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Summary

Background The Scandinavian wolverine (Gulo gulo) population is being monitored annually
using non-invasive genetic sampling (NGS) and recovery of dead individuals. DNA extracted
from feces, urine, hair, secretion, and tissue is used to identify the species, sex, and individual
from which each sample originated. These data have been compiled in the Scandinavian large
carnivore database Rovbase 3.0. (www.rovbase.se, www.rovbase.no).

Approach Using the Bayesian open-population spatial capture-recapture (OPSCR) model de-
veloped by RovQuant, we estimated annual density, total and jurisdiction-specific population
sizes and vital rates of the Scandinavian wolverine population for ten consecutive seasons from
2014 to 2023.

Results We generated annual density maps and estimated total and jurisdiction-specific pop-
ulation sizes for the wolverine during 2014 to 2023. Based on the OPSCR model, the size of
the Scandinavian wolverine population was likely (95% Bayesian credible interval) between 1029
and 1137 individuals in 2023, with 652 to 742 individuals attributed to Sweden and 366 to 403
to Norway. In addition to annual density and abundance estimates, we report, for each sex,
annual estimates of cause-specific mortality, recruitment, and detection probability.

Discussion While overall abundance estimates remained relatively stable between 2022 and
2023, there was a significant drop in the estimated survival of female wolverines. According to
the model, this apparent drop was attributable to an increase in mortality due to causes other
than legal hunting, including natural deaths, collisions, and unreported human-caused deaths.
Further research is needed to determine if this finding is the result of an analytical artifact, a
change in monitoring that was unaccounted for in the model, or a true drop in female survival.

Density map and ranges of abundance 
     estimated for wolverines in 2023

1029-1137

652-742

366-403
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Sammendrag

Bakgrunn Den skandinaviske bestanden av jerv (Gulo gulo) blir overvåket årlig ved bruk av
ikke-invasiv genetisk prøveinnsamling (NGS) og gjenfunn av døde individer. DNA ekstrahert fra
skit, urin, hår og vev brukes til å identifisere art, kjønn og individ for hver enkelt prøve. Denne
informasjonen samles og ivaretas i den skandinaviske databasen for store rovdyr; Rovbase 3.0
(www.rovbase.se, www.rovbase.no).

Tilnærming Ved bruk av en Bayesiansk åpen romlig fangst-gjenfangst populasjons modell
(OPSCR), utviklet av RovQuant, estimerte vi årlige tettheter og demografiske rater hos den
skandinaviske jervebestanden i ti sesonger fra 2014 til 2023.

Resultater Vi laget årlige kart med tetthet av jerv fra 2014 til 2023, hvor bestandsstørrelsen
både totalt og innenfor ulike administrative enheter kunne avledes. Basert på OPSCR modellen
var den skandinaviske bestanden av jerv mellom 1029 og 1137 individer i 2023 (95% kredibelt
intervall), med 652 til 742 individer i Sverige og 366 til 403 individer i Norge. I tillegg til årlige
tettheter og områdespesifikke bestandsestimater, gir rapporten estimater på dødlighetsfaktorer,
rekruttering og oppdagbarhet.

Diskusjon Selv om bestandsestimatene er relativt stabile mellom 2022 og 2023 viser resultatene
fra modellen en vesentlig reduksjon i overlevelsen til hunner. Den reduserte overlevelsen skyldes
en økning i dødeligheten som følge av faktorer utenom lovlig jakt, slik som naturlig dødelighet,
kollisjoner og urapportert menneskeskapt dødelighet. Videre analyser er påkrevd for å finne ut
om dette er en artefakt av analysen, et resultat av endring i overvåkingen som ikke ble hensyntatt
i modelleringen, eller en reell nedgang i overlevelse hos hunner

Kart som viser tetthet av jerv i 2023 sammen
    med intervaller for estimert antall jerv

1029-1137

652-742

366-403
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1 Introduction

Sweden and Norway monitor large carnivores using non-invasive genetic sampling (NGS)
and dead recoveries. Both countries have collected an extensive individual-based data set for
the wolverine (Gulo gulo), which is stored in the Scandinavian large carnivore database Rovbase
(www.rovbase.se, www.rovbase.no). Since 2017, project RovQuant has been developing statisti-
cal methods that allow a comprehensive assessment of the status and dynamics of large carnivore
populations using NGS data and other sources of information stored in Rovbase (Bischof et al.,
2019b, 2020b). The analytical framework developed by RovQuant is based on Bayesian open-
population spatial capture-recapture (OPSCR) models (Ergon and Gardner, 2014; Bischof et al.,
2016; Chandler et al., 2018). These models use the spatial and temporal information contained in
the repeated genetic detections of individuals to estimate various population parameters, includ-
ing spatially-explicit abundance (i.e., density) and vital rates (e.g., recruitment and survival).
Importantly, the approach accounts for imperfect detection during sampling (i.e., the fact that
some individuals are not detected at all) and animal movement (i.e., the fact that individuals
may use and be detected in multiple management units or countries). The OPSCR method
brings along several advantages, including the ability to map density, derive jurisdiction-specific
abundance, estimate survival and recruitment (which are needed for making population projec-
tions), and yield tractable measures of uncertainty (Bischof et al., 2019a, 2020b).

RovQuant reported abundance estimates for wolverines and wolves (Canis lupus) on an
annual basis since 2019 (Bischof et al., 2019a,b, 2020b; Milleret et al., 2021b, 2022b,d; Flagstad
et al., 2021; Milleret et al., 2023, 2022c) and for brown bears (Ursus arctos in Norway since
2022 (Dupont et al., 2022, 2023). During these and other analyses (Milleret et al., 2018, 2019;
Bischof et al., 2020a; Dupont et al., 2021; Turek et al., 2021; Dey et al., 2022), RovQuant
has continuously improved the performance of the OPSCR models. In the present report, we
summarize the analysis of a 10-year time series (2014–2023) using the latest available wolverine
monitoring data (Kleven et al., 2023) and the most recent version of the OPSCR model. We
provide the following information:

• Annual and sex-specific estimates of the number of wolverines for Sweden, Norway, and
both countries combined, as well as estimates by county in Sweden and by carnivore
management region in both countries.

• Annual maps of wolverine density throughout the species’ range in Scandinavia.

• Annual and sex-specific estimates of survival, cause-specific mortality, recruitment, and
population growth rate.

• Estimated proportion of individuals detected through non-invasive genetic sampling.

All estimates are accompanied by their 95% Bayesian credible intervals.
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Box 1: Terms and acronyms used

AC: Activity center. Model-based equivalent of the center of an individual’s home range during
the monitoring period. “AC location” refers to the spatial coordinates of an individual AC in a
given year and “AC movement” to the movement of an individual AC between consecutive years.
CrI: 95% credible interval associated with a posterior sample distribution.
Detectors: Potential detection locations in the spatial capture-recapture framework. These
can refer to fixed locations (e.g., camera-trap locations) or in this report to areas searched (e.g.,
habitat grid cells where searches for genetic samples were conducted). The searched area was
defined as a 90 km buffer around all NGS data collected during the period considered.
Statsforvalteren: Norwegian state’s representative in the county, responsible for following up
decisions, goals, and guidelines from the legislature and the government.
Habitat buffer: Buffer surrounding the searched area that is considered potentially suitable
habitat but was not searched (60km in this report).
Legal culling: Lethal removal of individuals by legal means, including licensed recreational
hunting, management removals, and defense of life and property.
Länsstyrelserna: Swedish County Administrative Boards, in charge of the monitoring of large
carnivores at the county level.
MCMC: Markov chain Monte Carlo.
NGS: Non-invasive genetic sampling.
OPSCR: Open-population spatial capture-recapture
p0: Baseline detection probability; probability of detecting an individual at a given detector, if
the individual’s AC is located exactly at the detector location.
σ: Scale parameter of the detection function; related to the size of the circular home-range.
SCR: Spatial capture-recapture.
SNO: Statens naturoppsyn (Norwegian Nature Inspectorate) is the operative field branch of the
Norwegian Environment Directorate (Miljødirektoratet).
RovQuant: Research group at the Norwegian University of Life Sciences (Ås, Norway) that
develops and applies OPSCR models.
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2 Methods

2.1 Data

We included data from multiple sources, the primary one being the Scandinavian large carnivore
database Rovbase 3.0 (rovbase.se and rovbase.no; last extraction: 2023-10-20). This database
is used jointly by Norway and Sweden to record detailed information associated with large car-
nivore monitoring, including, but not limited to, NGS data, dead recoveries, and GPS search
tracks. In the following sections, we describe the various types of data used in the analysis. We
used data collected during ten consecutive monitoring seasons from 2014 to 2023.

