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Summary 
The aim of this study was to quantify systematic and random measurement errors of height measurements using 
Vertex hypsometers. The height measurements of 35 surveyors with varying levels of expertise (inexperienced, 
experienced and experts) were compared to reference height values of 95 trees, including both pine and spruce 
trees over a wide range of tree heights. The trees were located in forests with different densities. Generalized 
linear modelling was employed to examine the potential effects of tree species, tree height, forest density, and 
surveyor expertise on the magnitude of measurement errors. The results revealed a small, but yet statistically 
significant systematic error in the height measurements averaging at 0.3% of tree height, which was consistent 
across all expertise levels. The average random error was 3.75%, but when omitting the measurements of the 
inexperienced surveyors, the error decreased to 3.1%. If only the measurements of the experts were considered, 
the random error was 2.9%. Among the analysed attributes, expertise and tree species had the most pronounced 
impact on the magnitude of measurement errors. 
 

Sammendrag 
Formålet med denne studien var å kvantifisere systematiske og tilfeldige feil ved måling av trehøyde med Vertex 
høydemålere. Høydemålinger utført av 35 personer med ulikt kompetansenivå (uerfaren, erfaren, ekspert) ble 
sammenlignet med fasithøyder for 95 gran- og furutrær over et bredt intervall av trehøyder. Trærne var 
lokalisert i skog med varierende tetthet. Generaliserte lineære modeller ble brukt for å undersøke effekter av 
faktorer som treslag, trehøyder, tetthet og personenes kompetansenivå på størrelsen til målefeilene. 
Resultatene viste at det var knyttet en liten, men likevel statistisk signifikant, systematisk feil til høydemålingene 
på 0,3% over alle kompetansenivåene. Den gjennomsnittlige tilfeldige feilen var 3,75 %, men dersom målingene 
til de uerfarne personene ble utelatt, var feilen 3,1 %. Den tilfeldige feilen var 2,9 % hvis kun målinger utført av 
ekspertene ble brukt. For de undersøkte faktorene var det kompetansenivå og treslag som hadde den største 
innvirkningen på størrelsen til målefeilene. 
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1. Introduction 
In forestry, effective management requires decisions concerning various silvicultural activities such as harvests, 
regeneration and young growth tending. These decisions involve considerations of timing, methods, and 
intensities of the activities, all of which have a spatial and temporal impact on subsequent decisions. Managing 
forests involves tackling complex optimization problems that come with multiple constraints, including the 
preservation of biodiversity, cultural remains, erosion control, and recreational aspects. Therefore, rational 
forest management decisions rely on the availability of appropriate forest information, enabling managers to 
achieve their goals while considering these constraints. 
 
To accomplish this, it is crucial to have access information on current state and data on growth potential. In 
many cases also historical records are relevant. For instance, knowledge about the timing and intensity of 
previous young growth tending is relevant when determining the optimal timing and intensity of thinning 
operations. However, different data sources carry varying levels of uncertainties, and it is essential to estimate 
and understand these uncertainties to assess the reliability of the information and determine its usability for 
decision-making. Additionally, understanding the uncertainty associated with a data source allows for the 
estimation of accumulated uncertainty in estimates that rely on multiple sources of information. 
 
Forest information is typically acquired through purposefully designed forest inventories. When the objective is 
to gather data for large areas like regions or entire nations, national forest inventories (NFIs) are employed. In 
Norway, the NFI is conducted using sample plots distributed systematically on a 3x3 km grid, and these plots are 
measured every five years. The data obtained from the NFI serve as a foundation for forest policy, international 
carbon reporting, and are also used as reference data for calibrating models reliant on remotely sensed data. 
On the other hand, when the goal is to obtain information at the forest stand level and effectively manage a 
specific forest property, forest management inventories (FMIs) are relevant. In the past two decades, FMIs have 
been carried out using a combination of field plots and data obtained from airborne laser scanners. Field plots 
provide the necessary data to develop models that establish relationships between field-measured variables 
such as timber volume, stand basal area, mean height, and various metrics derived from the point clouds 
captured by airborne laser scanners. These models are subsequently used to predict different forest attributes 
over the entire area in question.  
 
In both NFIs and FMIs, single-tree measurements are fundamental. Diameters at breast height (dbh) are 
measured for all trees above a minimum dbh, and heights (h) are measured on sample trees. These height 
measurements enable the prediction of volume using allometric volume models (Brantseg, 1967; Braastad, 
1966; Hansen et al., 2023; Vestjordet, 1967) or biomass using allometric biomass models (Marklund, 1988; 
Smith, Granhus, & Astrup, 2016; Smith et al., 2014). The predictions of single-tree volumes are then accumulated 
to obtain volume estimates for the respective field plots where the trees are located. 
 
The procedures employed to calculate plot-level estimates may vary, depending on factors such as the chosen 
sample tree selection strategy. For instance, if there is an ample number of sample trees with measured heights 
available on each plot, plot-wise regression models can be constructed to predict height based on dbh, 
potentially including separate models for different tree species. However, if the number of sample trees are 
insufficient for this approach, another strategy could involve combining sample trees from multiple plots within 
strata defined by, for example, dominant tree species, development class, and productivity classes to construct 
the models. In either case, the constructed models are applied to every tree on the plot or within a stratum to 
predict tree heights. These predicted heights, along with the measured dbhs, are then utilized as input in the 
volume models to obtain predicted volumes. 
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An alternative strategy often employed when the number sample trees available on each plot is small is to 
calculate a ratio between the volume predicted using the measured height and the base volume predicted using 
a base height curve (Fitje & Vestjordet, 1977). To obtain a volume prediction for each tree on a plot, the base 
volume for every tree (requiring only dbh as a measured input) is multiplied by the mean relationship between 
the "true" volume and the base volume for the sample trees. 
 
