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Summary 
 

The estimation of the energy production of wind farms is a key factor for the development of 

wind energy projects. Currently, these estimations utilize only a few onsite measurement points 

to estimate the wind resource at the location of the wind turbines by means of a wind flow 

model. One of the most advanced wind flow models utilized in the wind energy industry for 

this purpose are the steady-state computational fluid dynamic (CFD) models. These models 

have proven to be successful in modelling the wind flow in complex terrain. Nevertheless, there 

are some limitations in their applicability at sites with complex weather patterns. 

In this PhD thesis, these limitations are addressed by coupling a CFD model with a 

mesoscale meteorological model (MMM). MMMs are widely used for weather forecast and 

can reproduce the complex weather phenomena that a CFD model lacks. In this study, the 

framework to couple both models consists in utilizing the mesoscale simulation results to 

compute the boundary conditions of the CFD model. Two variants of the meso-microscale 

coupling approach are here studied. 

The first approach consists in utilizing the average values of the mesoscale fields by 

wind directional sector. It is shown that this approach improves the wind estimations in 

complex terrain and in areas that are located at the wake of the terrain features of a site. 

Nevertheless, the approach presents important limitations in sites where the wind blows from 

few wind directions. The second approach addresses this limitation by extracting weather 

patterns from the mesoscale simulations by means of a fully automated clustering 

methodology. This classification technique is capable of extracting the predominant weather 

patterns and organizing them in a meaningful way. Overall, by downscaling the extracted 

patterns the modelling error is reduced compared with the mesoscale model. Such a 

methodology has a lot of potential for wind turbine wake studies as well as for forecasting 

solutions that utilize CFD models. 
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Chapter 1 
 

1Introduction 
 

The goal of this section is to provide to the reader a context for the research described in this 

PhD thesis. Both the motivation of this research and their objectives are presented. Finally, the 

contents of the thesis are outlined, including the relation between the scientific articles of this 

thesis. 

 

1.1 Motivation of the research 
Wind energy generation has been identified by the Intergovernmental Panel on Climate Change 

as one of the renewable technologies with the highest mitigation potential due to its relatively 

low lifecycle greenhouse gas emissions and competitive costs.1 The latter has driven a 

continuous increase in the total installed capacity of wind energy around the world.2 By far, 

the most important factor for the profitability of a wind energy project is the total amount of 

energy produced,3 which in turn depends on the available wind resource and wind farm layout. 

In the planning phase of a wind energy project, energy produced by wind farm is estimated 

through a process called wind resource assessment. The main goal of this process is to predict 

the windiest locations within a given area. Due to the cost, it is only possible to concurrently 

measure wind speed and its associated variables (such as wind direction, ambient temperature 

and atmospheric pressure) in a limited number of locations within a given site considered for a 

wind farm. Therefore, a method is required to extrapolate few measurements to other locations 

of interest. For this purpose, the wind industry typically uses the so-called numerical wind flow 

models. These models are designed to predict the spatial variation of the wind by modelling 

the physical behavior of the wind flow.  

 

The wind flow models that are mostly utilized for wind resource assessment in the industry can 

be classified into two categories: linear models and computational fluid dynamic (CFD) 

models. Historically, linear models4 have been popular within the wind industry because of 

their low use of computational resources. These models solve a linearized version of the 

equations that govern the motion of the fluids (Navier-Stokes equations). However, these linear 

models might not capture the influence of the terrain on the wind flow accurately, especially 

in complex terrain.5 On the other hand, CFD models numerically solve the Navier-Stokes 
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equations by making assumptions about the flow conditions. Different types of CFD models 

exist, which are mainly differentiated by the way they model the turbulence. The most popular 

CFD models in the wind energy industry utilizes the steady-state version of the Reynolds-

Averaged Navier-Stokes (RANS) equations. RANS models have improved performance 

compared with linear models (Figure 1.1), while keeping the computational cost relatively low. 

More advanced CFD models, which are based on large-eddy simulations or unsteady RANS 

simulations, are commercially available for wind resource assessment. However, they are used 

to a lesser extent due to their high use of computational resources.6 Therefore, the focus of this 

study is on steady-state RANS models. 

 

 
Figure 1.1. Average improvement of the estimated annual energy production (AEP) when using CFD versus 
linear models for 50 sites with different terrain complexity. Reproduced from Hristov et al. (2014).7 

 

The wind flow solution obtained by a steady-state RANS model depends on the selected 

boundary conditions. These boundary conditions make explicit assumptions about the wind 

conditions, such as wind speed, wind direction, temperature and turbulence. In the wind energy 

industry, the boundary conditions are typically assumed to follow analytical formations based 

on the Monin-Obukhov similarity theory,8 as well as to be invariant across the simulated 

domain. This way of prescribing boundary conditions, referred to in this study as standalone 

simulations, are sufficient for many wind energy projects. Nevertheless, they present important 

limitations in sites with complex weather systems, where real conditions can not only differ 

from this analytical formulation, but also present a significant spatial variation (Figure 1.2). 
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Figure 1.2. Comparison of the boundary conditions for standalone and coupled simulations. Left panel: 
comparison of the vertical profile of horizontal wind speed. Right panels: comparison of vertical planes of 
horizontal wind speed. 

