil Haugen, førsteamanuensis Line Tau Strand, begge ved Institutt for plante- og miljøvitenskap og førsteamanuensis Jon Frank ved Institutt for naturforvaltning, som alle har vært til meget god hjelp i forbindelse med denne oppgaven. Videre rettes en stor takk til Haaheims minnefond ved professor Finn H. Brække og Morten Lysø som har bidratt med økonomisk støtte til å dekke utgifter til kjemiske jordanalyser og leie av måleutstyr.

Norges landbrukshøgskole, Ås, 24. mai 2004

Per-Ivar Hanedalen
Sammendrag

Formålet med denne oppgaven var å:

1. Undersøke om det er forskjeller på jordas egenskaper under gran- og bjørkebestand med vekt på jordens fysiske egenskaper.
2. Sammenlikne jordens vannbalanse under gran- og bjørkebestand.

I et felt med meget høg bonitet (G 26) på leirjord i Skiptvet er en rute med ren granskog undersøkt og sammenliknet med en tilstøtende rute med bjørkeskog sommeren 2003. Skogens totalalder er i overkant av 30 år, og bjørkeruten har et underbestand av gran.

I dypet 30-40 cm er det funnet at bjørkeruten har en løsere jordstruktur, med større porevolum (59%, mot 41% på granruten), lavere jordtetthet (0,6 g/cm³ lavere) og mer røtter (0,7 cm/cm³, mot 0,2 cm/cm³ på granruten) enn granruten. På dyp mindre en 30 cm og større enn 40 cm er det små forskjeller mellom jorda i de to skogtypene.

Totalt vanntap fra jorda på bjørkeruten er større enn på granruten, særlig i månedene juli og august, da totalt daglig vanntap fra jordas øvre 100 cm er 1-2 mm større på bjørkeruten enn granruten. En forskjell som forklares med at bjørk har et større vannforbruk enn gran. Dette resulterer i en sterkere uttøring av jorda på bjørkeruten enn på granruten.
Summary

The intentions with this study were to:

1. Investigate whether there are any differences in soil properties under stands of *Picea abies* (Norway spruce) and *Betula spp.* (birch) with emphasis on soil physical properties.
2. Compare the soil water balance under spruce and birch stands.

In a forest with a very high site index, on a clay soil in Skiptvet, Norway, one plot with pure spruce forest was investigated and compared with an adjacent plot with birch forest, during the summer of 2003. The total age of the forest is a little more than 30 years old, and the birch stand has an under story of small spruce trees.

One soil pit was dug at each plot and the soil profiles were described and sampled by horizon. The soil samples were analysed for chemical properties (pH, loss on ignition, total carbon and nitrogen content, cation exchange capacity, base saturation and electrical conductivity) and physical properties (pore size distribution (pF), air content, air permeability, saturated hydraulic conductivity, quantity of roots, aggregate size distribution and soil bulk density). In the field the precipitation, ground water level, water content of the soils in different depths, and temperature in soil and air, were measured at both plots in the period May 24th 2003 to August 25th 2003. Measurements of the soil water content were done with Profileprobe (Delta-T 2001b), Thetaprobe’s (Delta-T 1995 and 1999) and in soil samples taken during the season.

In the depth of 30-40 cm the results show that the soil at the birch plot has a looser soil structure with higher pore volume (59% compared to 41 % at the spruce plot), lower soil bulk density (0,6 g/cm³ lower) and more roots (0,7 cm/cm³ compared to 0,2 cm/cm³ at the spruce plot) than the spruce plot. In depths less than 30 cm and more than 40 cm, there are only small differences between the two plots.

Total water loss from the soil, was larger in the birch plot than in the spruce plot. Especially during the months July and August, where total daily water loss from the upper 100 cm of soil was 1-2 mm more in the birch plot than in the spruce plot. The difference could be explained by a higher transpiration by birch than by spruce. This caused a stronger drying out of the soil in the birch plot than in the spruce plot.
1. Innholdsfortegnelse

1. Innholdsfortegnelse .. 1
2. Innledning .. 3
3. Litteraturstudium ... 4
 3.1. Gran (Picea abies (L.) Karst.) .. 4
 3.2. Bjørk (Betula pubescens Ehrh. og Betula pendula Roth.) .. 4
 3.3. Rotvekst .. 5
 3.3.1. Rotfordeling .. 5
 3.4. Begrensinger for rotvekst .. 6
 3.4.1. Jordtetthet .. 6
 3.4.2. Trykkfasthet .. 7
 3.4.3. Vann og lufttilgang .. 8
 3.5. Vannballanse for granbevokst mark sett i forhold til bjørk ... 9
 3.5.1. Intersepsjon .. 9
 3.5.2. Bladarealindeks (LAI) ... 10
 3.5.3. Transpirasjon .. 10
 3.5.4. Eksempler på vannbalanse .. 13
 3.5.5. Sammenfatning ... 15
 4. Material og metode ... 16
 4.1. Forsøksfeltet .. 16
 4.1.1. Bakgrunn .. 16
 4.1.2. Forsøksrutene .. 18
 4.2. Klima .. 19
 4.3. Målinger og arbeider i felt ... 19
 4.3.1. Posisjonering .. 19
 4.3.2. Jordprofil ... 19
 4.3.3. Profilbeskrivelsene .. 19
 4.3.4. Uttak av uforstyrret sylinderprøver .. 20
 4.3.5. Uttak av jordprøver til aggregatstørrelse og kjemiske analyser 20
 4.3.6. Uttak av jordsylinder for beregning av jordtetthet i ulike dyp 21
 4.3.7. Bonitering ... 21
 4.3.8. Vegetasjonstypbestemmelse ... 22
 4.3.9. Beregninger utført på tremålingsdata ... 22
 4.3.10. Nedbørmålinger .. 24
 4.3.11. Grunnvannsstand .. 24
 4.3.12. Uttak av fuktighetsprøver ... 25
 4.3.13. Profilprobe ... 25
 4.3.14. Loggede målinger ... 26
 4.3.15. Infiltrasjon med Guelph permeameter .. 29
 4.3.16. Penetrometermåling ... 30
 4.4. Jordfysikk – laboratorieundersøkelser .. 30
 4.4.1. pF-analyse .. 30
 4.4.2. Jordtetthet .. 31
 4.4.3. Luftpermeabilitet .. 32
 4.4.4. Luftinnhold .. 32
 4.4.5. Aggregatstørrelsesfordeling ... 33
 4.4.6. Måling av mettet vannledningsevne ved fallende gradient 34
4.4.7. Rotlengde .. 34
4.4.8. Fargebeskrivelse .. 35
4.5. Kjemiske analyser ... 36
4.5.1. Forbehandling av jord til kjemiske analyser .. 36
4.5.2. Analyse av total C og N ... 36
4.5.3. Ledningsevne og pH .. 36
4.5.4. Glødetap ... 37
4.5.5. Kationbyttekapasitet og basemetningsgrad .. 37
4.6. Statistisk testing ... 38
4.7. Generelle opplysninger ... 39
5. Resultater og diskusjon ... 40
5.1. Skoglige registreringer ... 40
5.1.1. Vegetasjonstypebestemmelse ... 40
5.1.2. Bonitering .. 40
5.1.3. Beregninger foretatt på tremålingsdata .. 41
5.2. Klima .. 43
5.3. Jordprofilbeskrivelse ... 44
5.3.1. Bjørkerute ... 45
5.3.2. Grannrute .. 45
5.3.3. Kjemiske analyser av jorda .. 48
5.4. Jordens fysiske egenskaper ... 49
5.4.1. Aggregatstørrelsesfordeling .. 49
5.4.2. Rotlengde ... 50
5.4.3. Jordtetthet .. 51
5.4.4. Penetrometermåling .. 53
5.4.5. pF-analyse ... 56
5.4.6. Infiltrasjon med Guelph permeameter ... 60
5.4.7. Mettet vannledningsevne .. 61
5.4.8. Luftpermeabilitet ... 62
5.4.9. Luftinnhold ved pF2 ... 63
5.5. Målinger i felt .. 64
5.5.1. Nedbormålinger .. 64
5.5.2. Grunnvannsmåling .. 66
5.5.3. Temperaturmåling .. 67
5.6. Måling av vanninnhold .. 70
5.6.1. Fuktighet i jordprøver .. 70
5.6.2. Målinger med Profilprobe .. 73
5.6.3. Måling med Thetaprobe ... 80
5.6.4. Sammenlikning av metoder for måling av jordas vanninnhold 84
5.6.5. Vannbalanse .. 86
5.6.6. Plantetilgjengelig vann .. 89
5.6.7. Bjørks effekt på vanntilgang for gran .. 90
5.7. Samlet diskusjon ... 91
6. Konklusjon .. 95
7. Litteratur .. 96
2. Innledning

For noen år tilbake ble det registrert skranting av gran på leirjord (personlig meddelelse fra Morten Lyso1) i Follo. Skogpatologer konkluderte med at denne skrantingen antakelig skyldtes at grana var utsatt for tørkestress, da dette var etter flere tørre somre. I området er det en god del plantet gran på leirjord, samtidig som det ser ut til at bjørk trives godt på denne leirjorda. Det var derfor ønskelig å undersøke om innblanding av bjørk i granskog vil kunne medføre at skogen totalt sett utnyttet et større jordvolum for vannopptak, slik at det ville bli mer vann tilgjengelig for gran der den vokser sammen med bjørk. Videre var det også av interesse å prøve å finne ut om gran får bedre forhold for å kunne danne et dypere rotsystem på leirjord, om det har vært et omløp med bjørk før gran plantes.

Denne oppgave er utført for å:

3. Undersøke om det er forskjeller på jordas egenskaper under gran- og bjørkebestand med vekt på jordas fysiske egenskaper.

Undersøkelsene her er utført på et forsøksfelt lagt ut av Peder Braathe (Braathe 1984 og Braathe 1988) på Kjos i Skiptvet kommune. Feltet har meget høg bonitet, og alder på trærne på litt over 30 år. Feltet ligger på tidligere inmark, men gamle stubber vitner om at det har vært et omløp med skog der før dagens skog ble etablert. Det er likevel grunn til å tro at jorden på de to rutene hadde like egenskaper før dagens skog ble etablert, hvilket er en viktig forutsetning for å kunne påvise effekter dagens skog har på jordas egenskaper.

1 Skogbruksjef i Follo
3. Litteraturstudium

For å samle litt informasjon som kan danne grunnlag for vurdering av de resultater som fremkommer i denne oppgaver, er det her laget et eget kapittel med litteraturstudium. Dette kapittelet gir først en liten presentasjon av treslagene gran og bjørk, siden det er disse treslagene oppgaven i hovedsak dreier seg om. Mye av de undersøkelser som er gjort i forbindelse med denne oppgaven går på treslagenes forskjell i vanntilgang og vannforbruk. Dette kapittelet konsentrerer seg derfor om treslagenes rotfordeling, og begrensninger for rotvekst. Videre gjenomgås vannbalanse for skog. Det legges her spesielt vekt på de forskjeller man kan finne mellom gran og bjørk.

Det er i enkelte tilfeller henvist til sekundære kilder. Dette gjelder situasjoner der den primære litteratur er lite tilgjengelig, da helst grunnet at det er basert på gamle arbeider, eller at primære viktigere er på, for forfatter av denne oppgave, uforståelige språk. Dette gjelder blant annet for en del tysk litteratur. I de tilfeller dette arbeid baserer seg på sekundære kilder, er kun den sekundære kilde ført i litteraturlisten.

3.1. Gran (Picea abies (L.) Karst.)

3.2. Bjørk (Betula pubescens Ehrh. og Betula pendula Roth.)

Med bjørk, menes her både hengebjørk (Betula pendula Roth.) og vanlig bjørk (Betula pubescens Ehrh.). Bjørk har en typisk hjerterot (Köstler et al. 1968). Enkelte vertikale rotter hos bjørk kan gå meget dypt. I en omfattende finsk undersøkelse av bjørkerøtter ble det funnet røtter ned til 280 cm dyb (Laitakari 1935). I undersøkelsen var de lengste horisontale røttene på 26 m, og med en årlig middel lengdevekst på 42,6 cm. Børset (1985) angir at hengebjørk stiller små krav til vanntilgang, mens vanlig bjørk stiller middels store krav til tilgjengelig mengde vann.
3.3. **Rotvekst**

3.3.1. **Rotfordeling**

I tabell 1, er gjengitt noen finske undersøkelser av rotfordeling hos gran og bjørk (Siren 1955 og Kalela 1949). Det fremkommer av tabellen at gran har en meget stor andel av rotmassen i humuslaget, og i de øvre mineraljordlag. Bjørk har en noe jevnere fordeling av rotmassen nedover i dypet, sammenlignet med gran. Det kan være viktig å merke seg at dette er undersøkelser fra morener.

Tabell 1 Prosentvis fordeling av gran og bjørks rotmasse på ulike jorddyp (Siren 1955 og Kalela 1949).

<table>
<thead>
<tr>
<th>Jordlag</th>
<th>Bjørk (Siren 1955)<sup>1)</sup></th>
<th>Gran (Siren 1955)<sup>1)</sup></th>
<th>Gran (Kalela 1949)<sup>2)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Humus</td>
<td>27,5%</td>
<td>64,1%</td>
<td>26,0%</td>
</tr>
<tr>
<td>0-10 cm</td>
<td>23,7%</td>
<td>20,1%</td>
<td>45,7%</td>
</tr>
<tr>
<td>10-20 cm</td>
<td>18,7%</td>
<td>10,2%</td>
<td>14,6%</td>
</tr>
<tr>
<td>20-30 cm</td>
<td>12,6%</td>
<td>2,8%</td>
<td>9,7%</td>
</tr>
<tr>
<td>30-40 cm</td>
<td>10,7%</td>
<td>2,4%</td>
<td>4,0%</td>
</tr>
<tr>
<td>40-50 cm</td>
<td>6,8%</td>
<td>0,4%</td>
<td>Ikke undersøkt.</td>
</tr>
<tr>
<td>Totalt</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

1) Sirens undersøkelser er fra finsandmorener. For gran er det verdiene for yngre skog som her er angitt (Yngre skog er i dette tilfellet skog med alder mellom 50 og 137 år).

2) Kalelas undersøkelser går kun til 40 cm dyp under humussjikt. Han hadde målinger både for 0-5 cm og 5-10 cm. Disse er her slått sammen. Jorda er morenegrus.
Biomasse av finrøtter i humus, og i de øvre mineraljordlag er i det senere studert i svensk skog. Der det er gjort sammenlikning mellom rene granbestand og blandingsbestand med gran og bjørk. Det viste seg da at finrotbiomassen av gran var lavere i blandingssskog enn i ren granskog (Brandtberg et al. 2000). Undersøkelsen var på morenejord. Schmid & Kazda (2002) har sett på hvordan granas rotfordeling endrer seg ved innblanding av bok sammenliknet med rene granbestand. I denne undersøkelsen ble rotfordeling ned til 1 m dyp undersøkt. Det viste seg da at bok fortrengte granas røtter slik at den totale rotbiomasse av gran også her ble mindre med innblanding av bok. Men i tillegg ble granas røtter konsentrert mer i de øvre jordlag, når bok ble blandet inn. I blandingsbestand konsentrerte bok røttene i dypere lag enn gran. Disse resultatene fremkom både på næringsrik jord med dårlig drenering, og på næringsfattig jord med god drenering. Denne undersøkelsen rokker dermed ved oppfatningen om at gran får et dypere rotsystem, der den vokser sammen med treslag som danner et dypere rotsystem enn gran.

Jordas tekstur er i stor grad bestemmende for en del av jordas fysiske egenskaper. Laitakari (1935) har i sine rotundersøkelser for bjørk også sett på rotdyp i forhold til jordas tekstur. Det er beregnet et gjennomsnittlig rotdyp for trærnes horisontale røtter. For ikke vannmettet mineraljord, er det nyttet tre jordtypeklasser. Dypest var rotsystemet på morene (20,1 cm), og grunnest på leire, og leirblandet jord (10,0 cm). Sandig jord kommer i en mellomstilling (14,1 cm). Denne fordelingen kan henge sammen med at røttene har problemer med å trengne ned gjennom leira. Men det kan også henge sammen med at trærne må dypere med røttene for å få tak i vann på de godt drenerende jordartene.

3.4. Begrensinger for rotvekst

Av de mange forhold som begrenser rotvekst, er det kun begrensninger knyttet til jordfysiske egenskaper som her omtales.

3.4.1. Jordtetthet

Røtter vil ved vekst trengse seg frem i eksisterende porer i jorda, eller ved å flytte på jordpartikler. Ei rot kan bare vokse i porer større enn rota, om poren ikke kan utvides. I mange jordarter kan røtter trengse seg frem i porer som har diameter mindre enn røttene, ved å utvide poren. Når rotens penetreringskraft lenger ikke er stor nok til å utvide porene, må rotens vekst skifte retning (Kozlowski 1999). En egenskap ved jorda som har vært studert i forhold til begrensning av rotvekst, er jordtetthet. Med jordtetthet menes her jordens tørrvekt.
dividert på volum ved aktuell fuktighet. I nøye sammenheng med struktur, tekstur, porøsitet, luftinnhold og infiltrasjonskapasitet, vil jordtetthet øke med økende jorddyp (Sutton 1991). Ved innhold av sand og stein i jorda skulle det tilsi en høyere jordtetthet. I motsetning vil finere jordtekstur tilsi lavere jordtetthet. I en og samme jord, vil økt jordtetthet medføre lavere porositet, mindre luft og dårligere infiltrasjonskapasitet i jorda, samtidig som mekanisk motstand for rotvekst øker (Sutton 1991). Dette gjør at for en og samme jordart vil forholdene for rotvekst bli dårligere dess høyere jordtettheten er. Jones (1983) har påvist en signifikant sammenheng mellom jordtetthet, jordtekstur og rotvekst hos flere kulturvekster. Han viste at tekstur kan brukes til å estimere den jordtetthet som begrenser rotvekst, ved tilnærmet optimalt vanninnhold. Generelt vil den største jordtetthet, som tillater rotvekst være fra 1,4-1,6 g cm\(^{-3}\) for jord med fin tekstur, til 1,75 g cm\(^{-3}\) for jord med grøvere tekstur (Kozlowski 1999).

3.4.2. Trykkfasthet

Taylor et al. (1966) viste at for fire forskjellige jordarter, økte jordas trykkfasthet (gitt som penetrometermotstand, her regnet om til MPa) når jordtetthet økte. Det var forskjeller mellom ulike jordarter i hvor mye trykkfasthet økte med økende komprimering (økt jordtetthet). I den samme undersøkelsen, undersøkte de hvordan rotvekst hos bomull (Gossypium hirsutum L.) ble påvirket av jordas trykkfasthet. Rotveksten avtok sterkt når trykkfastheten økte fra 0,3 til 1,5 MPa. Rotveksten fortsatte og avta, med økende trykkfasthet opp mot 2,5 MPa, hvor rotvekst opphørte. Gerad et al. (1972) fikk tilsvarende resultater på en leirjord. Men der det var flere planter i hver av jordprøvene var maksimal trykkfasthet for rotvekst omtrent 3,0 MPa. Gerad et al. (1982) har beregnet en kritisk (maksimal) trykkfasthet for rotvekst i forhold til leirinnhold. Undersøkelsen viser at kritisk fasthet avtar når leirinnhold øker. Kritisk trykkfasthet for vekst av bomullsrotter i forhold til leirinnhold er vist i figur 1.

jordtetthet for rotvekst som; jordtetthet når jorda er komprimert så mye at trykkfåsthet er 2 MPa, ved et vannpotensiale på -100 kPa.

![Diagram](image)

Figur 1 Kritisk trykkfåsthet for vekst av bomullsrotter, i forhold til jordas leirinnhold. Figuren er hentet fra Gerad et al. (1982).

Det er viktig å ta hensyn til at ulike vekster har ulik evne til å presse seg frem, i jord med stor fasthet. Korotaev (1992) har gjort undersøkelser av ulike treslags rotters evne til å penetrere komprimert jord. I undersøkelsen er maksimalt rottdyp for seks treslag (gran (*Picea abies* (L.) Karst.), furu (*Pinus sylvestris* L.), lerkr (*Larix sibirica* Ledeb.), bjørk (*Betula pendula* Roth.), eik (*Qercus robur* L.) og lind (*Tilia cordata* Mill.) undersøkt. Som det fremkommer av tabell 2, har gran og lind størst problemer med sin rotvekst i komprimert jord. Ved jordtetthet større enn 1,5 g cm\(^{-3}\), hadde verken gran eller lind noen rotvekst. Til sammenlikning var det fortsatt noe rotvekst av bjørk ved en jordtetthet på 1,7 g cm\(^{-3}\). Undersøkelsen viser følgelig at bjørk har evne til å trenge frem med sine røtter i jord som har noe større tetthet enn hva gran er i stand til.

3.4.3. Vann og lufttilgang

Uttøver de her nevnte, mekaniske begrensninger for rotvekst, så er også jordens vann og luftinnhold av betydning for røttenes vekst. Planer har behov for vann, og det tas i all hovedsak opp fra jorda, via røttene. Der røtter skal vokse må derfor jorda inneholde tilstrekkelig med vann. Røttene på vanlige landplanter, slik denne oppgaven omhandler, er
også avhengig av at jorda i rotsonen inneholder nok luft. For frisk rotvekst kreves at omtrent 10% av jordvolumet i rotsonen er luft (McKyes 1985). Vannmetning av jord kan derfor begrense rotvekst.

Tabell 2 Maksimalt dyp for rotvekst i mm for 6 treslag på jord med ulik tetthet (Korotaev 1992).

<table>
<thead>
<tr>
<th>Jordtetthet</th>
<th>Lerk</th>
<th>Furu</th>
<th>Gran</th>
<th>Eik</th>
<th>Bjørk</th>
<th>Lind</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2 g cm⁻³</td>
<td>145</td>
<td>98</td>
<td>86</td>
<td>126</td>
<td>120</td>
<td>64</td>
</tr>
<tr>
<td>1,3 g cm⁻³</td>
<td>106</td>
<td>103</td>
<td>70</td>
<td>139</td>
<td>92</td>
<td>60</td>
</tr>
<tr>
<td>1,4 g cm⁻³</td>
<td>110</td>
<td>84</td>
<td>27</td>
<td>113</td>
<td>88</td>
<td>27</td>
</tr>
<tr>
<td>1,5 g cm⁻³</td>
<td>88</td>
<td>39</td>
<td>19</td>
<td>85</td>
<td>47</td>
<td>14</td>
</tr>
<tr>
<td>1,6 g cm⁻³</td>
<td>42</td>
<td>16</td>
<td>-</td>
<td>57</td>
<td>42</td>
<td>-</td>
</tr>
<tr>
<td>1,7 g cm⁻³</td>
<td>48</td>
<td>-</td>
<td>-</td>
<td>59</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>1,8 g cm⁻³</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>81</td>
<td>68</td>
<td>51</td>
<td>85</td>
<td>69</td>
<td>41</td>
</tr>
</tbody>
</table>

3.5. **Vannballanse for granbevokst mark sett i forhold til bjørk.**

Endring i jordas vannhusholdning kan beskrives som en funksjon av tilført vann i forhold til forbruk og avrenning av vann fra jorda. Det er her de delene av vanntilførsel og forbruk, som treslag i spesielt stor grad påvirker, som særlig beskrives her.

3.5.1. **Intersepsjon**

Når det gjelder forskjell i tilført mengde vann til jorda er det i første rekke gjennom ulik intersepsjon treslagene påvirker dette. Med intersepsjon menes den del av nedbør som fanges opp av vegetasjonen og for dunster derfra, og således aldri når ned til bakken. Intersepsjonen er avhengig av blant annet vegetasjonens utforming, og tetthet i ulike sjikt. Denne oppgaven konsentrerer seg om tresjiktet. Intersepsjonen i tresjiktet blir da den nedbør som fanges opp i kronetaket. Hvor mye dette utgjør vil i tillegg til skogens tetthet henge sammen med treslag og dets bladmengde og bladutforming. Grip og Rode (2000) angir at lagringskapasiteten for vann i skogens kronetak er 0,5-2,5 mm, og at i skogsmark går normalt 20-40% av sommerens nedbør tilbake til atmosfæren som fordunsting fra intersepsjonsmagasinet. Magasinet tømmes (trærne tørker) normalt innen et par timer etter et nedbørtilfelle. For lauvfellende trær er intersepsjonen vesentlig mindre på vinter enn på sommer. Men også på sommeren er intersepsjonen betydelig større i granskog, enn i bjørkeskog. I en undersøkelse som refereres av Børset (1985) fra Lukkala, er intersepsjonen vesentlig større for et granbestand på 14-18
m høyde enn et bjørkebestand på 15-20 m med samme tetthet. Ved daglig nedbør på 4 mm, ville intersepsjonen utgjøre 60% i granbestandet og 40 % i bjørkebestandet. For begge bestand øker prosentvis intersepsjon når daglig nedbørs mengde avtar. Den forskjellen mellom gran og bjørk kan henge sammen med noe ulik bladmengde. Et mye brukt mål for bladmengde i en plantebestand er bladarealindeks.

3.5.2. Bladarealindeks (LAI)

3.5.3. Transpirasjon
Vanntapet fra jorden består av avrenning, fordonsting fra jordoverflata (evaporasjon) og vegetasjonens vannforbruk ved transpirasjon. (Summen av evaporasjon og transpirasjon omtales til tider som evapotranspirasjon.) De to første faktorene er i liten grad direkte knyttet til treslag. Derimot kan det være forskjeller i transpirasjon for ulike treslag.

Høhnel (refereres av Thurmann-Moe 1941) gjorde omfattende undersøkelser av ulike treslags transpirasjon i tiden 1878-80, hvorav total transpirasjon ble målt gjennom to hele vekstsesonger for 5-6-årige planter av ca. 70 cm høyde. Gjenomsnittlig transpirasjon gjennom en vekstsesong var der 89 kg vann per 100 g tørt bladstoff for bjørk, og tilsvarende 18 kg for gran. På disse plantene var tørrvekt av blader 40,0 kg for gran, 2,4 kg for bjørk som
hadde vokst i skygge, og 5,7 kg for bjørk som hadde vokst i sola. Men undersøkelsene bygger på et lite materiale, og variasjonene innen art er for store til å trekke sikre slutninger om treslagenes vannforbruk på grunnlag av forsøkene (Thurmann-Moe 1941).

Planters transpirasjon kan gis i forhold til tørrstoffproduksjon. Antall vektenheter vann som brukes for å produsere en vektenhet tørrstoff kalles transpirasjonstall. Oelker (refereres av Thurmann-Moe 1941) har beregnet transpirasjonstall for en del treslag, basert på mikrometeorologiske undersøkelser gjort av andre, i en rekke land. Han fant således frem til et transpirasjonstall for gran på 193 og for bjørk på 375.

<table>
<thead>
<tr>
<th>Treslag</th>
<th>Transpirasjon med åpne spalteåpninger</th>
<th>Transpirasjon med lukkede spalteåpninger</th>
<th>% transpirasjon: Lukkede/åpne spalteåpninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hengebjørk</td>
<td>780</td>
<td>95</td>
<td>12,0</td>
</tr>
<tr>
<td>Gran</td>
<td>480</td>
<td>15</td>
<td>3,0</td>
</tr>
</tbody>
</table>

For å få et inntrykk av hvordan ulike treslags transpirasjon påvirker vannbalansen i jorda, så må transpirasjon per bladarealenhet sees i forhold til det totale bladarealet
Det er tydelig at bjørk har en transpirasjon større enn gran sett i forhold til bladoverflate, men dette ser i stor grad ut til å kompenseres av lavere LAI. Det er angitt at årlig transpirasjon fra temperert, lauvfellende skog er 500-800 mm per år, og tilsvarende for eviggrønn barskog er 300-600 mm (Larcher 1995). I grove trekk finner vi den tempererte lauvskogen lengre sør, eller i lavere høyde enn den boreale barskogen. Resultatene av disse undersøkelsene som her er referert av Larcher (1995), kan både henge sammen med treslag, og med klima der de ulike skogtypene normalt finnes.

Det kan virke som at bjørk har en noe større transpirasjon enn gran også på bestandsnivå. Men denne forskjell kommer ikke tydelig frem av det materialet som her er gjennomgått. En eventuelt større transpirasjon hos bjørk, vil kanskje kunne oppveies av grans større intersepsjon, når man ser på jordens vannbalanse.

En annen begrensning for transpirasjon er mangel på transpirerende organ. Gran har med sine flerårige nåler alltid transpirasjonsapparatet på plass. Gran vil derfor alltid kunne ha en betydelig transpirasjon, når vanntilgang, klima, og andre forhold tillater det. Bjørk feller som kjent sine blader om høsten. Det beskytter bjørk mot uttøring om vinteren, men gjør også at ikke transpirasjon kan starte igjen på våren, før den har fått bladverk. I lavlandet på det sentrale Østlandet kommer gjerne bjørkas blader tilbake i mai. Ofte har bjørka små, ikke fullt utviklede blader, når den brukes til pynting 17. mai. Man kan derfor gå ut fra at transpirasjon hos bjørk er meget liten i april, siden den da ikke har noe bladverk. Også i deler av mai er det mulig at transpirasjon hos bjørk er begrenset, grunnet et mangelfullt utviklet bladverk, mange steder. Tidspunkt for når bjørkas blader skyter, og når de er fullt utviklet kommer an på områdets klima, og årets vær. I simuleringer av vannforbruk i granskog (Persson 1997) er total evapotranspirasjon i april 52-58 mm. Av dette er omtrent 10 mm evaporasjon fra jord, 25-30 mm transpirasjon og 15-20 mm intersepsjonstap. I mai øker evapotranspirasjonen noe,
og da mest som en følge av økt transpirasjon. I målinger av vannforbruk i Sverige, fant man at transpirasjon for barskog er omtrent 2 mm i døgnet på våren (Cienciala et al. 1999). Dersom våren er tørr, og gran starter sin transpirasjon en måned tidligere enn bjørk, så vil dette kunne gjøre at jorda i granskog på våren blir betydelig tørrere enn bjørk. Dersom vi sier at gran starter transpirasjon en måned tidligere enn bjørk, skal det ut fra disse tallene gjøre at 25-60 mm mer vann brukes på våren i granskog, som i bjørkeskog. Dersom nedbøren er liten på våren og forsommeren, kan kanskje dette gjøre at jord i granskog holder seg tørrere enn i bjørkeskog et godt stykke utover sommeren.

3.5.4. Eksempel på vannbalanse

Tabell 4 Vannbalanse med verdier i mm per år. Gjennomsnittsverdier etter Jansson et al. (1999)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nedbør</th>
<th>Intersepsjon</th>
<th>Transpirasjon</th>
<th>Jordevaporasjon</th>
<th>Avrenning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdi i mm</td>
<td>1008</td>
<td>252</td>
<td>256</td>
<td>56</td>
<td>405</td>
</tr>
</tbody>
</table>

Tabell 5 Noen egenskaper ved Bråkenhielms sammenliknede gran og bjørkerute. (Bråkenhielm 1977)

<table>
<thead>
<tr>
<th>Egenskap</th>
<th>Rute P6 (gran)</th>
<th>Rute P10 (bjørk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stående stammevolum (m³/ha)</td>
<td>168,8</td>
<td>167,3</td>
</tr>
<tr>
<td>Volum av middelstamme (dm³)</td>
<td>87,7</td>
<td>114,6</td>
</tr>
<tr>
<td>Treantall per ha i 1973</td>
<td>1925</td>
<td>1460</td>
</tr>
<tr>
<td>Gjennomfall. I % av nedbør på åpent felt, jul-aug 1970</td>
<td>28%</td>
<td>84%</td>
</tr>
<tr>
<td>Feltjiktets dekningsgrad</td>
<td>0,4%</td>
<td>55%</td>
</tr>
<tr>
<td>Bunnsjiktets dekningsgrad</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Som det fremkommer av figur 2 inneholder jorda langt mer vann på bjørkeruten (P10) enn på granruten (P6). Dette kommer spesielt tydelig frem i de øvre jordlag. Denne store forskjellen i fuktighet bør sees i sammenheng med verdiene i tabell 5. De tørre forholdene i jorda på granruten i forhold til bjørkeruten kan henge sammen med betydelig høyere intersepsjon hos gran. Men det er også verdet å legge merke til tidspunktet for målingene. Vi er midt i juni, og
bjørk har kanskje ikke hatt fult utviklet bladverk så lenge? Den store forskjellen kan derfor henge sammen med at gran har hatt en betydelig transpirasjon i lang tid allerede, mens bjørk ennå ikke har brukt så mye vann dette året. Disse verdiene er interessante, men det er kun snakk om en måleserie på to ruter, på ett tidspunkt og på en jordtype. Det gir derfor litt begrenset grunnlag for å trekke noen klar konklusjon om forskjell mellom vanntilgang i bjørkeskog sett i forhold til granskog, i alle fall for en hel vekstsesong.