Non-invasive genetic sampling In Norway, the collection of wolverine scat, urine, glandular
secretion, and hair is managed at the level of counties by SNO. Sample collection is conducted
by SNO field officers, wardens at Statskog Fjelltjenesten (statskog.no), wardens at Fjellstyrene
(fjellstyrene.no), local predator contacts, hunters and other members of the public. Rovdata
(rovdata.no), a unit within the Norwegian Institute for Nature Research, has responsibility
for the Norwegian large carnivore monitoring program. In Sweden, the collection of scat and
hair is managed by Länsstyrelserna at the regional level and carried out by field officers from
Länsstyrelserna. NGS collection was conducted primarily between December 1 and June 30 each
year. NGS data collected late in the monitoring season and suspected to be from cubs were not
included. This means that we only retained samples from individuals that were one year or
older. DNA was isolated with an extraction robot (Maxwell 16, KingFisher or QIAsymphony
instrument) and the samples were genotyped using 96 SNPs (Single Nucleotide Polymorphism)
on a microfluidic-based platform (Biomark X9 instrument) for sex determination and individual
identification. For further details on the DNA analysis procedure see Flagstad et al. (2004),
Flagstad et al. (2021), and Kleven et al. (2023).

Dead recoveries In Scandinavia, all large carnivores killed legally (e.g., legal hunting, manage-
ment kills, defense of life and property) have to be reported to the state authorities (Fylkesman-
nen or SNO in Norway and Länsstyrelserna or the police in Sweden). All wolverines found dead
due to other reasons (e.g., natural deaths, vehicle and train collisions, illegal hunting) also have
to be reported, but an unknown proportion remains undetected. Tissue is collected from all
reported dead carnivores for DNA extraction and analysis, following the same procedures as for
non-invasive genetic samples.

GPS search tracks Government employees involved in systematic searches for wolverine DNA
following wolverine tracks (via snowmobiles, skis, snowshoes, etc.) document their effort with
GPS track logs, which are registered in Rovbase 3.0. GPS search tracks were included in the
OPSCR model to account for spatial and temporal variation in search effort during NGS.

Observation reports in Skandobs We used all observation records in the Skandobs database
that were recorded during the wolverine monitoring seasons since 2012 (skandobs.se, skan-
dobs.no; last extraction: 2023-10-24). Skandobs is a web application that allows anyone to
anonymously register observations (visual, tracks, feces, etc.) of bears, lynx (Lynx lynx), wolves,
and wolverines in Scandinavia. This data currently consists of more than 90 000 records of pos-
sible large carnivore observations. Although most observations are not verified, they offer the
best available proxy for spatio-temporal variation in opportunistic effort at this time.
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2.2 Open-population spatial capture-recapture model

We analysed the data using a Bayesian open-population spatial capture-recapture (OPSCR)
model (Bischof et al., 2019b), which addresses three challenges associated with population-level
wildlife inventories:

1. Detection is imperfect and sampling effort is heterogeneous in space and time: not all
individuals present in the study area are detected (Kéry and Schaub, 2012).

2. Individuals that reside primarily outside the surveyed area may be detected within it.
Without an explicit link between the population size parameter and the geographic area
the population occupies, density cannot be estimated and population size is ill-defined
(Efford, 2004).

3. Non-spatial population dynamic models usually estimate “apparent” survival and recruit-
ment, as these parameters include the probability of permanent emigration and immigra-
tion, respectively. By explicitly modelling movement of individuals between years, the
OPSCR model can help return unbiased estimates of demographic parameters (Ergon and
Gardner, 2014; Schaub and Royle, 2014; Gardner et al., 2018).

The OPSCR model is composed of three sub-models:

1. A model for population dynamics and population size.
2. A model for density and individual movement.
3. A model for detections during DNA searches.

Population dynamics and population size sub-model We used a multi-state formulation
(Lebreton and Pradel, 2002), where each individual’s life history is represented by a succession
of up to 3 discrete states: (1) “unborn” if the individual has not yet been recruited into the
population (state “unborn” is required for the data augmentation procedure, see below); (2)
“alive” if it is alive; (3) “dead” if it is dead. We then modelled the transition from one state to
another between consecutive monitoring seasons (t to t + 1) to estimate vital rates (recruitment
and mortality). More details are available in Bischof et al. (2019b) and Bischof et al. (2020b).
This formulation of the population dynamic model means that, contrary to previous analyses
(Bischof et al., 2019b, 2020b; Flagstad et al., 2021; Milleret et al., 2022b), we did not use dead
recoveries or model cause-specific mortality directly in the OPSCR model. Cause-specific mor-
tality was instead derived after model fitting (see section "Other derived parameters"). We used
data augmentation (Royle and Dorazio, 2012), whereby additional, undetected individuals are
available for inclusion in the population at each time step.

Density and movement sub-model We used a Bernoulli point process to model the distribu-
tion of individual ACs (Zhang et al., 2022). In the first year, individuals were located according
to an intensity surface, which was a function of the locations of known dens at time t − 1 (see
Bischof et al., 2019b and Bischof et al., 2020b for more details). For all subsequent years (t > 1),
the location of individual ACs was a function of the distance from previous locations of ACs
(at time t − 1) and the locations of known wolverine dens (at time t − 1). Similar to the wolf
abundance estimation by Milleret et al. (2022d), we used an exponential model to describe the
movement of individuals between years, as it better accommodates distributions with long tails
(i.e., a few individuals that make exceptionally long dispersal movements).

Detection sub-model SCR models take into account the spatial variation in individual de-
tection probability based on the distance between AC locations (estimated by the density sub-
model) and a given detector. A half-normal function was used to express the declining proba-
bility of detection with increasing distance between the AC and the detector (Royle et al., 2013).
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In Scandinavia, DNA material from live wolverines is collected following two main processes.
First, authorities collect genetic samples and record the corresponding search effort during of-
ficial searches ("structured sampling" thereafter). Second, DNA material can be collected by
any member of the public (e.g., hunters) or by the authorities in a more or less opportunistic
manner, which means that search effort is not directly available ("unstructured sampling" there-
after). Currently, it is not possible to unambiguously distinguish between samples collected
by the authorities during the structured or unstructured sampling in Rovbase. We therefore
assigned each sample to structured or unstructured sampling based on whether a given sample
matched in time and space with recorded search tracks: a sample was assigned to the "struc-
tured" sampling if it was collected by the authorities (marked as collected by "Statsforvalteren"
or "SNO" in Rovbase) and located within 500 m from a GPS search track recorded the same
day. All remaining samples were assigned to the unstructured sampling.

We assumed that both sampling processes could in theory occur within the entire study area
and therefore used the same 10 × 10 km detector grid for both observation processes. Samples
were then assigned to the closest detector (see details in Bischof et al., 2019b, and Bischof et al.,
2020b). However, spatial and temporal variation in the probability to detect a sample during
structured or unstructured sampling were assumed to be driven by different processes.

We accounted for spatial, temporal and individual heterogeneity in detectability during struc-
tured sampling using:

• Spatio-temporal variation in search effort represented by the length of GPS search tracks
in each detector grid cell.

• Spatio-temporal variation in snow cover during the monitoring period calculated as the av-
erage percentage of snow cover in each detector grid cell (MODIS at 0.1 degrees resolution,
https://cmr.earthdata.nasa.gov, accessed 2023-10-20).

• Spatio-temporal variation in monitoring regimes between jurisdictions (groups of counties
in Sweden, carnivore management regions in Norway, Figure A.4).

• Individual variation linked with a detection during the previous occasion (monitoring sea-
son) that could be expected to influence the probability of being detected at the next
occasion.