 

A necessary step towards improving steady-state microscale models is to have more realistic 

boundary conditions. The approach that is investigated in this thesis consists of computing the 

boundary conditions from models that can simulate the weather, the so-called mesoscale 

meteorological models (MMM). This approach is referred to in the literature as direct meso-

microscale coupling.6 Nested domains in the MMM are used to physically downscale the global 

circulation to the regional winds and then to the atmospheric boundary layer wind flow (Figure 

1.3). It is expected that the wind flow solution of a direct meso-microscale coupling approach 

would benefit from both more realistic weather conditions by the MMM and from a proper 

inclusion of the local orography by the microscale model. Recently, publicly available 

mesoscale data have been published at the New European Wind Atlas database.9 Other similar 

mesoscale simulation databases exist, like the Dutch Offshore Wind Atlas.10 It is expected that 

this kind of databases will be increasingly common in the future, and in order to exploit them, 

the development of direct meso-scale coupling methodologies is required. 
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Figure 1.3. Spatial scale ranges of different wind flow modeling approaches. Adapted from Sanz et al. 
(2017).6 

 

1.2 Brief review of meso-microscale coupling literature 
As reported in Paper I, meso-microscale coupling models are widely studied within the wind 

modelling field. Most of the reviewed literature on meso-microscale coupling can be classified 

according to the modelling approach utilized at the microscale level: 

 
i. Direct coupling using an unsteady microscale model like large-eddy simulations or 

unsteady RANS 
 

ii. Direct coupling using a steady-state microscale model to simulate some timesteps 
 
iii. Steady-state microscale model using analytical boundary conditions, which is then 

scaled by the mesoscale wind speed at a given grid point(s) 
 

As previously mentioned, approach (i) is not feasible for most of the wind industry given the 

extensive use of computational resources; while approach (ii) is mostly used for urban studies 

(like pollution dispersion) in order to simulate a specific event. Approach (ii) cannot be applied 

for wind resource assessment since it would require simulating too many timesteps (for 

example, each hour of a year). Approach (iii) has applications in wind energy for site screening 

or for the elaboration of wind atlases. Nevertheless, this approach does not solve the problem 

of unrealistic boundary conditions as it also uses analytical boundary conditions to force the 

model, and the mesoscale results are only used to scale the model. In wind resource assessment, 

the scaling is typically conducted using onsite measurements, which are regarded as a better 

representation of real wind conditions. 

 

There are two challenges when using direct meso-microscale coupling with steady-state models 

for wind resource assessment purposes. First, it is necessary to define how many and which 
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mesoscale fields would be used to compute the boundary conditions. The idea is that the 

selected or computed fields are representative for the most predominant conditions at the site. 

Secondly, once having these representative mesoscale fields, a procedure to compute the 

boundary conditions is required. This is a problem that is commonly addressed by the studies 

that use approaches (i) and (ii), and much of their insights were used in this study. Nevertheless, 

in most of the studies the problem of finding representative mesoscale fields is typically not 

addressed. From the literature survey, the only work that deals with this problem is the study 

carried out by Duraisamy (2014).11 In that study, the 3-D simulated mesoscale timeseries are 

classified using a k-means clustering approach, obtaining 64 fields that are then downscaled 

with a microscale model. The validation of the methodology in that study is rather limited as it 

is only applied at one site. Another shortcoming is that the applied clustering approach requires 

to define a priori the total number of clusters, which can lead to repeated or insufficient clusters. 

The study presented in this PhD is similar in the sense that classification approaches are applied 

to obtain representative mesoscale fields, which are then downscaled. However, this PhD thesis 

is focused as well on the automatization of the mesoscale classification and on a wider 

validation of the capabilities of the meso-microscale coupling models. 

 

1.3 Objectives of the research 
The aim of the research presented in this PhD thesis is to develop methodologies that enable 

the combined use of MMM simulations with steady-state RANS modelling for wind resource 

assessment applications. The main challenge of this meso-microscale coupling method is to 

cope with the different ways these models deal with time. MMM simulations are time 

dependent (also called transient), while steady-state RANS models are time independent. Thus, 

the challenge is to establish the number of coupled simulations needed to fairly represent the 

different conditions simulated by the MMM. This challenge is analogous to determining how 

many and which frames of a video are required to sufficiently convey the information contained 

in it. 

 

It is expected that some information from the mesoscale simulation will be lost through the 

coupling procedure. On the one hand, the use of a steady-state model in the microscale will 

necessarily be unable to transfer transient phenomena, especially during unstable conditions. 