3.5.5. Sammenfatning

Den konklusjon som Thurmann-Moe (1941) trekker om treslagenes vannforbruk, ser også ut til å gjelde for det som her er gjennomgått: "På grunnlag av de foreliggende undersøkelser over planters vannforbruk kan der foreløpig ikke trekkes sikre slutninger over mengden av det vann som transpireres fra våre skogstrær. En kan derfor heller ikke på dette grunnlag gjøre seg opp noen sikker mening om skogstrærnes innflytelse på jordens vannhusholdning").
4. Material og metode

Alle datoangivelser i dette arbeidet er for 2003, om ikke annet er angitt. En hver dybdeangivelse i jorden har jordoverflaten (toppen av O-sjikt) som referansehøyde og 0-verdi, om ikke annet er angitt.

4.1. Forsøksfeltet

4.1.1. Bakgrunn

Samtidig som det nå var noe gran og noe bjørk som var klart atskilt. I tillegg var det ønskelig at gran og bjørk skulle være mest mulig jevnster, og jevnaldret. Samt at skogen hadde en så høy alder at trærne hadde fått tilstrekkelig med tid til å påvirke jordens fysiske egenskaper. Da feltet måtte oppsøkes flere ganger gjennom vekstsesongen, var det også ønskelig at det lå nær Ås. Dette gav mange krav til et felt der feltarbeidet kunne utføres. Det var derfor klart at enkelte av kravene nok måtte lempes noe på, før i det hele tatt å finne et felt.

Forsøksfeltet ligger på Kjos i Skiptvet kommune (59°32’ Nord, 11°8’ Øst). Feltet er markert med en sirkel i figur 3. Dette er ett av totalt 15 felt lagt ut i Trønderlag og på Østlandet av Peder Braathe, som en del av et forsøk der utviklingen av gjenvekst med ulike

Figur 3 Forsøksfeltets plassering i forhold til Askim, Mysen og Skiptvet (Østfold). Kartet er tatt ut fra Norgesglasset på internettsiden til Statens Kartverk².

Forsøksfeltet i Skiptvet ble anlagt i 1976, og består av 10 forsøksruter, med 5 ulike behandlinger (Braathe 1984). Dette feltet har vært grunnlag for en tidligere hovedoppgave, som har sett på treslagenes påvirkning på noen jordbunnsparametere (Mosbye 1994).

² URL: http://ngis2.statkart.no/norgesglasset/default.html
4.1.2. Forsøksrutene

Rutene er hver på 625 m² (25x25 m), rutene er videre delt opp i rutet på 5x5 m, der hvert hjørne er markert med et stålrør. Mellom forsøksrutene er det et bufferbelte på omtrent 5 m.

Tabell 6 Stående volum på forsøksrutene, fra oppmåling i 1996

<table>
<thead>
<tr>
<th></th>
<th>Bjørkerute</th>
<th></th>
<th>Granrute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bjørk</td>
<td>Gran</td>
<td>Bjørk</td>
</tr>
<tr>
<td>Stående volum (m³/daa)</td>
<td>17,0</td>
<td>4,3</td>
<td>0</td>
</tr>
</tbody>
</table>

Vegetasjonstypen er småbregneskog (*Eu-Piceetum dryopteridetosum*) og boniteten er meget høg. Området er grøftet, og det går to grøfter i yterkantene av de to rutene som er brukt her. Målinger og undersøkelser som er gjort, er prøvd lagt i god avstand fra grøfter og grøfteoppkast. Dette er et gammelt jorde, men det kunne se ut til å være noe rester av gamle råtne stubber her. Det virker derfor til at det har vært minst et omløp med skog her før den nåværende skog.

³ Professor ved Institutt for plante- og miljøvitenskap, Norges landbrukshøgskole
⁴ Førsteamanuensis ved Institutt for plante- og miljøvitenskap, Norges landbrukshøgskole
4.2. **Klima**

Som beskrivelse av områdets klima, brukes data fra Det norske meteorologiske instituttets (DNMI) stasjon på Rygge (stasjon 17150). DNMI har vært behjelpelige og sendt de værdata som det har vært behov for i forbindelse med oppgaven.

4.3. **Målinger og arbeider i felt**

4.3.1. **Posisjonering**

Med hjelp av en ryggsekkmontert GPS-mottaker er profilgropene stedfestet. Også hjørnene av forsøksrutene er forsøkt stedfestet på samme måte. Koordinatene er tatt ut fra GPS-mottakeren som EUREF89-Geografiske koordinater. Transformering til andre koordinatsystemer, og plotting på kart er gjort ved hjelp av Norgesglasset som Statens kartverk har på internett.5

Stålrørene som deler forsøksrutene i et rutenett på 5x5 m er nummerert. Dette nummeret tar utgangspunkt i hver av rutene sørvestre hjørne. Det første sifferet er antall 5-metre i østlig retning, og andre siffer antall 5-metre i nordlig retning fra sørvestre rutehjørne. Dermed er det sørvestre hjørnet gitt nummer 11, det nordvestre hjørne 16 og det nordøstre hjørne 66, for hver av rutene. Numrene på rutenes hørner er vist i figur 4, i avsnitt 4.3.14, om loggede målinger.

4.3.2. **Jordprofil**

I hver av de to forsøksrutene ble det gravd et jordprofil. Profilstedet ble lagt i god avstand fra rutene yterkanter. Av praktiske grunner er profilene gravd ut på plasser der det ikke sto noen trær. Veggen som er beskrevet var drøyt 1 m lang og 90-100 cm dyp. Profilene ble gravd under meget våte forhold, slik at en del øsing av vann var nødvendig.

4.3.3. **Profilbeskrivelserne**

Profilbeskrivelsen er gjort med støtte i Greve et al. (1999), med sjiktbetegnelser i henhold til Soil Taxonomy (Soil Survey Staff 1999). Farge på fargeflekker og poremengde er unnlatt ved beskrivelsen. Den angivelse av rotmengde som her er gjort er en subjektiv inndeling i klasser etter mengde og størrelse. Bedømmelse av struktur er forsøkt, men de meget våte forholdene gjorde at jorda ble til en grøt ved undersøkelse. Strukturbeskrivelse er derfor ufullstendig.

5 URL: http://ngis2.statkart.no/norgesglasset/default.html
Fargebeskrivelse er gjort på prøver inne i etterkant (beskrevet i eget punkt).

4.3.4. **Uttak av uforstyrra sylinderprøver**

Etter profilbeskrivelsen ble uforstyrra sylinderprøver tatt ut fra begge forsøksruter. Prøveuttaket ble gjort 19. mai i granruta og 21. mai i bjørkeruta. Under prøveuttaket var det meget fuktige forhold, idet grunnvannstanden var på omtrent 15 cm disse dagene. Det er nyttet 100 cm³ stålsylindre, med høyde 3,7 cm og tverrsnitt på 27 cm². Prøvene er tatt fra følgende dyp (sjikt, i henhold til profilbeskrivelsen): 0-10 cm (O), 10-20 cm (Ap), 20-30 cm (Ap), 30-40 cm (Bwg), 40-60 cm (BCg) og 60-80 cm (Cg). Det er hele tiden passet på at prøvene ble uttatt innenfor sjiktgrensene, men prøve 0-10 cm på bjørkeruten dekker begge O-sjiktene. Der ikke sjiktgrenser har satt begrensninger er prøvene tatt ut midt i det dybdeintervall som er angitt. Prøvene er tatt ut i henhold til beskrivelse i Børresen (1997). På dypet 0-10 cm, kunne ikke sylindrene slås ned, grunnet mye røtter. Det derfor skjært rundt med en skarp, serratert kniv, ved prøveuttaket. For hvert dyp, på begge rutene, er det tatt ut tre sylindere til pF-analyse, tre sylindere til mettet vannledningsevne, og tre sylindere til rottelling. Samtlige prøver er veid like etter uttak, og prøvene ble oppbevart på kjølelager frem til analysering.

4.3.5. **Uttak av jordprøver til aggregatstørrelse og kjemiske analyser**

Det er tatt ut 0,5 liters prøver til kjemisk analyse for hvert dyp. Prøvene er tatt ut i de samme dybdeintervall som uforstyrra sylinderprøver, med tillegg av dypet 80-100 cm (Cg-sjikt) For de øvre 10 cm er det tatt ut to esker fra samme dyp, for å være sikker på å få nok jord. I bjørkefeltet ble O-sjiktet delt i to undersjikt i profilbeskrivelsen. Derfor ble prøver til kjemisk analyse tatt ut både fra samlet O-sjikt, og fra det enkelte undersjikt. For disse prøvene er det prøvd å ta ut en del mer jord enn det som skal med i prøven. Jorda ble blandet i ei bøtte, og representative prøver tatt over i esker.
Videre er det fra de samme dyp, men kun fra mineraljordssjiktene, tatt ut prøver til aggregatstørrelsesfordeling. Fra dypet 80-100 cm (Cg-sjikt) er det ikke tatt ut slike prøver. Til dette er det tatt ut prøver på 2 liter. Det ble tilstrebet å få mest mulig uforstyrret jord.

Jordprøvene til kjemiske analyser ble tørket noen dager i tørkeskap på omtrent 40°C, og senere oppbevart i romtemperatur. Prøvene til aggregatstørrelsesfordeling er både tørket og oppbevart ved romtemperatur.

4.3.6. Uttak av jordsylinder for beregning av jordtetthet i ulike dyp

4.3.7. Bonitering

⁶ H_{40}-Bonitet er høydebonitet, definert som overhøyde (m) ved 40 års alder i brysthøyde (Tveite & Braastad 1981).
4.3.8. Vegetasjonstypbestemmelse

4.3.9. Beregninger utført på tremålingsdata

Volum er beregnet for hvert enkelt tre som totalt stammevolum med bark. Volum for enkelttrær er så summert, og dividert på det arealet det er registrert på (0,625 daa), for å få stående volum per daa. De volumfunksjoner som her er brukt, bruker kun brysthøydediameter over bark og trehøyde som inngang. For gran er Vestjordets (1967) tre funksjoner for beregning av volum nyttet (formel 1-3). Det er brysthøydediameter som bestemmer hvilken funksjon som skal brukes. For bjørk er det kun en funksjon (formel 4), etter Braastad (1966) som er brukt.

Forklaring av de symboler som inngår i formel 1-4:
- \(d\): Brysthøydediameter i cm (diameter målt 1,3 m over midlere marknivå)
- \(h\): Trehøyde i m
- \(V\): Treets totale stammevolum med bark i \(\text{dm}^3\)
- \(V_{dal}\): Treets totale stammevolum med bark i \(1/10 \text{ dm}^3\)
\[V = 0,52 + 0,02403d^2 h + 0,01463dh^2 - 0,10983h^2 + 0,15195dh \]

Formel 1 Volumfunksjon for gran med brysthøydediameter mindre enn 10 cm (Vestjordet 1967)

\[V = -31,57 + 0,0016dh^2 + 0,0186h^2 + 0,63dh - 2,34h + 3,20d \]

Formel 2 Volumfunksjon for gran med brysthøydediameter mellom 10 og 13 cm (Vestjordet 1967)

\[V = 10,14 + 0,01240d^2 h + 0,03117dh^2 - 0,36381h^2 + 0,28578dh \]

Formel 3 Volumfunksjon for gran med brysthøydediameter større enn 13 cm (Vestjordet 1967)

\[V_{gr} = -18,6827 + 2,1461d^2 + 0,1283d^2 h + 0,1380dh^2 - 0,6311h^2 \]

Formel 4 Volumfunksjon for bjørk (Braastad 1966)

I tillegg til volum er også grunnflatesum beregnet på bakgrunn av det samme datamaterialet. Grunnflatesummen er summen av alle trærnes stammeareal i brysthøyde, og er således et dimensjonsavhengig tetthetsmål for skog. Grunnflatesummen er beregnet etter formel 5 (Fitje 1989)

\[\text{Grunnflatesum} (m^2) = \frac{\pi}{4} \times \sum \text{(Brysthøydediameter (m))^2} \]

Formel 5 Beregning av grunnflatesum (Fitje 1989).

Grunnflatesum er beregnet for hvert treslag på hver rute, og regnet om til m²/daa. Småtrær under minstemål for registrering av diameter (2,5 cm), inngår heller ikke i beregning av grunnflatesummen.

Som mål på gjennomsnittlig trediameter brukes grunnflatemiddeldiameter (dₙ). Grunnflatemiddeldiameter er diameter på det treet som har gjennomsnittlig grunnflate (Fitje 1983). Beregning av dₙ er gjort atskilt for gran og bjørk på hver rute, og trær med diameter mindre enn 2,5 cm er ikke med i beregningene. Beregning av dₙ er gjort etter formel 6 (Fitje 1989), der d er brysthøydediameter av det enkelte tre, og N er antall trær som er med i beregningene.

\[d_g (cm) = \sqrt{\frac{\sum d^2 (cm^2)}{N}} \]

Formel 6 Beregning av grunnflatemiddeldiameter (Fitje 1989).
Gjennomsnittlig høyde for hvert treslag på rutene er beregnet både som aritmetisk middelhøyde og som grunnflateveid middelhøyde (H_L). Ved beregning av aritmetisk middelhøyde inngår alle trær som det er registret høyde på, mens trær med diameter under 2,5 cm er unnlatt i beregning av H_L. H_L er middelhøyde av trærne beregnet med grunnflate (brysthøydetverrsnitt) for det enkelte tre som vekt. Beregning er gjort ut fra formel 7 (Fitje 1989), der g er det enkelte tres grunnflate og h det enkelte tres høyde.

\[H_L(m) = \frac{\sum (g(m^2) \times h(m))}{\sum g(m^2)} \]

Formel 7 Beregning av grunnflateveid middelhøyde (Fitje 1989).

Overhøyde (H_O) defineres som aritmetisk middelhøyde av de 100 grøvste trær per hektar, eller de 10 grøvste per dekar (Fitje 1989). Overhøyde er her beregnet som aritmetisk middelhøyde av de 6 grøvste (størst brysthøydediameter) trærne på hver rute ut fra oppmålingen i 1996. I tillegg er overhøyde i 2003 beregnet som aritmetisk middelhøyde av boniteringstrærne på hver rute. Overhøyden er kun beregnet for bjørk på bjørkeruten og for gran på granruten.

4.3.10. Nedbørmålinger

Nedbørmålinger er gjort ved at rettveggete kar er satt ut, for å fange opp nedbøren. Karene var emaljerte stålkar, med både høyde og diameter på 25 cm. I hver av rutene ble det satt ut tre kar. Karene ble her prøvd spredt ut tilfeldig, men det er unngått å sette kar umiddelbart inntil stammene. Det ble også satt ut to kar på ei åpen flate, som referanse. I samtlige kar ble det tømt på en skvett med olje, for å hindre fordamping av vann. Vannivået er målt med tommestokk. Karene var for små til å fange opp hele sommerens nedbør, og de ble derfor tømt en gang i løpet av vekstsesongen.

4.3.11. Grunnvannsstand

For måling av grunnvannsstand ble det satt ut et rør på hver rute. Rørene er satt midt inne på hver rute, med god avstand til grøfter. Rørene er rustfrie stålrør med diameter på 50 mm, og lengde på 1300 mm. Rørene var åpne i begge ender. Med et jordbor med noe større diameter enn røret, ble det boret vertikale hull, til litt over en meters dyp. Rørene ble satt løst ned i hullene, og en hette ble satt over. Rørene ble satt ut 28. mai. I starten virket det virket til at
rørene ble tilstoppet av jord i bunnen, slik at vann hadde problemer med å trenge inn i rørene. Det ble derfor lagt litt pukk under rørene 3 juni. Etter dette, virket utstyret bra. Vanndypet ble peilet enten med tomnestokk, eller med akustisk grunnvannspeiler. Den akustiske grunnvannspeileren, er et målebånd med ei messingklokke i enden, slik at det høres godt når den når vannoverflata. Ved måling av grunnvannsdyp er det markoverflaten (toppen av O-sjiktet), som er referansehøyde. Største måledyp for utstyret er 105 cm.

4.3.12. Uttak av fuktighetsprøver

For å ha et grunnlag for vurdering av verdiene fra Profilprobe og Thetaprober, ble det ved utsetting av de to første rørene for Profilprobe (15.mai), tatt inn jordprover fra ulike dyp. I tillegg er det tatt ut jordprøver med spaltebor tre plasser i hver rute den 2.juli og 7.august. Det er tatt ut prøver ned til 60 cm ved alle uttak, enkelte prøver er også tatt ut til et dyp på 100 cm. Prøvene er umiddelbart etter uttak pakket i plastposer eller plastbokser, for å hindre fordamping. Prøvene er ble veid samme dag som de ble tatt ut. Prøvene er deretter tørket i tørkeskap ved 105°C, i minst to døgn. De tørkete prøvene ble på nytt veid. Vekt% vann i prøvene er beregnet etter formel 8.

\[
Vekt\%\, Vann = \frac{(Aktuell\, vekt\, (g) - Tørrvekt\, (g))}{Tørrvekt\, (g)} \times 100\%
\]

Formel 8 Beregning av vekt% vann i jord.

For å regne om vekt% vann i prøvene til volumetrisk vanninnhold, er vekt% vann multiplisert med jordtetthet (Formel 9) for aktuell rute og dyp.

\[
Volum\%\, Vann = Vekt\%\, Vann \times Jordtetthet (g/cm^3)
\]

Formel 9 Omregning fra vekt% til volum% vann.

Det er også tatt ut jordprøver ved opptak av Thetaprobene 25. august. Disse prøvene er tatt på det samme sted og dyp som de aktuelle følgerne var plassert. Disse prøvene har fått samme behandling som prøvene tatt ut med spaltebor.

4.3.13. Profilprobe

Delta-Ts profilprobe PR1/6 (Delta-T 2001b) ble brukt til måling av jordas vanninnhold i ulike dyp. Glassfiberrør (Delta-T ATL1) ble satt ut for å stå gjennom hele sesongen. Det ble satt ut
Glassfiberrørene ble deretter slått forsiktig ned. Rørene stod ute frem til 22. oktober. Rørene har stått med tette propper, for å hindre vann i å komme i rørene.

Målinger med profilprobe er gjort de fleste dager feltet er oppsøkt, totalt 18 måledatoer i perioden 15. mai 2003 til 22. oktober 2003. Profilproben har vært koplet til Delta-Ts håndholdte fuktighetsmåler HH2 (Delta-T 2001b og 2002). Utstyret har målt på følgende dyp: 10 cm, 20 cm, 30 cm, 40 cm, 60 cm og 100 cm. Måleverdiene er tatt ut som mV, da det er en direkte måleverdi, som ikke har vært utsatt for noen omregning. Det finnes generelle, anbefalte omregningsformler fra mV til volum% vann, vist i formel 10 og 11 (Delta-T 2001b). For dypet 10 cm er formel 11 nyttet, da dette forutsettes å være organisk jord. For dypene 20-100 cm er formel 10 nyttet (mineraljord).

\[
\text{Volum\% Vann (mineraljord)} = -0,086 + 0,505 \times V + 7,81 \times V^2 - 32,46 \times V^3 + 47,96 \times V^4
\]

Formel 10 Omregning av profilprobens spenning (V), til volum\% vann. For mineraljord (Delta-T 2001b).

\[
\text{Volum\% Vann (organisk jord)} = -0,0545 + 0,551 \times V + 8,52 \times V^2 - 35,42 \times V^3 + 52,32 \times V^4
\]

Formel 11 Omregning av profilprobens spenning (V), til volum\% vann. For organisk jord (Delta-T 2001b).

Fra og med 24. mai er det nyttet fast retning på proben ved målingene. Dette er gjort ved at et merke på proben er holdt rett over et merke på rørene. Dermed ble målinger fra samme rør alltid i samme retning.

4.3.14. Loggede målinger

En Delta-T DL2e datalogger ble leid inn fra Instrumenttjenesten AS på Ås, sammen med 5 Theta Prober (ML1 og ML2). I tillegg er det lånt en Theta Probe (ML1) fra Institutt for jord og vannfag ved NLH. Thetaprobene er sonder for måling av jordas volumetriske vanninnhold (Delta-T 1995 og 1999). For registrering av temperatur, ble det laget termoelementer av kobber-konstantan-ledning. Disse er laget ved at toledet kobber-konstantan-ledninger er kappet i ønsket lengde. Den ene enden (den som skal registrere temperatur) er så avisolert, og kobberlederen og konstantanlederen er tvinnet sammen, før de er loddet, for å sikre god kontakt. Denne enden er så forseglet med krympetube laget av krympepare. Dataloggeren
ble utstyrt med en ekstra batterikasse, for å sikre at den ikke skulle gå tom for strøm under feltmålingene.

Loggeren ble klargjort innendørs før den ble tatt med ut. For det første ble den koplet til en bærbar datamaskin. Et styreprogram (Ls2Win) ble så installert på datamaskinen. Med Ls2Win ble loggerens kanaler stilt inn etter det måleutstyret som skulle stå på den enkelte kanal. I tillegg måtte Thetaprobenes type, og om de sto i organisk eller i mineraljord legges inn. Dette som en følge av at loggeren bruker forskjellige omregningsformler for å regne om den spenning som registreres fra Thetaprobene, til volumprosent vann, ved ulike probetyper og ulike jordtyper. Programmeringen av loggeren ble gjort med støtte i loggerens nybegynnermanual (Delta-T 2001a). Den ble satt opp for å registrere temperatur på samtlige temperaturfølere hver hele time, og for å registrere fuktighet på samtlige fuktighetsfølere hver fjerde time. Temperatur anges i °C, og fuktighet i volumdeler vann (m³ vann per m³ jord).

Den 24.mai ble loggeren satt ut. Loggeren ble plassert i buffersonen mellom forsøksrutene. Så langt inn i hver rute som ledningene tillot (5-15 m) ble det gravd ei målegrop på 50 cm dybde. Plasseringen er vist i figur 4. I uforstyrret vegg i grope ble sondene stukket inn fra siden, en Thetaprobe og et termoelement på både 50 og 18 cm dyp i begge rutene. Grope ble så fylt forsiktig igjen med jord. Like innenfor der gropen var gravd ble en Thetaprobe og et termoelement stukket ned i den uforstyrre organiske jorda. Thetaprobens små målespyd er 6 cm lange, hvilket gjør at disse målingene blir fra 0-6 cm dyp. Termoelementene ligger her på 3 cm dyp. I tillegg ble det i to meters høyde hengt opp et termoelement over hver av målegropene. Disse følere ble hengt slik at trærnes grener skjermet mot direkte sollys.

Plassering av følere går ellers frem av tabell 7. Målegropene ble omhyggelig merket med
bambusstikker, og farget bånd, så ingen skulle trå her uforvarende. Alle ledninger mellom målegropene og loggeren ble buntet sammen. Ledningsbunten ble så gravd forsiktig ned i den organiske jorda, slik at ikke dyr og mennesker skulle sparke borti den og rive i stykker utstyret. Alt overskudd av ledning ble buntet, og gravd ned under loggeren. Loggeren ble plassert på ei kasse, og ei annen kasse lagt oppå, som beskyttelse. Den eksterne batterikassen ble hengt opp i et tre like i nærheten.

Tabell 7 Bruk av loggerens ulike kanaler. Og oversikt over hvor følerne er plassert i feltet.

<table>
<thead>
<tr>
<th>Kanal nr.</th>
<th>Følertype</th>
<th>Rute</th>
<th>Høyde (negativt=jorddyp) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Termistor</td>
<td>Referanse</td>
<td>i logger</td>
</tr>
<tr>
<td>2</td>
<td>Thetaprobe-ML-1</td>
<td>066-Bjørk</td>
<td>-50</td>
</tr>
<tr>
<td>3</td>
<td>Thetaprobe-ML-2</td>
<td>066-Bjørk</td>
<td>-18</td>
</tr>
<tr>
<td>4</td>
<td>Thetaprobe-ML-1</td>
<td>069-Gran</td>
<td>-18</td>
</tr>
<tr>
<td>5</td>
<td>Thetaprobe-ML-2</td>
<td>066-Bjørk</td>
<td>0-(-6)</td>
</tr>
<tr>
<td>6</td>
<td>Thetaprobe-ML-1</td>
<td>069-Gran</td>
<td>-50</td>
</tr>
<tr>
<td>7</td>
<td>Thetaprobe-ML-1</td>
<td>069-Gran</td>
<td>0-(-6)</td>
</tr>
<tr>
<td>8</td>
<td>Termoelement</td>
<td>069-Gran</td>
<td>-50</td>
</tr>
<tr>
<td>9</td>
<td>Termoelement</td>
<td>069-Gran</td>
<td>-18</td>
</tr>
<tr>
<td>10</td>
<td>Termoelement</td>
<td>069-Gran</td>
<td>0-(-6)</td>
</tr>
<tr>
<td>11</td>
<td>Termoelement</td>
<td>069-Gran</td>
<td>200 (Luft)</td>
</tr>
<tr>
<td>12</td>
<td>Termoelement</td>
<td>066-Bjørk</td>
<td>-50</td>
</tr>
<tr>
<td>13</td>
<td>Termoelement</td>
<td>066-Bjørk</td>
<td>-18</td>
</tr>
<tr>
<td>14</td>
<td>Termoelement</td>
<td>066-Bjørk</td>
<td>0-(-6)</td>
</tr>
<tr>
<td>15</td>
<td>Termoelement</td>
<td>066-Bjørk</td>
<td>200 (Luft)</td>
</tr>
<tr>
<td>62</td>
<td>Jording</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Strøm til forvarming av ML1-sondene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Strøm til forvarming av ML2-sondene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data fra loggeren er overført til en bærbar datamaskin, fire ganger gjennom sommeren, men siste overføring (25. august) inneholder data fra hele måleperioden.
4.3.15. **Infiltrasjon med Guelph permeameter**

Figur 4 Skisse over forsøksrutene, med plassering av måleutstyr.
stabilisere seg, og infiltrasjonen er registrert tre ganger i løpet av en periode på 49-50 minutter for hver rute. Avlesingene på instrumentet er i cm vannhøyde i reservoaret. Avleste verdier er regnet om til vannforbruk i cm per minutt. Reservoaret er sylinderformet, med et indre effektivt, vannfylt tverrsnittsareal på 35,39 cm², hvilket gir grunnlag for omregning av vannforbruk i cm/min til mettet vannledningsevne under feltforhold (K_fs). Beregning av K_fs er utført i henhold til Soilmoisture (1986) av Sigrun Hjalmarsdottir Kværnø7.

4.3.16. Penetrometermåling

Den 9. september ble det gjort målinger av trykkfasthet med penetrometer. Det ble brukt et elektronisk penetrometer fra Findlay, av Mark I model (Findlay 1979). Det er foretatt ett stikk for hvert 5-metersmerke i rutene. Målingene er utført i henhold til manuallen for penetrometeret (Findlay 1979). Det er nyttet standard avstandslíst, slik at det er foretatt målinger for hvert 3,5 cm dyp. Det forutsettes at gjennomsnittsdyp før første avlesning er 1,75 cm, da det varierer mellom stikkene, som en følge av at penetrometerets spyd beveges i forhold til avstandslísten. Maksimal belastning var satt til 50 kg. Det er derfor målt trykkfasthet ned til det dyp hvor motstand på 50 kg ble oppnådd, slik at maksimalt måledyp er varierende. Det er brukt liten kon (30ª kon med største diameter på 12,83 mm). Omregning fra belastning i kg, slik det leses av på penetrometeret, til trykkfasthet gjøres med faktor for 12,9 mm kon (Findlay 1979), i formel 12. Bruker her kPa som enhet for trykkfasthet (der 1 bar settes lik 100 kPa).

\[
\text{Trykkfasthet (kPa) = Avlest belastning (kg) \times 76,2}
\]

Formel 12 Omregning av penetrometerbelastning i kg til trykkfasthet (kPa) etter Findlay (1979)

4.4. Jordfysikk – laboratorieundersøkelser

4.4.1. pF-analyse

pF-analyser ble utført på uforstyrrette jordprøver i stålsylindere på 100 cm³ (3,7 cm høye og 5,9 cm i diameter). Analysene er gjort ved følgende matrix-potensialer: -0,75 kPa, -2 kPa, -5 kPa, -10 kPa, -50 kPa, -100 kPa, -300 kPa og -1500 kPa.

3 Doktorgradsstipendiat ved Jordforsk.
Drenering ved -0,75 til -5kPa er utført i sandboks (beskrevet av Eijkelkamp (udatert)). Jordprøvene ble vannmettet og veid i henhold til Børresen (1997), for så å bli satt på sanda i sandboksen. Prøvene er drenert ved ulike sug og veid mellom de ulike sugene.

Drenering ved -10 kPa eller mer, er gjort på keramiske plater i trykkbeholdere. Disse analysene følger Børresen (1997), men veiing av beholderne er ikke gjort. Prøvene har her fått stå under trykk i 7-10 dager, på hvert trykk. Fra –1500 kPa er det siktede (2 mm hullsikt) prøver som er benyttet. Her er da de tre parallellene blandet, og fra hver av disse er to paralleller tatt ut.

På bakgrunn av pF-analysene er fysisk tilgjenglighet av vann i jorda beregnet etter tabell 8.

Tabell 8 Definisjon av ulike begrep i tilknytning til pF-analysen (Børresen et al. 2002).

<table>
<thead>
<tr>
<th>Sug (kPa)</th>
<th>Begrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Drenerbart porevolum</td>
</tr>
<tr>
<td>10-100</td>
<td>Lett tilgjengelig vann</td>
</tr>
<tr>
<td>100-1500</td>
<td>Tungt tilgjengelig vann</td>
</tr>
<tr>
<td>>1500</td>
<td>Visnegrense</td>
</tr>
</tbody>
</table>

4.4.2. Jordtetthet

I forbindelse med pF-analyse, er tre sylindere fra hvert dyp, og rute tørket. I tillegg er prøvene brukt til vannledningsevnemåling tørket etter at vannledningsevne er målt, og fargebeskrivelse utført. Enkelte prøver mistet noe jord i forbindelse med vannledningsevnemålingene. Disse prøvene er ikke brukt videre. Det ble derfor totalt registrert tørrvekt på 5-6 sylindere fra hvert dyp. Tørking er utført i tørkeskap ved 105°C i to døgn. Da volum (100 cm³) og taravekt (egne lister på laboratoriet) er kjent, kan jordtetthet bestemmes som etter formel 13.

\[
\text{Jordtetthet} \left(\frac{g}{cm^3}\right) = \frac{\text{Tørr bruttovekt}(g) - \text{Taravekt}(g)}{\text{Sylindervolum}(cm^3)}
\]

Formel 13 Beregning av jordtetthet
Det er jordtettheten fra disse målingene som er nyttig i samtligte beregninger der jordtetthet
innegår.

4.4.3. Luftpermeabilitet

Luftgjennomstrømningsmålinger ble målt på pF-prøvene ved feltkapasitet (–10 kPa).
Målingene er utført etter Børresen (1997). Ved måling er det i utgangspunktet brukt et
overtrykk på 20 cm vannsøyle (2 kPa), men for enkelte prøver er trykket redusert.
Trykkreduksjonen var nødvendig på prøver med stor gjennomstrømning for at
luftgjennomstrømningen skulle være innenfor instrumentets måleområde. Forutsatt fuktig luft
ved 15°C, sylinderhøyde på 3,7 cm, og sylindertverrsnitt på 27 cm², beregnes
luftpermeabilitet etter formel 14.

\[
\text{Permeabilitet (\(\mu m^2\))} = \frac{4,118 \times \text{Gjennomstrømning (l/min)}}{\text{Aktuelt trykk (kPa)}}
\]

Formel 14 Beregning av permeabilitet. Basert på Børresen (1997), tilpasset aktuelle enheter og størrelser.