The accuracy and precision of estimating plot volume depend on the quality of input measurements, regardless 
of the chosen method or strategy. To comprehensively account for all sources of error and accurately estimate 
the propagated uncertainty (Fortin & DeBlois, 2010; Sexton et al., 2015; Vorster et al., 2020), it is essential to 
consider the uncertainty associated with each input used in the estimation. In the past, it has been common to 
only account for sampling variability and assume that field measurements are error-free when estimating 
uncertainty in purely field-based inventories. Furthermore, in inventories that rely on field plot values for 
calibration of models based on remotely sensed data, it is also important to recognize the uncertainty in the 
estimated plot values during model construction. The assumption of error-free response variables is prevalent 
in models developed using the ordinary least squares method, as well as in important models used in forest 
management such as site index models, growth models, and volume- and biomass models. However, it is 
important to acknowledge that height measurements, even in these contexts, are prone to errors. To 
understand the impact of such errors is also of interest (Kangas, 1996).  
 
Despite several studies quantifying the size of height measurement errors, these studies are relatively limited in 
number and each of them addresses only a portion of the factors that influence error size. As such, there is a 
growing imperative to compile and expand upon existing knowledge to gain a more comprehensive 
understanding of the sources and magnitudes of errors affecting height measurements. Such an endeavour is 
essential to accurately estimate the total accumulated uncertainty in volume and biomass estimates, which 
plays a critical role in enhancing the reliability of forest management and decision-making processes. With this 
context in mind, the objectives of this research were twofold: 
 

1. To conduct a comprehensive review of important scientific studies that have quantified height 
measurement errors. 

2. To perform an independent study focused on quantifying the errors associated with field-
based height measurements using Vertex IV hypsometers in Norway. This study encompassed 
Norway spruce and Scots pine trees and explored various biophysical tree and stand 
properties that might impact measurement errors. Additionally, it involved 35 surveyors with 
varying expertise levels, and their potential effects on error magnitudes were analysed. 
Reference tree heights were determined using a total station, and both systematic and 
random errors were reported in both absolute and relative terms. 
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2. Literature review 
Two previous studies conducted by Fitje (1967) and Hansen (2021) stands as the only Norwegian investigations 
that quantified systematic and random errors in height measurements for individual trees. Fitje (1967) involved 
61 forestry students from the Agricultural University of Norway (now NMBU) and encompassed measurements 
taken from 10 Norway spruce trees. Various types of instruments where tree heights are derived from 
measurements of angles and distances were tested, including the Suunto hypsometer which demonstrated the 
smallest levels of systematic and random errors in that particular study. As a result, the Suunto hypsometer 
became the standard instrument employed for field-based forest inventories in Norway for the next 25 years, 
until the introduction of the Vertex hypsometer. The second study, conducted by (Hansen, 2021), incorporated 
Vertex measurements taken by students and employees at NMBU (in total 12 surveyors) and included a larger 
number of reference trees compared to Fitje's study. Hansen's study encompassed 71 trees from different 
species (spruce and pine), varying tree heights, forest densities, and expertise levels. However, there were no 
professional forest surveyors among the participants. It was found that individuals with more experience 
obtained a random measurement error of approximately 5%. Nevertheless, after the study was completed, it 
was discovered that a few of the reference tree heights were likely determined erroneously, suggesting that the 
random error found in this study may have been overestimated. Importantly, the dataset from the Hansen study 
is incorporated into the current study (as described in the method section). In addition to the two studies 
described above, which focused on single trees, the determination of Lorey's mean height (HL) have also been 
investigated Nersten & Næsset (1992). In their study, 25 surveyors selected sample trees at 10 different 
locations in mature forests and determined HL. They found no significant systematic errors, and the random 
error was on average 7.3%.  
 
The Vertex instruments, depending on the instrument model, employ either ultrasound reflected from a 
transponder attached to the tree or laser light reflected directly from the stem to measure distance. In 
Norwegian forests, the instrument model utilizing ultrasound has been more commonly employed due to the 
potential challenges posed by understory vegetation, which can make it difficult to find a suitable location from 
which to measure the tree where both the treetop and stem base are visible. The Vertex instrument is regarded 
as more precise and efficient compared to the Suunto due to several key factors. One advantage is that users 
are not required to be positioned at a specific distance from the tree. Additionally, the Vertex instrument 
automatically calculates the horizontal distance and angle to the transponder, which is placed at a user-defined 
height above the stump level. Another significant advantage of the ultrasound-based instrument is its capability 
to measure distances even when there is vegetation blocking a clear line of sight to the transponder. 
 