On the other hand, due to the simpler physics modeled by the RANS model used in this study, 

it is not possible to take into account the same physical processes as the mesoscale model.  



Introduction 

6 
 

Therefore, an additional objective of this study is to have a better understating of the limitations 

of the direct coupling methodologies developed. It is important to determine in a quantifiable 

manner which modelling approaches are more adequate for different types of terrain 

complexity, atmospheric stability conditions and local weather phenomena. 

 

In summary, the specific objectives of this research are: 

i. Develop meso-microscale coupling methodologies for steady-state microscale models 
that utilize a reasonable number of simulations (≤ 36) 
 

ii. Quantify the gain in utilizing the developed meso-microscale coupling methodologies 
for different type of terrain and weather conditions 
 

iii. Identify the limitations of the developed meso-microscale coupling methodologies and 
the possible solutions to further enable their use for wind resource assessment 
 

In the research articles of this thesis, two meso-microscale coupling methodologies are 

developed. In Papers I and III, a directional average approach is utilized, while Papers II and 

IV utilizes an approach based on neural networks. Both methodologies comply with using a 

reasonable number of simulations. Furthermore, the approach based on neural networks 

achieve this in a fully automated manner. In the articles, the coupling methodologies are 

validated at different sites with a variety of terrain and wind conditions. The capability of the 

coupling methodology to downscale different mesoscale wind patterns is evaluated 

qualitatively and quantitatively. 

 

1.4 Thesis outline 
The remaining of the PhD thesis is structured as follows: In Chapter 2, all the materials and 

methodologies utilized through the research are presented. These consist of the datasets used 

for the modeling and validation of the studied sites, as well as their corresponding mesoscale 

simulations. In the same section, technical details are provided for the microscale model and 

for the meso-microscale coupling methodology. Finally, the error metric utilized in the 

validation study is described. To avoid repetition, detailed information presented in the 

research articles of this thesis are not repeated in this synopsis. This especially applies to the 

datasets of the validation sites, the coupling methodologies and the validation metric. In 

Chapter 3, the results and findings of the articles are summarized. The results are organized 

into three main topics: (i) capabilities of the classification techniques utilized, (ii) capabilities 

of the coupled simulations to downscale mesoscale patterns and (iii) validation study results. 
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This PhD thesis contains four research articles, and the relation between them is outlined in 

Figure 1.4. The research contained in these articles can be summarized as a development and 

validation of two meso-microscale coupling methodologies. The main difference between the 

methodologies is the procedure utilized to obtain the representative mesoscale fields. One of 

these methodologies correspond to a simple approach that consists of using the average values 

of the MMM variables to prescribe the boundary conditions to the microscale model, which is 

proposed and validated in Paper I. In parallel to this work, a more sophisticated classification 

methodology was proposed in Paper II. This classification methodology is based on a machine 

learning technique, called self-organizing maps (SOM), to obtain prevalent patterns in a dataset 

in a fully automated fashion. In Paper II, the focus was only on the classification methodology 

and on proving its capabilities in classifying relevant wind patterns, in particular, wind speed 

profiles. Paper III further develops the work of Paper I, by introducing some improvements 

and more importantly, making use of a larger sample of sites and observational points to 

validate the coupling methodology. Finally, Paper IV utilizes the same classification method 

developed in Paper II to obtain the predominant patterns of a mesoscale simulation. These 

patterns are downscaled and validated using an identical coupling methodology as in Paper III. 

 

 
Figure 1.4. Relation of the research papers in this PhD thesis 

 
 



 



 

 
 

2Datasets and methodologies  
 

The datasets and methodologies used to carry out this PhD study are presented in this chapter. 

In Figure 2.1, the relationship between these elements is outlined. The terrain datasets are 

utilized to build the digital terrain models of the microscale model of WindSim. This 

microscale model is coupled with the mesoscale simulations through a transferring procedure. 

The simulation results of this procedure are compared to the results of the standalone WindSim 

model, which are utilized as a benchmark. The results from both models are compared against 

onsite measurements using crosscheck prediction errors. 

 

 
Figure 2.1. Relation of the models, methodologies and datasets used in this PhD thesis. The main 
contributions of the research are in the meso-microscale coupling procedure (indicated in bold). 

 

The contributions of the research conducted in this thesis are mainly in the meso-microscale 

coupling procedures. Other minor contributions were introduced in the microscale modeling 

and in the crosscheck prediction error procedure of WindSim. Further technical details on the 

datasets, methodologies and models are provided in the following subsections. 

 

2.1 Validation sites 
Six sites, which are listed in Table 1, are used in this PhD study. All of them correspond to 

commercial wind energy generation projects in different states of development. Datasets from 

most of the projects were only provided for the purpose of this research, and therefore 

georeferenced data and absolute values of the measurements are not disclosed. The only site 

without restrictions regarding the datasets is Honkajoki. Non-public datasets for the Honkajoki 
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and CA sites were provided by the Novia University of Applied Sciences in Finland and RWE 

Renewables Americas LLC in the US, respectively. The remaining datasets were provided by 

Mainstream Renewable Power in Chile. 