4.4.4. Luftinnhold

Luftinnhold er målt med luftpyknometer på pF-prøvene ved feltkapasitet (–10 kPa), i henhold
til Børresen (1997). Istedes for å lage et kalibreringsskjema, er en funksjon utarbeidet med
regresjonsverktøyet i statistikkprogramvaren Minitab 13. En kvadratisk funksjon ble valgt,
der luftinnhold er en funksjon av trykket. Målepunktene og regresjonslinje er vist i figur 5.
Regresjonsanalysen gav formel 15, med tilhørende \(r^2\)-verdi på 99,9 %.
Trykk (mbar) vs Luftinnhold (%) fra kalibrering av luftpyknometer.

\[\text{Luftinnhold} \% = 262,419 - 0,859325 \times (\text{Trykk (mbar)}) + 0,0007033 \times (\text{Trykk (mbar)})^2 \]

Formel 15 Kalibreringsfunksjon for luftpyknometer. Luftinnhold i prøvene som funksjon av trykk.

Ved kalibrering er det utført to målinger på hver prøve. Dersom disse målingene hadde avvik større enn 3 mbar, er nye målinger utført. Også for jordprøvene er måling utført minst to ganger.

For de organiske prøvene er sammensynkning målt i forbindelse med måling av Luftinnhold. Dette for å få et mål på prøvenes krymping. Krympingen er målt i lengderetningen av sylindrene, med kanten på sylinderen som referanse. Krymping er målt med et skyvelære, med dybdemål.

4.4.5. Aggregatstørrelsesfordeling

Aggregatstørrelsesfordelingsanalyser er utført på lufttørkede prøver i henhold til Børresen (1997). Dette baserer seg på sikting i ei soldkasse. Soldene har kvadratiske åpninger på: 20x20 mm, 6x6 mm, 2x2 mm og 0,6x0,6 mm. Midlere vektdiameter er ikke beregnet.
4.4.6. Måling av mettet vannledningsevne ved fallende gradient

\[
Vannledningsevne \text{ (cm/min)} = \frac{3,7 \text{ cm}}{Tiden (s)} \times \ln \left(\frac{Vannhøyde (cm) ved start}{Vannhøyde (cm) ved slutt} \right)
\]

Antall målinger på den enkelte prøve varierer med prøvens vannledningsevne. For prøver med liten vannledningsevne er måletiden flere døgn. I de tilfellene er det kun en måling på hver prøve. For prøver med stor vannledningsevne er det utført 2-4 målinger på hver prøve.

4.4.7. Rotlengde

I tillegg til den subjektive rotmengdeangivelse i profilbeskrivelsen, var det ønskelig å beskrive rotmengdefordeling i profilet på en objektiv måte. Denne jorda var meget vanskelig å vaske fra røttene, selv om prøvene hadde ligget i dispergeringsmiddel (natrium-pyro-fosfat-løsning). Etter at det var prøvd å vaske ut røtter fra et par prøver, var det klart at rotvasking ville bli alt for tidkrevende, og en alternativ metode ble derfor utviklet.

Den metoden som virket til å være best egnet var telling på vaska snittflater, en metode som har mye til felles med rottelling på bruddflater av borkjerner, beskrevet i Böhm (1979).

Til rottellingene er det brukt de uforstyrra jordprøvene for rottelling som er tatt ut i stålsylinder. I tillegg er rottelling utført på prøvene for måling av mettet vannledningsevne, når andre undersøkelser er avsluttet på dem. Derfor er rottelling utført på til sammen 5-6 jordprover fra hvert av de prøvetatte jorddyp. Rottelling er kun foretatt på mineraljordsprøvene. Alle prøvene er i stålsylinder, av samme type som er nyttet ved pF-analyse.

På prøvene ble omtrent 1 cm jord presset ut av sylinderen, skåret av med en skarp kniv og kassert. På snittflata i sylinderen, ble overflata vasket forsiktig, for tydeligere å få frem
røttene. Vasking ble foretatt i rennende vann. På de løseste prøvene måtte vasking utføres meget forsiktig, slik at ikke store jordmengder ble vasket bort. Den stivere jorda er vasket med en myk børste, for mer effektivt å vaske jorda vekk fra røttene. Det ble ved denne vaskingen tilstrekkelig å få vasket ut like mye jord fra hver snittflate, uansett hvor stor fasthet jorda har.

På den vaska flata ble antall røtter talt. Det var viktig at tellinger ble foretatt umiddelbart etter vasking, for å unngå tilslamming av jordoverflata og røtter. Ved telling er alle røtter talt. Der røtter forgreiner seg, er forgreining talt som ei rot, om forgreining ligger over jordoverflata. Der forgreining ligger i, eller under jordoverflata, er forgreina røtter talt som flere røtter. Da så godt som samtlige røtter i disse prøvene er mindre enn 1 mm, er ikke noen inndeling etter rottykkelse utført. Det er talt opp samtlige røtter som var mulig å se under godt lys, med det blotte øye. Det er ikke skilt mellom røtter tilhørende ulike treslag.

Når den første snittflate var talt opp, ble omtrent 1 cm jord til skjøvet ut, kappet av og kassert. Vasking og telling er utført på den nye snittflata på samme måte som for den første snittflata. Således ble det to snittflater å telle på, for hver sylinder. Rotmengden som her er talt er for ei snittflate på 27 cm² og resultatene er regnet om til antall røtter per cm². Slik prøvene ble tatt ut, er alle disse rottellingene utført på horisontale snittflater.

Forutsatt at røttene er likt fordelt i alle retninger i jorda, kan rotlengde per cm³ jord beregnes etter formel 17 (etter Baldwin et al. (1971) og Melhuish & Lang (1968)). Selv om det er grunn til å anta at ikke røtter er likt fordelt i alle retninger i prøvene, nyttes denne formel, siden det ikke er utført noen analyser av røttenes fordeling i ulike retninger her.

\[\text{Rotlengde (cm}^3/\text{cm}^3) = 2 \times \text{rotantallet (antall røtter/cm}^2) \]

Formel 17 Beregning av rotlengde på bakgrunn av rottellinger (Baldwin et al. 1971 og Melhuish & Lang 1968).

4.4.8. Fargebeskrivelse

Da forholdene for fargebeskrivelse av jorda i jordprofilet var vanskelig i felt, ble dette gjort på laboratoriet i ettertid. Fargebeskrivelse er gjort på jordprøvene for måling av mettet vannledningsevne. Prøvene er fuktet opp, slik at fuktighet skulle være likest mulig i alle prøver. Under gode lysforhold ble jordas farge bestemt etter Masatada & Takehara (1970). Fargen på fargeflekker er ikke bestemt.
4.5. **Kjemiske analyser**

En del kjemiske analyser er utført på jord tatt ut fra de forskjellige sjiktene i profilene.

4.5.1. **Forbehandling av jord til kjemiske analyser**

Alle de kjemiske analysene er utført på jord fra prøvene på 0,5 l. Alle prøvene ble på forhånd tørt og siktet i 2 mm hullsikt. De organiske prøvene ble knust med morter i sikten, til alt utenom enkelte grove røtter hadde passert. Mineraljorda hadde for en del dyp meget harde klumper, men var helt fri for grus og stein større enn 2 mm. Derfor ble en miniatyr av et pukkverk tatt i bruk til knuse jorda. Dette var et lite knuseverk, av typen kjeftknuser. Knuseverket ble omhyggelig rengjort med trykkluft mellom knusing av forskjellige prøver. Siden prøvene var fri for grus og stein, var det ingen fare for nedknusing av materiale som skulle vært sortert ut. Etter knusing ble prøvene kjørt gjennom 2 mm hullsikt. I sikten er alle resterende klumper knust med morter, til all jorda har passert sikten.

4.5.2. **Analyse av total C og N**

4.5.3. **Ledningsevne og pH**

4.5.4. **Glødetap**

4.5.5. **Kationbyttekapasitet og basemetningsgrad**

For bestemmelse av basemetningsgrad og kationbyttekapasitet, er ekstraksjon (med ammoniumacetat ved pH 7,00) og H⁺-titrering utført i henhold til Krogstad (1998). For mineraljordprøvene er det veid inn 3,00 g, mens det for organisk jord kun er veid inn 1,50 g til ekstraksjon. I tillegg til jordekstraktene, er to blindprøver laget. Ekstraktene er analysert for Ca, K, Mg og Na i et Thermo Jarell Ash Polyscan 61E IPC-AES instrument, ved jordlaboratoriet på Institutt for plante- og miljøvitenskap. Analyseresultatene er gitt som mg av vedkommende element per liter ekstrakt. Der ekstraktet har inneholdt for lite av et element til at analysen har kunnet bestemme innholdet står verdiene i analysebeviset oppført som mindre enn et tall. Dette gjelder en del av verdiene for K, som har en deteksjonsgrense på 1,0 mg/ml. Der resultatene ligger under deteksjonsgrensen er verdiene satt til null i videre utregninger.

Omregning av mg/l av elementet til g/kg jord gjøres etter formel 18. Den forutsetter at jord er ekstrahert i 250 ml ekstraksjonsmiddel. Innevid jordmengde er 3,00 g for mineraljord og 1,50 g for organisk jord. Deretter er g/kg jord av elementet regnet om til cmol av element per kg jord, etter formel 19.

\[
\frac{g \text{ element}}{kg \text{ jord}} = \frac{ekstraktets \text{ innhold av elementet (mg/l)}}{4 \times \text{innevid jordmengde (g)}}
\]

Formel 18 Omregning av analyseresultat i mg/l til g/kg jord (formel er forkortet).

\[
\frac{\text{cmol ladning fra element}}{kg \text{ jord}} = \frac{\text{mengde av element (g/kg)} \times 100 (\text{cmol/mol}) \times \text{ionets ladning}}{\text{Elementets molmasse (g/mol)}}
\]

Formel 19 Beregning av det enkelte elements totale ladning per kg jord.

H⁺-mengde er funnet ved å titrere 39,5 ml ekstrakt til pH 7,0. Det er titrert mot 0,05 M NaOH. Ut fra lutmengde brukt til å titrere, er mengde H⁺ i jorda regnet ut etter formel 20. Det som
her angis som "titrert lutmengde til blank prøve" er gjennomsnittlig lutforbruk ved titrering av ekstrakt fra blindprøvene.

\[
\frac{\text{cmol } H^+}{\text{kg jord}} = \frac{31,64 \times (\text{titrert lutmengde (ml)} - \text{titrert lutmengde til blank prøve (ml)})}{\text{innveid jord (g)}}
\]

Formel 20 Beregning av mengde H\(^+\) ut fra lutmende brukt ved titrering til pH 7,0

Kationbyttekapasitet er summen av ladningen til H\(^+\), Na\(^+\), K\(^+\), Mg\(^{2+}\) og Ca\(^{2+}\), per kg jord. Kationbyttekapasitet har benevnelsen cmol ladning per kg jord. Basemetningsgraden (%) er gitt som summen av ladningen til de utbyttbare metallkationene (Na\(^+\), K\(^+\), Mg\(^{2+}\) og Ca\(^{2+}\)), dividert på kationbyttekapasiteten.

4.6. Statistisk testing

For en del av analysene er statistiske tester utført for å påvise eventuelle sikre forskjeller mellom rutene. Det er nyttet T-tester der egenskaper for det enkelte jorddyp på den ene rute testes mot egenskapene på tilsvarende dyp på den andre ruten. Ingen statistiske tester er utført for å påvise forskjeller mellom ulike dyp innen samme rute.

Det forutsettes her at alle analyseresultater som ikke har med jordas transportegenskaper er normalfordelt, slik at en T-test er gyldig. For egenskaper knyttet til jordas transportegenskaper (I dette tilfellet mettet vannledningsevne og luftpermeabilitet.) forventes en skjov fordeling, lognormalfordeling (Kutílek & Nielsen 1994). For mettet vannledningsevne og luftpermeabilitet er T-test utført på logaritmetransformede verdier, da dette antas å gi en fordeling som er nær normalfordeling. Måleverdienes enheter er tilpasset før logaritmetransforming, slik at negative verdier unngås.

I mange av tabellene og figurene er P-verdi fra T-testen angitt med symbol i henhold til tabell 9.
Tabell 9
Symboler brukt om P-verdiklasser ved T-tester.

<table>
<thead>
<tr>
<th>P-verdi</th>
<th>Symbol</th>
<th>Innebærer</th>
</tr>
</thead>
<tbody>
<tr>
<td><0,001</td>
<td>***</td>
<td>Signifikant forskjell på 0,1% nivå</td>
</tr>
<tr>
<td>0,001-0,01</td>
<td>**</td>
<td>Signifikant forskjell på 1% nivå</td>
</tr>
<tr>
<td>0,01-0,05</td>
<td>*</td>
<td>Signifikant forskjell på 5% nivå</td>
</tr>
<tr>
<td>>0,05</td>
<td>-</td>
<td>Ikke signifikant forskjell</td>
</tr>
</tbody>
</table>

4.7. Generelle opplysninger

Rådata fra analyser og målinger er lagt ved, der ikke datamengden er så stor at det tar urimelig mye plass. Grunnet store datamengder er følgelig ikke rådata fra måling med penetrometer eller loggede målinger vedlagt.
5. Resultater og diskusjon

5.1. Skoglige registreringer

5.1.1. Vegetasjonstypebestemmelse

Feltene hadde i det hele svært lite vegetasjon i felt og bunnsjikt. I busksjiktet fantes ingen vegetasjon, utover noen graner på bjørkeruten. Av det lille som fantes av vegetasjon i felt og bunnsjiktet, er forekomst av arter som kan være til hjelp ved bestemmelse av vegetasjonstype registrert. Det var nesten ingen slik vegetasjon å registrere på bjørkeruten. Derfor er de registrerings som er gjort fra granruten. De registrerte arter er ført i tabell 10.

<table>
<thead>
<tr>
<th>Norsk navn</th>
<th>Latinsk navn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skogsnelle</td>
<td>Equisetum sylvaticum L.</td>
</tr>
<tr>
<td>Fugletelg</td>
<td>Gymnocarpium dryopteris (L.) Newman</td>
</tr>
<tr>
<td>Hengeving</td>
<td>Phegopteris connectilis (C. Presl) Fée</td>
</tr>
<tr>
<td>Blåbær</td>
<td>Vaccinium myrtillus (Lange) Tolm.</td>
</tr>
<tr>
<td>Gaukesyre</td>
<td>Oxalis acetosella L.</td>
</tr>
<tr>
<td>Hårfryle</td>
<td>Luzula pilosa (L.) Willd.</td>
</tr>
</tbody>
</table>

Tabell 10 Arter registrert for bestemmelse av vegetasjonstype. Latinske navn etter Lid & Lid 1998

5.1.2. Bonitering

Resultatene av målinger utført på boniteringstrærne, samt bestemt bonitet etter Tveite & Braastad (1981) er gjengitt i tabell 11. Diameter, alder, barktykkelse og tilvekst er alle fra målinger i brysthøyde (1,3 m over midlere marknivå). Barktykkelse er tykkelse av enkel bark og tilvekst er radiustilvekst siste 10 år (målt som total bredde av siste 10 årringer).
Tabell 11 Resultat av målinger og beregnet bonitet på boniteringstrærne.

<table>
<thead>
<tr>
<th>Treslag</th>
<th>Trenr.</th>
<th>Høyde (m)</th>
<th>Diameter (cm)</th>
<th>Alder (År)</th>
<th>Barktykkelse (mm)</th>
<th>Tilvekst (mm)</th>
<th>Bonitet (m (H₄₀)⁸)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gran</td>
<td>1</td>
<td>20</td>
<td>20,0</td>
<td>25</td>
<td>5,0</td>
<td>42</td>
<td>G28</td>
</tr>
<tr>
<td>Gran</td>
<td>2</td>
<td>21</td>
<td>23,8</td>
<td>27</td>
<td>4,5</td>
<td>41</td>
<td>G28</td>
</tr>
<tr>
<td>Gran</td>
<td>3</td>
<td>19</td>
<td>22,1</td>
<td>30</td>
<td>6,5</td>
<td>39</td>
<td>G23</td>
</tr>
<tr>
<td>Bjørk</td>
<td>1</td>
<td>21</td>
<td>21,2</td>
<td>22</td>
<td>4,0</td>
<td>34</td>
<td>B27</td>
</tr>
<tr>
<td>Bjørk</td>
<td>2</td>
<td>21</td>
<td>22,6</td>
<td>25</td>
<td>7,0</td>
<td>36</td>
<td>B26</td>
</tr>
<tr>
<td>Bjørk</td>
<td>3</td>
<td>22</td>
<td>26,7</td>
<td>33</td>
<td>9,0</td>
<td>40</td>
<td>B24</td>
</tr>
</tbody>
</table>

Spesielt for bjørk var årringene vanskelige å se. Dette kan ha resultert i feil på aldersbestemmelsen av bjørk. Boniteringstre nr 3 for bjørk hadde antydning til råteangrep i margen. Da bonitetsbestemmelsen her baserer seg på grafisk interpolering og ekstrapolering i diagram (Tveite & Braastad 1981), er det sannsynlig at den her angitte bonitet er noe feil, grunnet unøyaktig inntegning i diagrammene. Spesielt gjelder dette for bjørk, der en omfattende ekstrapolering har vært nødvendig. Ut fra denne bonitetsbestemmelsen blir gjennomsnittlig bonitet for gran 26,33 m og 25,67 m for bjørk. Ut fra de 3-metersklasser som er vanlige for bonitetsinndeling, vil både gran og bjørk havne i bonitetsklasse 26 m. For bjørk er dette en høyere bonitetsklasse enn hva som er beskrevet i Tveite & Braastad (1981). Boniteten på feltet er følgelig meget høg.

5.1.3. Beregninger foretatt på tremålingsdata

Basert på den oppmåling Skogforsk hadde av trærne på feltet i 1996, er volum beregnet for hvert enkelt tre. For gran er ulike formler (Vestjordet 1967) for beregning av volum, etter treets diameter nyttet. I tabell 12 vises totalt volum for hver av disse diameterklassene, og totalt for alle diameterklasser. For bjørk er kun en formel for beregning av volum nyttet (Braastad 1966), følgelig er ingen inndeling i diameterklasser utført for bjørk. I tabell 12 vises også treantall og grunnflatesum (m² stammeareal i brysthøyde, med bark), fordelt på treslag per daa for begge forsøksrutene. Trær med diameter mindre enn 2,5 cm er ikke registrert med diameter i datasettet fra Skogforsk, og inngår følgelig heller ikke i beregning av volum eller grunnflate (her markert med I.B.). Ingen registrerte bjørketrær har diameter mindre enn 2,5 cm.

⁸ H₄₀-Bonitet er høydebonitet, gitt som overhøyde (i meter) av trærne ved 40 års alder i brysthøyde. Bokstaven i bonitetsangivelsen viser hvilket treslag som det er bonitet på (B=Bjørk, G=Gran og F=Furu).
minstemål for registrering. Derimot var det et bjørketre som manglet verdi for diameter (treets høyde er 19,2 m, og antas følgelig å ha diameter større enn 2,5 cm) i datassetet. Dette treet er ikke med i beregningene.

Tabell 12 Beregnede treantall, volum og grunnflatesum per daa for trærne på forsøksruten. (I.B. angir ikke beregnet verdi.

<table>
<thead>
<tr>
<th>Treslag (Brysthøyde)</th>
<th>Treantall per daa</th>
<th>Volum (m³) per daa</th>
<th>Grunnflatesum (m²) per daa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Granrute Bjørkerute</td>
<td>Granrute Bjørkerute</td>
<td>Granrute Bjørkerute</td>
</tr>
<tr>
<td>Gran < 2,5 cm</td>
<td>35 214</td>
<td>I.B. I.B.</td>
<td>I.B. I.B.</td>
</tr>
<tr>
<td>Gran 2,5-9,9 cm</td>
<td>208 253</td>
<td>4,30 3,09</td>
<td>0,80 0,73</td>
</tr>
<tr>
<td>Gran 10-13 cm</td>
<td>67 24</td>
<td>4,29 1,22</td>
<td>0,66 0,23</td>
</tr>
<tr>
<td>Gran >13 cm</td>
<td>64 0</td>
<td>8,11 0</td>
<td>1,15 0</td>
</tr>
<tr>
<td>Gran Alle</td>
<td>374 491</td>
<td>16,69 4,31</td>
<td>2,61 0,96</td>
</tr>
<tr>
<td>Bjørk Alle</td>
<td>0 106</td>
<td>16,99 0</td>
<td>2,21</td>
</tr>
</tbody>
</table>

Ut fra verdiene i tabell 12, sees at det totale volum av bjørk på bjørkeruten og av gran på granruten er omtrent like stort. Antall graner på bjørkeruten er stort, men utgjør en mindre del av volumet, da dette er mye små trær.

Grunnflatemiddeldiameter, aritmetisk middelhøyde, grunnflateveid middelhøyde og overhøyde er beregnet, og vist i tabell 13.

Tabell 13 Beregnet middeldiameter, middelhøyde og overhøyde for trærne på forsøksrutene.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Treslag</th>
<th>Grunnflatemiddeldiameter cm</th>
<th>Aritmetisk middelhøyde m</th>
<th>Grunnflateveid middelhøyde m</th>
<th>Overhøyde 1996 m</th>
<th>Overhøyde 2003 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørkerute</td>
<td>Gran</td>
<td>6,65</td>
<td>4,34</td>
<td>7,72</td>
<td>I.B.</td>
<td>I.B.</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>Bjørk</td>
<td>16,31</td>
<td>16,79</td>
<td>17,35</td>
<td>18,6</td>
<td>21,3</td>
</tr>
<tr>
<td>Granrute</td>
<td>Gran</td>
<td>9,89</td>
<td>9,07</td>
<td>11,81</td>
<td>14,9</td>
<td>20,0</td>
</tr>
</tbody>
</table>

Grunnflateveid middelhøyde (H_L) vil alltid være større enn aritmetisk middelhøyde (Fitje 1989). For gran inngår mange små trær (under 2,5 cm diameter i brysthøyde) i den aritmetiske middelhøyden. Disse er ikke med i beregning av H_L, hvilket forsterker forskjellen mellom H_L og aritmetisk middelhøyde for gran. Som det fremgår av begge beregninger for middelhøyde, er gran på bjørkeruten betydelig lavere enn bjørka. Dette passer godt over ens med

Da denne oppgaven fokuserer på trærnes påvirkning på jorda, er ikke noen nøyaktig bestemmelse av skogens størrelser i dag funnet nødvendig og utføre. Derfor er verken ny oppmåling, eller fremskrivning av data fra 1996 utført.

5.2. Klima

![Figur 6 Normal månednedbør i perioden 1961-1990 (Førland 1993), og aktuell månednedbør i 2003 for Rygge.](image-url)
Ut fra figur 6 sees at april, mai og juni 2003 hadde noe mer nedbør enn normalt, mens august, september og oktober 2003 hadde mindre nedbør enn normalt.

Det fremkommer av figur 7 at sommeren 2003 var noe varmere enn normalt, i det månedene juni-september har en månedsmiddeltemperatur som ligger 1-2,8°C høyere i 2003 enn normalen.

5.3. Jordprofilbeskrivelse

Omtrent 20 m øst for profilene var det fjell i dagen. Jorddypet på forsøksrutene er større enn 1 m (ingen undersøkelser er gjort til så stort dyp at fjell er påtreft). Det ble kun funnet en stein på ca 10 cm i diameter ved utgraving av profilene. Utover dette var det fritt for materiale større enn 2 mm i jorda her (fremkom ved sikting av prøver til kjemisk analyse). Jordas dreneringsgrad er ufullstendig for begge profilene. Ved profilbeskrivelse var grunnvannsnivået på 15-20 cm dyp. Sjiktene i jordprofilene er beskrevet i tabell 14 og 15.
5.3.1. Bjørkerute

Tabell 14 Beskrivelse av de enkelte sjikt i jordprofiilet på bjørkeruten.

<table>
<thead>
<tr>
<th>Sjikt betegnelse (sjiktdybde)</th>
<th>Sjiktbeskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oie (0-5 cm)</td>
<td>Mørk rødbrun (2,5 YR 3/2), grynete råhumus; lite nedbrutt strø på toppen;</td>
</tr>
<tr>
<td></td>
<td>danner sammenfiltet matte; mange til svært mange fine og svært fine</td>
</tr>
<tr>
<td></td>
<td>røtter, noen middelsgrove røtter; tydelig, plan sjiktgrense.</td>
</tr>
<tr>
<td>Oa (5-10 cm)</td>
<td>Svært mørk rødbrun (2,5 YR 2/2), fettaktig råhumus; noen middels grove</td>
</tr>
<tr>
<td></td>
<td>til svært fine røtter; skarp plan sjiktgrense.</td>
</tr>
<tr>
<td>Ap (10-30 cm)</td>
<td>Mørk rødbrun (5 YR 3/2), siltig mellomleire; moderat, middels grov, avrundet</td>
</tr>
<tr>
<td></td>
<td>blokkstruktur; løs, humusholdig; mange svært fine til grove røtter; gradvis,</td>
</tr>
<tr>
<td></td>
<td>bølgende sjiktgrense.</td>
</tr>
<tr>
<td>Bwg (30-40 cm)</td>
<td>Gråbrun (7,5 YR 4/2), siltig mellomleire; moderat, middels grov avrundet</td>
</tr>
<tr>
<td></td>
<td>blokkstruktur; middels fast, humusholdig; noen, middels grove, diffuse</td>
</tr>
<tr>
<td></td>
<td>fargeflekker; noe leirfilm på aggregatoverflater; mange svært fine til</td>
</tr>
<tr>
<td></td>
<td>middels grove røtter, noen grove røtter; skarp bølgende sjiktgrense.</td>
</tr>
<tr>
<td>BCg (40-60 cm)</td>
<td>Grå (5 Y 6/1), siltig mellomleire; moderat til sterk, grov plate til massiv</td>
</tr>
<tr>
<td></td>
<td>struktur; svært fast, humusfri; mye middels grove og grove, skarpe og</td>
</tr>
<tr>
<td></td>
<td>tydelige fargeflekker; leirfilm på aggregatoverflater; noen svært fine til</td>
</tr>
<tr>
<td></td>
<td>grove røtter; diffus, plan sjiktgrense.</td>
</tr>
<tr>
<td>Cg (60-100+ cm)</td>
<td>Mørk blågrå (5 BG 4/1), siltig mellomleire; moderat, grov platestruktur, til</td>
</tr>
<tr>
<td></td>
<td>massiv struktur; fast, humusfri; mye, middels grove og grove, skarpe og</td>
</tr>
<tr>
<td></td>
<td>tydelige fargeflekker; leirfilm på aggregatoverflater; noen svært fine til</td>
</tr>
<tr>
<td></td>
<td>grove røtter.</td>
</tr>
</tbody>
</table>

5.3.2. Granrute

Tabell 15 Beskrivelse av de enkelte sjikt i jordprofilet på granruten.

<table>
<thead>
<tr>
<th>Sjikt betegnelse (sjiktdybde)</th>
<th>Sjiktsbeskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oai (0-8 cm)</td>
<td>Svart (N 1,5/0), fettaaktig råhumus; lite nedbrutt strø på toppen; danner sammenfiltet matte; mange grove til svært fine røtter; skarp, plan sjiktgrense.</td>
</tr>
<tr>
<td>Ap (8-28 cm)</td>
<td>Mørk brun (7,5 YR 3/3), siltig mellomleire; moderat, middels grov, avrundet blokkstruktur; løs, humusholdig; noen svært fine til middels grove røtter; enkelte grove røtter; skarp, plan sjiktgrense.</td>
</tr>
<tr>
<td>Bwg (28-39 cm)</td>
<td>Mørk grågul (2,5 Y 5/2), siltig mellomleire; moderat, grov platestruktur; fast, humusfri; noen, middels grove, skarpe og tydelige fargeflekker; leirfilm på aggregatoeverflater; få fine til svært fine røtter; skarp uregelmessig sjiktgrense.</td>
</tr>
<tr>
<td>BCg (39-60 cm)</td>
<td>Blågrå (5 BG 5/1), siltig mellomleire; moderat, grov platestruktur; svært fast, humusfri; noen middels grove, skarpe og tydelige fargeflekker; leirfilm på aggregatoeverflater; ikke observert røtter; gradvis, plan sjiktgrense.</td>
</tr>
<tr>
<td>Cg (60-90+ cm)</td>
<td>Mørk blågrå (5 BG 4/1), siltig mellomleire; moderat, grov platestruktur, til massiv struktur; fast, humusfri; mye, middels grove og grove, skarpe og tydelige fargeflekker; leirfilm på aggregatoeverflater; ikke observert rotvekst.</td>
</tr>
</tbody>
</table>

Begge jordprofilene er nokså like, men enkelte forskjeller er observert. O-sjiktet hos bjørk har en klar todeling og er derfor delt i to sjikt. Det nedre O-sjiktet (Oa) hos bjørk likner mye på nedre del av O-sjiktet hos gran. Det nedre O-sjiktet hos bjørk kan ha opphav i strøfall fra forrige omløp med skog, da gamle stubber i feltet vitner om at det har vært minst et omløp med skog her etter at feltet har vært dyrket. I profilet er røtter observert i hele dypet (100 cm) på bjørkeruten, mens rotvekst ikke er observert til større dyp enn 39 cm i profilet på granruten. Sjiktgrensen mellom Ap- og Bwg-sjikt er gradvis og bølgete i bjørkeprofilet, mens grensen er plan og skarp i granprofilet.
Bilde 1 Den beskrevne profilveggen på bjørkeruten.

Bilde 2 Den beskrevne profilveggen på granruten.
5.3.3. Kjemiske analyser av jorda

Resultat av kjemiske analyser utført på prøver tatt ut i profilet er beskrevet i tabell 16 og 17. De kjemiske analysene som presenteres i tabellene er: Glødetap (vekt%, ikke korrigert for leirinnhold), total C og N (vekt% av tørr jord), C/N-forhold, elektrisk ledningsevne (EC), pH (i vann), kationbyttekapasitet (cmol(+) per kg tørr jord) og basemtningsgrad (BS). Der det er tatt ut prøver fra flere dyp innen et sjikt, er den verdi som her angis som verdi for sjiktet gjenomsnittsverdier for sjiktet. Dette gjelder for Ap-sjikt og Cg-sjikt, der det er tatt ut to prøver i hvert sjikt.

Tabell 16 Glødetap og kjemiske egenskaper ved sjiktene i jordprofillene. Kolonne markert med ”B” angir resultater for bjørkeruten, mens kolonner merket ”G” angir resultater fra granruten.

<table>
<thead>
<tr>
<th>Sjikt</th>
<th>Glødetap</th>
<th>Total C</th>
<th>Total N</th>
<th>C/N-forhold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% ukorr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>G</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>O1</td>
<td>78,0</td>
<td>77,4</td>
<td>44,74</td>
<td>44,48</td>
</tr>
<tr>
<td>O2</td>
<td>73,7</td>
<td>42,02</td>
<td>2,24</td>
<td>18,7</td>
</tr>
<tr>
<td>Ap</td>
<td>7,9</td>
<td>8,4</td>
<td>3,22</td>
<td>3,39</td>
</tr>
<tr>
<td>Bwg</td>
<td>6,6</td>
<td>3,0</td>
<td>2,17</td>
<td>0,37</td>
</tr>
<tr>
<td>BCg</td>
<td>3,0</td>
<td>2,6</td>
<td>0,27</td>
<td>0,23</td>
</tr>
<tr>
<td>Cg</td>
<td>2,7</td>
<td>3,0</td>
<td>0,26</td>
<td>0,23</td>
</tr>
</tbody>
</table>

Tabell 17 Kjemiske egenskaper ved sjiktene i jordprofillene. Kolonne markert med ”B” angir resultater for bjørkeruten, mens kolonner merket ”G” angir resultater fra granruten.