We accounted for spatial, temporal, and individual heterogeneity in detectability during un-
structured sampling using:

• Spatio-temporal distribution of ancillary samples and samples not successfully genotyped
(Figure A.1). For each detector grid cell and during each monitoring season (Dec 1 -
Jun 30), we identified whether a) any carnivore sample had been registered in Rovbase
(excluding successfully genotyped wolverine samples already used in the OPSCR analysis)
or b) any observation of carnivores had been registered in Skandobs. Roughly, this binary
variable distinguishes areas with very low detection probability from those with a higher
probability that carnivore DNA samples, if present in a detector grid cell, could have been
detected and submitted for genetic analysis (Figure A.1).

• Spatio-temporal variation in snow cover during the monitoring period calculated as the av-
erage percentage of snow cover in each detector grid cell (MODIS at 0.1 degrees resolution,
https://cmr.earthdata.nasa.gov, accessed 2023-09-29).

• Spatial variation in accessibility measured as the average distance to the nearest road.
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• Spatio-temporal variation between countries Figure A.5).

• Individual and temporal variation linked with a previous detection that could influence
the probability of being detected at subsequent occasions.

For years and areas without comprehensive sampling effort (i.e., Norrbotten county in Swe-
den in all years except 2017, 2018, and 2019), we removed all samples collected within the
county and fixed detection probability to 0 for both structured and unstructured sampling. The
different model components and data sources for covariates are described in detail in Bischof
et al. (2019a), Bischof et al. (2019b), and Bischof et al. (2020b).

Model fitting We fitted sex-specific Bayesian OPSCR models using MCMC simulation with
NIMBLE version 0.12.2 (de Valpine et al., 2017; Turek et al., 2021; de Valpine et al., 2022) and
RovQuant’s R package nimbleSCR version 0.2.0 (Bischof et al., 2021) in R version 4.1.0 (R Core
Team, 2021). We ran 4 chains each with 25 000 iterations, including a 10 000-iterations burn-in
period. Due to the computing challenge associated with post-processing large amounts of data,
we thinned chains by a factor of 10 before deriving abundance estimates. We considered models
as converged when the Gelman-Rubin diagnostics (Rhat, Gelman and Rubin, 1992) was ≤1.1
for all parameters and when mixing between chains was satisfactory based on visual inspection
of trace plots.

Abundance estimates To obtain an estimate of abundance for any given area, we summed the
number of predicted AC locations (individuals detected during sampling or predicted to be alive
by the model) that fell within that area for each iteration of the MCMC chains. This produced
a posterior distribution of abundance for that area. From such posteriors, abundance estimates
and the associated uncertainty can be extracted for any spatial unit, including countries, coun-
ties or management regions (Figure A.2). Individuals detected near a border can have their
model-predicted AC placed on different sides of that border in different model iterations (even if
detections are only made on one side of the border). As a result, the probability of designating
such individuals to either side of the border can be integrated into jurisdiction-specific abundance
estimates. This is especially relevant for wolverines detected along the Swedish and Norwegian
border as individual wolverines can be partially designated to both countries (Bischof, 2015;
Bischof et al., 2016).

To ensure that abundance estimates for spatial sub-units (jurisdictions) add up to the overall
abundance estimate, we used the mean and associated 95% credible interval limits to summarize
posterior distributions of abundance. Combined (female and male) parameter estimates were
obtained by merging posterior samples from the sex-specific models.

Density maps We used both the distribution of model-estimated AC positions and the scale
parameter (σ) of the detection function to construct density maps based on individual utilization
distributions. These maps are not only based on the position of the activity center of an indi-
vidual, but also take into account the area over which that individual’s activity is spread, i.e.,
its space use (Bischof et al., 2020b). To do so, we constructed raster maps (5 km resolution) of
individual utilization distributions, scaled values in each raster to sum to one, and then summed
rasters across individuals to create a single population-level raster map for each iteration. An
overall density map was derived by calculating the mean across iterations in each cell (Bischof
et al., 2020b). Note that this approach assumes circular home ranges of average size for all
individuals of a given sex and does not take into account individual variation in home-range size
and shape.

Other derived parameters We did not use dead recoveries and did not model cause-specific
mortalities explicitly. Instead, we used the posterior distribution of the number of individuals
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that died between consecutive occasions, as estimated by the OPSCR model, and the recorded
number of legally culled individuals to derive cause-specific mortality estimates indirectly.

The average proportion of individuals detected and the associated uncertainty were obtained
by dividing the number of individuals detected through NGS each year (Table A.2) by the cor-
responding mean abundance estimates and associated credible interval limits, respectively.

We derived the proportion of females in the population and the associated uncertainty by
dividing the estimated number of females by the total abundance for each iteration, thus gener-
ating a posterior distribution of the proportion of females from which the median and credible
interval could be derived (Table A.2). Yearly population growth rates (λ; Table A.5) were cal-
culated similarly as λt = Nt+1/Nt for each iteration of the MCMC chains.

Focus on uncertainty Although we reported median (or mean for abundance; see above) es-
timates for all parameters in the tables, we intentionally focused the main results of our report
on the 95% credible interval limits of the estimates. We did so with the aim of drawing the
reader’s attention to the uncertainty around population size estimates, rather than a single point
estimate (Milleret et al., 2022b).
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3 Results
3.1 Non-invasive genetic samples and dead recoveries

A total of 21 746 (9 732 female; 12 014 male) genotyped wolverine genetic samples were included
in the analysis, of which 42% originated from Sweden. These samples were associated with 2 830
(1500 female; 1330 male) individuals. We did not include individuals with unknown sex in this
analysis. During the last sampling period (winter 2022/23), a total of 3 038 (1 358 female; 1 680
male) were successfully genotyped. Among all genotyped samples, 16 061 (7175 female; 8886
male) were assigned to structured sampling and 5 685 (2557 female; 3128 male) to unstructured
sampling. Annual total and country-specific tallies of detections and associated individuals, as
well as dead recoveries are provided in the appendices (NGS samples: Table A.1, number of
individuals detected: Table A.2, number of dead recoveries: Table A.3)
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Figure 1: Total (black) and country-specific (blue: Sweden, red: Norway) annual wolverine population size
estimates in Scandinavia between 2014 and 2023. Darker and lighter bars show the 50% and 95% credible intervals,
respectively. Credible intervals indicate uncertainty in estimates given the model and data used to generate the
estimates. Changes in the model and data can result in different estimates and associated uncertainty compared
with estimates provided in previous reports by RovQuant. Total estimates in Sweden and for the entire study
area that include estimates from Norrbotten without comprehensive NGS are marked with *.

3.2 Density and abundance
Wolverine abundance for the entire study area (622 350 km2, excluding the buffer area) was
likely (95% credible interval) between 1 029 and 1 137 individuals in 2023 (Table 1, Figure 1,
Figure 2). Estimates refer to the status of the population at the start of the annual sampling
period (December 1). The proportion of females in the Scandinavian wolverine population was
likely between 56% and 61% in 2023. Based on the model-predicted location of ACs, we esti-
mated that in 2023, between 652 and 742 individuals could be attributed to Sweden and 366 to
403 to Norway. See Table 1 for total and sex-specific estimates for each country and carnivore
management region. See Table A.4 for annual estimates for all of Scandinavia and by region
between 2014 and 2023. Note that estimates for different years (Figure 1) shown here differ
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slightly from those provided in Bischof et al. (2020b) and Milleret et al. (2021a). This is due
to the use of an updated OPSCR model and the inclusion of an additional year of data. The
analysis yielded annual density maps, which illustrate changes in the distribution of wolverines
over time (Figure A.3).

Table 1: Wolverine population size estimates in 2023 by sex at several spatial scales: the entire study area, by
country, by management unit (carnivore management regions in Norway and "Rovdjursförvaltningsområden" in
Sweden), and by counties (“Län” in Sweden); see Figure A.2 for a labelled map. Only counties and management
units that are within or that intersect the study area are included in the table. The percentage of the total
area of each unit included in the analysis is provided in the column "% Area". Readers should focus on the 95%
credible interval provided in parentheses, as these - unlike mean values - convey uncertainty inherent in abundance
estimates. Numbers are based on estimated AC locations of wolverines. Combined female-male estimates were
obtained by joining sex-specific posterior distributions. Rounding may result in small deviations between total
estimates and the sum of the estimates for constituent regions. Estimates for Norrbotten county in years without
comprehensive non-invasive genetic sampling (NGS) were derived solely using the prediction from the OPSCR
model (shown in grey and marked with *), without use of NGS data from that county. Total estimates in Sweden
and for the entire study area that include estimates from Norrbotten without comprehensive NGS are shown in
grey and marked with **.