 
Table 1. Validation sites used in the research articles of this PhD thesis. 

Name Location Meteorological conditions Paper 
Honkajoki Finland Very stable conditions I 
CM Southern Cone Near-neutral to stable conditions III 
CA North America Very stable conditions III 
CL Southern Cone Strong day-night cycle  III 
CK Southern Cone Strong day-night cycle III and IV 
PS Southern Cone Near-neutral to stable conditions III 

 

None of the projects presented in Table 1 were utilized in Paper II. Instead, the locations of the 

FINO-1 and Cabauw meteorological towers were used. Due to the nature and scope of Paper 

II, no measurements were required, and these locations were only used because they are well-

known experiments in the wind energy community. For each of the sites listed in Table 1, three 

kinds of datasets are used to carry out the study: 

1) Wind measurements 

2) Terrain 

3) Mesoscale simulations 

An overview of the datasets is presented in Figures 2.2-2.7. In the following subsections details 

of the datasets are provided. 
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Figure 2.2. Terrain and wind characteristics at the Honkajoki site. The locations of the measurement are 
indicated by black circles in the maps. Polar and radial axis of the wind rose correspond to the wind 
direction (°) and frequency (%), respectively. The instrument used to compute the wind characteristics is 
indicated above of the bottom-right panel. 

 

 
Figure 2.3. Same as Figure 2.2 but for the CM site. 
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Figure 2.4. Same as Figure 2.2 but for the CA site. 
 

 
Figure 2.5. Same as Figure 2.2 but for the CL site. 
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Figure 2.6. Same as Figure 2.2 but for the CK site.  
 

 
Figure 2.7. Same as Figure 2.2 but for the PS site.  

 

2.1.1 Wind measurements 

Onsite measurements of the wind conditions at the sites were obtained through different 

instruments. The type of instruments utilized for these measurements are some of the ones 

typically used for wind resource assessment: cup anemometers, wind vanes and light detection 

and ranging (LiDAR) systems (Figure 2.8). The measured variables that are used in the 

validation studies of this thesis are the wind speed and wind direction, which are averaged 

every 10 minutes. Other measured variables that were not directly used in the study include 

turbulence intensity (or standard deviation of the wind speed), vertical wind speed, 
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temperature, humidity and pressure. Most of these variables are used for suitability studies and 

energy yield calculations, which are beyond the scope of this work. 

 

 
Figure 2.8. Instruments utilized at the CL site. Left and center panels: Anemometer and wind vane, 
respectively, mounted in a meteorological mast. Right panel: Deployed LiDAR. Courtesy of Mainstream 
Renewable Power. 

 

Cup anemometers and wind vanes were calibrated using the parameters provided by external 

laboratories. The data collected from cup anemometers and wind vanes are cleaned for invalid 

or unrealistic values, as well as for icing events, utilizing the Windographer software (Figure 

2.9). Cup anemometers and wind vanes are mounted into meteorological masts. Usually two 

anemometers are mounted per vertical level in order to prevent tower distortion (Figure 2.10). 

The data from both anemometers are combined into one timeseries, which considers the mast 

wake for a given range of wind directions.  

 

The data collected by the LiDARs is already filtered from low quality measurements by the 

software included in the instrument. The data from some LiDAR brands had to be cleaned or 

corrected due to improper wind direction measurement. Further details on the type and number 

of instruments per site can be found in Papers I, III and IV. 
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Figure 2.9. Example of an icing event (indicated in yellow). The cup anemometer and the wind vane @20m 
are affected by icing. Instruments @60m may also be partially affected by icing. Temperature and/or 
humidity measurements help to identify icing events. 

 

 
Figure 2.10. Example of tower distortion of measurements. The red line indicates the average ratio between 
the wind speed measured at anemometers B and A (radial axis) for a given wind direction (polar axis). 

 

The measurement campaign of each site complies with the standards of the International 

Electrotechnical Commission, Measnet and/or other local standards. Out of the studied sites, 

Honkajoki is the only one that has measurements in just one location. For this reason, 



Datasets and methodologies 

16 
 

validations at this site were only possible in the vertical direction. The sites Honkajoki, CM 

and CA present a high wind shear (Figures 2.2, 2.3 and 2.4), while the sites CL and CK present 

low wind shear (Figures 2.5 and 2.6). Both conditions are likely to be related to the predominant 

atmospheric stability conditions at the sites. Among them, Honkajoki and CA are the sites 

where the wind is the most evenly distributed between the different wind directions (Figures 

2.2 and 2.4). The opposite is true for the CL and CK sites, where the wind mostly comes from 

one wind direction (Figures 2.5 and 2.6). 