<table>
<thead>
<tr>
<th>Sjikt</th>
<th>EC μS/cm</th>
<th>pH</th>
<th>CEC cmol(c+)/kg</th>
<th>BS %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>G</td>
<td>B</td>
<td>G</td>
</tr>
<tr>
<td>O1</td>
<td>153</td>
<td>195</td>
<td>4,3</td>
<td>3,9</td>
</tr>
<tr>
<td>O2</td>
<td>150</td>
<td>4,4</td>
<td>97,8</td>
<td>8,7</td>
</tr>
<tr>
<td>Ap</td>
<td>45</td>
<td>43</td>
<td>4,8</td>
<td>4,7</td>
</tr>
<tr>
<td>Bwg</td>
<td>33</td>
<td>28</td>
<td>4,9</td>
<td>5,4</td>
</tr>
<tr>
<td>BCg</td>
<td>34</td>
<td>32</td>
<td>5,6</td>
<td>6,2</td>
</tr>
<tr>
<td>Cg</td>
<td>41</td>
<td>32</td>
<td>6,9</td>
<td>6,8</td>
</tr>
</tbody>
</table>

9 Sjikt O1, er det øverste O-sjikt på bjørk (Oie). For gran det hele og eneste O-sjikt (Oai).
10 Sjikt O2, er det nedre O-sjikt på bjørk (Oa)
11 C/N-forhold er ikke beregnet ved N-Innhold<0,1%.

5.4. Jordens fysiske egenskaper

5.4.1. Aggregatstørrelsesfordeling

Som det fremkommer i figuren er forskjellene mellom rutene ubetydelige i Cg-sjiktet. For alle de andre sjiktene framkommer granruten med en større andel av overgrove aggregater (>20 mm), slik at relativ andel av alle de mindre fraksjoner blir større på bjørkeruten enn på granruten. Dette kan tyde på en noe større grad av aggregatdannelse i de tre øvre sjikt på bjørkeruten sammenliknet med granruten, som fremviser større aggregater eller en mer massiv struktur. Men disse forskjellene er relativt små for Ap- og BCg-sjikt. Derimot er forskjellene betydelige i Bwg-sjiktet, der fraksjonene 0,6-2, 2-6 og 6-20 mm hver av seg utgjør en større andel enn fraksjonen >20 mm på bjørkeruten, og skiller seg dermed klart fra tilsvarende dyp på granruten. Dette gjør også at Bwg-sjiktet på bjørkeruten også skiller seg klart fra de andre sjiktene på samme rute. Den forskjellen som her fremkommer mellom rutene i Bwg-sjiktet passer også godt overens med at dette sjikt er beskrevet med en noe løsere struktur på bjørkeruten enn på granruten i profilbeskrivelsen.

De resultatene som her presenteres for aggregatstørrelsesfordeling er relativt usikre, da det kun baserer seg på 1-2 prøver i hvert sjikt. Men da forholdene for strukturbeskrivelse under profilgraving var vanskelige, kan dette være et mer objektivt supplement til den subjektive strukturbeskrivelsen.

5.4.2. Rotlengde

Resultatene av rottellingene er regnet om til rotlengde, og fremstilt i tabell 18 og figur 9.

Tabell 18 Rotlengde og standardavvik mellom parallelle prøver fra ulike sjikt på begge ruter. Antall talte røtter i sylindrenes snittflate er angitt i parentes.

<table>
<thead>
<tr>
<th>Sjikt</th>
<th>Dyp</th>
<th>Bjørkerute</th>
<th>Granrute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>Gj.snitt. cm/cm³ (antall)</td>
<td>Std.av. cm/cm³</td>
</tr>
<tr>
<td>Ap</td>
<td>15</td>
<td>1,6 (22)</td>
<td>0,8</td>
</tr>
<tr>
<td>Ap</td>
<td>25</td>
<td>0,7 (10)</td>
<td>0,2</td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>0,7 (10)</td>
<td>0,4</td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>0,2 (2,4)</td>
<td>0,2</td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>0,1 (1,8)</td>
<td>0,1</td>
</tr>
</tbody>
</table>
Som det her fremkommer har gran mer røtter konsentrert i øvre del av Ap-sjiktet enn bjørk. Bjørkeruten har mer røtter i større dyp enn hva som er tilfelle for granruten, hvilket er tydeligst på 35 cm dyp, hvilket er eneste dyp der det er signifikant forskjell mellom rutene (P-verdi: 0,017). På bakgrunn av at gran er beskrevet med et grunnere rotsystem enn bjørk (Siren 1955) og at forholdene for rotvekst på 35 cm dyp er vurdert til å være bedre på bjørkeruten enn tilsvarende dyp på granruten, ut fra pF-analyse og luftinnholdsmåling, er dette resultatet som forventet.

I de dypere sjikt er standardavviket mellom parallelle prøver av samme størrelse som gjennomsnittet. Følgelig er disse resultatene behjert med en god del usikkerhet. Av praktiske grunner er ikke rottelling i O-sjiktet utført. O-sjiktet har mye røtter på begge ruter, og noe grunnlag for å påvise forskjell i rotmengde i sjiktet mellom rutene innehas ikke.

5.4.3. Jordtetthet

Gjennomsnittlig jordtetthet for de dyp hvor prøver er tatt ut er vist i tabell 19. De samme data er fremstilt grafisk i figur 10. I figuren er feilmargin på +/-1 standardavvik mellom parallele prøver vist.
Tabell 19 Gjennomsnittlig jordtetthet for ulike dyp på rutene.

<table>
<thead>
<tr>
<th>Dyp cm</th>
<th>Sjikt betegnelse</th>
<th>Bjørk g/cm³</th>
<th>Gran g/cm³</th>
<th>P-verdi Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>O</td>
<td>0,16</td>
<td>0,14</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Ap</td>
<td>0,83</td>
<td>0,93</td>
<td>*</td>
</tr>
<tr>
<td>25</td>
<td>Ap</td>
<td>1,04</td>
<td>1,02</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>Bwg</td>
<td>1,01</td>
<td>1,58</td>
<td>***</td>
</tr>
<tr>
<td>50</td>
<td>BCG</td>
<td>1,63</td>
<td>1,60</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>Cg</td>
<td>1,62</td>
<td>1,55</td>
<td>*</td>
</tr>
</tbody>
</table>

Figur 10 Jordtetthet for ulike dyp, med feilangivelse på +/- 1 standardavvik.

Som forventet er jordtetthet vesentlig lavere i O-sjikt (5 cm) enn i mineraljord. Jordtettheten i Ap-sjikt (15 og 25 cm) er også vesentlig lavere enn i undergrunnsjorden (50 og 70 cm). I øvre del av Ap-sjikt (15 cm) er jordtetthet litt lavere på bjørkeruten enn på granruten. I Bwg-sjiktet (35 cm) er jordtetthet vesentlig lavere på bjørkeruten enn på granruten. På 70 cm dyp er det en liten, men statistisk signifikant forskjell mellom rutene, der granruten har en noe lavere jordtetthet enn bjørkeruten. 5 og 50 cm dyp viser ingen forskjell mellom rutene i jordtetthet.

Den store, signifikante forskjellen i jordtetthet mellom rutene på 35 cm dyp viser at porevolumet på dette dyp er større på bjørkeruten enn på granruten, når det forutsettes at materialtetthet er tilnærmet lik for begge rutene i dette dypet. Dette stemmer også godt over ens med resultatene som fremkommer ved pF-analyse. Større porevolum i dette dypet kan
være et resultat av større biologisk aktivitet på bjørkeruten enn på granruten i dette dypet. En større biologisk aktivitet i dette dyp på bjørkeruten underbygges også av den gradvise bølgete sjiktgrense mellom Ap- og Bwg-sjikt som er beskrevet i profilbeskrivelsen på bjørkeruten. Da sjiktgrensen mellom disse to sjikt opprinnelig er skapt av menneskelig jordbearbeiding er det grunn til å tro at sjiktgrensen ved etablering av skog har vært skarp og plan, slik den framkommer på granruten.

Maksimal jordtetthet for rotvekst hos gran ble av Korotaev (1992) funnet til å være nær 1,5 g cm\(^{-3}\), hvilket oppnås mellom 25 og 35 cm dyp på granruten. Ut fra dette skulle jordtetthet være for stor til at gran kan ha rotvekst ved dyp lik eller større enn 35 cm på granruten her. Tilsvarende var maksimal jordtetthet for bjørk 1,7 g cm\(^{-3}\), en jordtetthet som aldri oppnås her. Ut fra dette skulle ikke jordtetthet her være så høy at den stanset rotvekst for bjørk. Dette er resultater som passer godt overens med observasjon av rotdyp ved profilbeskrivelsene.

5.4.4. Penetrometermåling

For å komprimere de innsamlede data fra måling av trykkfasthet, er det for hvert enkelt stikk (36 stikk på hver rute) beregnet en gjennomsnittsverdi av de avlesninger som ligger innen samme sjikt, i henhold til tabell 20. For dyp nr 8 og mer er penetrometerets måleområde overskredet for et stort antall av stikkene, og inngår derfor ikke i beregning av trykkfasthet for noe sjikt. På dyp nr 7 er 4 av stikkene på bjørkeruten og 2 av stikkene på granruten utenfor penetrometerets måleområde. Disse avlesningene er her gitt verdien 50 kg (3810 kPa). Alle avlesninger for dyp nr 6 og mindre er innenfor måleområdet på alle stikk. Gjennomsnittlig trykkfasthet for hvert sjikt på rutene, og standardavviket mellom stikkene er vist i tabell 21. I figur 11-12 er trykkfasthet ved ulike stikk innen sjikt visualisert med konturdiagrammer. I figurene er det gjort et stikk for hvert krysningspunkt i rutennettet. Fargeangivelse mellom stikkene i diagrammene baserer seg på lineær interpolering mellom målepunktene. Rutenettet er nummerert i henhold til det tosifrede nummer hvert femmetersmerke har fått (Første siffer er angitt på figurenes X-akse og andre siffer på Y-akse). I figurene øker trykkfasthet når fargen blir mørkere. Gjennomsnittlig jord der penetrometerets maksimumsverdi (3810 kPa) ble oppnådd er beregnet for hver rute, og vist i tabell 22. Dyp der maksimumsverdi ble oppnådd er fremstilt i konturdiagrammer (figur 13) på samme måte som sjiktvis trykkfasthet.
Tabell 20 Nybdenummer, gjennomsnittlig dyp for det enkelte nybdenummer og angivelse av hvilket sjikt nybden danner grunnlag for beregning av trykkfasthet i.

<table>
<thead>
<tr>
<th>Dyp nr.</th>
<th>Dyp cm (gjennomsnitt)</th>
<th>Grunnlag for beregning av egenskaper for sjikt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,75</td>
<td>O-sjikt</td>
</tr>
<tr>
<td>2</td>
<td>5,25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8,75 Forkastes (ligger i sjikttgrense mellom O og Ap)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12,25</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15,75</td>
<td>Ap-sjikt</td>
</tr>
<tr>
<td>6</td>
<td>19,25</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22,75</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>26,25 Forkastes (maks belastning overskredet)</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 21 Gjennomsnittlig trykkfasthet for O- og A-sjikt, sammen med standardavvik mellom stikk innen et sjikt på hver rute.

<table>
<thead>
<tr>
<th>Trykkfasthet kPa</th>
<th>Standardavvik kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granrute Bjørkerute</td>
<td>Granrute Bjørkerute</td>
</tr>
<tr>
<td>O-sjikt</td>
<td>429</td>
</tr>
<tr>
<td>A-sjikt</td>
<td>1844</td>
</tr>
</tbody>
</table>

Tabell 22 Gjennomsnittlig dyp hvor penetrometerets maksimumsverdi (3810 kPa) ble oppnådd for hver av rutene, med standardavvik mellom stikkene innen hver rute.

<table>
<thead>
<tr>
<th>Granrute Bjørkerute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyp (cm)</td>
</tr>
<tr>
<td>Standardavvik (cm)</td>
</tr>
</tbody>
</table>

Figur 11 Trykkfasthet i O-sjikt på forsøksrutene. Verdiene i forklaringsnøkkel er i kPa.
Figur 12 Trykkfasthet i A-sjikt på forsøksrutene. Verdiene i forklaringsnøkkel er i kPa.

Figur 13 Dyp der penetrometerets maksimumsverdi på 3810 kPa ble oppnådd. Verdiene i forklaringsnøkkel er dyp i cm

I O-sjiktet er variasjonen langt større innen rutene enn mellom rutene, slik at noen forskjell mellom rutene ikke kan påvises. I Ap-sjiktet virker trykkfastheten til å være noe større på bjørkeruten enn på granruten, men forskjell i trykkfasthet mellom rutene er ikke signifikant for noe sjikt.

Gjennomsnittlig dybde for maksimal belastning på penetrometeret oppnås i øvre del av Bwg-sjikt, hvilket også stemmer godt over ens med at dette sjetet ble registrert med større fasthet enn Ap-sjikt ved profilbeskrivelsene for begge ruter. Heller ikke for dyp hvor maksimal belastning er oppnådd kan signifikant forskjell mellom rutene påvises.

Trykkfasthet påvirkes av fuktigheten i jorda. Fuktighet er derfor målt med Proilprobe samme dag måling med penetrometer er utført (9. september). På bakgrunn av disse målingene ser det ut til å være lite forskjell i jordfuktighet for dypene 10 og 20 cm denne dagen. Men målingene med profilprobe gir uttrykk for at det på dypene 30, 40 og 60 cm er tørrere på bjørkeruten enn på granruten. Dette kan være med på å forklare den noe større trykkfasthet i mineraljord på bjørkeruten sammenliknet med granruten.

Ut fra dette er det intet grunnlag for å påvise forskjell i trykkfasthet i noe dyp mellom forsøksrutene. Det hadde vært en fordel om penetrometeret hadde hatt et større måleområde. Spesielt hadde det vært ønskelig at det hadde kunnet måle fullstendig i Bwg-sjikt, ettersom det sjiktet ved profilbeskrivelsen kunne virke til å ha ulik fasthet på de to rutene.

Maksimal belastning på penetrometeret (3810 kPa) er mer enn hva Taylor et al. (1966) og Gerad et al. (1972) fant som maksimal trykkfasthet i jord som tillot rotvekst av bomull. Det er også mer enn det som defineres som kritisk trykkfasthet ved 20-30% leirinnhold (hvilket denne jorden har) av Gerad et al. (1982). Det er grunn til å tro at maksimal trykkfasthet i jord for vekst av gran- og bjørkerøtter kan være vesentlig forskjellig fra slike verdier funnet for rotvekst av bomull. Likevel kan dette tyde på at jorda på dette feltet har en trykkfasthet som er så stor at den kan begrense rotvekst.

5.4.5. **pF-analyse**

Resultatene fra pF-analysene er vist i figur 14, som volum% vann i jordprøvene etter at de har vært utsatt for drenering ved forskjellige sug. I figuren er det gjennomsnittsverdiene for parallele prøver som er nytet. For alle sug opp til og med 300 kPa, er det her tre parallele prøver. For disse er også standardavvik mellom prøvene vist i figuren. Ved drenering med sug
på 300 kPa var det en av de keramiske platene som ikke ville drenere, slik at ved dette sug er verdiene for høye før prøvene for gran fra 5 og 15 cm dyp og bjørk fra 50 og 70 cm dyp. For å prøve å rette opp disse feilene ble det forsøkt å drenere jordprøver som hadde fått samme behandling som prøvene til drenering ved sug på 1500 kPa, ved 300 kPa. Dette gav store avvik, og urimelige verdier. Resultatene fra disse prøvene er derfor forkastet. Drenering ved 1500 kPa er utført to ganger, da det ved første drenering var problemer med luftgjennomgang i de keramiske platene. Det er for 1500 kPa resultater fra den andre drenering som nyttes, mens resultater fra første drenering er forkastet.
Figur 14 pF-kurver for jorda på rutene. I figuren er det et diagram for hvert dyp der prøver for pF-analyser er tatt ut. P-verdiklasse ved paret T-test mellom rutene for de ulike dypene er angitt i de enkelte overskrifter.

Det er en signifikant forskjell på prøvene fra 5 og 15 cm dyp, der prøvene fra granruten inneholder noe mer vann ved de fleste sug, enn tilsvarende prøver fra bjørkeruten.
For dypene 25 og 50 cm er det ikke påviselig forskjell mellom prøvene fra de ulike rutene. På 35 cm dyp er det en betydelig, forskjell mellom rutene. For dette dypet gir prøvene fra granruten en kurve som samsvarer godt med prøvene fra 50 cm dyp, mens prøvene fra bjørkeruten gir en kurve som er tilnærmet sammenfallende med kurvene for dypet 25 cm. Dette underbygger teorien om at jorda på bjørkeruten har en løsere struktur på dette dypet enn på granruten. Kurvene for 35 cm dyp viser stor forskjell ved lave sug men er tilnærmet like ved visnegrensen (1500 kPa sug), hvilket tyder på at forskjellene mellom rutene på dette dypet skyldes ulik struktur, uten at tekstur er forskjellig.

På 70 cm dyp er det ikke funnet signifikant forskjell mellom rutene ved en paret t-test, da forskjellene mellom rutene er små for sug mindre enn 300 kPa. Ved visnegrensen (1500 kPa) er det en tydelig forskjell mellom rutene, der bjørkeruten har et høyere vanninnhold. Dette kan tyde på en forskjell i tekstur mellom rutene på dette dypet, der bjørkeruten har en finere tekstur (mer leire) enn granruten. Forskjell i vanninnhold mellom rutene ved 1500 kPa sug for 70 cm dyp er funnet statistisk signifikant (P-verdi på 0,004) ved toutvalgs t-test.

Ved å fremstille resultatene fra pF-analysene i et sjiktvis dybde-volumdiagram (figur 15), fremkommer tydelig forskjellene mellom ulike sjikt med tanke på porevolum og tilgjengelighet av vann. I figuren er gjennomsnittsverdiene for de to målingene i Ap-sjikt nyttet for å beskrive sjiktet.

Som det fremkommer av figur 15 er det lite lett tilgjengelig vann i undergrunnsjiktene, men noe mer i Ap-sjikt. I Bwg-sjiktet er det betydelig høyere materialvolum på granruten enn på bjørkeruten, mens bjørkeruten har i dette sjiktet betydelig mer lett tilgjengelig vann enn hva som er tilfelle på granruten. I Bwg-sjiktet er også drenerbart porevolum, tungt tilgjengelig vann og utilgjengelig vann større på bjørkeruten enn på granruten. Totalt sett er derfor forholdene for rotvekst og vannopptak bedre på bjørkeruten enn på granruten for dette sjiktet. De andre sjiktene viser ikke klare forskjeller mellom rutene.
5.4.6. Infiltrasjon med Guelph permeameter

Infiltrasjonen målt med Guelph permeameter på 50 cm dyp er vist i tabell 23, som drenert vannmengde per minutt sammen med beregnet mettet vannledningsevne i felt (\(K_{fs}\)). Beregning av \(K_{fs}\) er utført i henhold til Soilmoisture (1986) av Sigrun Hjalmarsdottir Kværnø\(^{12}\), under forutsetning av at \(\alpha\)-verdi er 0,12.

Tabell 23 Infiltrasjon på 50 cm dyp, målt med Guelph permeameter.

\begin{tabular}{|c|c|c|}
\hline
Rute & Vannforbruk cm/min & \(K_{fs}\) cm/time \\
\hline
Gran & 0.073 & 0.17 \\
Bjørk & 0.079 & 0.18 \\
\hline
\end{tabular}

\(^{12}\) Doktorgradsstipendiat ved Jordforsk.
Instrumentet viste stabile måleverdier mellom avlesningene innen en måleserie. Da begge målingene her er utført under like betingelser på samme dyp, er infiltrasjonen uttrykt som drenert vannmengde per minut direkte sammenliknbar. Det er meget liten forskjell mellom målingene på de to rutene, hvilket er med på å bekrefte at undergrunnsjorden på de to rutene har like egenskaper.

5.4.7. Mettet vannledningsevne

Mettet vannledningsevne målt ved fallende gradient er vist i tabell 24. Markganger og sprekkystemer har meget stor innvirkning på vannledningsevne, spesielt når det brukes så små prøver som her. Dette fører til at variasjonen mellom parallele prøver er meget stor (variasjonskoeffisienten\(^{13}\) mellom parallele prøver er her på 18-141\%). Som en følge av dette brukes geometrisk middelverdi av parallele prøver for å redusere virkningen av ekstremverdier, mens verdien for den enkelte prøve er gjennomsnitt av alle målinger på den enkelte prøve.

Tabell 24 Mettet vannledningsevne for ulike sjikt på de to rutene. Verdiene er geometriske middelverdi for alle prøvene innen samme sjikt og rute. P-verdiklasse ved toutvalgs t-test er angitt med symboler

<table>
<thead>
<tr>
<th>Dyp cm</th>
<th>Sjikt betegnelse</th>
<th>Bjørk cm/time</th>
<th>Gran cm/time</th>
<th>P-verdi Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>5O</td>
<td></td>
<td>44</td>
<td>152</td>
<td>-</td>
</tr>
<tr>
<td>15Ap</td>
<td></td>
<td>2,9</td>
<td>0,60</td>
<td>*</td>
</tr>
<tr>
<td>25Ap</td>
<td></td>
<td>0,91</td>
<td>0,61</td>
<td>-</td>
</tr>
<tr>
<td>35Bwg</td>
<td></td>
<td>0,53</td>
<td>0,014</td>
<td>**</td>
</tr>
<tr>
<td>50BCg</td>
<td></td>
<td>0,13</td>
<td>0,0050</td>
<td>-</td>
</tr>
<tr>
<td>70Cg</td>
<td></td>
<td>0,0012</td>
<td>0,0016</td>
<td>-</td>
</tr>
</tbody>
</table>

Toutvalgs t-test er foretatt for sammenlikning av de enkelte dyp. Da vannledningsevne ikke forutsettes å være normalfordelt, er testing utført på logaritmetransformerte verdier. På bakgrunn av at det her kun er 2-3 parallele prøver og store variasjoner mellom enkelte parallele prøver, er grunnlaget for statistisk testing egentlig litt dårlig.

Bjørkeruten viser en signifikant høyere vannledningsevne enn granruten for dypene 15 og 35 cm. En større vannledningsevne for bjørkeruten enn granruten på 35 cm dyp, er med på å støtte opp om tidligere observasjoner om at bjørkeruten her har en løsere struktur i dette

\(^{13}\) Variasjonskoeffisient = (Standardavvik/gjennomsnitt)*100%
dypet. Også på dypene 5 og 50 cm er det betydelige forskjeller i gjennomsnittsverdiene mellom rutene, men forskjellene mellom parallele prøver er for stor til å påvise noen sikker forskjell mellom rutene. Mettet vannledningsevne for 50 cm dyp ligger svært nær den beregnede K_{fs} på bjørkeruten. På bakgrunn av at det ikke er signifikant forskjell for vannledningsevne mellom rutene på 50 cm dyp, kan det derfor se ut til at K_{fs} beregnet etter måling med Guelph-permeameter gir et godt mål på jordas metta vannledningsevne.

5.4.8. Luftpermeabilitet

Beregnet luftpermeabilitet for det enkelte dyp er vist i tabell 25. Luftpermeabilitet er målt på pF prøvene ved pF2 (etter drenering ved 10 kPa sug) og det er målt to ganger på hver av de tre parallele prøvene.

Tabell 25 Gjennomsnittlig luftpermeabilitet for ulike dyp på rutene, med angivelse av standardavvik mellom verdier for parallele prøver.

<table>
<thead>
<tr>
<th>Sjikt betegnelse</th>
<th>Dyp cm</th>
<th>Bjørkerute Gjennomsnitt μm²</th>
<th>Standardavvik μm²</th>
<th>Granrute Gjennomsnitt μm²</th>
<th>Standardavvik μm²</th>
<th>P-verdi</th>
<th>Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>5</td>
<td>210</td>
<td>82</td>
<td>33</td>
<td>14</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Ap</td>
<td>15</td>
<td>7,2</td>
<td>8,2</td>
<td>2,0</td>
<td>1,9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ap</td>
<td>25</td>
<td>5,9</td>
<td>7,4</td>
<td>3,7</td>
<td>1,9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>3,4</td>
<td>0,66</td>
<td>0,30</td>
<td>0,10</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>0,23</td>
<td>0,05</td>
<td>0,30</td>
<td>0,13</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>0,21</td>
<td>-14</td>
<td>0,26</td>
<td>0,02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Som det her fremkommer avtar luftpermeabilitet sterkt med økende dyp ned til 35 cm for gran og 50 cm for bjørk. Ved toutvalgs t-test viser bjørkeruten en signifikant større luftpermeabilitet enn granruten på dypene 5 (O-sjikt) og 35 cm (Bwg-sjikt). Statistisk testing er utført på logaritmetransformerte verdier, da luftpermeabilitet antas å ikke være normalfordelt. En større luftpermeabilitet i Bwg-sjikt på bjørkeruten enn på granruten tyder på en løsere struktur i dette sjiktet på bjørkeruten. Jordprøvene fra O-sjikt hadde ved pF2 en større sammensynkning enn tilsvarende prøver på granruten, og viste også tegn til å ha krympet radiært. Dette resulterte i at det ble luftrom mellom jordprøve og sylindervegg. Den større luftpermeabilitet for 5 cm dyp fra bjørkerute enn tilsvarende fra granrute kan følgelig

14 De parallele prøvene har her lik avlesningsverdi, grunnet liten avlesningsnøyaktighet ved så lav luftgjennomstrømning. Følgelig blir standardavvik 0,0, slik at statistisk testing ikke er mulig.
delvis forklares med at mer luft har passert mellom jordprøve og sylindervegg under måling på prøver fra bjørkefeltet sammenliknet med tilsvarende prøver fra granruten. Den forskjell som her fremkommer mellom O-sjikt på de to rutene må derfor kunne sies å være usikker.

5.4.9. Luftinnhold ved pF2

Luftinnhold i ulike sjikt er fremstilt i tabell 26. Det er relativt små avvik mellom luftinnhold målt med luftpyknometer og luftinnhold beregnet på bakgrunn av data fra pF-analysene. Men det er en tendens til at luftinnhold målt med luftpyknometer er litt høyere enn det som er beregnete ut fra pF-analysen for de øvre sjiktene med høyest luftinnhold. En mulig forklaring på dette kan være at noen av de aller største porene har drenert før veiring av pF-prøvene ved vannmetning, da noe vann i meget store porer har kunnet renne ut ved flytting av prøver fra metningskar til vekt. Dersom så er tilfelle ville prøver der dette har forekommet fremstå med et høyere luftinnhold ved måling med luftpyknometer i forhold til luftinnhold beregnet på bakgrunn av pF-analysene.

Tabell 26 Beregnet luftinnhold ved pF2 på bakgrunn av data fra pF-analyse og luftinnhold målt med luftpyknometer ved pF2 for ulike sjikt på begge ruter, samt krymping av organiske prøver ved pF2 (ikke målt (I.M.) for mineraljordsprøver).

<table>
<thead>
<tr>
<th>Sjikt</th>
<th>Rute</th>
<th>Luftinnhold Beregnet (pF2)</th>
<th>Luftinnhold Målt (pF2)</th>
<th>Krymping i lengde %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volum%</td>
<td>Volum%</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Bjørk</td>
<td>37,9</td>
<td>39,5</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>33,0</td>
<td>36,2</td>
<td>1,1</td>
</tr>
<tr>
<td>Ap</td>
<td>Bjørk</td>
<td>11,7</td>
<td>14,7</td>
<td>I.M.</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>8,9</td>
<td>12,6</td>
<td>I.M.</td>
</tr>
<tr>
<td>Bwg</td>
<td>Bjørk</td>
<td>10,4</td>
<td>13,3</td>
<td>I.M.</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>6,3</td>
<td>5,8</td>
<td>I.M.</td>
</tr>
<tr>
<td>BCg</td>
<td>Bjørk</td>
<td>3,2</td>
<td>4,5</td>
<td>I.M.</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>4,4</td>
<td>5,0</td>
<td>I.M.</td>
</tr>
<tr>
<td>Cg</td>
<td>Bjørk</td>
<td>5,0</td>
<td>2,5</td>
<td>I.M.</td>
</tr>
<tr>
<td></td>
<td>Gran</td>
<td>6,1</td>
<td>5,1</td>
<td>I.M.</td>
</tr>
</tbody>
</table>

Luftinnholdet avtar med økende dyp. Ut fra måling av luftinnhold med luftpyknometer er det ikke signifikant forskjell i luftinnhold mellom rutene for noe dyp. Beregnet luftvolum ut fra pF-data er signifikant høyere på bjørkeruten enn på granruten i Bwg-sjikt (35 cm dyp), med en P-verdi på 0,017. For resterende sjikt er det heller ikke her signifikant forskjell mellom rutene. Selv om forskjell i luftinnhold i Bwg-sjikt kun er signifikant forskjellig med den ene
metoden, er det en trend for begge metoder at luftinnhold i dette sjiktet er høyest på bjørkeruten. Dette er i overensstemmelse med den tidligere påpekte strukturforskjell mellom rutene i dette sjiktet.

På bakgrunn av at pF2 regnes som naturlig drenering av jord under norske forhold (feltkapasitet), vil luftinnhold ved pF 2 være et mål på om jorda under naturlige forhold vil ha tilstrekkelig stort luftvolum til at rotvekst kan skje uhindret. På bakgrunn av at minste luftinnhold for frisk rotvekst settes til 10% (McKyes 1985), kan luftmangel i rotsonen være en begrensende faktor for rotvekst på dette feltet. Om man tar utgangspunkt i luftinnhold målt med luftpyknometer fremkommer det at både O- og Ap-sjikt har over 10% luft ved pF2, mens BCg- og Cg-sjikt har vesentlig mindre enn 10% luft. Bwg-sjiktet har over 10% luft på bjørkeruten, men vesentlig under på granruten. Det er derfor grunn til å anta at luftinnhold er med på å begrense rotutvikling her, og at denne begrensning inntrer ved et grunnere dyp på granruten enn på bjørkeruten.

5.5. Målinger i felt

5.5.1. Nedbørmålinger

Den totale nedbør som ble samlet opp i karene i løpet av måleperioden (19. mai til 8. september) er vist i figur 16. Søylene angir gjennomsnittlig, total oppsamlet nedbør (mm) for de tre karene på hver forsøksrute og for de to karene som var satt ut som referanse på åpent felt. I figuren er feilangivelse lagt inn som pluss og minus 1 ganger standardavvik mellom de ulike karene på hver rute. I tillegg er total nedbør for Rygge (DNMI15 stasjon nr. 17150) vist.

15 Det norske meteorologiske institutt
Figur 16 Total nedbør på de ulike rutene i måleperioden (19. mai til 8. september), med angivelse av standardavvik mellom målepunkter innen rutene.

På bakgrunn av resultatene vist i figur 16, sees at total nedbør på det åpne feltet er noe større enn inne på forsøksrutene, hvilket kan forklares med trærnes intersepsjon. Som forventet ut fra Børset (1985), er intersepsjonen større på granruten (28%) enn på bjørkeruten (15%), men dette er litt usikkert da variasjonen mellom karene på granruten er stor. Underbestandet av gran på bjørkeruta er her antakelig med på å gjøre forskjellen i intersepsjon mellom rutene mindre enn hva som kunne forventes ved sammenlikning av ren granskog og ren bjørkeskog. Da avstanden til nærmeste trær ikke var mer enn 10 meter for karene på det åpne feltet, kan også disse karene ha blitt utsatt for noe regnskygge fra skogen. Nedbøren har vært noe større (23% større) i forsøksområdet, enn på Rygge i måleperioden.

Ved de siste målingene (25. august og 8. september) er det enkelte kar som fremkommer med negativ nedbør siden forrige måling, hvilket betyr at målingene er behæftet med feil. De negative verdiene kan komme av målefeil, eller at dyr ar kommet borti karene (det er gjennom sommeren fjernet to druknede småfugler fra karene). Men den mest sannsynlige forklaring er fordamping fra karene. På slutten av måleperioden virket det til at oljen som var slått i karene begynte å klumpe seg sammen. Det kan ha resultert i brudd på oljefilmen, slik at fordamping av vann ble mulig. En slik sammenklumping av olja fremkom i alle kar på slutten av måleperioden. Det er derfor fare for at nedbør sent på sommeren er underestimert i alle kar.
5.5.2. **Grunnvannsmåling**

Det peilede grunnvannsdyp er vist i figur 17. Figuren viser grunnvannsdypet de dagene dette er mått. Tidsrom mellom målingene varierer gjennom måleperioden. (Måledato er angitt på X-aksen.) Rørene tettet seg med leire, slik at vann hadde problemer med å trenge inn. Dette fremkom tydelig 29. mai (ikke vist i figuren), da det ene røret var tørt mens det andre hadde 5cm vann i bunnen, samtidig som det sto mye vann (ca 70 cm) utenfor rørene i begge hullene. Pukk ble derfor lagt under rørene. Første måling som her er angitt er 3. juni. Da dette er samme dag som pukk ble lagt under rørene for å bedre innstrømningen av vann, er det mulig at målingene denne dagen er behæftet med feil. Figuren går til 105 cm grunnvannsdyp, som er det største dyp dette utstyret målte. De dagene som i figuren står uten noen måleverdi, er dager da rørene var tørre, slik at grunnvannsnivå lå lave enn 105 cm.