While the recent study conducted by Hansen (2021) focused on examining the accuracy and precision of height 
measurements using Vertex hypsometers, and that it provides valuable insights at the national level, it is 
important to consider the broader body of research that has emerged internationally over the past 10 years. 
Numerous studies have quantified errors associated with the use of Vertex hypsometers as well as other 
comparable brands (Ganz et al., 2019; Holmgren, 2019; Jurjević et al., 2020; Kitahara et al., 2010; Krause et al., 
2019; Luoma et al., 2017; Paudel et al., 2021; Stereńczak et al., 2019; Vasilescu, 2013; Villasante & Fernandez, 
2014; Wang et al., 2019). It is important to note that while these studies all utilize the Vertex hypsometer or 
similar instruments and evaluate the errors associated with their use, they employ diverse approaches and study 
designs. As a result, direct comparisons between the studies can be challenging. 
 
Several studies have focused exclusively on the Vertex hypsometer (Kitahara et al., 2010; Luoma et al., 2017; 
Paudel et al., 2021; Vasilescu, 2013), while others have included comparisons with other field-based 
hypsometers in addition to the Vertex (Stereńczak et al., 2019; Villasante & Fernandez, 2014). Some studies have 
taken a different approach by focussing on comparing measurements from Vertex hypsometer with remote 
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sensing methods such as airborne laser scanning (ALS), terrestrial laser scanning (TLS), and/or photogrammetry 
(Ganz et al., 2019; Holmgren, 2019; Jurjević et al., 2020; Krause et al., 2019; Wang et al., 2019). The various 
approaches employed in these studies have led to differences in the number of trees measured and the number 
of individuals involved, as well as their experience with field-based height measurements using the Vertex 
hypsometer. The number of trees measured ranged from three (Vasilescu, 2013) to 1,174 (Wang et al., 2019), 
while the number of individuals involved varied from one (Ganz et al., 2019; Holmgren, 2019; Krause et al., 2019) 
to 104 (Vasilescu, 2013). Information regarding the level of experience of the individuals involved is scarce, 
except for studies focused on training programs for students (Kitahara et al., 2010; Paudel et al., 2021; Vasilescu, 
2013). Some studies claim that the operators of the Vertex hypsometer were experienced (Krause et al., 2019; 
Luoma et al., 2017), but detailed information is often lacking. It is important to consider that the substantial 
variations in the number of trees measured, the number of individuals involved, and their skills can impact the 
generalizability of the results concerning error levels for practical field-based height measurements using the 
Vertex hypsometer. 
 
Field-based height measurements and the associated error levels are influenced by various biophysical tree and 
stand properties, as well as topographic characteristics. Stereńczak et al. (2019) identified several challenges 
related to these properties: 
 

 Tree species: Different tree species exhibit varying degrees of crown asymmetry and irregular 
shapes, leading to differing levels of difficulty in defining the treetop.  

 Measurement accuracy is influenced by the height of the tree. 
 Tree lean: Ensuring that the treetop is precisely located directly above the base for distance 

measurement can be challenging when trees are leaning. 
 Forest structure: Dense or multi-layered stands pose challenges in identifying treetops due to 

limited visibility and a scarcity of suitable measurement locations. 
 Topography: Large variations in terrain elevation, particularly when measuring from a lower 

elevation than the tree base, can amplify errors, especially on sloping terrain. 
 
Stereńczak et al. (2019) also highlighted instrument errors, such as limitations dependent on precipitation and 
temperature, as well as the need for regular and appropriate calibration before use. Human errors, including 
planning failures and crew performance issues (e.g., haste, lack of attention to details, inexperience, 
carelessness, shaking with handheld instruments, subjectivity, and perception issues), were mentioned as 
additional sources of error in height measurements. 
 
In a comprehensive study conducted in Poland, Stereńczak et al. (2019) examined the effects of various 
properties on height measurements, including tree species, tree age, stand structure (single-layer, two-layer, or 
multi-layer), stand density (canopy closure), height above sea level, and terrain slope. They also investigated the 
effects of different instruments (including three different hypsometers in addition to the Vertex) and five 
different teams. Most of the other studies reviewed focused on a limited number of properties, mainly related 
to individual trees (e.g., tree species, tree size, and tree crown) (Jurjević et al., 2020; Luoma et al., 2017; 
Vasilescu, 2013). 
 
Determining accurate height reference values for trees in studies that quantify systematic and random errors in 
height measurements can be challenging. Different approaches have been used in the studies mentioned above. 
Some studies employed cross-checking methods, comparing different measuring techniques in pairs to establish 
reference values (Holmgren, 2019; Jurjević et al., 2020; Wang et al., 2019). Others used the average of all field-
based measurements as reference values (Luoma et al., 2017; Vasilescu, 2013) or relied on measurements 
conducted by experienced surveyors or control teams (Kitahara et al., 2010; Paudel et al., 2021). Felling trees 
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and measuring their length with a measuring tape is considered one of the most reliable methods for 
determining reference height values (Ganz et al., 2019; Krause et al., 2019; Stereńczak et al., 2019). However, 
(Stereńczak et al., 2019) highlight that even this method may introduce systematic errors due to differences 
between tree height and tree length. Tree height typically refers to the vertical distance from the ground to the 
apex of the tree (Avery & Burkhart, 2015; Kershaw et al., 2016), while tree length refers to the distance measured 
along the stem. Tree lean is accounted for in the definition of height, but not the straightness of the stem. 
However, the extent of this discrepancy varies among tree species and growing conditions, but it is generally 
small. It is also important to note that in some cases, such as in Norway, the definition of height may be based 
on the stump height rather than the ground. Nevertheless, it is essential to acknowledge that tree height is an 
ambiguous term (Kershaw et al., 2016) and to clarify the specific definition applied. When studying the 
magnitude of height measurement errors, it is crucial that the definition used during the reference 
measurements matches the one applied by the surveyors. 
 