 

2.1.2 Digital terrain model 

The most important factors that influence the behavior of the local wind flow are related to the 

terrain conditions. These conditions are represented in the digital terrain model of the site, 

which consists of a 2-D grid of point values of terrain elevation and roughness length. In 

forested sites additional information is required, which consist of the location of the forest, 

canopy height, forest sparsity and tree species. In the WindSim model, this information is used 

to set certain grid cells of the model as forest by defining them as a semi-permeable obstacle. 

More details on the forest modelling are provided in Section 2.2.  

 

For the sites of this PhD thesis, the terrain elevation was obtained from the databases of the 

Shuttle Radar Topography Mission,12 the Canadian Digital Elevation Data,13 the Finish 

National Land Survey14 and from LiDAR campaigns conducted by the project owner or 

commercial providers, like WorldDEM. Roughness length maps are constructed from land 

cover maps obtained from open databases like the GlobeLand30,15 the US National Land Cover 

Database 200116 and/or commercial sources. These land cover maps are translated into 

roughness maps following conversion tables, usually based on the work of Davenport (1960).17 

In the case of the CL and CK sites, a constant roughness value for the entire domain is used 

instead, as they present a very homogeneous terrain type and more detailed information of the 

terrain is not available in the aforementioned databases. Further characteristics of the digital 

terrain models can be found in Papers I, III and IV. 

 

There is a wide variety of terrain complexity among the modeled sites. Honkajoki and CA have 

a relatively flat terrain (Figures 2.2 and 2.4). CL and PS also present a relatively flat terrain, 

but with some hilly areas and other terrain features (Figures 2.5 and 2.7). The terrain of the CK 
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site is relatively even with an overall inclination towards the north (Figure 2.6). By far, the 

most complex site is CM (Figure 2.3). 

 

2.1.3 Mesoscale simulations 

About one-year worth of mesoscale simulations are available for each of the modelled 

locations. These simulations were produced using the Weather Research Forecasting (WRF) 

model.18 Depending on the site, the runs were conducted by the High Performance Computing 

Center North (HPC2N),19 Vortex SL20 or one of the co-authors of Paper II (Table 2). Further 

technical details about the settings of the WRF simulations are provided in Papers I, II and III. 

The postprocessing of the results was conducted using a time resolution of 1 hr for the outputs. 

The simulated periods were selected in order to cover the longest concurrent period measured 

at all observational points at each site. 

 
Table 2. Source of the WRF simulations utilized in the research articles of this thesis. 
 

Site WRF version Conducted by 
Honkajoki 3.7.1 HPC2N 
FINO-1 3.6.1 Co-author in paper 
Cabauw 3.6.1 Co-author in paper 
CM 3.7.1 Vortex SL 
CA 3.7.1 Vortex SL 
CL 3.7.1 Vortex SL 
CK 3.7.1 Vortex SL 
PS 3.7.1 Vortex SL 

 

2.2 WindSim 
In this study, the steady-state RANS model that is part of the commercial software WindSim 

is utilized as a microscale model. The model predicts the spatial perturbations of the wind speed 

for a given set of boundary conditions. For wind resource assessment applications, it is assumed 

that the solution of the model is Reynolds number independent, i.e. the spatial wind 

perturbations are independent of the wind speed. For example, if the model predicts variation 

of X% in the wind speed between point A and point B, this percentual change is independent 

of the wind speed at point A. However, wind speed perturbations are still dependent on the 

direction of the wind, and therefore several simulations with different wind directions are 

typically conducted to assess a site.  
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The governing equations of the WindSim’s CFD model correspond to the RANS equations,21 

assuming steady-state (derivatives in time =0) and incompressibility (constant density). All 

equations in this subsection are given in Einstein notation. Sub-indexes �, � = 1, 2, 3  

correspond to north, east and vertical components, respectively. Mass conservation is 

expressed as:  
������ = 0 (1) 

 

where �� and �� correspond to the �-component of the wind speed vector and of the cartesian 

coordinate, respectively. The conservation of momentum in the horizontal direction is 

expressed as: 

�� ������ = − 1	 �
��� + ���� �� 
������ + ������ � − ������������ � = 1,2 (2) 

 

where 
 is the pressure, 	 is the air density and � is the air viscosity. The conservation of 

momentum in the vertical direction has an additional forcing term when thermal effects 

(atmospheric stability) are present:  

�� ������ = �� − ��� � − 1	 �
��� + ���� �� 
������ + ������� − ������������� (3) 

 

where � is the gravitational acceleration, � is the potential temperature and �� its reference 

value. For neutral simulations � = �� and therefore the extra forcing term =0. The potential 

temperature is influenced by advection, thermal diffusion and turbulent heat transfer, expressed 

as: 

�� ����� = ���� �� � ������ − (����������)� (4) 

 

where � is the kinematic molecular diffusivity for heat in air. The turbulent terms in Equations 

(2), (3) and (4) are parametrized as: 

����������� = −��  
������ + ������ � + 23 ��,� (5) 

(����������) = −��!" � ������ (6) 
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where ��,� is the Kronecker delta and !"(=1) is the turbulent Prandtl number for heat transfer. 