![Grunnvannsdyp på forsøksrutene gjennom sommeren.](image)

Figur 17 Grunnvannsdyp på forsøksrutene gjennom sommeren.

5.5.3. Temperaturmåling

Temperaturene som er målt med termoelementer koplet til datalogger er gjengitt som døgnmiddeltemperaturen i figur 18-21. Gjennomsnittstemperatur gjennom hele måleperioden, for hver enkelt føler er regnet ut, og vist i tabell 27.

![Diagram](image)

Figur 18 Lufttemperatur (°C) i 2 m høyde, målt med termoelementer.
Figur 19 Jordtemperatur (°C) på 5 cm dyp, målt med termoelementer.

Figur 20 Jordtemperatur (°C) på 18 cm dyp, målt med termoelementer.
Figur 21 Jordtemperatur på (°C) 50 cm dyp, målt med termoelementer.

Tabell 27 Gjennomsnittlig temperatur i måleperioden (24. mai–25. august), for ulike dyp/høyder på hver av forsøksrutene (verdier er i °C).

<table>
<thead>
<tr>
<th>Rute</th>
<th>Luft (2 m)</th>
<th>5 cm</th>
<th>18 cm</th>
<th>50 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gran</td>
<td>15,29</td>
<td>13,15</td>
<td>11,68</td>
<td>10,06</td>
</tr>
<tr>
<td>Bjørk</td>
<td>15,28</td>
<td>12,48</td>
<td>11,07</td>
<td>9,60</td>
</tr>
</tbody>
</table>

Som det fremkommer av figurene og tabell 27 er temperaturen høyest i lufta, og den avtar med økende dyp nedover i jorda. Det samme gjelder for variasjonen i temperatur gjennom døgnet, som er betydelig større i luft enn i jord, og som avtar med økende jorddyp. Dette som forventet, siden jord fungerer som et varmemagasin og dermed utjevner temperaturvariasjoner.

Både lufttemperatur og jordtemperatur viser en stigende trend frem til omtrent 20. juli. Etter dette viser temperaturen en fallende trend for alle følerne, med unntak av følerne på 50 cm dyp, som stabiliserer seg på 11-12°C i samme periode.

Lufttemperaturen viser nesten ingen forskjell mellom rutene. Jordtemperaturen ligger stabilt litt lavere på bjørkeruten enn på granruten for alle dyp. Forskjellen i jordtemperatur mellom
rutene på de enkelte dyp virker til å holde seg nesten konstant gjennom måleperioden. Dette kan tyde på at forskjellene ligger i temperaturfølerne. Temperaturfølerne er alle laget nye av kopperkonstantanledning til forsøket. Følerne brukt i jord på bjørkeruten og til begge målingene av lufttemperatur er omtrent 15 m lange, mens følerne brukt til måling av jordtemperatur på granruten er omtrent 5 m lange. Det kan derfor være mulig at den forskjell som her fremkommer skyldes ulik ledningslengde, på tross av at slike forskjeller mellom følerne ikke kunne observeres ved kontroll av følerne før utsetting og etter opptak. Både før utstyret ble satt ut og etter det ble tatt inn, ble samtlige temperaturfølere kontrollert ved måling i vann ved forskjellige temperaturer, uten at forskjellige verdier mellom følerne kunne påvises. Dersom det faktisk er forskjell i jordtemperatur mellom rutene, skulle det forventes at forskjellen ikke var konstant, uavhengig av temperatur og nedbørsforhold, slik den her er. På bakgrunn av dette kan ikke forskjell i jordtemperatur mellom rutene påvises sikkert.

5.6. Måling av vanninnhold

5.6.1. Fuktighet i jordprøver

For kontroll og vurdering av metodene som nytes til måling av jordas fuktighet (Thetaprobe og Profilprobe), er jordprøver tatt ut for fuktighetsbestemmelse. Jordprøver er tatt ut 4 ganger i løpet av sesongen (15.mai, 2. juli, 7. august og 25. august). Omregning fra vekt% vann til volum% vann i jordprøvene er gjort ved hjelp av jordtetthet målt de for aktuelle dyp. Jordtetthet fra 70 cm dyp nytes her for alle prøver i Cg-sjikt (60-100 cm).

Volum% vann i jordprøvene tatt ut i løpet av feltsesongen er vist i tabell 28. Prøvene tatt ut 2. juli er for hver 10 cm i hele dypet. I tabellen er verdier for dyp større enn 40 cm da gjennomsnitt av to dyp. Prøvene tatt ut i de angitte dybdeintervall, men holdt innenfor det jordsmonnsjiktet som dekker det meste av dybdeintervallet. Den 25. august, er prøvene tatt i de dypene Thetaprobene var plassert (0-6 cm, 18 cm og 50 cm). Prøvene fra 25. august er i tabellen plassert i det dybdeintervallet de er tatt ut, uten at de dekker hele intervallet.
Tabell 28 Volum% vann i fuktighetsprøver tatt ut til ulike tidspunkt på feltet. Understrekkede verdier er gjennomsnitt av tre parallele prøver, resterende verdier er fra enkeltprøver.

<table>
<thead>
<tr>
<th>Dyp (cm)</th>
<th>Sjikt</th>
<th>15.mai</th>
<th>2.juli</th>
<th>7.august</th>
<th>25.august</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betegnelse</td>
<td>Gran</td>
<td>Bjørk</td>
<td>Gran</td>
<td>Bjørk</td>
</tr>
<tr>
<td>0-10</td>
<td>O</td>
<td>19</td>
<td>22</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>10-20</td>
<td>Ap</td>
<td>(71)</td>
<td>62</td>
<td>(71)</td>
<td>51</td>
</tr>
<tr>
<td>20-30</td>
<td>Ap</td>
<td>54</td>
<td>56</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>30-40</td>
<td>Bwg</td>
<td>42</td>
<td>41</td>
<td>51</td>
<td>43</td>
</tr>
<tr>
<td>40-60</td>
<td>BCg</td>
<td>50</td>
<td>44</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>60-80</td>
<td>Cg</td>
<td>33</td>
<td>38</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>80-100</td>
<td>Cg</td>
<td>36</td>
<td>43</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

På 10-20 cm dyp 15. mai og 2. juli er vanninnholdet på 71 volum% på granruten. Dette er mer enn det totale porevolumet i denne jorda (61%) ut fra pF-analysene, og er følgelig for høyt. Verdiene er derfor ikke nyttet i videre analyser. Det høye vanninnholdet kan være et resultat av at prøvene som er tatt ut på dette dypet disse dagene kan ha en Jordtettet som er lavere enn jordtettet i sylinderprøver fra tilsvarende dyp, som danner grunnlag for omregning til volum% vann.

På hver av rutene er tre parallelle prøver tatt ut for hver 10-ende cm ned til 60 cm dyp 2. juli og 7. august. Prøvene er uttatt innenfor jordmonnsjiktene som dekker det meste av aktuelt dybdeintervall. Den 2. juli er også prøver for hver 10-ende cm fra 60-100cm tatt ut en gang på hver rute. Volumprosent vann for de ulike dypene er vist i figur 22 og 23.
Figur 22 Volum% vann i fuktighetsprøvene tatt ut 2. juli. For dyp ned til 60 cm er det 3 parallele prøver. Gjennomsnittsverdi og +/- standardavvik er vist.

Figur 23 Gjennomsnittlig vanninnhold (volum%) i fuktighetsprøvene tatt ut 7. august, med feilangivelse på +/- 1 standardavvik for de tre parallele prøver.

Vanninnholdet i jorda virker til å være noe lavere på begge ruter 7. august enn 2. juli for alle dyp som er prøvetatt begge dager (dyp mindre enn 60 cm).

For dyp større enn 50 cm er vanninnholdet nokså konstant over dyp, med små forskjeller mellom rutene 2. juli. For dypene 10-40 cm synes det å være en tendens, der vanninnholdet er lavere på bjørkeruten enn på granruten både 2. juli og 7. august. For alle dyp mindre enn 50 cm...
cm er det til dels meget store forskjeller mellom parallele prøver innen forsøksrutene begge dagene.

5.6.2. **Målinger med Profilprobe**

Målinger med profilprobe er regnet om til volum\% vann i jorda, med standard kalibreringsfunksjoner. For kontroll av Profilproben, er verdier målt med denne, i forhold til målt vanninnhold i jordprøvene vist i figur 24. Det er her valgt ut kun rør nr. 1 på begge rutene, da dette røret har fire måledatoer der også jordprøver er tatt ut, mens rør nr 2 kun har tre. I figuren er dypene 10 cm, 20 cm og 60 cm valgt ut og pressentret for Profilprobe. Disse verdiene er satt opp mot vanninnhold i jordprøver fra dypene 0-10 cm, 10-20 cm og 40-60 cm.

På bakgrunn av figur 24, ser det ut til å være noe samsvar mellom verdiene fra Profilproben og vanninnholdet i jordprøvene, da de fleste målepunktene havner i nærheten av 1/1-linja. Tatt i betraktning den store variasjonen i vanninnhold mellom parallele jordprøver, vil de fleste målepunktene ligge innenfor 1/1-linja, om standardavvik legges til målepunktene.

På 20 cm dyp på bjørkerutene er det et systematisk avvik, der Proben gir et lavere vanninnhold enn hva som er tilfelle i jordprøvene (I gjennomsnitt 16 volum\% mindre vann enn i jordprøvene). Det velges likevel ikke å lage noen korreksjonsformel for disse målingene. De systematiske avvikene her kan ha flere årsaker: Enten er den kalibreringsligning som nyttas for Profilproben feil i denne jordarten på dette dypet, slik at den gir et for lavt vanninnhold. Eller så kan det også her være nyttet en for høy jordtetthet ved omregning av vekt\% vann til volum\% vann i jordprøvene, slik at vanninnholdet i disse fremstår som for høyt. Eventuelt så kan det systematiske avviket her skyldes at dette røret er plassert et sted der ikke vanninnhold på dette dypet er representativt for ruten, eller at det er en luftlomme like utenfor målerøret på dette dypet, selv om slikt ikke er observert ved opptak av røret.
Figur 24 Plottet vanninnhold i jordprøvene mot verdi fra Profilprobe. 1/1-linjer er lagt inn i alle diagram.

På granruten er det kun to punkter for 20 cm dyp, da verdiene fra jordprøvene her er forkastet for 15. mai og 2. juli, grunnet urealistisk høyt vanninnhold. For målingene på granruta ser det ut til at Profilproben responderer dårlig på endringer i jordas vanninnhold, særlig ved 60 cm dyp. Det er vanskelig å gi noen sikker forklaring på årsaken til den dårlige respons som her fremvises av Profilprobene. En mulig forklaring kan være at vann renner ned langs veggene på de utsatte glassfiberrørene ved regnvær, slik at fuktighet i jorda rundt rørene ikke er lik
fuktighet i tilsvarende dyp andre steder på ruten. Dette vil i så fall kunne gi avvik mellom måling med Profilprobe i forhold til beregning av fuktighet i prøver tatt ut med jordprøvebor, selv om slike prøver tas ut nær målerøret. En slik feil som skyldes vann som renner langs rørene er det vanskelig å ha kontroll med og korrigerere for. Dersom dette er årsak til feil, vil nedbør på måletidspunkt og dagene forut for måling ha stor betydning, uten at noen tydelig sammenheng her er funnet.

Resultatene fra måling med Profilprobe er vist i figur 25-30, med en figur for hvert måledyp. I figurene har hvert målerør egen kurve. Kurvene i figurene har farge og symboler i henhold til forklaring øverst på hver side. Alle tidsskalaene (x-aksene) er like i figurene, men verdiene er kun vist øverste figur på hver side, for å spare plass. Det er store variasjoner i hvor lang tid det er mellom målingene, da det er målt de fleste dagene feltet var oppsøkt i måleperioden. Følgelig er det mange målinger fra siste halvdel av mai, da mye av arbeidet på feltet ble utført.

De første målingene med Profilproben ble utført med vilkårlig målertetning på spydet. Den 22. mai ble det gjort forsøk på å rotere sonden, og notere verdiene for målinger ettersom sonden ble rotert. Sonden ble rotert 90° 4 ganger, og målinger i hvert dyp utført for hver gang. Da viste det seg at måleverdiene endret seg betydelig ved rotering. Avvikene mellom ulik målertetning utgjorde på det meste mer enn 10 volum% vann i jorda, på ett og samme målested. Fra og med 24. mai er derfor fast målertetning nyttet. Bruk av vilkårlig målertetning de første dagene kan forklare noen av de brå svingningene som enkelte av kurvene i figur 25-30 viser i mai. Måleutstyret viste små avvik (mindre enn 1 volum% vann) ved gjentatte målinger i samme retning, på samme tid.

Ut fra figur 25-30, er det en klar trend at vanninnhold synker gjennom sommeren, for alle målerør og dyp, med unntak av dypet 100 cm, der vanninnhold er tilnærmet konstant gjennom måleperioden. For målingene på 10 cm dyp (O-sjiktet), er variasjonene mellom målerør større enn mellom rutene, i det målingene på bjørkeruten har et målerør (rør nr. 1) som jevnt over viser høyere vanninnhold, og et målerør (rør nr. 2) som jevnt over viser lavere vanninnhold enn begge rørene på granruten. Dette gir derfor intet grunnlag for å påvise forskjell i vanninnhold mellom gran og bjørk i O-sjiktet.
Figur 25 Volum% vann ved 10 cm dyp, til ulike tider, målt med Profilprobe.

Figur 26 Volum% vann ved 20 cm dyp, til ulike tider, målt med Profilprobe.
Figur 27 Volum% vann ved 30 cm dyp, til ulike tider, målt med Profilprobe.

Figur 28 Volum% vann ved 40 cm dyp, til ulike tider, målt med Profilprobe.
Figur 29 Volum% vann ved 60 cm dyp, til ulike tider, målt med Profilprobe.

Figur 30 Volum% vann ved 100 cm dyp, til ulike tider, målt med Profilprobe.
På 20 cm dyp er det små forskjeller mellom rørene på granruten og rør nr. 1 på bjørkeruten, mens rør nr 2 på bjørkeruten viser høyst varierende verdier i mai, før så å stabilisere seg med verdier rundt 0% vann (og endatil negativt vanninnhold på ettersommeren) gjennom resten av sesongen. Her er det åpenbart noe feil. En mulig feilkilde kan være at det har vært ei luftlomme rundt målerøret på dette dypet. Ved opptak av rørene ble det derfor lett etter luftlommer og andre mulige feilkilder i dette dypet, uten å finne noe. Følgelig kan ikke denne feilen forklares.

Også på 30 cm dyp viser rør nr. 2 på bjørkeruten noen rare verdier, men virker til å nærme seg verdiene til rør nr. 1 sent på sommeren. Rør nr. 1 på bjørkeruten viser på ettersommeren fuktighet som er nokså lik det som fremkommer for samme rør på 20 cm dyp. Rørene på granruten viser på ettersommeren og høsten jevnt over et høyere vanninnhold enn hva som fremkommer på bjørkeruten i dette dypet.

På 40 og 60 cm dyp er det litt avvik mellom rørene innen rutene, men granruten viser jevnt over er høyere vanninnhold enn bjørkeruten på ettersommeren og høsten.

På 100 cm dyp endres vanninnholdet lite gjennom måleperioden. Det høye vanninnholdet tyder på at jorda her er tilnærmert vannmettet hele måleperioden. Selv om grunnvannsrørene var tørre ved 105 cm dyp på ettersommeren, kan disse målingene med Profilproben tyde på at grunnvannsstanden aldri går noe mye dypere enn 1 m. Målingen i rør nr.2 på bjørkeruten 24. juli viser over 100% vann. Dette har sammenheng med at beskyttelseskappa, som skulle hindre regnvann i å komme ned i røret var revet av (antakelig av et dyr) siden forrige måling. Det hadde derfor kommet vann ned i røret. Den høye verdien er derfor en følge av at det sto vann i røret under måling. Dette vannet tok det nok tid før vannet tørket ut, og kan derfor ha forstyrret målingene også etter 24. juli i dette røret.

For alle måledypene skiller rør nr. 2 på bjørkeruten seg ut. Verdiene fra dette røret bør derfor ikke tillegges så stor vekt, da de åpenbart er behjelset med store feil. Der verdier fra Profilproben brukes videre i denne oppgave er derfor verdier fra rør nr. 2 på bjørkeruten utelatt.
5.6.3. Måling med Thetaprobe

For kontroll av Thetaprobene, er verdier målt med disse, i forhold til målt vanninnhold i jordprøvene 2.juli, 7. august og 25. august vist i figur 31.

For Gran 0-6 cm
\[y = 0.3582x + 0.0681 \]
\[R^2 = 0.9712 \]

For Bjørk 0-6 cm
\[y = 0.69x + 0.0179 \]
\[R^2 = 0.7088 \]

Figur 31 Plotter vanninnhold i jordprøver mot verdi fra måling med Thetaprobe. 1/1-linjer er lagt inn i alle diagram. Lineær regresjonslinje er lagt inn for de øvre følerne (O-sikt).
Som det fremgår av figur 31, viser Thetaprobene konsekvent et for høyt vanninnhold i O-sjiktet (0-10 cm), spesielt gjelder dette for granruten. Dette tyder på at den anbefalte, standard kalibreringsfunksjon for organisk jord som her er nyttet ikke er gjeldende for denne jorda. På tross av at det her er få målepunkter er det valgt å lage en korreksjonsformel, basert på lineær regresjon, for korreksjon av verdiene fra Thetaprobe i O-sjiktet. Det er derfor i det videre korrigerte verdier for målinger med Thetaprobe i O-sjikt som nyttet. Korreksjonsformlene som nyttet videre er formlene som er vist i figuren. Det brukes forskjellig formel for å korrigere Thetaprobene i O-sjiktet på de to rutene.

For granruten på 18 cm dyp er det kun to målepunkt, da verdien for 2. juli er forkastet. Thetaprobene viser meget god respons på endringer i vanninnhold. Og for følgerne i mineraljord (18 og 50 cm), også verdier som samsvarer godt med det målte vanninnhold i jordprovene. Når dette sees i forhold til den store variasjonen som var i vanninnhold mellom parallele jordprover, så er de resultatene som fremvises av Thertaprobene meget tilfredsstillende for mineraljorda. Det kan se ut til å være en tend der vanninnhold er noe høyere i jordprovene enn verdien fra Thetaproben på 18 cm dyp på bjørkeruten. Dette er den samme trend som ble observert på 20 cm dyp på bjørkeruten for Profilproben. Det kan derfor se ut som den jordtetthet som er målt for 10-20 cm dyp på bjørkeruten er for høy, da det er denne jordtetthet som danner grunnlag for omregning til volumprosent vann i jordprovene som det sammenliknes med i begge disse tilfeller.

Resultatene av fuktighetsmålinger med Thetaprober er vist i figur 33-35, der det er en figur for hvert dyp det er målt på. I tillegg er daglig nedbør i samme periode for Rygge (DNMI16 stasjon nr. 17150) vist i figur 32, for sammenlikning av endring i jordas vanninnhold med nedbørseisodser. Det må her påpekes at det ofte er lokale regnbyger på sommeren, slik at daglig nedbør på Rygge kan avvike fra aktuell nedbør på forsøksfeltet en del dager.

16 Det norske meteorologiske institutt

81
Figur 32 Daglig nedbør på Rygge i perioden de loggete målingene med Thetaprober er utført.

Figur 33 Volum% vann på 0-6 cm dyp, målt med Thetaprobe (verdiene er korrigert i henhold til kontroll av Thetaprobene).
Figur 34 Volum% vann på 18 cm dyp, målt med Thetaprobe.

Figur 35 Volum% vann på 50 cm dyp, målt med Thetaprobe.

Følerne på 18 cm dyp (figur 34) ligger veldig likt tidlig i perioden, men utover sommeren faller vanninnholdet på bjørkeruten betydelig mer enn på granruten. Spesielt tydelig er dette for månedsskiftet juni-juli, og utover. Regnværet 24. juni og 25. juli fremkommer tydelig på grafene, som stigning i vanninnhold. Regnværepisodene kan se ut til å gi større utslag på bjørkeruten enn på granruten.

På 50 cm dyp (figur 35), er også vanninnholdet nokså likt på begge rutene tidlig i perioden. Fra begynnelsen av juli, begynner en sterkere uttørring på bjørkeruten enn på granruten. Forskjellen i jordas vanninnhold mellom rutene ser da bare ut til å øke mot slutten av måleperioden. Granruten har tilnærmet konstant vanninnhold fra tidlig i juni til slutten av august, mens bjørk har et gradvis synkende vanninnhold i samme periode på 50 cm dyp.

Før 5.6.4. Sammenlikning av metoder for måling av jordas vanninnhold

Totalt sett viser målingene med Thetaprobe at bjørkeruten har større uttørring enn granruten fra begynnelsen av juli.

Totalt sett viser målingene med Thetaprobe at bjørkeruten har større uttørring enn granruten fra begynnelsen av juli.

5.6.4. Sammenlikning av metoder for måling av jordas vanninnhold

For å se hvordan sammenhengen mellom vanninnhold i jordprøver og vanninnhold målt med Thetaprobe og Profilprobe er over et større dyp, er totalt vanninnhold beregnet for jordas øvre 60 cm de tre dagene hvor både jordprøver er tatt ut og målinger med Profilprobe og Thetaprobens utført. Resultatene av denne beregning er vist i figur 36. I figuren er beregnet
vanninnhold ut fra måling med Thetaprobe angitt både med og uten korreksjon for fuktighet i O-sjikt. Beregningene basert på måling med Profilprobe baserer seg på gjennomsnitt av verdier for begge rørene på granruten, men kun verdier fra rør nr. 1 på bjørkeruten. For beregning av vanninnhold ut fra jordprover i dypet 10-30 cm på granruten 2. juli, er verdier for 20-30 cm nyttet (54 volum%) for å unngå bruk av de for høye verdiene for 10-20 cm dyp denne dagen. Vanninnhold i de øvre 60 cm etter denne beregning er vist for 2. juli, sammen med endring i vanninnhold fra 2. juli til 7. og 25. august i tabell 29, for de ulike målemetodene.

Figur 36 Beregnet vannmengde i jordas øvre 60 cm ved tre tidspunkt, basert på ulike målemetoder av fuktighet.

Tabell 29 Vanninnhold (cm) i jordas øvre 60 cm 2. juli for ulike metoder for beregning av jordfuktighet.

<table>
<thead>
<tr>
<th>cm vann i jordas øvre 60 cm</th>
<th>Granrute</th>
<th>Bjørkerute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dato</td>
<td>2.jul</td>
<td>25.aug</td>
</tr>
<tr>
<td>Vanninnhold i jordprøvene</td>
<td>24,9</td>
<td>-4,0</td>
</tr>
<tr>
<td>Målt med Profilprobe</td>
<td>23,2</td>
<td>-2,3</td>
</tr>
<tr>
<td>Målt med Thetaprobe (ukorrigert)</td>
<td>28,3</td>
<td>-5,0</td>
</tr>
<tr>
<td>Målt med Thetaprobe (korrigeret)</td>
<td>24,3</td>
<td>-3,3</td>
</tr>
</tbody>
</table>

Som det fremkommer av figur 36 og tabell 29, viser alle målemetoder en synkende trend gjennom sesongen. Avvikene mellom ulike målemetoder er på opptil 5 cm (tilsvarer ca 8 volum% vann). Som det fremkommer i tabellen er det godt samsvar mellom jordprøvene og de korrigerte verdiene for Thetaprobe. Profilproben viser litt for liten endring i vanninnhold
på granruten og litt for stor endring på bjørkeruten. Men både Profilprobe og Thetaprobe ser ut til å få med endring i fuktighet greit. Ut fra dette ser det ut til at måling med Profilprobe fungerer bedre når målinger fra flere dyp kan sees samlet, enn når enkelte dyp behandles separat.

5.6.5. Vannbalanse

For å kunne se nærmere på trærnes vannforbruk beregnes her endring i vanninnhold i jordas øvre 100 cm for begge rutene. Endring av jordas vanninnhold (ΔFukt) kan beskrives ved formel 21. For dette feltet er det grunn til å anta at tilsig av vann ikke finnes, da eventuelle vanntilsig er avskjært av grøfter. Evaporasjon antas her å være liten, da O-sjikt danner et isolerende og kapillærbrytende topplag på jorda. Samtidig gir trærne le og skygge, slik at fordamping blir liten inne i feltet. Det sees dermed bort fra disse faktorene i det videre. Dermed blir endring av jordas fuktighet en funksjon av nedbør som har nådd jordoverflaten, vegetasjonens transpirasjon og drenering. Jordens totale vanntap (transpirasjon og drenering) må i det videre behandles samlet, da ingen av disse verdiene er målt i forsøksfeltet.

\[\Delta Fukt = \text{Nedbør (nådd jordoverflaten)} - \text{Transpirasjon} - \text{Drenering} - \text{Evaporasjon} + \text{Tilsig} \]

Formel 21 Beregning av endring av jordas fuktighet.

Nedbør er kjent for ulike perioder, og fremstilles i figur 37, for både granrute, bjørkerute og åpent felt, samt fra Rygge. I det videre er det målt nedbør for den aktuelle rute som nyttes i beregningene. Dette innebærer at nedbør er korrigert for intersepsjon, siden målingene er utført ved bakkenivå inne på forsøksrutene.
Figur 37 Total nedbør i ulike perioder. Dette er faktisk, målt nedbør på det angitte sted. I forsøksfeltet er dette måling av nedbør som har nådd bakkenivå.

Det totale vanninnhold i jordas øvre 100 cm ved ulike tidspunkt er vist i tabell 30. Beregningsene baserer seg på at korrigert verdi for Thetaprobene på 0-6 cm dyp er gjeldene for dypet 0-10 cm, Thetaprobene på 18 cm nyttes for dypet 10-30 cm, mens Thetaprobene på 50 cm dyp nyttes for 30-60 cm dyp. For dypet 60-100 cm er det regnet med vannmetning dersom grunnvannsdypet er mindre enn 75 cm. Ved grunnvannsnivå mellom 75 og 90 cm brukes vanninnhold tilsvarende vanninnholdet i pF-prøvene fra 70 cm dyp, ved 7,5 cm sug (0,75 kPa). Tilsvarende 20 cm sug (2 kPa) ved grunnvannsstand dypere enn 90 cm.

Grunnvannsmåling for 24. mai finnes ikke, men Thetaprobene på 50 cm dyp viser vanninnhold nær metning. Det ifølge forutsettes derfor at dypet 60-100 cm er vannmettet denne dagen.

Tabell 30 cm vann i jordas øvre 100 cm ved ulike tidspunkt, på begge rutene.
På bakgrunn av beregnet vanninnhold i jordas øvre 100 cm til ulike tider, sammen med nedbør innholdt i de samme periodene, kan et daglig vanntap beregnes for de to rutene. Da vannledningsevne i dypere sjikt og infiltrasjonskapasitet er funnet å være nokså lik på begge rutene er det grunn til å anta at dreneringskapasiteten og dermed dreneringen er tilnærmet lik på begge rutene. Ved stor forskjell i uttørking vil drenering bli mindre der det er tørrere, slik at forskjell i totalt vanntap mellom rutene vil bli mindre mellom rutene enn forskjellen i trærnes transpirasjon, om denne er forskjellig mellom rutene. Det er derfor grunn til å anta at de forskjeller i vanntap som fremkommer mellom rutene skyldes forskjeller i trærnes vannforbruk. Beregnet daglig vann.tap er vist i figur 38. Det er aktuelt vanninnhold etter tabell 30 og aktuell, målt nedbør for den enkelte rute som danner grunnlaget for disse beregningene.

Figur 38 Daglig totalt vanntap fra jordens øvre 100 cm på begge ruter, i ulike perioder.

Som det vises i figuren, har bjørkeruten i alle perioder et høyere vanntap enn granruten. Størst er forskjellene mellom rutene i juli og august, da bjørkeruten har et daglig vanntap på 1-2 mm mer enn granruten. Granruten har sitt største vanntap i perioden 18.juni-2.juli, mens bjørkeruten har sitt største daglige vanntap i perioden 2.juli-24.juli. Ettersom grunnvannsstanden synker gjennom sommeren er det grunn til å anta at drenert vannmengde avtar ettersom jorda tørker ut utover sommeren. Det er derfor vanskelig å si noe sikkert om hvor mye av det totale vanntapet som her er vist, som skyldes trærnes transpirasjon. Men at bjørkeruten har en høyere transpirasjon enn granruten kan ut fra dette sies å være sikkert.
5.6.6. **Plantetilgjengelig vann**

Ettersom det aller meste av røttene på begge ruter befinner seg i dyp mindre enn 40 cm, vil det være av spesiell interesse å se på hvor mye fysisk tilgjengelig vann det kan være i jordas øvre 40 cm. Dette er fremstilt i figur 39.

![Figur 39 Mengde (cm) fysisk tilgjengelig vann i jordens øvre 40 cm.](image)

Som det fremkommer i figuren er lagringskapasiteten for totalt plantetilgjengelig vann omtrent lik (14,7 cm) for begge rutene i de øvre 40 cm av jorda. Men det er noe mer lett tilgjengelig vann på bjørkeruten enn på granruten, hvilket fremgår av den påviste strukturforskjell mellom rutene på dypet 30-40 cm.

Frisk rotvekst krever minimum 10% luft i jorda (McKyes 1985). Ved feltkapasitet er dette oppfylt ned til ca 40 cm dyp på bjørkeruten, men kun ned til ca 30 cm på granruten. Av den grunn skulle det være gode forhold for rotvekst til et større dyp på bjørkeruten enn på granruten. Om det ut fra dette beregnes at rotsonen på bjørkeruten går ned til 40 cm og på granruten ned til 30 cm, fremkommer det en total lagringskapasitet for plantetilgjengelig vann i rotsonen på bjørkeruten på 14,7 cm (hvorav 4,5 cm lett tilgjengelig), mens lagringskapasiteten vil være 12,4 cm på granruten (hvorav 3,4 cm lett tilgjengelig). Selv om dette er det dyp der det meste av trærnes røtter er, så er det også noe røtter på større dyp, hvilket medfører at også vanntilgang på større dyp vil være av betydning for trærne. Ut fra Thetaprobene på 50 cm dyp, er det tydelig at trærne også tar opp vann fra dette dypet, i alle fall på bjørkeruten.
Selv om bjørkeruten har en minst like stor lagringskapasitet for plantetilgjengelig vann i rotsonen, blir det mindre tilgjengelig vann i rotsonen her enn på granruten, som en følge av bjørkas større vannforbruk.

De her fremviste resulterer, med en sterkere uttørking av jorda på bjørkeruten enn på granruten stemmer ikke overens med Bråkehielms (1977) observasjoner av høyere vanninnhold i jord på bjørkefelt sammenliknet med granfelt. Grunnen til at det som her er observert ikke samsvarer med resultatene fra Bråkenhielm (1977), er antakelig at intersepsjonen på granruten hos han var vesentlig større enn hva som er observert her. Den vesentlig høyere intersepsjon som er observert hos Bråkenhielm, enn her, henger antakelig sammen med en annen fordeling av nedbørøvern gjennom sommeren. På feltet i Skiptvet var det på granruten 374 trær per daa, og stående stammevolum på 17 m³ per daa i 1996. På granruten til Bråkenhielm var det 193 trær per daa og 17 m³ per daa. Ut fra dette skulle det ikke forventes noen vesentlig større intersepsjonskapasitet på granskogen studert av Bråkenhielm, enn på granruten i Skiptvet. Hans observasjoner var fra tidlig i vekstsesongen (13. og 14. juni). Så tidlig i sesongen viser Thetaprobene at det også i det feltet som er undersøkt i denne oppgave er lite forskjell i jordens vanninnhold mellom granrute og bjørkerute. Tidlig i juni har ikke bjørk hatt et fult utviklet bladverk så lenge. Dette kan ha først til at gran har brukt mer vann enn bjørk frem til tidspunktet for måling av jordas vanninnhold, da gran har transpirasjonsapparatet intakt fra forrige år.