Females Males Total % Area
TOTAL 632.3 (586-680)** 448.6 (422-477)** 1081 (1029-1137)** 83

NORWAY 236.3 (221-253) 148.3 (139-159) 384.6 (366-403) 93
Region 1 7 (3-12) 4.5 (1-9) 11.6 (6-18) 85
Region 2 4 (1-8) 1.6 (0-4) 5.7 (2-10) 74
Region 3 18.2 (14-22) 14.4 (12-17) 32.6 (28-38) 100
Region 4 1 (0-3) 0.7 (0-3) 1.8 (0-5) 75
Region 5 44.7 (39-51) 36.5 (33-41) 81.2 (75-89) 100
Region 6 56.2 (50-63) 36.2 (32-41) 92.5 (84-101) 100
Region 7 43.2 (39-47) 28.8 (25-33) 72 (66-78) 100
Region 8 61.8 (55-70) 25.5 (22-30) 87.3 (79-96) 100

SWEDEN 396 (358-437)** 300.3 (276-325)** 696.4 (652-742)** 76
Norra 330.6 (297-368)** 235.7 (212-257)** 566.3 (527-609)** 100

Jämtland 121.5 (107-135) 87 (79-96) 208.5 (193-224) 100
Norrbotten* 111.2 (90-130)* 72.7 (55-91)* 183.8 (157-211)* 97
Västerbotten 71.3 (60-84) 50.6 (44-58) 121.8 (108-137) 97
Västernorrland 26.7 (20-34) 25.5 (21-30) 52.2 (44-61) 100

Mellersta 65.1 (56-76) 64.4 (56-74) 129.5 (117-143) 75
Dalarna 34.9 (30-41) 26.8 (23-32) 61.7 (55-69) 100
Gävleborg 17.7 (14-22) 22.1 (19-26) 39.8 (34-46) 100
Örebro 1.9 (0-5) 2.5 (0-6) 4.4 (1-9) 100
Stockholm 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 4
Uppsala 1.5 (0-4) 1.7 (0-4) 3.2 (0-7) 86
Värmland 7.3 (4-12) 9.6 (6-14) 16.9 (11-23) 100
Västmanland 0.9 (0-3) 0.9 (0-3) 1.7 (0-5) 74
VästraGötaland 0.8 (0-3) 0.7 (0-3) 1.6 (0-4) 12

Södra 0.3 (0-2) 0.3 (0-2) 0.6 (0-2) 1
Östergötland 0.2 (0-1) 0.1 (0-1) 0.3 (0-2) 4
Södermanland 0.2 (0-1) 0.1 (0-1) 0.3 (0-2) 7
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Figure 2: Wolverine density based on individual utilization distributions in Scandinavia in 2023. Note that
no comprehensive NGS was conducted in Norrbotten (polygon outlined in black) in 2023, which means that the
density estimated in this county is solely based on the OPSCR model prediction and assumptions. The grey
background represents areas that were considered not searched and therefore were not included in the analysis.
This map is freely available as a geo-referenced raster file at https://github.com/richbi/RovQuantPublic

3.3 Vital rates

The OPSCR model produced annual estimates of survival and per capita recruitment rates
(Table A.6). Overall, females had a higher survival probability than males (Figure 3). Between
2022 and 2023, female wolverines experienced a significant apparent drop in survival (from 0.73-
0.85 in 2022 to 0.58-0.71 in 2023, Table A.6). This drop did not seem to be caused by an increase
in legal causes of mortality, but by an increase in mortality due to other causes (Figure 5). In
2023, the number of recruits was estimated to be between 316 and 429 (156-222 Females, 160-
207 Males), which is higher than the number of recruits estimated in 2022 for both males and
females (240-350; 108-176 Females, 132-174 Males; Figure 4).

15

https://github.com/richbi/RovQuantPublic


0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years

S
ur

vi
va

l

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2014 to
2015

2015 to
2016

2016 to
2017

2017 to
2018

2018 to
2019

2019 to
2020

2020 to
2021

2021 to
2022

2022 to
2023

Index

1

Females

Males

Figure 3: Annual survival probabilities for male and female wolverines. Darker and lighter bars show the 50%
and 95% credible intervals, respectively. Shown are overall estimates for the entire study area between 2014 and
2023.
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Figure 4: Estimated annual number of male and female recruits in the Scandinavian wolverine population
between the start of one sampling season and the start of the next. Recruitment represents the number of new
individuals present in the population on Dec 1 (i.e., individuals that were born between the two consecutive
monitoring seasons and survived to Dec 1 or that immigrated into the study area). Darker and lighter bars show
the 50% and 95% credible intervals, respectively.

3.4 Detection probability

The overall proportion of detected individuals in the population was likely between 65% and
71% in 2023, and overall, larger in Norway than in Sweden (Table A.10). The baseline detec-
tion probability for the structured and unstructured sampling varied both in time and space
(Figure A.4 and Figure A.5). More specifically, the length of recorded search tracks positively
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affected detection probability during structured sampling (2023; males: β = 0.46, CrI: 0.40 -
0.52; females: β = 0.51, CrI: 0.44 - 0.58; Table A.8). Detection of an individual during the
previous year and the average proportion of snow cover had no significant effect on detection
probability during structured sampling (Table A.8). The proxy for search effort during unstruc-
tured searches, derived using the observation data in Skandobs and information about ancillary
samples in Rovbase, had a strong positive effect on detection probability during unstructured
sampling (2023; males: β = 0.57, CrI: 0.31 - 0.84; females: β = 0.47, CrI: 0.15 - 0.81; Ta-
ble A.9). Detection of an individual during the previous year also tended to have a positive
effect on detection probability during unstructured sampling but the pattern was not consistent
across years (Table A.9).

4 Discussion
The drop in the survival estimates of female wolverines between 2022 and 2023 was unex-

pected. Further analyses, that explicitly integrated spatial dead recoveries in the OPSCR model
(Dupont et al., 2021; Bischof et al., 2020b; Milleret et al., 2021a), indicated that the drop was
not due to an increase in legal mortality, but due to an increase in mortality due to other causes
(Figure 5). Other causes of mortality include natural (e.g., age, diseases, starvation, intra- and
interspecific killing), traffic and illegal killing, which we cannot differentiate, and remains unde-
tected in most cases. With our present analysis, we were unable to identify the reason behind
the apparent drop in female survival in the last year of the time series. We consider two main,
non-mutually exclusive, explanations for this result:

1) A true reduction in survival due to one or more factors. An increase in other causes
of mortality can be linked, for example, with an increase in natural mortality caused by intra-
specifc aggression (due to higher densities) or disease. Alternatively, anthropogenic factors could
cause a spike in mortalities, for example an increase in illegal killing, or a combination thereof.
However, we are not aware of any reports or observations that would support these hypotheses.

2) An analytical artifact. Such issue can arise with a mismatch between the observation
and ecological process of the OPSCR model. For example, if the detection of females already
alive in 2022 was lower in 2023 but not unaccounted for in the analysis, this could lead to an
apparent decrease in survival. However, we are not aware of major changes in sample collection
or genotyping procedures during wolverines monitoring between 2022 and 2023 in Sweden and
Norway that could explain such differences in detectability. On the contrary, overall figures
of detectability, as shown by the number of genotyped samples (Table A.1, Table A.2 ) and
the estimated baseline detection probability (Figure A.4), seemed higher than previous years in
Norway and rather stable in Sweden. We also cannot discard the possibility that the OPSCR
approach inadvertently introduced a bias. Our analysis revealed a stable survival of males but
a decrease in the survival of females between 2022-2023. The analysis also revealed a higher
number of recruits from both sexes between 2022-2023. Finally, these patterns, including the
hogher number of recruits for both males and females, are also visible in the raw NGS data,
which suggests that a bias caused by the OPSCR model is unlikely to be the main explanation
for the decrease in survival.