The turbulence viscosity �� is obtained from the standard # − $ turbulence model as 

formulated by Lauder and Spalding (1974):22 

�� = %& #'
$  (7) 

�(��#)��� = ���� ���!*
�#���� + 
* + 
- − $ (8) 

�(��$)��� = ���� ���!.
�$���� + %./ $# (
* + %.�
-) − %.' $'

#  (9) 


* = ��  
������ + ������ � ������  (10) 


- = − ��!" � 1� ����� (11) 

 

Here # corresponds to the turbulent kinetic energy (TKE) and $ to its dissipation rate (EDR). 

The values of the model constants %&, !*, !., %./, %.' and %.� are presented in Table 3. The 

term 
- is used in Equation (8) when thermal effects are present, otherwise 
- = 0.  

 
Table 3. Values of the model constants of the standard 4 − 5  turbulence model used by Lauder and 
Spalding (1974).23 %& !* !. %./ %.' %.� 

0.09 1.0 1.3 1.44 1.92 1.0 
 

Since the potential temperature gradients in coupled simulations can be much more stably 

stratified than the analytical formulations, some limits were introduced to the values of 
-. In 

order to prevent too low turbulence in very stable conditions, 
- is limited in Equation (8) by 


- = max(−678
*, 
-), where 678 = 1 − %.//%.� = 0.25.24 On the other hand, 
- is limited 

in Equation (9) by 
- = max(0, 
-).25 These limits were used introduced Paper III and also 

used in Paper IV. Further justification of this addition is provided in Paper III. 

 

In WindSim, forest is modelled by defining the grid-cells where it is located as a porous media. 

Therefore, source/sink terms <�, <* and <. are added at the right side of the governing  equations 

of momentum (Equation (2) and (3)), TKE (Equation (8)) and EDR (Equation (9)), 

respectively. These terms are parametrized as:26 

<� = −	>?@������ (12) 
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<* = >? ABC@����� − B?��#D (13) 

<. = >? A%.EBC $# ��� − %.FB?��$D (14) 

 

where >? is the drag coefficient of the forest and BC, B?, %.E, and %.F are model constants, 

whose values are shown in Table 4. >? values are chosen for each grid-cell defined as forest, 

depending on tree sparsity, tree species and the geographical location of the forest. 

 
Table 4. Values of the forest constants according to the formulations of Sanz (2003)27 using the model 
constants in Table 3. BC B? %.E %.F 

1 6.51 1.24 1.24 
 

2.3  Meso-microscale coupling procedure 
The meso-microscale coupling procedure consists of two steps. First, a set of mesoscale fields 

that are representative of the predominant wind conditions at the site are obtained. Secondly, 

these representative mesoscale fields are transferred into the microscale model as boundary 

conditions. Paper II is focused only on the first step, while the other papers deal with both. 

Details about the procedures utilized at each step are provided in the following sections.  

 

2.3.1 Computation of representative mesoscale fields 

In this PhD thesis, two methodologies were proposed to obtain representative mesoscale fields. 

One consists of averaging the wind conditions per directional sector, while the other obtains 

these conditions in an automated fashion utilizing neural networks. The first approach is 

regarded as a simple method that resembles the normal modeling approach used in the wind 

industry (one simulation per directional sector). The second method requires a further 

understanding of the abstraction done by the neural map. Nevertheless, it provides a powerful 

tool to easily explore the wind conditions that occur in a site in a comprehensive manner.  

 

A common procedure for both methodologies is to filter timesteps that have an average wind 

speed below 3 m/s, for all grid points between 50 and 150 m a.g.l. and that lie within the 

microscale domain. This way, all mesoscale timesteps that are not of interest for wind energy 

generation are filtered out. The variables of interest of the obtained mesoscale fields are ��(� =
1,2,3), � and the planetary boundary layer height. 
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2.3.1.1 Directional average 

The first methodology proposed in this study consists in averaging all timesteps of the 

mesoscale simulation timeseries according to their wind direction. This procedure generates 

one representative wind condition per desired wind direction. The approach implicitly assumes 

that the wind conditions for a given wind direction are relatively similar in time. This 

assumption holds true in many wind energy projects, especially at sites where the wind rose is 

well spread across wind directions or if the site is strongly influenced by sea-land or mountain-

valley winds.28,29 In any case, this assumption is also made when running a standalone 

microscale model. Therefore, the use of this methodology does not present additional 

assumptions with respect to the normal application of the microscale model in wind resource 

assessment. It is expected that by downscaling the obtained mesoscale fields, the wind flow 

solution will be better for wind directions strongly influenced by mesoscale circulations (Figure 

2.11). 