5.6.7. Bjørks effekt på vanntilgang for gran

Bjørk ser ut til å utnytte et større jordvolum for rotvekst enn gran, men på bakgrunn av dens høyere vannforbruk ser det ut til at det ikke blir mer tilgjengelig vann for gran, om det blandes inn bjørk i granbestand. Derimot kan den jordløsende effekt som bjørk her fremviser gjøre at gran får mulighet til å utvikle et dypere rotsystem på kompakt leirjord, dersom det har vært bjørk der før gran produseres. Alle undersøkelser og analyser som er gjort i forbindelse med denne oppgaven, og som viser at bjørk har en jordløsende effekt på dypet 30-40 cm er utført i kun et profil på hver av de to forsøksrutene. Det er derfor knyttet en usikkerhet til dette da det finnes muligheter for at de to profilene som er gravd ikke er representativ for forsøksrutene, selv om det ikke er gjort noen observasjoner som skulle tilsie at de ikke er representative. For å kunne fastslå om bjørk har en jordløsende effekt på leirjord, med stor sikkerhet, hadde det vært ønskelig med flere profil for prøvetaking på den enkelte forsøksrute, og flere tilsvarende
forsøksfelt. Men det har av hensyn til tilgjengelig tid ikke vært mulig å utføre mer omfattende undersøkelser i forbindelse med denne oppgave.

Der gran på leirjord er tørkeutsatt på grunn av et grundtgående rotsystem som følge av for høg jordtetthet, kan det på bakgrunn av dette se ut som at et omløp med bjørk før gran, kan gi gran muligheter for å utvikle et dypere rotsystem, og dermed bli mer tørkesterk. Nå må det her påpekes at det i dette arbeidet ikke er studert om gran faktisk vil utvikle et mer dyptgående rotsystem, selv om jorda løses opp av bjørk. Dette må derfor undersøkes nærmere før det kan gis noen anbefaling om å ha et omløp med mye bjørk før gran på kompakt, tørkeutsatt leirjord. Det er også nødvendig å undersøke hvor lenge den jordløsende effekt bjørk ser ut til å ha vil vare, om det er en effekt som kun varer noen få år, eller om effekten varer tilstrekkelig lenge til at gran i et etterfølgende omløp har mulighet til å utnytte den bedre den structuren. I hvilken grad gran eventuelt er i stand til å vedlikeholde en slik bedret struktur selv, eller om det etter en stund må inn bjørk på ny for å løse opp jorda igjen er ukjent. Videre er det et åpent spørsmål i hvilken grad det er tilstrekkelig med noe innblanding av bjørk i granbestand, eller om det må være tilnærmet rene bjørkebestand for å få en jordløsende effekt som vil være til nytte for gran. Samt at det er usikkert hvor lenge det må vokse bjørk på et område, før den har hatt tilstrekkelig med tid til å løse opp jorda så mye som er ønskelig. Bjørkene på dette feltet er i overkant av 30 år gamle (totalalder), hvilket har vist seg å være tilstrekkelig tid til at bjørk har påvirket jordas struktur betydelig.

Det må påpekes at det ikke har vært påvist tørkestress hos noen treslag på dette feltet. Jordas vanninnhold kom aldri ned mot visnegrensen for noen ruter eller dyp i perioden dette feltet ble fulgt opp.

5.7. **Samlet diskusjon**

På dette feltet med meget høg bonitet (G26), på siltig mellomleire med vegetasjonstypen småbregneskog, er det funnet at bjørk har dypere rotutvikling enn gran. En dypere rotutvikling på bjørkeruten enn på granruten fremkommer både ved rotmengdeangivelse i jordprofilet, og den senere rottelling. Spesielt i Bwg-sjiktet (30-40 cm dyp) er det funnet store forskjeller i rotmengde mellom rutene ved rottelling. Den større rotaktivitet i dette sjiktet på bjørkeruten resulterer i at sjiktet får større glødetap og høyere C-innhold, mens pH og basemetningsgraden blir lavere enn på granruten. En dypere rotutvikling hos bjørk enn gran,
er som forventet da gran er et treslag med flatrot, mens bjørk har hjerterot (Köstler et al. 1968).

Samtidig er det en vesentlig strukturforskjell på jorda mellom rutene i Bwg-sjiktet (30-40 cm dyp), der bjørkeruten har en løsere struktur i dette sjiktet enn granruten. Den påviste strukturforskjell fremkommer tydelig både ved profilbeskrivelse og de fysiske analysene av jorda. Denne strukturforskjellen resulterer i at jorda fra Bwg-sjiktet på bjørkeruten har mer aggregater i størrelsen 0,6-20 mm, lavere jordtetthet, mer fysisk tilgjengelig vann, større luftinnhold ved feltkapasitet, større luftpermeabilitet og mettet vannledningsevne enn jorden fra tilsvarende sjikt på granruten. Resultater fra pF-analysen viser at forskjellen mellom rutene i Bwg-sjiktet skyldes ulik struktur, da vanninnholdet i prøvene fra de to rutene er tilnærmet likt ved drenering ved høy sug, hvilket indikerer tilnærmet lik tekstur. Analysene av fysiske egenskaper i Bwg-sjiktet på bjørkeruten viser for mange av egenskapene verdier som er nærmere i Ap-sjiktet, mens Bwg-sjiktets egenskaper ligger nær underliggende, mer upåvirkede sjikt på granruten. Det antas derfor at strukturforskjellen mellom rutene i Bwg-sjiktet er et resultat av større rotaktivitet i dette dypet på bjørkeruten enn granruten. Dette underbygges videre av at sjiktgrensen mellom Ap- og Bwg-sjiktet er gradvis på bjørkeruten, men er skarp og plan på granruten.

Selv om det er forventet at gran skal danne et grunnere rotsystem enn bjørk, grunnet ulik rotype, er det her observert at enkelte av jordens fysiske egenskaper kan være begrensende for rotutviklingen på dette feltet. På dyp større enn 30 cm på bjørkeruten og 20 cm på granruten er luftinnholdet lavere ved feltkapasitet enn hva som beskrives som minste luftinnhold for frisk rotvekst (10%) av McKyes (1985). Samtidig er jordtettheten i disse dypene høyere enn hva som er registrert som maksimal jordtetthet for vekst av granrøtter (1,5

Det er særlig i Bwg-sjikt (30-40 cm) det er observert forskjeller i jordens egenskaper på disse to rutene. Verken i overliggende eller underliggende sjikt er klare forskjeller påvist mellom rutene ved analysene.

Målinger som er utført med Thetaprober og Profilprobe, og sammenliknet med vanninnhold i utatte jordprover viser at Profilproben er omfintlig for uregelmessigheter rundt målerøret. Dette gir seg utslag i store endringer i avlest verdi ved rotering av føleren, selv om jorden er meget homogen. Samtidig viste instrumentet til dels meget gale verdier for ett rør (målerør nr. 2 på bjørkeruten), hvilket antakelig skyldes luftlommer mellom målerør og jord. Måling av jordas vanninnhold på enkelte dyp gir store avvik. Men når vanninnhold i flere dyp kan sees samlet, gir instrumentet akseptable verdier. På granruten virket Profilproben til å respondere dårlig på endringer i jordas vanninnhold. Thetaprobene responderer derimot meget godt på endringer i jordas vanninnhold, og gir med standard kalibreringsfunksjon akseptable måleverdier i mineraljord. I den organiske jorden gav standard kalibreringsfunksjon for organisk jord et for høyt vanninnhold ved måling med Thetaprober. Egne kalibreringsfunksjoner for organisk jord har derfor vært nødvendige å utarbeide for å få akseptable verdier i den organiske jorden. Måling av jordtemperatur viser at bjørkeruten systematisk har 0,4-0,7°C lavere jordtemperatur enn granruten for alle dyp, en forskjell som antas å skyldes en systematisk feil i måleutstyret.

Det har vært en sterke uttørking av jorden på bjørkeruten enn på granruten, spesielt i månedene juli og august. Ved å se på jordens vanninnhold til ulike tider i forhold til nedbør som har nådd bakkenivå på de to rutene, er det funnet at daglig vanntap fra jorden er større på bjørkeruten enn på granruten. Da det ikke er noe som skulle tilsi at dreneringen fra bjørkeruten er større enn på granruten, forklaras denne forskjellen med forskjeller i trærnes transpirasjon. Selv om det er et underbestand av gran på bjørkeruten, så virker det her til at bjørk har en høyere transpirasjon enn gran på bestandsnivå. På bakgrunn av at bjørk er beskrevet med en transpirasjon som er vesentlig større enn gran i forhold til bladmengde (undersøkelser referert av Kramer & Kozlowski (1979) og Larcher (1975)), er ikke dette

Grunnet høyere transpirasjon hos bjørk enn gran, ser det ut fra dette ut som det blir mindre tilgjengelig vann i jorda for gran der den vokser sammen med bjørk. Den jordløsende effekt som det her ser ut til at bjørk har på tett leirjord, kan gi gran grunnlag for å danne et dypere rotsystem der det vokser bjørk, eller har vokst bjørk, om for tett jord er årsaken til et grunt rotsystem. Om gran faktisk vil danne et dypere rotsystem om jorden løses opp, er her ikke undersøkt. Det er ikke observert tørkestress på noe treslag i dette feltet, og vanninnhold kom ikke ned mot visnegrense for noe sjikt i jorden på noen av rutene.
6. Konklusjon

Det er funnet at bjørk har et større vannforbruk enn gran, særlig i juli og august, da bjørkeruten har et daglig vanntap som er 1-2 mm større per dag fra jordas øvre 100 cm enn granruten. Dette medfører at jorda på bjørkeruten blir tørrere enn på granruten.

Utover den forskjellen som er mellom gran og bjørks vannforbruk, kan det se ut til at bjørk har en evne til å trenge dypere ned med røttene. Dette viser seg som store forskjeller mellom rutene på dypet 30-40 cm (Bwg-sjikt). På dette dypet er pH og basemetningsgrad lavere; pH 0,5 enheter lavere og basemetning er 3,5% på bjørkeruten mot 32,2% på granruten. Totalt C-innhold er høyere på bjørkeruten (2,2%) enn på granruten (0,4%), hvilket tyder på en høyere rotaktivitet i dette dypet på bjørkeruten enn på granruten. Dette bekreftes av rottellinger som viser mer røtter i dette dypet på bjørkeruten (0,7cm/cm³) enn granruten (0,2 cm/cm³). Den større rotaktivitet på bjørkeruten på dypet 30-40 cm kan forklare den store forskjell mellom rutene i jordas struktur som er observert på dette dypet. Strukturforskjellen gir tydelige utslag på mange andre av jordens fysiske egenskaper. Aggregatstørrelsesfordeling er meget forskjellig mellom rutene for dette dypet. Porevolum er betydelig større for bjørkeruten (59%) enn granruten (41%) for dette dypet og jordtetthet på bjørkeruten er 1,0 g/cm³ mot 1,6 g/cm³ på granruten. Dette resulterer i et større volum av luftfylte porer ved feltkapasitet samtidig som det er større mengde plantetilgjengelig vann i dette dypet på bjørkeruten (10,4% luftfylte porer og 35 mm totalt fysisk tilgjengelig vann) sammenliknet med granruten (6,3% luftfylte porer og 24 mm totalt fysisk tilgjengelig vann).

For dyp mindre enn 30 cm og større enn 40 cm, ser det ut til at det er lite klare forskjeller i jordens fysiske egenskaper mellom rutene.
7. Litteratur

Alavi, G., 2002: The impact of soil moisture on stem growth of spruce forest during a 22-year period. Forest Ecology and Management 166, 17-33

Brække, F.H., 2002: Lys, vann og næring –prinsipper og samspill i skogen. Kompendium, Institutt for skogfag, NLH, Ås, 80 s

Böhm, W., 1979: Methods of studying root systems. Ecological Studies 33, 188 s

Børresen, T., 1997: Jordfysikk øvelseskurs JF221, felt og laboratorieøvelser. Institutt for jord- og vannfag, NLH, Ås, 34 s

Børset, O., 1985: Skogskjøtsel, del 1 – Skogøkologi. Landbruksforlaget, Oslo, 494 s

Delta-T, 1995: User manual for Theta probe soil moisture sensor, type ML1, ML1-UM-1. Delta-T Devices Ltd., Cambridge, 16 s

Delta-T, 2002: User manual for the moisture meter, type HH2, version 2. Delta-T Devices Ltd., Cambridge, 126 s

Eijkelkamp, udatert: Sandbox and pressure membrane apparatus for soil moisture characteristics determination. Eijkelkamp agrisearch equipment, Giesbeek, 36 s

FAO-Unesco, 1990: Soil map of the world, Revised legend. World Soil Resources Report 60, 140 s

Findlay, 1979: Instruction manual for use of bush recording penetrometer, Mark I model. Findlay, Irvine Limited, Midlothian. 18 s + Vedlegg

Fitje, A., 1989: Tremåling. Landbruksforlaget, Oslo, 190 s

Greve, M.H., Sperstad, R. & Nyborg, Å., 1999: Retningslinjer for beskrivelse av jordprofil, Versjon 1.0. Norsk institutt for jord- og skogkartlegging, NIJOS rapport 37/99, Ås, 121 s

Johansson, T., 1999: Biomass equations for determining fractions of pendula and pubescent birches growing on abandoned farmland and some practical implications. Biomass and Bioenergy 16, 223-238

Krogstad, T., 1992: Metoder for jordanalyser. Institutt for jordfag, NLH, Ås, Rapport 6/92, 31 s

Krogstad, T., 1998: Metoder til kurset JF 212 jordanalyser, Tillegg til ”metoder for jordanalyser” (Krogstad 1992). Institutt for jord og vannfag, NLH, Ås, 15 s

Larcher, W., 1995: Physiological plant ecology. Springer-Verlag, Berlin; Heidelberg, 506 s

Larson, J.Y. & Søgren, S.M., 2003: Vegetasjon i norsk skog, vekstvilkår og skogforvaltning. Landbruksforlaget, Oslo, 256 s

Martinsson, O., 2002: Björk och gran. Sammanställning av kunskap rörande skötsel, ekologi och economi av blandskog av björk och gran. Institutionen för skogskötsel, Rapporter 53, 45 s

Masatada, O. & Takehara, H., 1970: Revised standard soil color charts. Eijkelkamp (distributør), Giesbeek, 92 s

Mosbye, J.E., 1994: Effekten av favorisering av gran eller björk på noen jordbunnsparametere ved et forsøksfelt i Skiptvedt. Hovedoppgave ved Norges landbrukshøgskole, Ås, 65 s

Soilmoisture, 1986: 2800KI Operating instructions, Guelph permeameter. Soilmoisture equipment corp., Santa Barbara, 28 s

Thurmann-Moe, P., 1941: Om skogens innflytelse på jordens vannforråd, med spesielle undersøkelser over dens drenerende evne. Jordundersøkelsenes småskrift nr.27, Johansen & NIELSENS BOKTRYKKERI, Oslo, 84 s

Vestjordet, E., 1967: Funksjoner og tabeller for kubering av stående gran. Meddelelser fra Det norske skogforsøksvesen 22, 539-574

Vedlegg

Rådata fra fysiske og kjemiske analyser utført på jorden ligger her som vedlegg. Videre er også posisjoneringsdata, rådata fra Profilproben, sammen med registrert nedbør og grunnvannsstand lagt ved. I enkelte av vedleggene nyttes rutenummer isteden for rutenavn, da betegner rute nr. 66 bjørkeruten og 69 granruten.

Data er lagt ved i følgende rekkefølge:

- Posisjonering: Vedlegg 1
- Rådata fra pF-analysen: Vedlegg 2
- Målinger på pF-prøvene ved pF2: Vedlegg 3
- Jordtettethet: Vedlegg 4
- Måling med Guelph-permeameter: Vedlegg 5
- Rådata fra måling av mettet vannledningsevne: Vedlegg 6
- Aggregatstørrelsesfordeling: Vedlegg 7
- Rottellinger: Vedlegg 8
- Nedbør og grunnvannsnivå: Vedlegg 9
- Profilprobe: Vedlegg 10
- Fuktighetsprøver: Vedlegg 11
- Rådata fra kjemiske analyser: Vedlegg 12
Vedlegg 1

Posisjonering

Resultat av posisjonering med GPS er vist i tabellen, Som UTM koordinater i sone 32, på nordlig halvkule, etter EUREF 89, og etter NGO, akse III. Punktnummer er betegnelse av forsøksrutenes hjørner, i henhold til nummerering av rutenes 5-metersmerker.

Posisjonering. Koordinater fra innmåling av jordprofil og forsøksrutenes hjørner med GPS.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Punkt nr.</th>
<th>UTM32N</th>
<th>NGO 48 C/III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nord (m) Øst (m)</td>
<td>Nord (m) Øst (m)</td>
</tr>
<tr>
<td>066-Bjørk</td>
<td>11</td>
<td>6601544 621381</td>
<td>170909 24228</td>
</tr>
<tr>
<td>066-Bjørk</td>
<td>16</td>
<td>6601573 621381</td>
<td>170938 24228</td>
</tr>
<tr>
<td>066-Bjørk</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>066-Bjørk</td>
<td>66</td>
<td>6601569 621407</td>
<td>170933 24254</td>
</tr>
<tr>
<td>066-Bjørk</td>
<td>Profil</td>
<td>6601562 621399</td>
<td>170927 24246</td>
</tr>
<tr>
<td>069-Gran</td>
<td>11</td>
<td>6601515 621383</td>
<td>170880 24229</td>
</tr>
<tr>
<td>069-Gran</td>
<td>16</td>
<td>6601540 621380</td>
<td>170905 24227</td>
</tr>
<tr>
<td>069-Gran</td>
<td>61</td>
<td>6601515 621406</td>
<td>170880 24252</td>
</tr>
<tr>
<td>069-Gran</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>069-Gran</td>
<td>Profil</td>
<td>6601534 621394</td>
<td>170898 24240</td>
</tr>
</tbody>
</table>

Bjørkerutens sørøstre hjørne (61) og granrutens nordøstre hjørne (66) lot seg ikke stedfeste, da vegetasjonen var så tett at den sperret for signalene fra satellittene. Den tette skogen gjorde at det var problematisk å få inn korreksjonssignaler til målingene.
Rådata fra pF-analyse

Rådata fra pF-analysen presenteres her som bruttovekter av prøvene etter drenering ved forskjellige sug, og tørring. Vedleggstabell 1 og 2 inneholder verdier målt på prøver i stålsylinder, mens vedleggstabell 3 inneholder verdiene målt på løs jord etter drenering ved 1500 kPa.

Vedleggstabell 1 Rådata fra pF-analyse på sylinderprøver av jord fra bjørkeruten

<table>
<thead>
<tr>
<th>Sug (kPa) -></th>
<th>Mettet</th>
<th>0,75</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>300 Tørr</th>
<th>Tara</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>761</td>
<td>5 O</td>
<td>255,9</td>
<td>245,1</td>
<td>240,3</td>
<td>230,2</td>
<td>220,0</td>
<td>207,2</td>
<td>202,7</td>
<td>199,1</td>
</tr>
<tr>
<td>1157</td>
<td>5 O</td>
<td>249,1</td>
<td>227,6</td>
<td>219,9</td>
<td>211,0</td>
<td>204,4</td>
<td>199,7</td>
<td>197,3</td>
<td>194,6</td>
</tr>
<tr>
<td>931</td>
<td>5 O</td>
<td>262,1</td>
<td>249,3</td>
<td>243,8</td>
<td>236,7</td>
<td>229,1</td>
<td>220,1</td>
<td>216,8</td>
<td>214,7</td>
</tr>
<tr>
<td>896</td>
<td>15 Ap</td>
<td>304,7</td>
<td>301,5</td>
<td>299,9</td>
<td>295,6</td>
<td>290,9</td>
<td>283,4</td>
<td>279,7</td>
<td>276,8</td>
</tr>
<tr>
<td>218</td>
<td>15 Ap</td>
<td>294,0</td>
<td>292,1</td>
<td>290,8</td>
<td>287,2</td>
<td>282,6</td>
<td>273,5</td>
<td>268,9</td>
<td>263,5</td>
</tr>
<tr>
<td>595</td>
<td>15 Ap</td>
<td>303,9</td>
<td>302,3</td>
<td>300,5</td>
<td>295,1</td>
<td>289,5</td>
<td>279,8</td>
<td>275,6</td>
<td>272,8</td>
</tr>
<tr>
<td>1009</td>
<td>25 Ap</td>
<td>318,4</td>
<td>315,2</td>
<td>314,2</td>
<td>311,4</td>
<td>309,1</td>
<td>303,8</td>
<td>300,1</td>
<td>294,4</td>
</tr>
<tr>
<td>880</td>
<td>25 Ap</td>
<td>310,3</td>
<td>307,4</td>
<td>305,6</td>
<td>302,3</td>
<td>299,5</td>
<td>292,9</td>
<td>288,6</td>
<td>281,2</td>
</tr>
<tr>
<td>98</td>
<td>25 Ap</td>
<td>304,5</td>
<td>301,0</td>
<td>299,4</td>
<td>296,8</td>
<td>294,3</td>
<td>288,7</td>
<td>284,6</td>
<td>277,2</td>
</tr>
<tr>
<td>540</td>
<td>35 Bwg</td>
<td>301,5</td>
<td>298,3</td>
<td>295,4</td>
<td>292,3</td>
<td>289,8</td>
<td>283,4</td>
<td>279,8</td>
<td>275,2</td>
</tr>
<tr>
<td>1001</td>
<td>35 Bwg</td>
<td>313,6</td>
<td>310,7</td>
<td>309,1</td>
<td>306,4</td>
<td>304,3</td>
<td>297,7</td>
<td>294,3</td>
<td>288,8</td>
</tr>
<tr>
<td>1030</td>
<td>35 Bwg</td>
<td>319,7</td>
<td>316,8</td>
<td>314,0</td>
<td>311,3</td>
<td>309,5</td>
<td>303,9</td>
<td>300,8</td>
<td>295,6</td>
</tr>
<tr>
<td>824</td>
<td>50 BCg</td>
<td>356,0</td>
<td>353,9</td>
<td>353,1</td>
<td>352,8</td>
<td>352,3</td>
<td>351,2</td>
<td>350,5</td>
<td>350,6</td>
</tr>
<tr>
<td>1541</td>
<td>50 BCg</td>
<td>353,1</td>
<td>352,0</td>
<td>351,2</td>
<td>350,7</td>
<td>350,3</td>
<td>349,2</td>
<td>348,5</td>
<td>348,6</td>
</tr>
<tr>
<td>95</td>
<td>50 BCg</td>
<td>353,2</td>
<td>351,6</td>
<td>350,9</td>
<td>350,4</td>
<td>350,0</td>
<td>348,7</td>
<td>348,0</td>
<td>347,9</td>
</tr>
<tr>
<td>92</td>
<td>70 Cg</td>
<td>350,5</td>
<td>347,4</td>
<td>346,3</td>
<td>345,9</td>
<td>345,5</td>
<td>344,1</td>
<td>343,5</td>
<td>343,6</td>
</tr>
<tr>
<td>394</td>
<td>70 Cg</td>
<td>365,8</td>
<td>362,3</td>
<td>361,1</td>
<td>360,5</td>
<td>359,7</td>
<td>357,6</td>
<td>356,5</td>
<td>356,5</td>
</tr>
<tr>
<td>656</td>
<td>70 Cg</td>
<td>360,3</td>
<td>357,6</td>
<td>356,7</td>
<td>356,4</td>
<td>356,2</td>
<td>355,1</td>
<td>354,5</td>
<td>354,7</td>
</tr>
</tbody>
</table>
Vedlegg 2

Vedleggstabell 2 Rådata fra pF-analyse på sylinderprøver av jord fra granruten

<table>
<thead>
<tr>
<th>Sylinder nr</th>
<th>Dyp (cm)</th>
<th>Sjikt</th>
<th>Bruttovekt (g) av sylindrene ved pF-analyse av jord fra granruten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mettet 0,75 2 5 10 50 100 300 Tørr Tara</td>
</tr>
<tr>
<td>1547</td>
<td>5 O</td>
<td>257,0</td>
<td>252,4 246,9 238,7 230,3 223,5 221,9 220,4 170,5 153,7</td>
</tr>
<tr>
<td>786</td>
<td>5 O</td>
<td>256,1</td>
<td>244,0 237,4 228,8 222,4 216,6 213,1 210,4 167,6 153,9</td>
</tr>
<tr>
<td>52</td>
<td>5 O</td>
<td>251,6</td>
<td>245,4 234,3 222,6 213,0 202,9 201,1 199,8 159,9 147,3</td>
</tr>
<tr>
<td>702</td>
<td>15 Ap</td>
<td>306,3</td>
<td>304,0 303,5 299,2 294,6 285,7 282,0 283,0 245,0 153,6</td>
</tr>
<tr>
<td>261</td>
<td>15 Ap</td>
<td>297,4</td>
<td>295,5 294,1 291,5 287,6 276,3 272,6 273,6 233,9 142,7</td>
</tr>
<tr>
<td>290</td>
<td>15 Ap</td>
<td>299,4</td>
<td>298,4 297,8 296,4 293,1 285,1 281,8 282,9 241,1 142,2</td>
</tr>
<tr>
<td>1161</td>
<td>25 Ap</td>
<td>311,8</td>
<td>310,3 309,6 306,6 304,5 296,9 293,1 286,4 253,9 151,9</td>
</tr>
<tr>
<td>502</td>
<td>25 Ap</td>
<td>298,4</td>
<td>296,6 295,2 291,6 288,8 280,7 278,3 274,8 240,0 142,2</td>
</tr>
<tr>
<td>87</td>
<td>25 Ap</td>
<td>296,8</td>
<td>294,9 293,5 290,4 287,9 281,1 277,9 274,0 240,9 141,6</td>
</tr>
<tr>
<td>1292</td>
<td>35 Bwg</td>
<td>354,4</td>
<td>351,0 349,2 348,1 347,5 345,7 345,0 340,8 311,8 152,5</td>
</tr>
<tr>
<td>1373</td>
<td>35 Bwg</td>
<td>365,0</td>
<td>362,4 361,3 360,1 359,5 357,9 357,4 354,5 325,1 154,8</td>
</tr>
<tr>
<td>592</td>
<td>35 Bwg</td>
<td>352,7</td>
<td>348,9 347,7 346,7 346,2 344,4 343,8 340,5 311,6 153,7</td>
</tr>
<tr>
<td>1123</td>
<td>50 BCg</td>
<td>356,9</td>
<td>355,2 354,0 353,3 352,9 351,2 350,6 348,6 318,0 159,6</td>
</tr>
<tr>
<td>673</td>
<td>50 BCg</td>
<td>357,2</td>
<td>355,1 354,3 353,7 353,4 351,9 351,3 349,5 318,6 155,0</td>
</tr>
<tr>
<td>496</td>
<td>50 BCg</td>
<td>355,2</td>
<td>352,1 351,0 350,3 349,9 348,2 347,4 345,6 313,2 149,5</td>
</tr>
<tr>
<td>1075</td>
<td>70 Cg</td>
<td>354,5</td>
<td>350,6 349,3 348,0 347,3 345,0 344,3 342,0 308,0 153,9</td>
</tr>
<tr>
<td>1018</td>
<td>70 Cg</td>
<td>350,2</td>
<td>347,1 346,3 345,4 344,8 343,9 342,3 340,1 305,9 153,5</td>
</tr>
<tr>
<td>1206</td>
<td>70 Cg</td>
<td>352,5</td>
<td>349,3 348,2 347,4 346,9 344,9 344,0 342,1 308,3 153,0</td>
</tr>
</tbody>
</table>
Vedleggstabell 3 Rådata fra pF-analyse på løs jord ved pF 4,2

<table>
<thead>
<tr>
<th>Dyp (cm)</th>
<th>Sjikt</th>
<th>Taravekt (g)</th>
<th>Drenert bruttovekt (g)</th>
<th>Tørr bruttovekt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bjørkerute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>18,99</td>
<td>36,52</td>
<td>34,58</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>18,6</td>
<td>36,62</td>
<td>34,41</td>
</tr>
<tr>
<td></td>
<td>5 O</td>
<td>18,08</td>
<td>22,9</td>
<td>21,42</td>
</tr>
<tr>
<td></td>
<td>5 O</td>
<td>18,21</td>
<td>23,16</td>
<td>21,6</td>
</tr>
<tr>
<td></td>
<td>15 Ap</td>
<td>18,59</td>
<td>29,93</td>
<td>28,77</td>
</tr>
<tr>
<td></td>
<td>15 Ap</td>
<td>18,45</td>
<td>33,83</td>
<td>32,25</td>
</tr>
<tr>
<td></td>
<td>25 Ap</td>
<td>18,02</td>
<td>33,94</td>
<td>32,36</td>
</tr>
<tr>
<td></td>
<td>25 Ap</td>
<td>17,81</td>
<td>29,84</td>
<td>28,65</td>
</tr>
<tr>
<td></td>
<td>35 Bwg</td>
<td>17,8</td>
<td>32,94</td>
<td>31,1</td>
</tr>
<tr>
<td></td>
<td>35 Bwg</td>
<td>17,79</td>
<td>32,86</td>
<td>31,04</td>
</tr>
<tr>
<td></td>
<td>50 BCg</td>
<td>17,8</td>
<td>41,84</td>
<td>39,4</td>
</tr>
<tr>
<td></td>
<td>50 BCg</td>
<td>17,8</td>
<td>41,81</td>
<td>39,37</td>
</tr>
<tr>
<td></td>
<td>70 Cg</td>
<td>17,79</td>
<td>43,52</td>
<td>39,85</td>
</tr>
<tr>
<td></td>
<td>70 Cg</td>
<td>17,8</td>
<td>41,67</td>
<td>38,27</td>
</tr>
<tr>
<td></td>
<td>Granrute</td>
<td>18,19</td>
<td>37,34</td>
<td>35,29</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>18,38</td>
<td>37,69</td>
<td>35,41</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>18,38</td>
<td>37,69</td>
<td>35,41</td>
</tr>
<tr>
<td></td>
<td>5 O</td>
<td>18,31</td>
<td>22,52</td>
<td>20,62</td>
</tr>
<tr>
<td></td>
<td>5 O</td>
<td>17,8</td>
<td>22,62</td>
<td>20,42</td>
</tr>
<tr>
<td></td>
<td>15 Ap</td>
<td>18,34</td>
<td>34,79</td>
<td>33,21</td>
</tr>
<tr>
<td></td>
<td>15 Ap</td>
<td>17,94</td>
<td>34,89</td>
<td>33,25</td>
</tr>
<tr>
<td></td>
<td>25 Ap</td>
<td>18,1</td>
<td>35,66</td>
<td>33,99</td>
</tr>
<tr>
<td></td>
<td>25 Ap</td>
<td>18,18</td>
<td>34,18</td>
<td>32,67</td>
</tr>
<tr>
<td></td>
<td>35 Bwg</td>
<td>17,63</td>
<td>44,37</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>35 Bwg</td>
<td>17,9</td>
<td>42,54</td>
<td>40,91</td>
</tr>
<tr>
<td></td>
<td>50 BCg</td>
<td>18,04</td>
<td>42,07</td>
<td>39,7</td>
</tr>
<tr>
<td></td>
<td>50 BCg</td>
<td>17,86</td>
<td>42,63</td>
<td>40,17</td>
</tr>
<tr>
<td></td>
<td>70 Cg</td>
<td>18,19</td>
<td>39,46</td>
<td>37,07</td>
</tr>
<tr>
<td></td>
<td>70 Cg</td>
<td>18,03</td>
<td>39,55</td>
<td>37,14</td>
</tr>
</tbody>
</table>
Måling på pF-prøvene ved pF2

Rådata fra måling av krymping, luftinnhold og luftgjennomstrømning ved pF2 (etter drenering ved 10 kPa) er vist i vedleggstabell 4 og 5. I tillegg er det overtrykk som luftgjennomstrømning er målt ved angitt.