An alternative non-destructive method for determining accurate tree reference heights is the use of a total 
station. This approach was employed in the study conducted by Andersen, Reutebuch and McGaughey (2006), 
which focused on quantifying errors in height measurements. They utilized a Topcon ITS-1 total station and 
reported a high level of accuracy in individual tree height measurements, with an error of less than 2 cm. While 
very few studies have utilized total stations for determining true tree heights, there is an example from Malaysia 
where this method was used to validate a new tree height estimation technique for oil palm trees based on 
unmanned aerial vehicles (UAVs) and photogrammetry (Ramli & Tahar, 2020). 
 
Comparing the above-mentioned studies is further complicated by the variability in how the results were 
reported. Different options exist for reporting errors, including systematic errors in absolute and/or relative 
terms, random errors in absolute and/or relative terms, and total errors in absolute and/or relative terms 
(Larjavaara & Muller-Landau, 2013). Among the studies mentioned, only Krause et al. (2019) encompassed all 
of these options, reporting systematic, random, and total errors in both absolute and relative terms. In contrast, 
other studies reported only systematic errors (Paudel et al., 2021; Stereńczak et al., 2019) or only random errors 
(Luoma et al., 2017). 
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3. Material and Methods 
The first acquisition took place during the spring and summer of 2020 on the forest property of the Norwegian 
University of Life Sciences (NMBU) in Ås, Viken county. The measurements were conducted by students and 
employees affiliated with NMBU. The second acquisition occurred in early May 2022 in a private forest near 
Næroset, Innlandet County, and was carried out by employees from the Norwegian National Forest Inventory. 
Both locations are indicated on the map in Figure 1. 
 
 

 
Figure 1. Map showing the locations where the data acquisitions were  

carried out: Ås and Næroset. 
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3.1. Data collection 
3.1.1 Selection of reference trees 
Trees were selected purposefully in both data acquisitions to ensure comprehensive representation of trees 
across different subsets of the final dataset (Table 1). Initially, our selection encompassed both Norway spruce 
and Scots pine species. Additionally, trees growing in diverse forest densities, as measured by basal area (BA), 
and covering a range of heights, were chosen.  A relascope was used to estimate forest densities within the 
stands where the selected trees were located. Each tree was attributed to one of four basal area (BA) subsets:  
BA10 (BA < 10 m2ha-1), BA15 (10 m2ha-1 < BA < 20 m2ha-1), BA25 (20 m2ha-1 < BA < 30 m2ha-1), or BA30 (BA > 30 
m2ha-1). Similarly, the trees were categorized based on their height and assigned to one of three height subsets: 
H15 (h < 15 m), H20 (15 < h < 25 m), and H25 (h > 25 m). Once the trees were selected, they were individually 
identified by attaching ID labels, and reference heights were measured for each of them. In the 2020 and 2022 
acquisitions, a total of 73 and 30 trees were chosen, respectively. 
 

3.1.2 Reference measurements  
Reference heights were measured using a Topcon total station. The total station was operated from where there 
were unobstructed sight lines to both the tree trunk and the treetop. To avoid measuring at steep angles, the 
distance between the tree and the total station was always equal or greater than the height of the tree. The 
total station was levelled by means of the inbuilt digital level. A paper target was placed on the tree trunk and 
the distance between stump height and the target (𝑡. ℎ𝑒𝑖𝑔ℎ𝑡) was measured using a surveyor’s tape. After 
aiming at the target, both the slant distance (𝑠𝑙𝑎𝑛𝑡. 𝑑) and angle in radians (r) were registered. Then the total 
station was aimed at the treetop, and the angle in radians (s) was registered. If the tree was leaning, the 
horizontal offset (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙. 𝑜) between the treetop and the stump was visually located and measured with a 
surveyor’s tape. In such cases, the total station was always placed perpendicular to the slanting direction.  
 

3.1.3 Determination of reference height values 
The horizontal distance (ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙. 𝑑) between the total station and the tree was first calculated as 
 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙. 𝑑 = cos(𝑟) × ቀ𝑠𝑙𝑎𝑛𝑡. 𝑑 +
ௗ௜௔

ଶ
ቁ       (1) 

 
where dia represents the diameter of the tree where the paper target was attached. Then the heights below 
(𝑏. ℎ𝑒𝑖𝑔ℎ𝑡) and above (𝑎. ℎ𝑒𝑖𝑔ℎ𝑡) the horizontal level from the total station and the paper target and the 
treetop, respectively, was calculated as 
 

𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 = sin(𝑟) × ቀ𝑠𝑙𝑎𝑛𝑡. 𝑑 +
ௗ௜௔

ଶ
ቁ       (2) 