 

 
Figure 2.11. Expected application of different microscale modelling approaches. The dots correspond to 
onsite measurements and the lines to the prediction of the model. 

 

Further technical details on the averaging procedure are provided in Papers I and III. The 

differences between the procedures used in those papers are presented here. In Paper I, the 

mesoscale fields of � are directly averaged, while in Paper III the values of �� and  G� =  � −
�� are separately averaged instead. Then, the average field of � is calculated as �̅ =  G����� + �����. 

This second approach better captures the average atmospheric stability condition (contained in 

G�) as it is not distorted by its absolute value. On the other hand, the mesoscale fields in Paper 

I are classified by their atmospheric stability in addition the wind direction. Due to the small 

gain in model performance compared to the extra use of computational resources, as well as 
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difficulties in classifying onsite measurements by atmospheric stability, the method was not 

pursued in Paper III. A final difference is that in Paper III an additional coupling approach was 

introduced, which consists in filtering the � mesoscale fields. In the same paper this approach 

is compared with coupled models without temperature filtering and without using the 

temperature fields at all. 

 

2.3.1.2 Two-level SOM clustering  

The second methodology proposed in this PhD to obtain representative mesoscale fields is 

based on a self-organizing map (SOM).30 A SOM is a grid of interconnected nodes that are 

positioned in the space of the input data (Figure 2.12). The positions of the SOM nodes are 

iteratively modified in such a manner that the nodes are transferred closer to locations with a 

high density of input data points and further away from data-sparse areas (Figure 2.12c). This 

procedure is called training and it is repeated up to a prescribed number of iterations. Once the 

SOM is trained, it is possible to visualize the clustering structures of the data by plotting the 

distance between each node and its neighbors (Figure 2.12d).  

 

 
Figure 2.12. Example of the SOM training procedure with a dataset with 20 nodes and three clusters. 
Darker (lighter) shading in the SOM before (b) and after (d) training represents longer (shorter) 
distances between the node and its neighbors. Reproduced from Paper II. 

 

As commented in the literature survey conducted in Paper II, most of the studies in meteorology 

that use SOM, directly use the nodes as a clustering solution. Nevertheless, such an approach 

presents certain problems. First of all, there is a practical constraint regarding the possible 

number of obtainable clusters, as the SOM can only be composed of a non-prime number of 

nodes. Additionally, neighboring nodes portray similar characteristics and therefore redundant 

patterns would be obtained. A more conceptual problem of this approach, as pointed out by 

Wu & Chow (2004),31 is that the purpose of a SOM is to extract and visually display the 

structure of the input data, while clustering is to partition the input data into groups. The 
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previously mentioned studies that directly use the nodes to cluster seem to mix these two 

objectives. 

 

An important feature of SOMs is that the map preserves topological ordering. In other words, 

the nodes that are located close to each other share certain traits. For the context of this study, 

this implies that neighboring nodes share similar wind speed, wind shear, temperature shear 

and/or other characteristics (see for example Figure 2.13). This feature facilitates the 

characterization and understanding of the different conditions that occur in a site. By plotting 

different variables, it is possible to find relations (typically non-linear) among the different 

variables. For example, in Figure 2.13 it is possible to visually relate the speed and direction 

of the wind with the atmospheric stability conditions at the site.  

 

 
Figure 2.13. Representative wind speed (left) and ∆J (right) values of the nodes of a SOM of dimensions 
25 × 25 used to classify WRF-simulated 3-D mesoscale fields at CK. The wind direction in the left panel is 
indicated by black arrows. The SOM partition is indicated by black lines. Adapted from Paper IV. 

 

In order to use the SOM for clustering purposes, a two-level SOM clustering (SOM2L)32 

approach is utilized. The SOM2L consists of partitioning (i.e. clustering) the nodes of the SOM 

(as illustrated in Figure 2.13). Several clustering techniques can be used for this stage, like k-

means or hierarchical clustering. The disadvantage of using these techniques is that the total 

number of clusters has to be prescribed a priori. Therefore, in this study it has been opted 

instead for a methodology that exploits the topological ordering of the SOM. Specifically, the 

cluster centers are defined as the local minima of the distance between each node and its 

neighbors (Figure 2.14).33 The remainder of the SOM nodes are then assigned to a cluster 

following Ward’s criterion.34 
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Figure 2.14. Partition of the SOM based on the local minima of KL . The local minima are indicated by the 
red dots and the partitions by the red lines. KL  corresponds to the average distance between a node and its 
neighbors. Reproduced from Paper IV. 