Vedleggstabell 4 Rådata fra måling på pF-prøvene fra bjørkeruten ved pF2

<table>
<thead>
<tr>
<th>Sjikt (Dyp, cm)</th>
<th>Sylinder nr</th>
<th>Luftpermeabilitet L/min</th>
<th>Bjørkerute Luftinnhold Avlest trykk mBar</th>
<th>Krymping mm</th>
<th>Lengderetning</th>
<th>1. Gjentak</th>
<th>2. Gjentak</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (5)</td>
<td>761</td>
<td>25</td>
<td>0,4</td>
<td>1,95</td>
<td>388</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>O (5)</td>
<td>1157</td>
<td>25</td>
<td>0,4</td>
<td>2,5</td>
<td>355</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>O (5)</td>
<td>931</td>
<td>25</td>
<td>0,9</td>
<td>2,55</td>
<td>379</td>
<td>378</td>
<td></td>
</tr>
<tr>
<td>Ap (15)</td>
<td>896</td>
<td>2</td>
<td>0,4</td>
<td>459</td>
<td>456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap (15)</td>
<td>218</td>
<td>0,46</td>
<td>2</td>
<td>471</td>
<td>467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap (15)</td>
<td>595</td>
<td>8</td>
<td>2</td>
<td>445</td>
<td>449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap (25)</td>
<td>1009</td>
<td>7</td>
<td>2</td>
<td>488</td>
<td>487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap (25)</td>
<td>880</td>
<td>1</td>
<td>2</td>
<td>468</td>
<td>467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ap (25)</td>
<td>98</td>
<td>0,6</td>
<td>2</td>
<td>469</td>
<td>472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bwg (35)</td>
<td>540</td>
<td>1,5</td>
<td>2</td>
<td>452</td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bwg (35)</td>
<td>1001</td>
<td>2</td>
<td>2</td>
<td>478</td>
<td>479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bwg (35)</td>
<td>1030</td>
<td>1,4</td>
<td>2</td>
<td>488</td>
<td>491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCg (50)</td>
<td>824</td>
<td>0,1</td>
<td>2</td>
<td>531</td>
<td>531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCg (50)</td>
<td>1541</td>
<td>0,1</td>
<td>2</td>
<td>524</td>
<td>525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCg (50)</td>
<td>95</td>
<td>0,14</td>
<td>2</td>
<td>535</td>
<td>538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg (70)</td>
<td>92</td>
<td>0,1</td>
<td>2</td>
<td>542</td>
<td>541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg (70)</td>
<td>394</td>
<td>0,1</td>
<td>2</td>
<td>580</td>
<td>582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cg (70)</td>
<td>654</td>
<td>0,1</td>
<td>2</td>
<td>537</td>
<td>538</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vedleggstabell 5
Rådata fra måling på pF-prøvene fra granruten ved pF2

<table>
<thead>
<tr>
<th>Sjikt (Dyp, cm)</th>
<th>Sylinder nr</th>
<th>Luftpermeabilitet</th>
<th>Krymping</th>
<th>Luftinnhold</th>
<th>Avlest trykk mBar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L/min</td>
<td>kPa</td>
<td>mm</td>
<td>L/min</td>
</tr>
<tr>
<td>O (5)</td>
<td>1547</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>405</td>
</tr>
<tr>
<td>O (5)</td>
<td>786</td>
<td>24</td>
<td>2</td>
<td>1,2</td>
<td>376</td>
</tr>
<tr>
<td>O (5)</td>
<td>52</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>369</td>
</tr>
</tbody>
</table>

Ap (15)	702	2	2	0	468
Ap (15)	261	0,5	2	0	484
Ap (15)	290	0,4	2	0	489

Ap (25)	1161	0,8	2	0	491
Ap (25)	502	2,6	2	0	469
Ap (25)	87	2	2	0	463

Bwg (35)	1292	0,1	2	0	516
Bwg (35)	1373	0,2	2	0	535
Bwg (35)	592	0,14	2	0	508

BCg (50)	1123	0,12	2	0	520
BCg (50)	673	0,22	2	0	524
BCg (50)	496	0,1	2	0	534

Cg (70)	1075	0,12	2	0	529
Cg (70)	1018	0,14	2	0	522
Cg (70)	1206	0,12	2	0	525
Jordtetthet

Tørr nettovekt av alle jordsylindrene som danner grunnlag for beregning av jordtetthet for ulike sjikt og dyp er vist i vedleggstabell 6. Sylindrenes volum er 100 cm³.

Vedleggstabell 6 Tørr nettovekt av 100 cm³ jordsylindre brukt for bestemmelse av jordtetthet.

<table>
<thead>
<tr>
<th>Sjikt</th>
<th>O</th>
<th>Ap</th>
<th>Ap</th>
<th>Bwg</th>
<th>BCg</th>
<th>Cg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyp (cm)</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>35</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>13,24</td>
<td>88,85</td>
<td>100</td>
<td>103,44</td>
<td>166</td>
<td>152,68</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>16,63</td>
<td>81,83</td>
<td>105,04</td>
<td>96,01</td>
<td>161,53</td>
<td>163,52</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>15,02</td>
<td>90,16</td>
<td>98,73</td>
<td>97,15</td>
<td>159,14</td>
<td>163,32</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>13,5</td>
<td>76,86</td>
<td>96,24</td>
<td>98,22</td>
<td>162,6</td>
<td>168,71</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>16,15</td>
<td>79,71</td>
<td>119,37</td>
<td>106</td>
<td>162,54</td>
<td>157,59</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>20,6</td>
<td>104,5</td>
<td>105,8</td>
<td>166,95</td>
<td>165,27</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>13,25</td>
<td>90,54</td>
<td>105,92</td>
<td>159,29</td>
<td>158,35</td>
<td>153,82</td>
</tr>
<tr>
<td>Granrute</td>
<td>16,8</td>
<td>91,4</td>
<td>102,03</td>
<td>158,9</td>
<td>161,07</td>
<td>154,07</td>
</tr>
<tr>
<td>Granrute</td>
<td>15,13</td>
<td>91,87</td>
<td>104,64</td>
<td>170,26</td>
<td>163,57</td>
<td>151,17</td>
</tr>
<tr>
<td>Granrute</td>
<td>13,65</td>
<td>91,23</td>
<td>97,76</td>
<td>144,12</td>
<td>155,83</td>
<td>152,35</td>
</tr>
<tr>
<td>Granrute</td>
<td>13,23</td>
<td>91,35</td>
<td>102,44</td>
<td>157,94</td>
<td>163,66</td>
<td>161,54</td>
</tr>
<tr>
<td>Granrute</td>
<td>12,63</td>
<td>98,85</td>
<td>99,25</td>
<td>155,29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Måling med Guelph-permeameter

Avlest vanntap (cm) fra magasinet (35,39 cm²) på Guelph-permeameteret ved ulike tider er vist i vedleggsfigur 7. Det er målt i 50 cm dypt hull med 10 cm vannoverhøyde.

Vedleggstabell 7 Avlest vanntap på Guelph-permeameter ved ulike tidspunkt. Angitt tid er total tid fra analysen startet.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Avlesning nr</th>
<th>Tid (minutter)</th>
<th>Magasin (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørk</td>
<td>1</td>
<td>0</td>
<td>5,5</td>
</tr>
<tr>
<td>Bjørk</td>
<td>2</td>
<td>24</td>
<td>7,6</td>
</tr>
<tr>
<td>Bjørk</td>
<td>3</td>
<td>34</td>
<td>8,5</td>
</tr>
<tr>
<td>Bjørk</td>
<td>4</td>
<td>44,25</td>
<td>9,4</td>
</tr>
<tr>
<td>Bjørk</td>
<td>5</td>
<td>57</td>
<td>10,3</td>
</tr>
<tr>
<td>Bjørk</td>
<td>6</td>
<td>82</td>
<td>12,3</td>
</tr>
<tr>
<td>Gran</td>
<td>1</td>
<td>0</td>
<td>4,7</td>
</tr>
<tr>
<td>Gran</td>
<td>2</td>
<td>19,5</td>
<td>7,1</td>
</tr>
<tr>
<td>Gran</td>
<td>3</td>
<td>42</td>
<td>8,9</td>
</tr>
<tr>
<td>Gran</td>
<td>4</td>
<td>61,5</td>
<td>10,2</td>
</tr>
<tr>
<td>Gran</td>
<td>5</td>
<td>68,5</td>
<td>10,7</td>
</tr>
</tbody>
</table>
Rådata fra måling av mettet vannledningsevne

Rådata fra måling av mettet vannledningsevne ved fallende gradient er vist i vedleggstabell 8-10 for prøver fra granruten og i vedleggstabell 11 og 12 for prøver fra bjørkeruten. Samtlige målinger, og avlesninger for den enkelte prøve er angitt. Det er store variasjoner i antall avlesninger, antall repetisjoner og tid mellom avlesningene mellom forskjellige prøver grunnet store variasjoner i vannledningsevne mellom prøvene. Den angitte totale tid, er tid i sekunder fra registrert vannoverhøyde start til registrert vannoverhøyde slutt. For prøver med liten vannjønndromstrømning kan høyde start være lik høyde slutt, der måletiden er liten.

<table>
<thead>
<tr>
<th>Dyp</th>
<th>Sjikt</th>
<th>Sylinder nr</th>
<th>Høyde start</th>
<th>Høyde slutt</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 O</td>
<td>84</td>
<td>20</td>
<td>15</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>84</td>
<td>15</td>
<td>10</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>84</td>
<td>10</td>
<td>5</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>84</td>
<td>20</td>
<td>15</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>84</td>
<td>15</td>
<td>10</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>84</td>
<td>20</td>
<td>15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>84</td>
<td>15</td>
<td>10</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>20</td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>20</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>15</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>10</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>20</td>
<td>15</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>15</td>
<td>10</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1202</td>
<td>10</td>
<td>5</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Vedlegg 6

Vedleggstabell 9 Rådata fra måling av mettet vannledningsevne på prøver fra granruten.

<table>
<thead>
<tr>
<th>Granrute</th>
<th>Dyp</th>
<th>Sjikt</th>
<th>Sylinder nr</th>
<th>Høyde start</th>
<th>Høyde slutt</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>20</td>
<td>17,5</td>
<td>7,5</td>
<td>19500</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>20</td>
<td>15,5</td>
<td>10,5</td>
<td>8640</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>20</td>
<td>18,5</td>
<td>12</td>
<td>1920</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>20</td>
<td>12</td>
<td>6</td>
<td>5580</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>20</td>
<td>19,5</td>
<td>19</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>19</td>
<td>18,5</td>
<td>18</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>19</td>
<td>17,5</td>
<td>17</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>17,5</td>
<td>17</td>
<td>10,5</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>229</td>
<td>17,5</td>
<td>17,5</td>
<td>6</td>
<td>13440</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>13,5</td>
<td>11</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>17,5</td>
<td>15</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>17,5</td>
<td>14,5</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>13,5</td>
<td>9</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>11</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>10</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>9</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>9</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>10</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>11</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>12</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>13</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>14</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>15</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>16</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>17</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>18</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>19</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19,5</td>
<td>20</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>5160</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>18,5</td>
<td>14</td>
<td>8640</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>1920</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>17,5</td>
<td>17</td>
<td>3660</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>17,5</td>
<td>15</td>
<td>5580</td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>13440</td>
<td></td>
</tr>
</tbody>
</table>
Vedleggstabell 10 Rådata fra måling av mettet vannledningsevne på prøver fra granruten.

<table>
<thead>
<tr>
<th>Granrute</th>
<th>Dyp cm</th>
<th>Sylinder nr</th>
<th>Høyde start cm</th>
<th>Høyde slutt cm</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 Bwg</td>
<td>207</td>
<td>20</td>
<td>19</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>207</td>
<td>18</td>
<td>18</td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>207</td>
<td>18</td>
<td>18</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>207</td>
<td>15</td>
<td>14,5</td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>971</td>
<td>20</td>
<td>19</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>971</td>
<td>19</td>
<td></td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>971</td>
<td>18,8</td>
<td>18,5</td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>971</td>
<td>18,5</td>
<td>16,5</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>971</td>
<td>16,5</td>
<td>15,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>971</td>
<td>15,5</td>
<td>14,5</td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>1508</td>
<td>20</td>
<td>20</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>1508</td>
<td>20</td>
<td>18,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>1508</td>
<td>20</td>
<td></td>
<td>38700</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>1508</td>
<td>20</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>1508</td>
<td>19</td>
<td></td>
<td>13440</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>1508</td>
<td>19</td>
<td>17</td>
<td>45600</td>
<td></td>
</tr>
<tr>
<td>35 Bwg</td>
<td>1508</td>
<td>17</td>
<td>16</td>
<td>42780</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>697</td>
<td>20</td>
<td>19</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>697</td>
<td>19</td>
<td></td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>697</td>
<td>18,5</td>
<td>18</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>697</td>
<td>18</td>
<td>17,5</td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>750</td>
<td>20</td>
<td>20</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>750</td>
<td>20</td>
<td>19,4</td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>750</td>
<td>19,4</td>
<td></td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>750</td>
<td>19</td>
<td>19</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>750</td>
<td>18,5</td>
<td>18</td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>750</td>
<td>18,5</td>
<td></td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>50 BCg</td>
<td>1002</td>
<td>20</td>
<td>19,5</td>
<td>99420</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>73</td>
<td>20</td>
<td>19,8</td>
<td>99420</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1013</td>
<td>20</td>
<td></td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1013</td>
<td>20</td>
<td>19,6</td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1013</td>
<td>19,6</td>
<td></td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1013</td>
<td>19</td>
<td></td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1013</td>
<td>19</td>
<td>19</td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1013</td>
<td>18,5</td>
<td></td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1068</td>
<td>20</td>
<td></td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1068</td>
<td>20</td>
<td>19,8</td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1068</td>
<td>19,8</td>
<td></td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1068</td>
<td>19,5</td>
<td></td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1068</td>
<td>19</td>
<td></td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>70 Cg</td>
<td>1068</td>
<td>19</td>
<td></td>
<td>84600</td>
<td></td>
</tr>
</tbody>
</table>
Vedlegg 6

Vedleggstabell 11 Rådata fra måling av mettet vannledningsevne på prøver fra bjørkeruten.

<table>
<thead>
<tr>
<th>Bjørkerute</th>
<th>Dyp cm</th>
<th>Sjikt</th>
<th>Sylinder nr</th>
<th>Høyde start cm</th>
<th>Høyde slutt cm</th>
<th>Total tid s</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 O</td>
<td>724</td>
<td>20</td>
<td>15</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>724</td>
<td>15</td>
<td>10</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>724</td>
<td>10</td>
<td>5</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>724</td>
<td>20</td>
<td>15</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>724</td>
<td>15</td>
<td>10</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1186</td>
<td>20</td>
<td>15</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1186</td>
<td>15</td>
<td>10</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1186</td>
<td>20</td>
<td>15</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1186</td>
<td>15</td>
<td>10</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1186</td>
<td>20</td>
<td>15</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 O</td>
<td>1186</td>
<td>15</td>
<td>10</td>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>939</td>
<td>20</td>
<td>10</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>939</td>
<td>20</td>
<td>10,5</td>
<td>1920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>939</td>
<td>20</td>
<td>7</td>
<td>5580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>20</td>
<td>18</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>18</td>
<td>16</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>16</td>
<td>15</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>15</td>
<td>13,5</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>13,5</td>
<td>11,5</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>11,5</td>
<td>10</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>10</td>
<td>9</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1010</td>
<td>20</td>
<td>11</td>
<td>6300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>20</td>
<td>17</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>17</td>
<td>15</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>15</td>
<td>13</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>13</td>
<td>11</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>11</td>
<td>9,5</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>9,5</td>
<td>8</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>8</td>
<td>6</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Ap</td>
<td>1031</td>
<td>20</td>
<td>9</td>
<td>6300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>20</td>
<td>19</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>19</td>
<td>18</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>18</td>
<td>17,5</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>17</td>
<td>17</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>16</td>
<td>15,5</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>15,5</td>
<td>15</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>119</td>
<td>20</td>
<td>16</td>
<td>6300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>185</td>
<td>20</td>
<td>15,5</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>185</td>
<td>20</td>
<td>15</td>
<td>1920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>185</td>
<td>20</td>
<td>15</td>
<td>5580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>185</td>
<td>15</td>
<td>10</td>
<td>5580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>1085</td>
<td>20</td>
<td>19</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>1085</td>
<td>19</td>
<td>18</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>1085</td>
<td>18</td>
<td>17,5</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Ap</td>
<td>1085</td>
<td>17,5</td>
<td>17</td>
<td>900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rådata fra måling av mettet vannledningsevne på prøver fra bjørkeruten.

<table>
<thead>
<tr>
<th>Bjørkerute</th>
<th>Dyp</th>
<th>Sjikt</th>
<th>Sylinder</th>
<th>Høyde start</th>
<th>Høyde slutt</th>
<th>Total tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>25</td>
<td>1085</td>
<td>17</td>
<td>16</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Ap</td>
<td>25</td>
<td>1085</td>
<td>15,5</td>
<td>15</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Ap</td>
<td>25</td>
<td>1085</td>
<td>20</td>
<td>16,5</td>
<td>6300</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>17</td>
<td>20</td>
<td>19</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>17</td>
<td>18</td>
<td>16</td>
<td>3840</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>17</td>
<td>20</td>
<td>15</td>
<td>10620</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>17</td>
<td>15</td>
<td>9</td>
<td>12360</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>651</td>
<td>20</td>
<td>17</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>651</td>
<td>20</td>
<td>16</td>
<td>3300</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>651</td>
<td>16</td>
<td>14</td>
<td>3840</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>651</td>
<td>14</td>
<td>9</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>651</td>
<td>20</td>
<td>7</td>
<td>10620</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>1089</td>
<td>20</td>
<td>19</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>1089</td>
<td>20</td>
<td>19</td>
<td>1920</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>1089</td>
<td>19</td>
<td>17</td>
<td>3660</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>1089</td>
<td>17</td>
<td>15</td>
<td>5580</td>
<td></td>
</tr>
<tr>
<td>Bwg</td>
<td>35</td>
<td>1089</td>
<td>15</td>
<td>10</td>
<td>13440</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>225</td>
<td>20</td>
<td>15</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>225</td>
<td>15</td>
<td>10</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>225</td>
<td>20</td>
<td>15</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>225</td>
<td>15</td>
<td>10</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>836</td>
<td>20</td>
<td>20</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>836</td>
<td>20</td>
<td>19,8</td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>836</td>
<td>19,8</td>
<td>19,8</td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>836</td>
<td>19,8</td>
<td>19,2</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>836</td>
<td>19,2</td>
<td>19</td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>836</td>
<td>19</td>
<td>19</td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>BCg</td>
<td>50</td>
<td>1331</td>
<td>20</td>
<td>20</td>
<td>99420</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>49</td>
<td>20</td>
<td>20</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>49</td>
<td>19,8</td>
<td>19,8</td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>49</td>
<td>19,8</td>
<td>19,5</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>49</td>
<td>19,5</td>
<td>19,5</td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>49</td>
<td>19,5</td>
<td>19,3</td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>678</td>
<td>20</td>
<td>20</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>678</td>
<td>19,8</td>
<td>19,8</td>
<td>41400</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>678</td>
<td>19,8</td>
<td>19,5</td>
<td>23400</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>678</td>
<td>19,5</td>
<td>19,5</td>
<td>151200</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>678</td>
<td>19,5</td>
<td>19,5</td>
<td>95400</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>678</td>
<td>19,5</td>
<td>19</td>
<td>84600</td>
<td></td>
</tr>
<tr>
<td>Cg</td>
<td>70</td>
<td>736</td>
<td>20</td>
<td>20</td>
<td>99420</td>
<td></td>
</tr>
</tbody>
</table>
Vedleggstørrelsesfordeling

Resultatene fra aggregatstørrelsesfordelingsanalysen av mineraljord er vist i vedleggstabell 13 og 14.

Vedleggstabell 13 Mengde av ulike aggregatstørrelsesfraksjoner i prøver fra ulike dyp.

<table>
<thead>
<tr>
<th>Prøve nr</th>
<th>Rute</th>
<th>cm prøvedyp</th>
<th>Vekt i gram</th>
<th>>20 mm</th>
<th>6-20 mm</th>
<th>2-6 mm</th>
<th>0,6-2 mm</th>
<th><0,6 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-gran</td>
<td>069-gran</td>
<td>10-20</td>
<td>734,5</td>
<td>260,2</td>
<td>153,3</td>
<td>161,5</td>
<td>138,8</td>
<td></td>
</tr>
<tr>
<td>2-gran</td>
<td>069-gran</td>
<td>20-30</td>
<td>502,2</td>
<td>283,6</td>
<td>239,2</td>
<td>163,6</td>
<td>111,3</td>
<td></td>
</tr>
<tr>
<td>3-gran</td>
<td>069-gran</td>
<td>30-40</td>
<td>1209,9</td>
<td>235,7</td>
<td>110,3</td>
<td>61,4</td>
<td>78,2</td>
<td></td>
</tr>
<tr>
<td>4-gran</td>
<td>069-gran</td>
<td>40-60</td>
<td>1341,9</td>
<td>202,5</td>
<td>51,9</td>
<td>24,1</td>
<td>30,4</td>
<td></td>
</tr>
<tr>
<td>5-gran</td>
<td>069-gran</td>
<td>60-80</td>
<td>1273,9</td>
<td>95,7</td>
<td>37</td>
<td>55,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-bjørk</td>
<td>066-bjørk</td>
<td>10-20</td>
<td>425</td>
<td>298,6</td>
<td>188</td>
<td>153,4</td>
<td>131,6</td>
<td></td>
</tr>
<tr>
<td>2-bjørk</td>
<td>066-bjørk</td>
<td>20-30</td>
<td>327,4</td>
<td>312</td>
<td>285</td>
<td>232,6</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>3-bjørk</td>
<td>066-bjørk</td>
<td>30-40</td>
<td>182,6</td>
<td>484,8</td>
<td>234,3</td>
<td>131,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-bjørk</td>
<td>066-bjørk</td>
<td>40-60</td>
<td>974,8</td>
<td>514,7</td>
<td>149,7</td>
<td>48,4</td>
<td>33,7</td>
<td></td>
</tr>
<tr>
<td>5-bjørk</td>
<td>066-bjørk</td>
<td>60-80</td>
<td>1144,1</td>
<td>362,9</td>
<td>85,2</td>
<td>28,2</td>
<td>26,7</td>
<td></td>
</tr>
</tbody>
</table>

Vedleggstabell 14 Totalvekter, taravekt, sum av aggregater fra vedleggstabell 13 og beregnet svinn i den enkelte prøve. Verdiene er for de samme prøvene som aggregatstørrelsesfordeling er vist for i vedleggstabell 13.

<table>
<thead>
<tr>
<th>Prøve nr</th>
<th>prøvenavn</th>
<th>cm prøvedyp</th>
<th>Vekt i gram</th>
<th>Sum aggregater</th>
<th>Svinn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-gran</td>
<td>069-gran</td>
<td>10-20</td>
<td>1512,8</td>
<td>1448,3</td>
<td>2</td>
</tr>
<tr>
<td>2-gran</td>
<td>069-gran</td>
<td>20-30</td>
<td>1363,9</td>
<td>1299,9</td>
<td>1,2</td>
</tr>
<tr>
<td>3-gran</td>
<td>069-gran</td>
<td>30-40</td>
<td>1755,7</td>
<td>1695,5</td>
<td>0,5</td>
</tr>
<tr>
<td>4-gran</td>
<td>069-gran</td>
<td>40-60</td>
<td>1710,9</td>
<td>1650,8</td>
<td>0,5</td>
</tr>
<tr>
<td>5-gran</td>
<td>069-gran</td>
<td>60-80</td>
<td>1900</td>
<td>1839,7</td>
<td>1,9</td>
</tr>
<tr>
<td>1-bjørk</td>
<td>066-bjørk</td>
<td>10-20</td>
<td>1270,6</td>
<td>1196,6</td>
<td>1,5</td>
</tr>
<tr>
<td>2-bjørk</td>
<td>066-bjørk</td>
<td>20-30</td>
<td>1385,9</td>
<td>1324</td>
<td>1,9</td>
</tr>
<tr>
<td>3-bjørk</td>
<td>066-bjørk</td>
<td>30-40</td>
<td>1586,3</td>
<td>1522,4</td>
<td>4,9</td>
</tr>
<tr>
<td>4-bjørk</td>
<td>066-bjørk</td>
<td>40-60</td>
<td>1779,9</td>
<td>1721,3</td>
<td>0,3</td>
</tr>
<tr>
<td>5-bjørk</td>
<td>066-bjørk</td>
<td>60-80</td>
<td>1705,1</td>
<td>1647,1</td>
<td>-0,3</td>
</tr>
</tbody>
</table>
Rottellinger

Rådata fra rottellingene er vist i vedleggstabell 15 og 16.

Vedleggstabell 15 Resultat av rottellinger på jordprøver fra bjørkeruten. Arealet av snittflaten tellinger er foretatt på er 27 cm².

<table>
<thead>
<tr>
<th>Rute</th>
<th>Dyp (cm)</th>
<th>Sjikt</th>
<th>Sylindernr</th>
<th>Telling 1</th>
<th>Telling 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørkerute</td>
<td>15 Ap</td>
<td>551</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>15 Ap</td>
<td>939</td>
<td>13</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>15 Ap</td>
<td>1031</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>25 Ap</td>
<td>119</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>25 Ap</td>
<td>185</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>25 Ap</td>
<td>822</td>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>25 Ap</td>
<td>892</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>25 Ap</td>
<td>975</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>25 Ap</td>
<td>1085</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>35 Bwg</td>
<td>15</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>35 Bwg</td>
<td>17</td>
<td>11</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>35 Bwg</td>
<td>554</td>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>35 Bwg</td>
<td>651</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>35 Bwg</td>
<td>693</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>Bwg</td>
<td>1089</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>50 BCg</td>
<td>225</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>50 BCg</td>
<td>777</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>50 BCg</td>
<td>836</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>BCg</td>
<td>1021</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>50 BCg</td>
<td>1331</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>70 Cg</td>
<td>49</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>70 Cg</td>
<td>492</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>70 Cg</td>
<td>649</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>70 Cg</td>
<td>678</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>70 Cg</td>
<td>736</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>70 Cg</td>
<td>1158</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Vedleggstabell 16 Resultat av rottellinger på jordprøver fra granruten. Arealet av snittflaten tellinger er foretatt på er 27 cm²

<table>
<thead>
<tr>
<th>Rute</th>
<th>Dyp (cm)</th>
<th>Sjikt</th>
<th>Sylindernr</th>
<th>Telling 1</th>
<th>Telling 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granrute</td>
<td>15</td>
<td>Ap</td>
<td>229</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>Granrute</td>
<td>15</td>
<td>Ap</td>
<td>746</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Granrute</td>
<td>15</td>
<td>Ap</td>
<td>788</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Granrute</td>
<td>15</td>
<td>Ap</td>
<td>1038</td>
<td>36</td>
<td>23</td>
</tr>
<tr>
<td>Granrute</td>
<td>Ap</td>
<td></td>
<td>1144</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Granrute</td>
<td>15</td>
<td>Ap</td>
<td>1403</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>Granrute</td>
<td>25</td>
<td>Ap</td>
<td>123</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Granrute</td>
<td>25</td>
<td>Ap</td>
<td>345</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Granrute</td>
<td>25</td>
<td>Ap</td>
<td>769</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Granrute</td>
<td>25</td>
<td>Ap</td>
<td>1004</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Granrute</td>
<td>25</td>
<td>Ap</td>
<td>1298</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>25</td>
<td>Ap</td>
<td>1503</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>Granrute</td>
<td>35</td>
<td>Bwg</td>
<td>242</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Granrute</td>
<td>35</td>
<td>Bwg</td>
<td>424</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Granrute</td>
<td>35</td>
<td>Bwg</td>
<td>971</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>35</td>
<td>Bwg</td>
<td>1200</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Granrute</td>
<td>35</td>
<td>Bwg</td>
<td>1508</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>50</td>
<td>BCg</td>
<td>247</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Granrute</td>
<td>50</td>
<td>BCg</td>
<td>670</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>50</td>
<td>BCg</td>
<td>697</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>50</td>
<td>BCg</td>
<td>750</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>50</td>
<td>BCg</td>
<td>1002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>50</td>
<td>BCg</td>
<td>1162</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Granrute</td>
<td>70</td>
<td>Cg</td>
<td>73</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>70</td>
<td>Cg</td>
<td>1013</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>70</td>
<td>Cg</td>
<td>1068</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>70</td>
<td>Cg</td>
<td>1093</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>70</td>
<td>Cg</td>
<td>1265</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Granrute</td>
<td>70</td>
<td>Cg</td>
<td>1275</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Vedlegg 9

Nedbør og grunnvannsnivå

Væskenivå i nedbørsmålerne til ulike tider er vist i vedleggstabell 17. Den 2. juli er det tømt ut en del vann. Denne dato står derfor oppført med væskenivå både før og etter tomming. Målt grunnvannsnivå er vist i vedleggstabell 18, som dyp under midlere marknivå.

Vedleggstabell 17 Målt væskenivå i nedbørsmålerne til ulike tider.

<table>
<thead>
<tr>
<th>Væskenivå (mm) i nedbørsmålerne til ulike tider</th>
<th>Bøtte</th>
<th>19. mai</th>
<th>22. mai</th>
<th>24. mai</th>
<th>3. jun</th>
<th>18. jun</th>
<th>2. jul</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>601</td>
<td>24</td>
<td>26</td>
<td>34</td>
<td>38</td>
<td>56</td>
<td>102</td>
</tr>
<tr>
<td>Granrute</td>
<td>133</td>
<td>27</td>
<td>30</td>
<td>43</td>
<td>47</td>
<td>75</td>
<td>139</td>
</tr>
<tr>
<td>Granrute</td>
<td>97</td>
<td>29</td>
<td>40</td>
<td>51</td>
<td>58</td>
<td>90</td>
<td>163</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>104</td>
<td>24</td>
<td>30</td>
<td>40</td>
<td>48</td>
<td>76</td>
<td>143</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>453</td>
<td>25</td>
<td>34</td>
<td>42</td>
<td>50</td>
<td>77</td>
<td>142</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>592</td>
<td>26</td>
<td>38</td>
<td>48</td>
<td>55</td>
<td>82</td>
<td>146</td>
</tr>
<tr>
<td>Apent</td>
<td>125</td>
<td>3</td>
<td>15</td>
<td>26</td>
<td>36</td>
<td>70</td>
<td>145</td>
</tr>
<tr>
<td>Apent</td>
<td>603</td>
<td>5</td>
<td>16</td>
<td>28</td>
<td>38</td>
<td>70</td>
<td>139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Væskenivå (mm) i nedbørsmålerne til ulike tider</th>
<th>Bøtte</th>
<th>2. jul</th>
<th>24. jul</th>
<th>7. aug</th>
<th>16. aug</th>
<th>25. aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>nr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>601</td>
<td>28</td>
<td>48</td>
<td>84</td>
<td>92</td>
<td>100</td>
</tr>
<tr>
<td>Granrute</td>
<td>133</td>
<td>26</td>
<td>49</td>
<td>105</td>
<td>111</td>
<td>128</td>
</tr>
<tr>
<td>Granrute</td>
<td>97</td>
<td>26</td>
<td>48</td>
<td>108</td>
<td>120</td>
<td>123</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>104</td>
<td>16</td>
<td>41</td>
<td>109</td>
<td>121</td>
<td>132</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>453</td>
<td>25</td>
<td>50</td>
<td>111</td>
<td>124</td>
<td>136</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>592</td>
<td>26</td>
<td>53</td>
<td>111</td>
<td>125</td>
<td>141</td>
</tr>
<tr>
<td>Apent</td>
<td>125</td>
<td>16</td>
<td>54</td>
<td>120</td>
<td>135</td>
<td>145</td>
</tr>
<tr>
<td>Apent</td>
<td>603</td>
<td>14</td>
<td>48</td>
<td>110</td>
<td>127</td>
<td>139</td>
</tr>
</tbody>
</table>

Vedleggstabell 18 Målt grunnvannsdyp til ulike tider.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Granrute</td>
<td>69</td>
<td>54,5</td>
<td>62</td>
<td>78</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>67</td>
<td>59,5</td>
<td>55</td>
<td>82 Tørr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dato</th>
<th>16. aug</th>
<th>25. aug</th>
<th>9. sep</th>
<th>22. okt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granrute</td>
<td>78</td>
<td>105 Tørr</td>
<td>Tørr</td>
<td>Tørr</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>105 Tørr</td>
<td>Tørr</td>
<td>Tørr</td>
<td>Tørr</td>
</tr>
</tbody>
</table>
Profilprobe

Avleste måleverdier med Profilprobe er vist i vedleggstabell 19 og 20.