Our analysis did not allow us to draw conclusions about one or more of these potential
explanations as the cause of the observed pattern. Further analyses, such as a spatially explicit
estimation of mortality (Milleret et al., 2022a), could help reveal if this decrease in female
survival is homogeneous across Sweden and Norway and, ultimately, to identify whether it is
real or an artifact.
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Figure 5: Mortality probabilities due to legal culling (light green) and all other causes (dark green) for female
and male wolverines estimated by a separate OPSCR model that integrated dead recoveries (Dupont et al., 2021;
Bischof et al., 2020b; Milleret et al., 2021a). Darker and lighter bars show the 50% and 95% credible intervals,
respectively. Shown are overall estimates throughout the study area. Estimates refer to deaths occurring between
the start of one sampling season and the start of the next.
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5 Summary and suggestions of improvements

5.1 Summary of improvements made

The analysis described in this report includes the following adjustments compared with previous
analyses of wolverine density in Scandinavia by RovQuant (Milleret et al., 2022c):

1. Addition of data from the 2023 monitoring season.

2. Correction of a previous error in the assignment of some samples to structured and un-
structured sampling.

5.2 Suggestions for future improvements

RovQuant continues to work on improving the functionality and efficiency of OPSCR models.
We plan to test and potentially implement the following developments in future analyses of the
Scandinavian wolverine monitoring data:

1. Review and adjust spatial covariates on density. This may involve the addition of relevant
spatial variables (Moqanaki et al., 2022).

2. Account for individual heterogeneity in detection for example by using a finite-mixture
approach (Cubaynes et al., 2010).

3. Consider alternative detection models that do not assume a half-normal shape and/or
circular home ranges (Sutherland et al., 2015; Dey et al., 2022).

4. Account for spatial variation in survival (Milleret et al., 2022a).

5.3 Other recommendations

In addition, we suggest the following:

1. Indicate sample association with the search tracks in Rovbase (if any) to unambiguously
identify samples arising from structured vs unstructured sampling.

2. Consider full-coverage NGS in all regions for which estimates are desired (e.g., Norbotten
or reindeer (Rangifer tarandus) herding areas).

3. Report information about how samples are selected for DNA analysis.

4. Record coarse measures of search conditions at the search track level (e.g., presence/absence
of snow, days since last snowfall, experience level of searchers).

5. Unambiguously and consistently indicate the species targeted during searches when record-
ing GPS search tracks.

6. Clearly identify and delineate areas excluded from structured and unstructured sampling
and indicate the reason for exclusion (e.g., unable to search the area or low priority due
to assumed absence of the target species).

7. Explore the feasibility of using station-based detectors (e.g., hair snares or similar) for
better control over the observation process.
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Figure A.1: Covariate used to account for spatio-temporal variation in unstructured sampling in the study area.
Green cells (10 × 10 km) represent areas with at least one carnivore record from Rovbase (rovbase.no, rovbase.se,
excluding the wolverine samples used in the OPSCR model) or an observation record from Skandobs (skandobs.se,
skandobs.no) during a given monitoring season (Dec 1 – Jun 30).
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Figure A.2: Management jurisdictions in Norway and Sweden. Polygons with different shading represent
carnivore management regions in Norway and counties in Sweden. Thick outlines delineate Swedish carnivore
management regions ("Rovdjursförvaltningsområden") encompassing multiple counties.
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Figure A.3: Wolverine density based on individual utilization distributions in Scandinavia between 2014 and 2023. Note that no comprehensive NGS was conducted in
Norrbotten (polygon outlined in black) from 2014-2016 and from 2020-2023, which means that the results are solely based on the OPSCR model prediction and assumptions.
The grey area represents areas that were considered not searched and therefore were not included in the analysis. These maps are available as geo-referenced raster files at
https://github.com/richbi/RovQuantPublic.
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Figure A.4: Sex-specific baseline detection probabilities (p0structured ) for the different Scandinavian jurisdictions
during structured sampling as estimated by the open-population spatial capture-recapture (OPSCR) model. Bars
represent 95% credible intervals. Results are separated into panels based on regions. Estimates are shown for
the mean values of the detection covariates. Note that baseline detection probability (p0) is a theoretical value of
detection probability when a detector coincides with the location of an individual’s AC; it is not to be confused
with detectability, i.e, the overall probability of detecting an individual.
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Figure A.5: Sex- and country-specific baseline detection probabilities (p0unstructured) of wolverines during
unstructured sampling as estimated by the open-population spatial capture-recapture (OPSCR) model. Bars
represent 95% credible intervals. Estimates are shown for the mean values of the detection covariates. Note that
baseline detection probability (p0) is a theoretical value of detection probability when a detector coincides with
the location of an individual’s activity center; it is not to be confused with detectability, i.e, the overall probability
of detecting an individual.
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2014 2015 2016 2017 2018 2019 2020 2021 2022 2023F M F M F M F M F M F M F M F M F M F MNorway 521 578 412 445 470 577 606 670 462 747 592 731 575 686 582 736 569 747 877 999Sweden 186 154 228 221 236 275 487 552 636 839 504 618 355 538 460 563 493 657 481 681Total 707 732 640 666 706 852 1093 1222 1098 1586 1096 1349 930 1224 1042 1299 1062 1404 1358 1680

Table A.1: Annual number of wolverine non-invasive genetic samples included in the analysis. Numbers are reported by country, for females (F) and males (M), and for each
type of sampling (structured and unstructured). We included only samples collected within the study area during the primary monitoring period (Dec 1 - June 30) between
2014 and 2023.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
F M F M F M F M F M F M F M F M F M F M

Norway 521 578 412 445 470 577 606 670 462 747 592 731 575 686 582 736 569 747 877 999
Sweden 186 154 228 221 236 275 487 552 636 839 504 618 355 538 460 563 493 657 481 681
Total 707 732 640 666 706 852 1093 1222 1098 1586 1096 1349 930 1224 1042 1299 1062 1404 1358 1680

Table A.2: Annual number of individual wolverines detected via non-invasive genetic sampling and included in the analysis. Numbers are reported by country, for females
(F) and males (M), and for each type of sampling (structured and unstructured). We included only individuals associated with samples collected within the study area during
the primary monitoring period (Dec 1 - Jun 30) between 2013/2014 and 2021/2023. Some individuals were detected in both countries during the same year, hence the sum of
the national counts can exceed the total number of unique individuals detected in Scandinavia.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
F M F M F M F M F M F M F M F M F M F M

Norway 189 135 155 114 180 123 182 132 171 123 192 150 193 153 187 136 194 137 214 152
Sweden 85 70 106 86 107 105 211 177 231 211 225 197 172 156 207 167 194 180 193 194
Total 271 203 256 193 284 224 377 288 391 316 408 334 360 303 388 297 387 308 397 338

Table A.3: Number of cause-specific dead recoveries of wolverines in Scandinavia between 2014 and 2023. Numbers are reported by country, for females (F) and males (M).
Dead recovery data was only used to derive cause-specific mortality and for the additional analysis presented in Figure 5

Country 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
F M F M F M F M F M F M F M F M F M F M

Other Norway 42 37 67 53 44 43 50 62 32 31 55 36 54 60 45 46 43 45 38 40
Sweden 1 3 1 2 0 2 0 1 1 2 1 1 0 1 2 1 6 5 6 10

Legal culling Norway 1 3 2 1 1 1 0 1 2 1 3 4 0 6 3 2 0 0 0 0
Sweden 13 8 22 18 6 9 5 2 1 5 6 3 7 19 3 10 8 1 5 2