 
𝑎. ℎ𝑒𝑖𝑔ℎ𝑡 = tan(𝑠) × ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙. 𝑑       (3) 
 
and then reference tree height (𝑟. ℎ𝑒𝑖𝑔ℎ𝑡) was obtained as  
 
𝑟. ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑡. ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑎. ℎ𝑒𝑖𝑔ℎ𝑡.       (4) 
 
If a reference tree was leaning, a corrected reference height (𝑐𝑟. ℎ𝑒𝑖𝑔ℎ𝑡) was calculated as 
 

𝑐𝑟. ℎ𝑒𝑖𝑔ℎ𝑡 = ඥ(𝑟. ℎ𝑒𝑖𝑔ℎ𝑡ଶ + ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙. 𝑜ଶ).      (5) 
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3.1.4. Surveyor’s measurements  
In the 2020 and 2022 acquisitions, a combined total of 12 and 23 surveyors, respectively, performed individual 
measurements. The surveyors varied in their level of expertise, ranging from "inexperienced" students who had 
received basic instructions on instrument usage, to "experts" with several years of experience from the 
Norwegian NFI. Additionally, there was a category of surveyors labelled "experienced," consisting of employees 
at NMBU with prior experience from field-based forest inventories. 
 
Each surveyor contributed a single height measurement for the reference trees they individually measured, 
utilizing a Vertex IV instrument. It's worth noting that none of the surveyors participated in both data 
acquisitions. Prior to conducting the measurements, the surveyors followed standard procedures for instrument 
calibration and setup. Additionally, each surveyor made independent decisions on the specific location from 
which a particular tree was to be measured. In total, 1565 individual measurements were carried out. 
 

3.2 Calculation of differences and data reduction 
To quantifying the errors associated with field-based height measurements, a calculation method involving four 
variables was employed. Firstly, for each individual measurement we calculated the deviance or the error (d, eq. 
6) between the measured value (ℎ෠) and its corresponding reference height (h). To gain further insights into the 
significance of the height measurement errors, we also computed three additional variables: percentual error 
(d%, eq. 7), absolute error (|𝑑|, eq. 8), and percentual absolute error (|𝑑|%, eq. 9). 
 
Analyses using the percentual error (d%) allows to study the relative impact of height on the magnitude of the 
errors. By expressing the errors in terms of the reference height, we can also better understand the underlying 
patterns or trends in the data, independent of the specific height values. The absolute deviances (|𝑑|) are 
particularly useful in assessing random variations, as they can be further analysed through the mean absolute 
error. This metric provides a measure of the average dispersion of the data points around the reference height. 
Lastly, the percentual absolute error (|𝑑|%) combines both the magnitude of the errors and their relative 
impact, providing a comprehensive perspective on the data. By employing these calculations, we aimed to 
comprehensively analyse the measurement data, understanding both the relative and absolute aspects of the 
errors. This approach allowed us to remove the potential influence of height on the differences and explore 
patterns of variation more effectively. 
 
𝑑 = ℎ෠ − ℎ          (6) 
 

𝑑% =
ௗ

௬
 × 100          (7) 

 
|𝑑| = หℎ෠ − ℎห          (8) 
 

|𝑑|% =
|ௗ|

௬ത
× 100          (9) 

 
After calculating the errors, it became evident during a preliminary screening of the data that the reference 
height of seven of the reference trees had been erroneously determined. All surveyors' measurements 
consistently indicated a substantially greater or smaller height for these trees, suggesting that the reference 
height measurement may have inadvertently considered a treetop other than the intended reference tree. 
Furthermore, during the preliminary screening, it was observed that a few measurements displayed extreme 
differences from the reference height, reaching as much as 13 m. Such discrepancies often occur when the 
surveyor is unaware that a proper distance measurement was not obtained using the Vertex instrument, leading 
to the instrument's default distance pre-set being used instead. To maintain the focus of the current research 
and exclude potential errors resulting from improper distance measurements, it was decided to omit all 
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observations where d exceeded 5 m. Consequently, our dataset was reduced to data from 95 reference trees 
and 1459 individual measurements. Table 1 displays a data summary of reference values for the 95 remaining 
trees distributed among the different data subsets. 
 
Table 1. Data summary. Number of trees (no), mean height (mean), minimum height (min) and maximum height (max) of 
the sample trees distributed on different data subsets. 
Data subset  no Mean (m) Min (m) Max (m) 
All  95 19.4 6.5 34.2 
      
Study area 1 (Ås)  65 20.2 6.5 34.2 
Study area 2 (Næroset)  30 17.5 9.1 24.8 
      
Norway spruce  44 19.6 6.5 34.2 
Scots pine  51 19.2 8.2 33.2 
      
H15a  33 11.6 6.5 14.9 
H20a  41 21.0 15.3 24.9 
H25a  21 28.3 25.0 34.2 
      
BA10b  28 20.4 9.4 29.7 
BA15b  27 17.9 7.4 33.2 
BA25b  24 19.5 9.1 34.2 
BA30b  16 19.8 6.5 30.1 
a: H15 = h < 15 m, H20 = 15 m < h < 25 m, H25 = h > 25 m  
b: BA10 = BA < 10 m2ha-1, BA15 = 10 m2ha-1 < BA < 20 m2ha-1, BA25 = 20 m2ha-1 < BA < 30 m2ha-1, BA30 = BA > 30 m2ha-1.       