Vedleggstabell 19 Avleste måleverdier (mV) med Profilprobe til ulike tider. Tallkoden i venstre kolonne angir: "Rutenummer"-"Målerørnummer"-"Måledyp (cm)".

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>069-1-10</td>
<td>191</td>
<td>213</td>
<td>211</td>
<td>218</td>
<td>210</td>
<td>207</td>
<td>195</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>069-1-20</td>
<td>330</td>
<td>395</td>
<td>386</td>
<td>389</td>
<td>396</td>
<td>353</td>
<td>333</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>069-1-30</td>
<td>410</td>
<td>423</td>
<td>403</td>
<td>411</td>
<td>411</td>
<td>404</td>
<td>403</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>069-1-40</td>
<td>370</td>
<td>375</td>
<td>392</td>
<td>376</td>
<td>383</td>
<td>370</td>
<td>380</td>
<td>376</td>
<td>375</td>
</tr>
<tr>
<td>069-1-60</td>
<td>359</td>
<td>369</td>
<td>367</td>
<td>365</td>
<td>368</td>
<td>367</td>
<td>363</td>
<td>363</td>
<td>363</td>
</tr>
<tr>
<td>069-1-100</td>
<td>386</td>
<td>407</td>
<td>412</td>
<td>407</td>
<td>403</td>
<td>419</td>
<td>406</td>
<td>408</td>
<td>409</td>
</tr>
<tr>
<td>069-2-10</td>
<td>244</td>
<td>192</td>
<td>231</td>
<td>234</td>
<td>154</td>
<td>143</td>
<td>141</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>069-2-20</td>
<td>379</td>
<td>360</td>
<td>368</td>
<td>364</td>
<td>344</td>
<td>339</td>
<td>317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>069-2-30</td>
<td>394</td>
<td>407</td>
<td>396</td>
<td>390</td>
<td>394</td>
<td>391</td>
<td>392</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>069-2-40</td>
<td>398</td>
<td>405</td>
<td>400</td>
<td>398</td>
<td>389</td>
<td>394</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>069-2-60</td>
<td>396</td>
<td>390</td>
<td>389</td>
<td>377</td>
<td>376</td>
<td>373</td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>069-2-100</td>
<td>437</td>
<td>432</td>
<td>427</td>
<td>421</td>
<td>407</td>
<td>396</td>
<td>399</td>
<td>396</td>
<td></td>
</tr>
</tbody>
</table>

Bjørk

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>066-1-10</td>
<td>202</td>
<td>214</td>
<td>261</td>
<td>280</td>
<td>295</td>
<td>286</td>
<td>281</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>066-1-20</td>
<td>383</td>
<td>407</td>
<td>372</td>
<td>341</td>
<td>355</td>
<td>367</td>
<td>339</td>
<td>332</td>
<td>326</td>
</tr>
<tr>
<td>066-1-30</td>
<td>387</td>
<td>394</td>
<td>401</td>
<td>407</td>
<td>409</td>
<td>399</td>
<td>399</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>066-1-40</td>
<td>378</td>
<td>388</td>
<td>402</td>
<td>394</td>
<td>396</td>
<td>389</td>
<td>405</td>
<td>392</td>
<td>398</td>
</tr>
<tr>
<td>066-1-60</td>
<td>361</td>
<td>373</td>
<td>377</td>
<td>367</td>
<td>372</td>
<td>369</td>
<td>367</td>
<td>365</td>
<td>366</td>
</tr>
<tr>
<td>066-1-100</td>
<td>390</td>
<td>407</td>
<td>422</td>
<td>409</td>
<td>420</td>
<td>410</td>
<td>413</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>066-2-10</td>
<td>111</td>
<td>93</td>
<td>91</td>
<td>90</td>
<td>89</td>
<td>84</td>
<td>84</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>066-2-20</td>
<td>481</td>
<td>395</td>
<td>116</td>
<td>368</td>
<td>377</td>
<td>104</td>
<td>101</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>066-2-30</td>
<td>440</td>
<td>459</td>
<td>438</td>
<td>439</td>
<td>441</td>
<td>328</td>
<td>304</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>066-2-40</td>
<td>435</td>
<td>434</td>
<td>421</td>
<td>425</td>
<td>419</td>
<td>426</td>
<td>416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>066-2-60</td>
<td>391</td>
<td>390</td>
<td>390</td>
<td>389</td>
<td>386</td>
<td>385</td>
<td>385</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>066-2-100</td>
<td>419</td>
<td>439</td>
<td>427</td>
<td>428</td>
<td>431</td>
<td>420</td>
<td>422</td>
<td>428</td>
<td></td>
</tr>
</tbody>
</table>
Vedleggstabell 20 Avleste måleverdier (mV) med Profilprobe til ulike tider. Tallkoden i venstre kolonne angir: "Rutenummer"."Målerørnummer"."Måledyp (cm)".

<table>
<thead>
<tr>
<th>Dato</th>
<th>18. jun.</th>
<th>2. jul.</th>
<th>24. jul.</th>
<th>7. aug.</th>
<th>16. aug.</th>
<th>25. aug.</th>
<th>8. sep.</th>
<th>9. sep.</th>
<th>22. okt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>069-1-10</td>
<td>187</td>
<td>194</td>
<td>180</td>
<td>184</td>
<td>176</td>
<td>163</td>
<td>139</td>
<td>141</td>
<td>128</td>
</tr>
<tr>
<td>069-1-30</td>
<td>299</td>
<td>303</td>
<td>282</td>
<td>290</td>
<td>277</td>
<td>259</td>
<td>228</td>
<td>229</td>
<td>218</td>
</tr>
<tr>
<td>069-1-40</td>
<td>366</td>
<td>393</td>
<td>364</td>
<td>368</td>
<td>347</td>
<td>320</td>
<td>284</td>
<td>282</td>
<td>265</td>
</tr>
<tr>
<td>069-1-60</td>
<td>366</td>
<td>390</td>
<td>362</td>
<td>370</td>
<td>362</td>
<td>354</td>
<td>329</td>
<td>331</td>
<td>328</td>
</tr>
<tr>
<td>069-1-100</td>
<td>412</td>
<td>406</td>
<td>414</td>
<td></td>
<td>408</td>
<td>405</td>
<td>409</td>
<td>404</td>
<td>398</td>
</tr>
<tr>
<td>069-2-10</td>
<td>133</td>
<td>138</td>
<td>117</td>
<td>138</td>
<td>137</td>
<td>119</td>
<td>111</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>069-2-20</td>
<td>305</td>
<td>331</td>
<td>266</td>
<td>269</td>
<td>249</td>
<td>229</td>
<td>197</td>
<td>197</td>
<td>189</td>
</tr>
<tr>
<td>069-2-30</td>
<td>372</td>
<td>373</td>
<td>328</td>
<td>335</td>
<td>317</td>
<td>302</td>
<td>285</td>
<td>286</td>
<td>271</td>
</tr>
<tr>
<td>069-2-40</td>
<td>384</td>
<td>391</td>
<td>378</td>
<td>382</td>
<td>373</td>
<td>371</td>
<td>362</td>
<td>363</td>
<td>358</td>
</tr>
<tr>
<td>069-2-60</td>
<td>372</td>
<td>378</td>
<td>375</td>
<td>378</td>
<td>378</td>
<td>375</td>
<td>338</td>
<td>339</td>
<td>325</td>
</tr>
<tr>
<td>069-2-100</td>
<td>409</td>
<td>406</td>
<td>409</td>
<td>405</td>
<td>409</td>
<td>406</td>
<td>405</td>
<td>404</td>
<td>398</td>
</tr>
<tr>
<td>Bjørk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>066-1-10</td>
<td>248</td>
<td>258</td>
<td>188</td>
<td>191</td>
<td>171</td>
<td>159</td>
<td>144</td>
<td>147</td>
<td>151</td>
</tr>
<tr>
<td>066-1-20</td>
<td>317</td>
<td>317</td>
<td>234</td>
<td>233</td>
<td>214</td>
<td>199</td>
<td>182</td>
<td>182</td>
<td>184</td>
</tr>
<tr>
<td>066-1-30</td>
<td>372</td>
<td>364</td>
<td>248</td>
<td>248</td>
<td>218</td>
<td>202</td>
<td>201</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>066-1-40</td>
<td>390</td>
<td>264</td>
<td>265</td>
<td>241</td>
<td>243</td>
<td>226</td>
<td>222</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>066-1-60</td>
<td>362</td>
<td>369</td>
<td>348</td>
<td>349</td>
<td>333</td>
<td>326</td>
<td>316</td>
<td>316</td>
<td>315</td>
</tr>
<tr>
<td>066-1-100</td>
<td>418</td>
<td>422</td>
<td>420</td>
<td>431</td>
<td>422</td>
<td>424</td>
<td>421</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>066-2-10</td>
<td>77</td>
<td>91</td>
<td>88</td>
<td>82</td>
<td>75</td>
<td>72</td>
<td>73</td>
<td>71</td>
<td>102</td>
</tr>
<tr>
<td>066-2-20</td>
<td>94</td>
<td>102</td>
<td>91</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>74</td>
<td>69</td>
</tr>
<tr>
<td>066-2-30</td>
<td>225</td>
<td>217</td>
<td>189</td>
<td>190</td>
<td>175</td>
<td>164</td>
<td>156</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>066-2-40</td>
<td>375</td>
<td>395</td>
<td>340</td>
<td>321</td>
<td>296</td>
<td>297</td>
<td>269</td>
<td>271</td>
<td>278</td>
</tr>
<tr>
<td>066-2-60</td>
<td>363</td>
<td>361</td>
<td>337</td>
<td>312</td>
<td>288</td>
<td>278</td>
<td>264</td>
<td>265</td>
<td>266</td>
</tr>
<tr>
<td>066-2-100</td>
<td>432</td>
<td>428</td>
<td>501</td>
<td>444</td>
<td>442</td>
<td>428</td>
<td>421</td>
<td>419</td>
<td>425</td>
</tr>
</tbody>
</table>
Fuktighetsprøver

Vedleggstabell 21 Registrert vekt på fuktighetsprøver uttatt 15. mai.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Dyp (cm)</th>
<th>Brutto fuktig</th>
<th>Brutto tørr</th>
<th>Tara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørkerute</td>
<td>0-10</td>
<td>25,29</td>
<td>18,08</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>10-20</td>
<td>48,12</td>
<td>35,48</td>
<td>18,39</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>20-30</td>
<td>63,64</td>
<td>47,69</td>
<td>18,24</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>30-40</td>
<td>68,99</td>
<td>54,35</td>
<td>18,23</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>40-60</td>
<td>128,95</td>
<td>105,59</td>
<td>18,83</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>60-80</td>
<td>121,15</td>
<td>101,68</td>
<td>19,26</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>80-100</td>
<td>129,31</td>
<td>106,04</td>
<td>18,23</td>
</tr>
</tbody>
</table>

| Vanninnhold i jordprøvet tatt ut 15. mai
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rute</td>
<td>Dyp (cm)</td>
<td>Brutto fuktig</td>
<td>Brutto tørr</td>
<td>Tara</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>0-10</td>
<td>25,29</td>
<td>18,08</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>10-20</td>
<td>48,12</td>
<td>35,48</td>
<td>18,39</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>20-30</td>
<td>63,64</td>
<td>47,69</td>
<td>18,24</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>30-40</td>
<td>68,99</td>
<td>54,35</td>
<td>18,23</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>40-60</td>
<td>128,95</td>
<td>105,59</td>
<td>18,83</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>60-80</td>
<td>121,15</td>
<td>101,68</td>
<td>19,26</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>80-100</td>
<td>129,31</td>
<td>106,04</td>
<td>18,23</td>
</tr>
</tbody>
</table>

Vedleggstabell 22 Registrert vekt på fuktighetsprøver uttatt 25. august.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Dyp (cm)</th>
<th>Brutto fuktig</th>
<th>Brutto tørr</th>
<th>Tara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørkerute</td>
<td>0-6</td>
<td>41,62</td>
<td>30,81</td>
<td>19,24</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>0-6</td>
<td>39,31</td>
<td>28,36</td>
<td>18,56</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>18</td>
<td>104,67</td>
<td>81,15</td>
<td>17,87</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>50</td>
<td>132,38</td>
<td>113,75</td>
<td>18,18</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>0-6</td>
<td>40,1</td>
<td>27,45</td>
<td>17,92</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>0-6</td>
<td>40,44</td>
<td>27,72</td>
<td>17,83</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>18</td>
<td>93,79</td>
<td>77,04</td>
<td>18,18</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>50</td>
<td>120,42</td>
<td>105,26</td>
<td>18,08</td>
</tr>
</tbody>
</table>
Vedlegg 11

Vedleggstabell 23 Registret vekt på fuktighetsprøver tatt ut 2. juli.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Stikk</th>
<th>Dyp (cm)</th>
<th>Fuktig brutto</th>
<th>Tørr brutto</th>
<th>Tara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granrute</td>
<td>1</td>
<td>0-10</td>
<td>76,26</td>
<td>33,54</td>
<td>18,21</td>
</tr>
<tr>
<td>Granrute</td>
<td>1</td>
<td>10-20</td>
<td>42,04</td>
<td>30,14</td>
<td>18</td>
</tr>
<tr>
<td>Granrute</td>
<td>1</td>
<td>120-30</td>
<td>55,09</td>
<td>41,69</td>
<td>18,1</td>
</tr>
<tr>
<td>Granrute</td>
<td>1</td>
<td>130-40</td>
<td>100,41</td>
<td>74,01</td>
<td>17,93</td>
</tr>
<tr>
<td>Granrute</td>
<td>1</td>
<td>140-50</td>
<td>115,34</td>
<td>95,11</td>
<td>17,97</td>
</tr>
<tr>
<td>Granrute</td>
<td>1</td>
<td>150-60</td>
<td>136,58</td>
<td>116,29</td>
<td>18,88</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>0-10</td>
<td>55,41</td>
<td>33,19</td>
<td>18,08</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>10-20</td>
<td>57,97</td>
<td>42,71</td>
<td>18,18</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>20-30</td>
<td>85,25</td>
<td>63,91</td>
<td>18,24</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>220-30</td>
<td>121,15</td>
<td>99,11</td>
<td>18,62</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>230-40</td>
<td>132,09</td>
<td>112,08</td>
<td>18,82</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>24-50</td>
<td>132,09</td>
<td>112,08</td>
<td>18,82</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>250-60</td>
<td>105,5</td>
<td>89,56</td>
<td>18,4</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>30-10</td>
<td>68,83</td>
<td>33,01</td>
<td>18,71</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>310-20</td>
<td>87,3</td>
<td>58,53</td>
<td>17,87</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>320-30</td>
<td>81,43</td>
<td>57,62</td>
<td>18</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>330-40</td>
<td>116,99</td>
<td>99,4</td>
<td>18,03</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>340-50</td>
<td>126,17</td>
<td>103,87</td>
<td>11,59</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>350-60</td>
<td>141,43</td>
<td>118,91</td>
<td>11,44</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>360-70</td>
<td>138,3</td>
<td>114,29</td>
<td>11,48</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>370-80</td>
<td>144,11</td>
<td>118,55</td>
<td>11,41</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>380-90</td>
<td>151,2</td>
<td>124,15</td>
<td>11,7</td>
</tr>
<tr>
<td>Granrute</td>
<td>2</td>
<td>390-100</td>
<td>161</td>
<td>131,62</td>
<td>11,69</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>10-10</td>
<td>69,22</td>
<td>33,91</td>
<td>18,48</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>110-20</td>
<td>64,12</td>
<td>46,39</td>
<td>17,88</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>120-30</td>
<td>93,54</td>
<td>69,24</td>
<td>18,57</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>130-40</td>
<td>103,37</td>
<td>81,78</td>
<td>18,19</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>140-50</td>
<td>131,43</td>
<td>112,65</td>
<td>19,25</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>150-60</td>
<td>129,94</td>
<td>110,21</td>
<td>18,21</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>20-10</td>
<td>53,52</td>
<td>27,18</td>
<td>18,2</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>210-20</td>
<td>75,6</td>
<td>52,95</td>
<td>18,19</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>220-30</td>
<td>86,62</td>
<td>63,75</td>
<td>18,08</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>230-40</td>
<td>105,5</td>
<td>77,25</td>
<td>18,24</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>240-50</td>
<td>122,44</td>
<td>100,67</td>
<td>17,95</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>250-60</td>
<td>130,38</td>
<td>110,78</td>
<td>18,55</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>30-10</td>
<td>63,35</td>
<td>29,74</td>
<td>18,17</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>310-20</td>
<td>88,57</td>
<td>62,94</td>
<td>17,98</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>320-30</td>
<td>82,59</td>
<td>62,76</td>
<td>18,9</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>330-40</td>
<td>116,78</td>
<td>86,17</td>
<td>18,71</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>340-50</td>
<td>116,78</td>
<td>89,24</td>
<td>11,28</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>350-60</td>
<td>124,99</td>
<td>103,38</td>
<td>11,64</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>360-70</td>
<td>119,27</td>
<td>98,92</td>
<td>11,44</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>370-80</td>
<td>120</td>
<td>98,93</td>
<td>11,48</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>380-90</td>
<td>140,84</td>
<td>116,7</td>
<td>11,3</td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>1</td>
<td>390-100</td>
<td>130,61</td>
<td>107,45</td>
<td>11,85</td>
</tr>
</tbody>
</table>
Vedleggstabell 24 Registret vekt på fuktighetsprøver tatt ut 7. august.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Stikk nr</th>
<th>Dyp (cm)</th>
<th>Fuktig brutto</th>
<th>Tørr brutto</th>
<th>Tara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granrute</td>
<td>10-10</td>
<td>62,05</td>
<td>32,73</td>
<td>18,21</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>110-20</td>
<td>60,9</td>
<td>46,76</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>120-30</td>
<td>80,07</td>
<td>61,24</td>
<td>18,1</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>130-40</td>
<td>107,24</td>
<td>89,02</td>
<td>17,93</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>140-50</td>
<td>117,18</td>
<td>101,71</td>
<td>17,97</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>150-60</td>
<td>117,72</td>
<td>101,58</td>
<td>18,88</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>20-10</td>
<td>73,88</td>
<td>44,61</td>
<td>18,08</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>210-20</td>
<td>69,26</td>
<td>52,85</td>
<td>18,18</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>220-30</td>
<td>61,43</td>
<td>49,09</td>
<td>18,24</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>230-40</td>
<td>82,33</td>
<td>68,85</td>
<td>18,62</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>240-50</td>
<td>123,18</td>
<td>106,38</td>
<td>18,82</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>250-60</td>
<td>112,75</td>
<td>96,93</td>
<td>18,4</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>30-10</td>
<td>54,98</td>
<td>30,08</td>
<td>18,71</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>310-20</td>
<td>64,19</td>
<td>49,17</td>
<td>17,87</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>320-30</td>
<td>74,01</td>
<td>58,3</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>330-40</td>
<td>119,65</td>
<td>101,97</td>
<td>18,03</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>340-50</td>
<td>116,63</td>
<td>99,1</td>
<td>11,59</td>
<td></td>
</tr>
<tr>
<td>Granrute</td>
<td>350-60</td>
<td>112,79</td>
<td>95,47</td>
<td>14,44</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>10-10</td>
<td>66,5</td>
<td>41,63</td>
<td>18,48</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>110-20</td>
<td>55,37</td>
<td>45,85</td>
<td>17,88</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>120-30</td>
<td>69,66</td>
<td>57,74</td>
<td>18,57</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>130-40</td>
<td>87,06</td>
<td>70,98</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>140-50</td>
<td>102,39</td>
<td>86,3</td>
<td>19,25</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>150-60</td>
<td>89,62</td>
<td>78,33</td>
<td>18,21</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>20-10</td>
<td>45,25</td>
<td>30,5</td>
<td>18,2</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>210-20</td>
<td>54,36</td>
<td>44,91</td>
<td>18,19</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>220-30</td>
<td>70,88</td>
<td>57,81</td>
<td>18,08</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>230-40</td>
<td>94,41</td>
<td>80,46</td>
<td>18,24</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>240-50</td>
<td>90,77</td>
<td>80,28</td>
<td>17,95</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>250-60</td>
<td>102,99</td>
<td>90,54</td>
<td>18,55</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>30-10</td>
<td>75,09</td>
<td>37,35</td>
<td>18,17</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>310-20</td>
<td>50,3</td>
<td>37,57</td>
<td>17,98</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>320-30</td>
<td>84,39</td>
<td>63,18</td>
<td>18,9</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>330-40</td>
<td>93,05</td>
<td>73,46</td>
<td>17,81</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>340-50</td>
<td>103,47</td>
<td>88,76</td>
<td>11,28</td>
<td></td>
</tr>
<tr>
<td>Bjørkerute</td>
<td>350-60</td>
<td>126,66</td>
<td>108,76</td>
<td>11,64</td>
<td></td>
</tr>
</tbody>
</table>
Rådata fra kjemiske analyser

Rådata fra de kjemiske analysene er vist i vedleggstabell 25-27.

Vedleggstabell 25 Målt pH og ledningsevne i vann, samt rådata fra glødetapsanalyse.

<table>
<thead>
<tr>
<th>Rurte</th>
<th>Dyp cm</th>
<th>Måling i vannekstrakt pH i vann</th>
<th>Digel nr</th>
<th>Tara g</th>
<th>Akt brt g</th>
<th>Tørr brt g</th>
<th>Glødet brt g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørk 0-10</td>
<td>168</td>
<td>4,27</td>
<td>49</td>
<td>13,35</td>
<td>18,21</td>
<td>17,68</td>
<td>14,39</td>
</tr>
<tr>
<td>Bjørk 10-20</td>
<td>50</td>
<td>4,8</td>
<td>50</td>
<td>13,61</td>
<td>23,5</td>
<td>23,23</td>
<td>22,45</td>
</tr>
<tr>
<td>Bjørk 20-30</td>
<td>40</td>
<td>4,77</td>
<td>51</td>
<td>13,25</td>
<td>20,16</td>
<td>19,96</td>
<td>19,44</td>
</tr>
<tr>
<td>Bjørk 30-40</td>
<td>33</td>
<td>4,91</td>
<td>52</td>
<td>13,29</td>
<td>20,41</td>
<td>20,21</td>
<td>19,75</td>
</tr>
<tr>
<td>Bjørk 40-60</td>
<td>34</td>
<td>5,55</td>
<td>53</td>
<td>12,9</td>
<td>24,66</td>
<td>24,47</td>
<td>24,12</td>
</tr>
<tr>
<td>Bjørk 60-80</td>
<td>37</td>
<td>6,71</td>
<td>54</td>
<td>12,94</td>
<td>23,96</td>
<td>23,78</td>
<td>23,48</td>
</tr>
<tr>
<td>Bjørk 80-100</td>
<td>45</td>
<td>7</td>
<td>55</td>
<td>13,59</td>
<td>24,52</td>
<td>24,33</td>
<td>24,05</td>
</tr>
<tr>
<td>Bjørk 0-5</td>
<td>153</td>
<td>4,32</td>
<td>56</td>
<td>13,07</td>
<td>17,3</td>
<td>16,84</td>
<td>13,9</td>
</tr>
<tr>
<td>Bjørk 5-10</td>
<td>150</td>
<td>4,35</td>
<td>57</td>
<td>12,23</td>
<td>16,43</td>
<td>15,99</td>
<td></td>
</tr>
<tr>
<td>Gran 0-10</td>
<td>195</td>
<td>3,91</td>
<td>58</td>
<td>12,72</td>
<td>16,88</td>
<td>16,44</td>
<td>13,56</td>
</tr>
<tr>
<td>Gran 10-20</td>
<td>44</td>
<td>4,65</td>
<td>59</td>
<td>12,63</td>
<td>23,31</td>
<td>23,05</td>
<td>22,17</td>
</tr>
<tr>
<td>Gran 20-30</td>
<td>41</td>
<td>4,83</td>
<td>60</td>
<td>12,95</td>
<td>22,34</td>
<td>22,13</td>
<td>21,37</td>
</tr>
<tr>
<td>Gran 30-40</td>
<td>28</td>
<td>5,42</td>
<td>61</td>
<td>12,78</td>
<td>27,18</td>
<td>27</td>
<td>26,58</td>
</tr>
<tr>
<td>Gran 40-60</td>
<td>32</td>
<td>6,21</td>
<td>62</td>
<td>13,4</td>
<td>25,69</td>
<td>25,52</td>
<td>25,2</td>
</tr>
<tr>
<td>Gran 60-80</td>
<td>33</td>
<td>6,79</td>
<td>63</td>
<td>16,38</td>
<td>24,01</td>
<td>23,86</td>
<td>23,6</td>
</tr>
<tr>
<td>Gran 80-100</td>
<td>30</td>
<td>6,79</td>
<td>64</td>
<td>12,56</td>
<td>26,58</td>
<td>26,37</td>
<td>26,03</td>
</tr>
</tbody>
</table>
Vedleggstabell 26 Analyseresultater fra nitrogen og karbonanalysen, samt rådata fra tørrstoffbestemmelsen. Denne tørrstoffbestemmelse er nyttet for å korrigerer total nitrogen og karbonmengde.

<table>
<thead>
<tr>
<th>Rute</th>
<th>Dyp</th>
<th>Tot C</th>
<th>Tot N</th>
<th>Tara</th>
<th>Akt brt</th>
<th>Tørr brt</th>
<th>Digel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bjørk</td>
<td>0-10</td>
<td>40,53</td>
<td>2,17</td>
<td>13,35</td>
<td>17,65</td>
<td>17,2</td>
<td>49</td>
</tr>
<tr>
<td>Bjørk</td>
<td>10-20</td>
<td>3,23</td>
<td>0,25</td>
<td>13,61</td>
<td>19,48</td>
<td>19,34</td>
<td>50</td>
</tr>
<tr>
<td>Bjørk</td>
<td>20-30</td>
<td>3,06</td>
<td>0,24</td>
<td>13,25</td>
<td>18,48</td>
<td>18,35</td>
<td>51</td>
</tr>
<tr>
<td>Bjørk</td>
<td>30-40</td>
<td>2,12</td>
<td>0,21</td>
<td>13,29</td>
<td>18,44</td>
<td>18,31</td>
<td>52</td>
</tr>
<tr>
<td>Bjørk</td>
<td>40-60</td>
<td>0,27</td>
<td>0,07</td>
<td>12,9</td>
<td>20,22</td>
<td>20,13</td>
<td>53</td>
</tr>
<tr>
<td>Bjørk</td>
<td>60-80</td>
<td>0,25</td>
<td>0,07</td>
<td>12,94</td>
<td>19,47</td>
<td>19,37</td>
<td>54</td>
</tr>
<tr>
<td>Bjørk</td>
<td>80-100</td>
<td>0,26</td>
<td>0,07</td>
<td>13,59</td>
<td>21,73</td>
<td>21,59</td>
<td>55</td>
</tr>
<tr>
<td>Bjørk</td>
<td>0-5</td>
<td>40,23</td>
<td>2,16</td>
<td>13,07</td>
<td>16,44</td>
<td>16,1</td>
<td>56</td>
</tr>
<tr>
<td>Bjørk</td>
<td>5-10</td>
<td>37,63</td>
<td>2,01</td>
<td>12,23</td>
<td>16,06</td>
<td>15,66</td>
<td>57</td>
</tr>
<tr>
<td>Gran</td>
<td>0-10</td>
<td>39,93</td>
<td>1,92</td>
<td>12,72</td>
<td>16,73</td>
<td>16,32</td>
<td>58</td>
</tr>
<tr>
<td>Gran</td>
<td>10-20</td>
<td>3,32</td>
<td>0,25</td>
<td>12,63</td>
<td>18,19</td>
<td>18,07</td>
<td>59</td>
</tr>
<tr>
<td>Gran</td>
<td>20-30</td>
<td>3,3</td>
<td>0,28</td>
<td>12,95</td>
<td>21,92</td>
<td>21,71</td>
<td>60</td>
</tr>
<tr>
<td>Gran</td>
<td>30-40</td>
<td>0,37</td>
<td>0,07</td>
<td>12,78</td>
<td>20,9</td>
<td>20,82</td>
<td>61</td>
</tr>
<tr>
<td>Gran</td>
<td>40-60</td>
<td>0,23</td>
<td>0,06</td>
<td>13,4</td>
<td>19,74</td>
<td>19,68</td>
<td>62</td>
</tr>
<tr>
<td>Gran</td>
<td>60-80</td>
<td>0,24</td>
<td>0,05</td>
<td>16,38</td>
<td>22,46</td>
<td>22,34</td>
<td>63</td>
</tr>
<tr>
<td>Gran</td>
<td>80-100</td>
<td>0,22</td>
<td>0,06</td>
<td>12,56</td>
<td>21,07</td>
<td>20,96</td>
<td>64</td>
</tr>
</tbody>
</table>
Vedleggstabell 27

Rådata fra analyse av kationbyttekapasitet. Analysene er utført i ammoniumacetatekstrakt.

<table>
<thead>
<tr>
<th>Rutte</th>
<th>Dyp</th>
<th>Prøve</th>
<th>Innveid jord</th>
<th>Målt pH</th>
<th>Titrert NaOH</th>
<th>Mengde av element i analysert ekstrakt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>nr</td>
<td>g</td>
<td>g</td>
<td>mg/l</td>
<td>mg/l</td>
</tr>
<tr>
<td>Bjørk</td>
<td>0-10</td>
<td>1</td>
<td>1,5</td>
<td>6,69</td>
<td>4,64</td>
<td>6,5</td>
</tr>
<tr>
<td>Bjørk</td>
<td>10-20</td>
<td>2</td>
<td>3</td>
<td>6,83</td>
<td>2,25</td>
<td>1,6</td>
</tr>
<tr>
<td>Bjørk</td>
<td>20-30</td>
<td>3</td>
<td>3</td>
<td>6,85</td>
<td>2,17</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
<td>4</td>
<td>3</td>
<td>6,86</td>
<td>1,85</td>
<td>0,56</td>
</tr>
<tr>
<td>Bjørk</td>
<td>40-60</td>
<td>5</td>
<td>3</td>
<td>6,91</td>
<td>1,2</td>
<td>7,6</td>
</tr>
<tr>
<td>Bjørk</td>
<td>60-80</td>
<td>6</td>
<td>3</td>
<td>6,93</td>
<td>0,9</td>
<td>17,1</td>
</tr>
<tr>
<td>Bjørk</td>
<td>80-100</td>
<td>7</td>
<td>3</td>
<td>6,94</td>
<td>0,82</td>
<td>18,1</td>
</tr>
<tr>
<td>Bjørk</td>
<td>0-5</td>
<td>8</td>
<td>1,5</td>
<td>6,69</td>
<td>4,89</td>
<td>4,9</td>
</tr>
<tr>
<td>Bjørk</td>
<td>5-10</td>
<td>1,5</td>
<td>6,7</td>
<td>5,04</td>
<td>4,5</td>
<td>2,7</td>
</tr>
<tr>
<td>Gran</td>
<td>0-10</td>
<td>10</td>
<td>1,5</td>
<td>6,67</td>
<td>5,29</td>
<td>2,8</td>
</tr>
<tr>
<td>Gran</td>
<td>20-30</td>
<td>12</td>
<td>3</td>
<td>6,85</td>
<td>2,25</td>
<td>0,6</td>
</tr>
<tr>
<td>Gran</td>
<td>30-40</td>
<td>13</td>
<td>3</td>
<td>6,91</td>
<td>1,18</td>
<td>2,3</td>
</tr>
<tr>
<td>Gran</td>
<td>40-60</td>
<td>14</td>
<td>3</td>
<td>6,93</td>
<td>0,9</td>
<td>12,8</td>
</tr>
<tr>
<td>Gran</td>
<td>60-80</td>
<td>15</td>
<td>3</td>
<td>6,93</td>
<td>0,85</td>
<td>15,2</td>
</tr>
<tr>
<td>Gran</td>
<td>80-100</td>
<td>16</td>
<td>3</td>
<td>6,91</td>
<td>1,17</td>
<td>17,3</td>
</tr>
<tr>
<td>Blank</td>
<td>Blind</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>6,94</td>
</tr>
<tr>
<td>Blank</td>
<td>Blind</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>6,94</td>
</tr>
</tbody>
</table>