Total Total 57 51 92 74 51 55 55 66 36 39 65 44 61 86 53 59 57 51 49 52
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Table A.4: Annual abundance estimates for wolverine at several spatial scales: the entire study area, by country, by management unit (carnivore management regions in
Norway and "Rovdjursförvaltningsområden" in Sweden), and counties (“Län” in Sweden); see also Figure A.2. Only counties and management units that are within or that
intersect the study area are included in the table. Estimates are based on model-estimated activity center locations. Credible intervals (95%) are shown in parentheses. Small
deviations between the total estimate and the sum of abundance estimates from the constituent sub-regions may arise due to rounding. Note that the numbers reported here
are predictions from a statistical model which always represents an oversimplification of reality and is based on available data (NGS). As a consequence, especially at the local
scale, the model-estimated number of wolverines based on DNA sampling can deviate from the number of wolverines inferred from ancillary observations (e.g., camera traps).
Estimates for Norrbotten county in years without comprehensive NGS were derived solely using the prediction from the OPSCR model (shown in grey and marked with *).
Total estimates in Sweden and for the entire study area that includes estimates from Norrbotten without comprehensive NGS are marked with **.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
TOTAL 1032.2 (947-1134)** 854.1 (797-911)** 934.1 (885-988)** 923.7 (892-959) 964.5 (935-999) 1085.7 (1043-1131) 1103.4 (1059-1151)** 1091 (1047-1139)** 1096.1 (1046-1147)** 1081 (1029-1137)**

NORWAY 447.1 (413-488) 359.3 (337-385) 383.4 (362-406) 360.7 (345-377) 361.6 (347-380) 417.2 (399-437) 411.5 (392-431) 377.9 (361-397) 389 (371-408) 384.6 (366-403)
Region 1 22.1 (15-31) 11.7 (7-18) 10 (6-16) 8 (4-13) 6.4 (3-11) 6.4 (2-11) 6.1 (2-11) 6.9 (3-12) 10 (5-16) 11.6 (6-18)
Region 2 9.2 (4-16) 3.4 (0-8) 3.5 (1-7) 3.1 (1-6) 2.1 (0-5) 2.4 (0-6) 2.5 (0-6) 4.2 (1-8) 4.4 (1-9) 5.7 (2-10)
Region 3 37.8 (31-45) 27.7 (22-33) 27.1 (22-33) 23.7 (20-28) 22.4 (18-27) 27.8 (23-33) 30.4 (26-35) 32.3 (27-38) 27.4 (23-33) 32.6 (28-38)
Region 4 3.2 (0-7) 1.3 (0-4) 1.1 (0-3) 0.9 (0-3) 0.5 (0-2) 0.7 (0-3) 1 (0-3) 0.9 (0-3) 1 (0-3) 1.8 (0-5)
Region 5 67.4 (58-78) 56.1 (48-65) 65 (59-72) 65.2 (58-73) 77.5 (70-85) 93.9 (87-102) 92.4 (85-100) 87.5 (80-95) 90 (83-97) 81.2 (75-89)
Region 6 89.5 (77-102) 73.1 (64-83) 80.5 (71-90) 81.5 (74-89) 90.5 (82-99) 103.2 (94-112) 89.1 (79-99) 83.4 (75-92) 99.3 (91-108) 92.5 (84-101)
Region 7 80.1 (70-91) 71.3 (64-79) 83 (76-90) 69.9 (65-76) 67.4 (62-74) 78.9 (72-86) 88.8 (81-96) 69.5 (63-76) 68.2 (62-75) 72 (66-78)
Region 8 137.8 (124-152) 114.8 (105-126) 113.1 (103-123) 108.5 (102-116) 94.9 (88-103) 103.9 (96-113) 101.3 (94-110) 93.1 (86-101) 88.6 (80-98) 87.3 (79-96)

SWEDEN 585.1 (525-659)** 494.7 (449-541)** 550.7 (508-591)** 563 (536-592) 602.8 (579-628) 668.5 (636-703) 691.9 (655-733)** 713.2 (676-754)** 707.1 (665-749)** 696.4 (652-742)**
Norra 506.2 (454-569)** 436.8 (398-477)** 486 (447-524)** 490.6 (467-514) 517.7 (497-541) 566.9 (538-597) 585 (550-622)** 604.9 (571-641)** 590.7 (552-630)** 566.3 (527-609)**

Jämtland 170.4 (146-195) 151.9 (134-170) 174.2 (158-190) 178.4 (164-193) 196.6 (184-211) 219.2 (203-236) 223.8 (209-240) 230.2 (217-244) 212.5 (197-228) 208.5 (193-224)
Norrbotten 180.5 (152-213)* 154.5 (130-181)* 166 (144-189)* 168.7 (158-181) 173.5 (163-185) 174.3 (160-192) 180.7 (158-206)* 185 (161-212)* 187.2 (160-216)* 183.8 (157-211)*
Västerbotten 131.7 (117-149) 110.6 (100-122) 124.7 (112-138) 117 (107-130) 112.3 (101-125) 132.2 (120-145) 133.9 (124-145) 138.5 (127-150) 125.3 (111-140) 121.8 (108-137)
Västernorrland 23.7 (15-32) 19.8 (13-27) 21.1 (14-29) 26.5 (19-34) 35.3 (29-43) 41.2 (34-49) 46.5 (39-54) 51.2 (44-59) 65.7 (58-74) 52.2 (44-61)

Mellersta 78.1 (61-98) 57.6 (46-70) 64.3 (53-76) 72.1 (61-83) 84.8 (76-95) 101.3 (90-113) 106.5 (94-118) 107.9 (96-119) 116 (105-128) 129.5 (117-143)
Dalarna 33.2 (24-44) 27.8 (21-35) 31.2 (25-39) 36.3 (30-44) 46.6 (41-53) 49.1 (42-57) 50 (42-58) 53.2 (46-61) 56.4 (49-63) 61.7 (55-69)
Gävleborg 17.4 (9-26) 13.8 (8-21) 16 (10-23) 18.4 (12-25) 22.1 (16-28) 35.5 (30-41) 35.4 (30-42) 34.1 (28-40) 33.1 (27-40) 39.8 (34-46)
Örebro 5 (1-10) 2.5 (0-6) 2.1 (0-5) 1.7 (0-4) 2 (0-5) 1.4 (0-4) 2.3 (0-5) 2.4 (0-6) 2.7 (0-6) 4.4 (1-9)
Stockholm 0.2 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1) 0.1 (0-1)
Uppsala 4.3 (1-9) 2.4 (0-6) 2.1 (0-5) 1.7 (0-5) 1.4 (0-4) 1.6 (0-5) 1.9 (0-5) 1.7 (0-5) 1.9 (0-5) 3.2 (0-7)
Värmland 13.7 (8-21) 8.5 (4-13) 10.8 (7-15) 12.1 (8-16) 11.3 (8-15) 12 (9-16) 14.9 (10-20) 14.6 (10-20) 20.1 (16-25) 16.9 (11-23)
Västmanland 2.4 (0-6) 1.3 (0-4) 1 (0-3) 0.9 (0-3) 0.7 (0-3) 0.8 (0-3) 1 (0-3) 0.9 (0-3) 1 (0-3) 1.7 (0-5)
VästraGötaland 2 (0-5) 1.1 (0-4) 1 (0-3) 0.9 (0-3) 0.7 (0-3) 0.8 (0-3) 0.9 (0-3) 0.9 (0-3) 0.9 (0-3) 1.6 (0-4)

Södra 0.7 (0-3) 0.4 (0-2) 0.3 (0-2) 0.3 (0-2) 0.3 (0-2) 0.3 (0-2) 0.4 (0-2) 0.4 (0-2) 0.4 (0-2) 0.6 (0-2)
Östergötland 0.3 (0-2) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.3 (0-2)
Södermanland 0.4 (0-2) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.1 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-1) 0.2 (0-2) 0.3 (0-2)
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Table A.5: Annual population growth rate estimates for the wolverine population in Scandinavia ("Total") and separately for Norway and Sweden. Estimates were derived
using the posterior distributions of annual abundance estimates (Table A.4). Credible intervals (95%) are shown in parentheses.