 

3.3 Data analyses  
3.3.1 Means and standard deviations for data subsets 
Within each data subset, we estimated the mean error (ME, eq. 10) and the percentual mean error (ME%, eq. 
11), along with their respective standard deviations (stdE, eq. 12) and percentual standard deviations of the 
differences (stdE%, eq. 13). These measures of central tendency and dispersion provided valuable insights into 
the accuracy (ME and ME%) and precision (stdE and stdE%) of the data within each subset. The results appear 
in Table 2 and provide concrete results for the size of both systematic and random errors of height 
measurements using Vertex hypsometers. To investigate whether the random variation between the different 
data subsets differed, we specifically utilized the mean absolute percentual error (|𝑀𝐸|%, eq. 14). This metric 
was employed as it accounts for the spread of the differences and does not necessarily average to zero, even in 
the absence of systematic errors. 
 

𝑀𝐸 =  
ଵ

௡
∑ 𝑑          (10) 

𝑀𝐸% =  
ଵ

௡
∑ 𝑑%          (11) 

 

𝑠𝑡𝑑𝐸 =  ට
ଵ

௡
∑ 𝑑ଶ          (12)   

𝑠𝑡𝑑𝐸% =
௦௧ௗா

௒ത
 × 100          (13) 

|𝑀𝐸|% =  
ଵ

௡
∑|𝑑|%         (14) 
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3.3.2 Visualization and modelling the impact of data subsets on measurement errors 
To quantify and model the differences between various data subsets, our analyses specifically focused on the 
relative response variables, d% (eq. 7) and |𝑑|% (eq. 9). This decision had a geometric and congruent reasoning. 
The accuracy of tree height measurements, determined using a hypsometer, depends on precise measurements 
of distances and angles. Given that these measurements are taken from a point roughly the length of one tree 
away, the absolute height error increases proportionally with increasing tree height. We confirmed this 
expectation through a preliminary analysis, where we modelled the absolute error, |𝑑| (eq. 8) as a function of 
tree height. The results revealed that tree height was a statistically significant predictor of the absolute error. 
Therefore, in subsequent analyses that aimed to investigate potential variations in the magnitude of systematic 
and random errors across different data subsets, we focused on examining the relative errors. 
 
Boxplots were utilized to visually represent the distributions of d% for each subset of the data. To assess the 
combined impact of various factors on d% and |𝑑|%, generalized linear models (GLMs) were employed. In the 
analysis, tree height was treated as a continuous variable, while tree species, basal area, and experience were 
treated as categorical factors. The GLM modelling process was conducted using the glm-function in R (R Core 
Team, 2020). The response variable d%, which exhibited a normal distribution, was modelled using a Gaussian 
link function. However, the response variable |𝑑|% being right-skewed, required a different approach. To 
account for the skewness, a gamma link function was employed after adding a small constant to the response 
variable to ensure non-zero values. By utilizing the appropriate link functions, the GLM models were able to 
capture the relationships between the predictor variables and the response variables, accounting for their 
specific distributional characteristics.  
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4. Results 
4.1 Means and standard deviations for data subsets 
Table 2 presents the mean differences between the surveyors’ measurements and reference heights in both the 
measurement unit (m) and percentual values, along with their corresponding standard deviations. The results 
displayed in the table reveal that the systematic errors of the measurements from the reference heights were 
relatively small, yet statistically significant. On average, there was a 0.07 m systematic error which corresponds 
to 0.32% relative to the reference heights. The corresponding average random errors were 0.65 m and 3.75%, 
respectively. Notably, the pine trees exhibited both larger systematic and random errors compared to spruce 
trees. When analyzing the data across different height classes, it became apparent that the systematic errors, 
both in meters and in relative terms, were similar. While the random error in meters increased with increasing 
height, its percentual equivalent showed the opposite trend. When examining the various forest density subsets, 
no discernible trend emerged regarding systematic errors, and the percentual random errors appeared to be 
relatively consistent across the subsets. It is worth mentioning that the inexperienced surveyors demonstrated 
both the largest systematic errors and random errors. While the systematic errors were the same for the 
experienced and the experts, the experts displayed the smallest random measurement errors at 2.90% followed 
by the experienced surveyors at 3.11%. These numbers were substantially smaller compared to the 5.26% 
obtained for the inexperienced surveyors. 
 
Table 2. Mean height measurement error and corresponding standard deviation distributed over different data subsets. 
Data subset no Mean error   Standard deviations 
  ME (m) ME%  stdE (m) stdE% 
All 1459 0.07*** 0.32***  0.65 3.75 
       
Norway spruce 633 0.02 -0.02  0.56 3.11 
Scots pine 826 0.11*** 0.58***  0.71 4.16 
       
H15a 515 0.06** 0.38**  0.51 4.63 
H20a 695 0.06* 0.26*  0.67 3.26 
H25a 249 0.10 0.37  0.85 2.94 
       
BA10b 442 0.01 -0.06  0.74 4.48 
BA15b 430 0.12*** 0.78***  0.62 3.64 
BA25b 396 0.05 0.24  0.47 2.40 
BA30b 191 0.13* 0.32*  0.80 4.31 
       