2014-2015 2015-2016 2016-2017 2017-2018 2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
Norway 0.80 (0.73-0.89) 1.07 (0.98-1.16) 0.94 (0.88-1.01) 1.00 (0.95-1.07) 1.15 (1.08-1.22) 0.99 (0.93-1.05) 0.92 (0.86-0.98) 1.03 (0.97-1.10) 0.99 (0.93-1.05)
Sweden 0.85 (0.76-0.96) 1.11 (1.01-1.23) 1.02 (0.94-1.12) 1.07 (1.01-1.14) 1.11 (1.04-1.17) 1.04 (0.96-1.11) 1.03 (0.97-1.10) 0.99 (0.93-1.06) 0.99 (0.92-1.06)
Total 0.83 (0.75-0.91) 1.09 (1.01-1.18) 0.99 (0.93-1.06) 1.04 (1.00-1.09) 1.13 (1.07-1.18) 1.02 (0.96-1.07) 0.99 (0.94-1.04) 1.00 (0.95-1.06) 0.99 (0.93-1.04)

2014-2015 2015-2016 2016-2017 2017-2018 2018-2019M F M F M F M F M Fρ 0.24 (0.15-0.34) 0.13 (0.04-0.24) 0.42 (0.32-0.52) 0.33 (0.22-0.44) 0.37 (0.29-0.45) 0.18 (0.11-0.26) 0.40 (0.34-0.46) 0.26 (0.20-0.32) 0.41 (0.35-0.48) 0.30 (0.24-0.36)ϕ 0.56 (0.49-0.64) 0.70 (0.63-0.77) 0.65 (0.58-0.72) 0.78 (0.72-0.84) 0.67 (0.61-0.73) 0.77 (0.71-0.82) 0.66 (0.60-0.71) 0.77 (0.72-0.81) 0.70 (0.64-0.75) 0.83 (0.78-0.88)h 0.07 (0.06-0.08) 0.06 (0.05-0.07) 0.16 (0.15-0.18) 0.10 (0.09-0.11) 0.12 (0.11-0.13) 0.06 (0.06-0.07) 0.13 (0.12-0.13) 0.07 (0.06-0.07) 0.08 (0.08-0.09) 0.04 (0.04-0.04)w 0.37 (0.31-0.42) 0.23 (0.17-0.30) 0.19 (0.14-0.24) 0.12 (0.07-0.18) 0.21 (0.17-0.26) 0.17 (0.12-0.22) 0.22 (0.19-0.25) 0.17 (0.13-0.20) 0.22 (0.19-0.25) 0.13 (0.09-0.17)

Table A.6: Estimates of the demographic parameters obtained from the sex-specific wolverine open-population spatial capture-recapture (OPSCR) models. Parameters
represent transition rates from Dec 1 to Nov 30 in the following year. Median estimates and 95% credible intervals (in parentheses) for per capita recruitment rate (ρ), survival
(ϕ), mortality due to legal culling (h), and mortality due to other causes (w) are presented for males (M) and females (F). Note that mortality due to legal culling was not
estimated directly in the model, but derived from the recorded number of dead recoveries.

2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
M F M F M F M F M F

ρ 0.24 (0.15-0.34) 0.13 (0.04-0.24) 0.42 (0.32-0.52) 0.33 (0.22-0.44) 0.37 (0.29-0.45) 0.18 (0.11-0.26) 0.40 (0.34-0.46) 0.26 (0.20-0.32) 0.41 (0.35-0.48) 0.30 (0.24-0.36)
ϕ 0.56 (0.49-0.64) 0.70 (0.63-0.77) 0.65 (0.58-0.72) 0.78 (0.72-0.84) 0.67 (0.61-0.73) 0.77 (0.71-0.82) 0.66 (0.60-0.71) 0.77 (0.72-0.81) 0.70 (0.64-0.75) 0.83 (0.78-0.88)
h 0.07 (0.06-0.08) 0.06 (0.05-0.07) 0.16 (0.15-0.18) 0.10 (0.09-0.11) 0.12 (0.11-0.13) 0.06 (0.06-0.07) 0.13 (0.12-0.13) 0.07 (0.06-0.07) 0.08 (0.08-0.09) 0.04 (0.04-0.04)
w 0.37 (0.31-0.42) 0.23 (0.17-0.30) 0.19 (0.14-0.24) 0.12 (0.07-0.18) 0.21 (0.17-0.26) 0.17 (0.12-0.22) 0.22 (0.19-0.25) 0.17 (0.13-0.20) 0.22 (0.19-0.25) 0.13 (0.09-0.17)

2019-2020 2020-2021 2021-2022 2022-2023
M F M F M F M F

ρ 0.37 (0.31-0.43) 0.25 (0.19-0.32) 0.35 (0.29-0.41) 0.23 (0.17-0.29) 0.37 (0.32-0.44) 0.20 (0.15-0.26) 0.44 (0.38-0.52) 0.27 (0.22-0.33)
ϕ 0.62 (0.56-0.67) 0.77 (0.72-0.82) 0.61 (0.56-0.66) 0.77 (0.72-0.83) 0.63 (0.58-0.69) 0.79 (0.73-0.85) 0.65 (0.59-0.71) 0.64 (0.58-0.71)
h 0.08 (0.08-0.08) 0.07 (0.06-0.07) 0.16 (0.15-0.17) 0.06 (0.06-0.07) 0.11 (0.10-0.11) 0.05 (0.05-0.06) 0.08 (0.08-0.09) 0.07 (0.07-0.08)
w 0.30 (0.27-0.34) 0.16 (0.12-0.20) 0.23 (0.20-0.27) 0.16 (0.12-0.21) 0.26 (0.22-0.29) 0.16 (0.10-0.21) 0.27 (0.23-0.31) 0.28 (0.23-0.34)
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Table A.7: Estimates of the density and movement process parameters obtained from the sex-specific wolverine open-population spatial capture-recapture (OPSCR) models.
βdens represents the effect of the number of known wolverine dens on activity center locations (Bischof et al., 2020b). The scale parameter σ of the detection function is
expressed in kilometers and estimated separately for each year. λ (in km) represents the mean of the exponential movement parameter, describing individual movement
distances between years. Credible intervals (95%) are shown in parentheses. Parameters that were not estimated separately each year are marked with ∗.

2014 2015 2016 2017 2018
M F M F M F M F M F

β∗
dens 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55)
σ 8.36 (7.93-8.81) 5.94 (5.60-6.33) 8.55 (8.12-9.02) 5.69 (5.37-6.04) 8.29 (7.91-8.69) 6.17 (5.83-6.53) 8.41 (8.09-8.74) 6.58 (6.30-6.86) 8.02 (7.75-8.29) 6.24 (5.99-6.51)
λ∗ 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15)

2019 2020 2021 2022 2023
M F M F M F M F M F

β∗
dens 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55) 0.44 (0.41-0.47) 0.52 (0.49-0.55)
σ 7.78 (7.49-8.07) 5.64 (5.39-5.90) 8.00 (7.69-8.33) 6.26 (5.98-6.57) 8.06 (7.77-8.37) 6.35 (6.07-6.66) 8.07 (7.78-8.37) 5.76 (5.50-6.04) 8.27 (7.99-8.56) 6.62 (6.38-6.89)
λ∗ 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15) 14.66 (14.05-15.21) 7.85 (7.56-8.15)

Table A.8: Estimates of the detection process parameters for the structured sampling. β1Structured corresponds to the effect of previous detection of an individual, β2Structured

to the effect of search-effort (track length), and β3Structured to the effect of average snow cover during the monitoring period on baseline detection probability (p0Structured).
Coefficients are associated with scaled covariates. Credible intervals (95%) are shown in parentheses.