Inexperienced  381 0.21*** 0.79***  0.87 5.26 
Experienced 388 -0.08** -0.61**  0.59 3.11 
Expert 690 0.08*** 0.59***  0.52 2.90 
a: H15 = h < 15 m, H20 = 15 m < h < 25 m, H25 = h > 25 m  
b: BA10 = BA < 10 m2ha-1, BA15 = 10 m2ha-1 < BA < 20 m2ha-1, BA25 = 20 m2ha-1 < BA < 30 m2ha-1, BA30 = BA > 30 m2ha-1.       
* = 0.01 < p < 0.01, ** = 0.01 < p < 0.001, *** = p < 0.001 

 

4.2 Visualization and modelling the impact of data subsets on measurement 
errors. 
The distributions of d% for the different data subsets are displayed in Figure 2. For clarity, it is important to note 
that the whiskers of the boxplots extend only as far as 1.5 times the distance between the first and third 
quantiles, and the extreme values of the distributions are therefore displayed as numbers above and below the 
whiskers. 
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Regarding tree species (Figure 2, upper left), the graphical display suggests that both the systematic and random 
errors were larger for pine compared to spruce. These visual indications were confirmed by the significant model 
parameters for tree species in both the d%-model (Table 3) and the |𝑑|%-model (Table 4).  
 
For tree height (Figure 2, upper right), the boxplots suggest minor differences in the median percentual errors 
(d%) between subsets. It appears that the median error slightly decreased with increasing height, as depicted in 
Figure 2. The glm-modelling (Table 3), however, gave a somewhat contradictory result, and indicated a minor 
yet significant trend towards that the percentual errors increased with increasing tree height. On the other hand, 
the random percentual errors appeared to decrease as tree height increased. This observation is consistent 
when comparing the percentual standard deviation for different subsets (Table 2), the graphical representation 
in Figure 2 (upper right), and the glm-model for |𝑑|% (Table 4). 
 
Regarding forest density (Figure 2, lower left), represented by different subsets according to basal area, there 
were differences in the distribution of the percentual errors (d%) between some of the subsets. However, there 
was no clear trend suggesting that denser forests would yield larger systematic errors. The graphical display and 
the mean percentual errors in Table 2 indicate that subset BA15 had somewhat larger systematic error 
compared to the other subsets, and this finding was partially confirmed by the glm-modelling (Table 3) where 
the parameter estimate attributed to BA15 was associated with the highest significance level when comparing 
its mean error to the base subset in the model (subset BA10 in this case). There were no apparent trends in the 
random variation between subsets indicated by either analysis. 
 
The analysis of the fourth factor, expertise, revealed that the measurements taken by inexperienced surveyors 
were more variable compared to those of the other surveyors. This is evident from the percentual standard 
deviations between the subsets in Table 2, which decrease with a higher level of experience. The results of the 
glm-modelling (Table 4) similarly show that the percentual absolute errors decreased with experience, as 
indicated by the significant parameter estimates comparing the difference from the base subset in the model 
(expert level in this case). Although there was a significant difference in the percentual errors (d%) between 
experienced and expert surveyors, the deviations from zero were small (Table 2) and smaller than those of the 
inexperienced subset. 
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Figure 2. Distribution of percentual height meaurement errors (d%) over data subsets according to 1) tree species (spruce=1, 
pine=2), 2) tree height classes  (H15 = h < 15 m, H20 = 15 m < h < 25 m, H25 = h > 25 m), 3) BA classes (10 = BA < 10 m2ha-1, 
15 = 10 m2ha-1 < BA < 20 m2ha-1, 25: 20 m2ha-1 < BA < 30 m2ha-1, 30 = BA > 30 m2ha-1), and 4) experience (n = no experience, 
y = experienced, e = expert).  
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Table 3. Parameter estimates with corresponding standard deviations and significance for model of the percentual difference 
between measured and reference height. 
Variable Parameter estimate St.dev  Significance 
Intercept  -1.15 0.42 ** 
factor(Tree species)2 0.63 0.23 ** 
Tree height  0.04 0.02 ** 
factor(BA class)15 0.99 0.26 *** 
factor(BA class)25 0.70 0.29 * 
factor(BA class)30 0.91 0.34 ** 
factor(Experience)n 0.13 0.26  
factor(Experience)y -1.27 0.25 *** 
* = 0.01 < p < 0.01, ** = 0.01 < p < 0.001, *** = p < 0.001 
 
Table 4. Parameter estimates with corresponding standard deviations and significance for model of the absolute percentual 
difference between measured and reference height. 
Variable Parameter estimate St.dev  Significance 
Intercept  0.92 0.11 *** 
factor(Tree species)2 0.39 0.06 *** 
Tree height  -0.02 0.01 *** 
factor(BA class)15 -0.03 0.07  
factor(BA class)25 -0.24 0.08 ** 
factor(BA class)30 -0.06 0.09  
factor(Experience)n 0.46 0.07 *** 
factor(Experience)y 0.21 0.07 ** 
* = 0.01 < p < 0.01, ** = 0.01 < p < 0.001, *** = p < 0.001 
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5. Discussion 
The present research utilized a comprehensive dataset comprising spruce and pine trees, 
encompassing a range of tree heights, forest densities, and surveyor experience levels. Although the 
data were not perfectly balanced in terms of the number of reference trees and measurements within 
each subset, the results presented are grounded in a solid foundation. To model both response 
variables, d% and |𝑑|%, GLM was employed. GLMs are well-suited for handling unbalanced data and 
do not necessitate an equal number of observations in each subset or group. Moreover, appropriate 
link functions, Gaussian for the normally distributed d% variable and Gamma for the right-skewed 
|𝑑|% variable, were incorporated into the modelling process. By employing GLMs with suitable link 
functions, we ensured that the statistical analysis accommodated the specific characteristics of the 
response variables, enabling reliable interpretation and understanding of the observed effects. 
 