2014 2015 2016 2017 2018
M F M F M F M F M F

β1Structured 1.02 (0.78-1.27) 0.66 ( 0.41-0.92) 0.44 (0.18-0.70) 0.05 (-0.21-0.33) 0.54 (0.32-0.76) 0.28 ( 0.03-0.53) 0.49 (0.31-0.67) 0.04 (-0.15-0.22) 0.54 (0.38-0.71) 0.14 (-0.05-0.33)
β2Structured 0.49 (0.42-0.57) 0.46 (0.38-0.54) 0.50 (0.40-0.61) 0.48 (0.39-0.58) 0.48 (0.42-0.56) 0.54 (0.45-0.63) 0.50 (0.43-0.57) 0.46 (0.40-0.53) 0.46 (0.40-0.53) 0.49 (0.41-0.56)
β3Structured 0.47 ( 0.17-0.78) 0.52 ( 0.21-0.85) 0.02 (-0.19-0.23) 0.19 (-0.03-0.40) 0.26 ( 0.03-0.48) 0.12 (-0.11-0.36) 0.31 ( 0.14-0.49) 0.23 ( 0.06-0.40) 0.13 ( 0.01-0.25) 0.02 (-0.12-0.16)

2019 2020 2021 2022 2023
M F M F M F M F M F

β1Structured 0.59 (0.41-0.77) 0.17 (-0.02-0.36) 0.19 (0.02-0.37) -0.06 (-0.26-0.13) 0.46 (0.28-0.64) -0.14 (-0.34-0.06) 0.40 (0.23-0.58) 0.06 (-0.13-0.25) 0.55 (0.38-0.72) 0.18 ( 0.01-0.36)
β2Structured 0.53 (0.46-0.60) 0.52 (0.45-0.60) 0.46 (0.40-0.53) 0.52 (0.44-0.59) 0.59 (0.51-0.68) 0.60 (0.53-0.68) 0.51 (0.44-0.60) 0.51 (0.44-0.59) 0.46 (0.40-0.52) 0.51 (0.44-0.58)
β3Structured -0.12 (-0.27-0.03) -0.04 (-0.20-0.13) 0.32 ( 0.14-0.50) 0.41 ( 0.18-0.65) 0.15 ( 0.02-0.29) 0.24 ( 0.08-0.40) 0.08 (-0.06-0.23) 0.04 (-0.12-0.20) 0.40 ( 0.21-0.59) 0.35 ( 0.15-0.56)
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Table A.9: Estimates of the detection process parameters for the unstructured sampling. β1Unstructured corresponds to the effect of previous detection, β2Unstructured to
the effect of distance to the nearest road, β3Unstructured to the effect of average snow cover during the monitoring period, and β4Unstructured to the effect of spatio-temporal
heterogeneity in unstructured sampling derived using the observation data in Skandobs and Rovbase on baseline detection probablity (p0Unstructured). Coefficients are
associated with scaled covariates. Credible intervals (95%) are shown in parentheses.

2014 2015 2016 2017 2018
M F M F M F M F M F

β1Unstructured 0.54 ( 0.20-0.87) 0.38 ( 0.02-0.73) 0.08 (-0.23-0.40) 0.26 (-0.10-0.61) 0.44 ( 0.14-0.74) 0.35 ( 0.00-0.71) 0.18 (-0.07-0.43) -0.24 (-0.52-0.03) 0.88 ( 0.65-1.13) 0.17 (-0.08-0.42)
β2Unstructured 0.51 ( 0.18-0.87) 0.59 ( 0.25-0.96) 0.29 ( 0.05-0.54) 0.51 ( 0.26-0.78) 0.03 (-0.19-0.26) 0.32 ( 0.06-0.58) 0.48 ( 0.26-0.71) 0.34 ( 0.11-0.56) 0.21 ( 0.05-0.38) 0.17 ( 0.00-0.35)
β3Unstructured 0.12 (-0.07- 0.31) 0.24 ( 0.05-0.41) -0.02 (-0.24- 0.19) 0.07 (-0.14-0.26) 0.02 (-0.19- 0.22) -0.17 (-0.42-0.05) 0.03 (-0.07- 0.14) 0.11 ( 0.01-0.21) -0.04 (-0.14- 0.06) -0.02 (-0.13-0.08)
β4Unstructured 0.70 ( 0.36-1.04) 0.49 (0.16-0.82) 0.44 ( 0.12-0.75) 0.72 (0.38-1.07) 0.69 ( 0.38-1.01) 0.35 (0.02-0.69) 0.51 ( 0.26-0.76) 0.50 (0.24-0.76) 0.63 ( 0.39-0.88) 0.86 (0.59-1.14)

2019 2020 2021 2022 2023
M F M F M F M F M F

β1Unstructured 0.43 ( 0.13-0.74) 0.04 (-0.25-0.34) 0.38 ( 0.12-0.65) 0.11 (-0.20-0.42) 0.69 ( 0.43-0.95) 0.55 ( 0.23-0.86) 0.79 ( 0.51-1.09) 0.19 (-0.14-0.53) 0.74 ( 0.48-1.00) 0.32 ( 0.02-0.63)
β2Unstructured 0.05 (-0.19-0.29) 0.18 (-0.06-0.42) 0.28 ( 0.04-0.52) 0.47 ( 0.15-0.83) 0.14 (-0.05-0.33) -0.02 (-0.24-0.20) 0.19 (-0.02-0.41) 0.05 (-0.19-0.30) 0.45 ( 0.20-0.72) 0.10 (-0.17-0.39)
β3Unstructured 0.00 (-0.17- 0.15) -0.06 (-0.22-0.09) -0.16 (-0.38- 0.04) -0.19 (-0.43-0.03) -0.08 (-0.29- 0.11) -0.04 (-0.25-0.15) -0.29 (-0.55–0.07) -0.14 (-0.39-0.09) -0.02 (-0.22- 0.16) 0.06 (-0.13-0.24)
β4Unstructured 0.74 ( 0.41-1.07) 1.02 (0.68-1.39) 0.25 (-0.03-0.52) 0.33 (0.02-0.66) 0.56 ( 0.28-0.86) 0.71 (0.37-1.07) 0.37 ( 0.06-0.67) 0.59 (0.22-0.96) 0.57 ( 0.31-0.84) 0.47 (0.15-0.81)

Table A.10: Average proportion of individuals detected via non-invasive genetic sampling (NGS) in Sweden and Norway for males (M) and females (F). Values were
calculated as the number of individuals detected with NGS (Table A.2) divided by the total and sex-specific abundance estimates obtained from the open-population spatial
capture-recapture (OPSCR) models (Table A.4). Credible intervals (95%) are shown in parentheses. Note that in some years in Norway, male wolverines detected exceeded
the estimated number of wolverines. This is possible when wolverine detection probability was very high and wolverines with activity centers in Sweden were detected on the
Norwegian side of the border.

2014 2015 2016 2017 2018
F M F M F M F M F M

Norway 0.66 (0.59-0.74) 0.84 (0.75-0.94) 0.66 (0.60-0.73) 0.91 (0.83-0.98) 0.71 (0.65-0.76) 0.95 (0.88-1.02) 0.77 (0.73-0.82) 1.05 (0.99-1.12) 0.73 (0.68-0.77) 0.98 (0.92-1.03)
Sweden 0.24 (0.20-0.28) 0.31 (0.26-0.37) 0.35 (0.31-0.39) 0.46 (0.40-0.52) 0.31 (0.28-0.35) 0.51 (0.46-0.56) 0.63 (0.58-0.67) 0.78 (0.74-0.83) 0.65 (0.61-0.69) 0.85 (0.81-0.89)
Total 0.42 (0.37-0.47) 0.53 (0.47-0.60) 0.48 (0.43-0.52) 0.62 (0.56-0.67) 0.48 (0.44-0.51) 0.67 (0.62-0.71) 0.66 (0.62-0.69) 0.82 (0.78-0.86) 0.66 (0.63-0.69) 0.84 (0.81-0.87)

2019 2020 2021 2022 2023
F M F M F M F M F M

Norway 0.73 (0.69-0.77) 0.97 (0.91-1.04) 0.76 (0.71-0.81) 0.98 (0.92-1.04) 0.78 (0.73-0.83) 0.98 (0.92-1.05) 0.78 (0.72-0.83) 0.99 (0.93-1.05) 0.91 (0.85-0.97) 1.03 (0.96-1.09)
Sweden 0.56 (0.52-0.60) 0.74 (0.69-0.79) 0.40 (0.37-0.43) 0.60 (0.55-0.65) 0.46 (0.43-0.49) 0.64 (0.58-0.69) 0.44 (0.41-0.48) 0.67 (0.62-0.72) 0.49 (0.44-0.54) 0.65 (0.60-0.70)
Total 0.61 (0.58-0.65) 0.80 (0.76-0.84) 0.53 (0.50-0.56) 0.73 (0.69-0.77) 0.56 (0.53-0.59) 0.74 (0.70-0.78) 0.56 (0.53-0.60) 0.75 (0.71-0.80) 0.63 (0.58-0.68) 0.75 (0.71-0.80)
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