The current study demonstrated minimal systematic errors associated with height measurements 
using Vertex instruments. Across the entire dataset, the average systematic difference between the 
measured and reference tree height was 0.3% (0.07 m), which was slightly smaller than the findings 
reported in the studies by Ganz et al. (2019) and Krause et al. (2019), but comparable to or slightly 
larger than the findings in Stereńczak et al. (2019). These three aforementioned studies all relied on 
reference heights obtained from measurements subsequent to felling. Other studies, such as Paudel 
et al. (2021) and Vasilescu (2013), where reference heights were obtained by averaging the surveyors' 
measurements on each subject tree, reported similar systematic tendencies. In the present study, we 
found that the magnitude of the systematic error could, to some extent, be explained by tree species, 
with pine exhibiting larger errors (Table 2, Table 3). This observation aligns with Stereńczak et al. 
(2019), and the most likely explanatory factor is that, on average, pines have more rounded crowns 
compared to spruce, making it more challenging to accurately identify the apex of the tree. Aiming 
the Vertex at a branch that obscures the true treetop can introduce positive systematic errors. In the 
Stereńczak et al. (2019) study, tree age was also identified as a factor that influenced the magnitude 
of the error, pointing towards a similar reasoning as for tree species, where slower growth with age 
creates treetops that are harder to determine accurately. 
 
Although the basis for comparison differs between studies, the systematic errors reported in all these 
studies, including the present one, can be considered negligible for most practical purposes. While we 
initially expected the systematic error not to be significantly different from zero, it is important to 
note that the use of Vertex instruments is sensitive to errors in the instrument settings, particularly 
the definition of the transponder height. In this research, we did not verify the settings of each 
individual instrument used, but we ensured that each surveyor was informed about the importance 
of correct instrument settings. However, if one or more surveyors in our study, despite the instructions 
of the study protocol, conducted their series of measurements with faulty instrument settings, 
systematic errors would arise. Therefore, our results may reflect a real-life scenario where instrument 
settings and errors are unavoidable. Additionally, we acknowledge the possibility of errors in the 
reference height measurements for certain trees, and we may not have identified and excluded all 
such trees in our initial investigation of height measurement errors. 
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The analysis of random measurement errors in the current research revealed a percentual standard 
deviation of 3.75% for the entire dataset. However, when excluding inexperienced surveyors, this 
figure decreased by approximately one percentage point. The influence of experience and training on 
random measurement error was also demonstrated by Kitahara et al. (2010) and Paudel et al. (2021). 
Experience is crucial not only for technically operating the instrument correctly, but also for making 
sound decisions regarding suitable locations from which to carry out the height measurement. Our 
modelling of the percentual absolute difference (Table 4) indicated that, compared to the experts, 
experienced and inexperienced surveyors had absolute errors that were 0.21 and 0.46 percentage 
points larger, respectively. Furthermore, random errors appeared to vary between tree species. 
Similar to the systematic errors, pine exhibited larger errors compared to spruce. Although not as 
pronounced as in the current study, Luoma et al. (2017) reported similar findings. Once again, the 
most likely explanation is the more variable apical crown shape of pines. The importance of apical 
crown shape is further highlighted by the observation that forest density does not seem to affect the 
magnitude of random error, as pine forests, on average, are less densely stocked, amplifying the 
influence of apical crown shape. 
 
While acknowledging the need for caution in generalizing our findings to practical field scenarios, it is 
worth noting that the observed random measurement error of approximately 3% for experienced 
surveyors is supported by the findings of the aforementioned studies. Comparing to those studies, our 
result is even in the upper range. The relatively strong consistency of such estimates across multiple 
studies strengthens our confidence that a random error level of around 3% is a robust approximation 
for practical field-based height measurements using the Vertex hypsometer. However, it is important 
to consider specific environmental conditions and tree characteristics that may introduce variations 
in error levels, in addition to expertise. To enhance the accuracy and reliability of height 
measurements in different contexts, future research incorporating a wider range of tree species, 
diverse geographical locations, and various instrument settings would provide further insights into the 
generalizability of our findings and refine the understanding of error estimation for practical field 
applications using the Vertex hypsometer. 
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6. Conclusions 
In conclusion, this research examined height measurement errors in spruce and pine trees, considering tree 
height, forest density, and surveyor experience. The results indicated minimal systematic errors when using 
Vertex instruments, similar to previous studies. Pines exhibited larger systematic and random errors compared 
to spruce, likely due to their crown shape. Random measurement errors, with a percentual standard deviation 
of 3.75% for the entire dataset, decreased when inexperienced surveyors were excluded. Surveyor experience 
and training influenced both systematic and random errors. For experienced surveyors, a random error level of 
approximately 3% is a reliable approximation for practical field-based height measurements with the Vertex 
hypsometer. However, caution should be exercised when applying these findings to different environmental 
conditions and tree characteristics. 
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