 

As a result, the application of the SOM2L methodology to the mesoscale simulations provides 

a set of mesoscale patterns. If the input data correspond to 3-D mesoscale fields (as in Paper 

IV), these patterns represent a variety of the predominant wind conditions at the site. In contrast 

to the method that uses the directional averages explained in section 2.3.1.1, the patterns 

obtained with the SOM2L can yield several wind conditions for the same wind direction 

(Figure 2.15). Moreover, very infrequent wind directions will not be found in the extracted 

patterns. Further technical details of the parameters used in the SOM2L are provided in Paper 

II and IV. Detailed justification of the selection of these parameters are provided in Paper II 

and the references therein. As argued by Vesanto and Sulkava (2002),33 the distance map “may 

have some local minima which are a product of random variations in the data”. In order to 

prevent this, in Paper IV a smoothening function is applied to the distance map before 

computing the local minima. 
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Figure 2.15. Conceptual comparison between the directional average coupling of section 2.3.1.1 (left) and 
the SOML2 coupling (right) for one directional sector. The dots correspond to onsite measurements and 
the lines to the prediction of the model. 

 

2.3.2 Transferring of mesoscale fields to the microscale model 

Once representative mesoscale fields are obtained, they are transferred into the microscale 

model as boundary conditions. There are six variables that are prescribed as boundary 

conditions: �/, �', ��, �, # and $. The values of �/, �', �� and � are computed by interpolating 

the mesoscale values onto the microscale grid. Vertical interpolations are first conducted 

utilizing the cubic spline method. Then, horizontal bilinear interpolations are conducted. If the 

interpolations are conducted in the inverse order (horizontal first, vertical second) the 

interpolated values might have some discontinuities, especially close to the ground.  

 

The lowest vertical level of the WRF simulations results are typically located at approximately 

10 m above the ground. It is very common that a few grid points of the microscale model are 

located bellow this height. Therefore, the WRF values of �/, �' and � are extrapolated using 

Monin-Obukhov similarity theory equations8 with the two lowest vertical levels of the WRF 

domain, located at ⁓10 m and ⁓30 m. To compute the necessary parameters like the Monin-

Obukhov length or the friction velocity, the gradient method35 is utilized. In few occasions, this 

method is not applicable because of very low winds speeds and/or very high temperature 

gradients.36 In these cases, the values are obtained from the average of the surrounding grid 

points. The values of vertical wind speed are simple prescribed as �� = 0. 
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The values of # and $ are computed using the analytical formulas derived by Han et al. (2000).37 

These formulas are also based in the Monin-Obukhov similarity theory. Most of the parameters 

required to apply these formulas are the same as the ones utilized in the extrapolations. In 

addition, the planetary boundary layer (PBL) height values transferred from the mesoscale are 

utilized. These values are obtained by horizontally interpolating the PBL height from the 

mesoscale simulations.  

 

Further technical details of the interpolation and extrapolation procedures, as well as on the 

computation of # and $ are provided in Paper I. In Papers III and IV, the methods to compute 

the values are very similar. The only difference is that in Paper I the � values are interpolated 

with respect to the height above ground level (a.g.l.), while in Papers III and IV they are 

interpolated with respect to the height above sea level (a.s.l.). As shown in Figure 2.16 the 

approach used to interpolate � has an important impact in its vertical structure. It is important 

to preserve the PBL height transferred from the mesoscale (implicitly in the contained in the � 

field) since the top of the PBL blocks the vertical motion of the flow. The site used in Paper I 

(Honkajoki) is very flat and therefore the � field is barely distorted. In Paper III, most of the 

sites have a more complex terrain than Honkajoki, which made necessary to introduce this 

improvement in the interpolation procedure. 
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Figure 2.16. Comparison of vertical planes of potential temperature for different interpolation 
procedures. 

 

2.4 Validation metric 
As mentioned in Section 1.1, the purpose of the wind flow simulations in wind resource 

assessment is to extrapolate the wind measurements. These extrapolations consist in obtaining 

the wind speed at a target location M (typically a wind turbine) by multiplying the measured 

wind speed at a reference point 6 by a factor (Figure 2.17b). This factor is called the speed-up 

ratio <�, and it is calculated as: 

<�(6, M) = ���N (15) 

 

where �N and �� are the modeled wind speeds at points 6 and M (Figure 2.17a). Therefore, the 

performance of a model is quantitatively evaluated by comparing the modeled <� with the 

measured one, between selected pairs of measurements. Specifically, the mean values of <� 

and wind speeds are utilized to calculate the so-called crosscheck prediction O
P as: 

O
P(6, M) = <�(6, M)������������ �N���� − ������������  
(16) 
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It is possible to calculate one O
P per pair of measurement points. The specific error metrics 

utilized in Papers III and IV are based on the O
P values. These metrics were utilized in these 

research articles to facilitate the discussion of extrapolation errors when several reference and 

target points are evaluated simultaneously. For further technical details, the reader is referred 

to those articles. 

 

 

 
Figure 2.17. Example of the calculation of the speed-up ratio (a) and measurement extrapolation (b). 
Adapted from Paper I. 

 

 



 

3Summary of main results 
 

In this chapter, the main results of this PhD thesis are presented. The findings can be ordered 

in three categories: (i) capabilities of the SOM2L classification, (ii) capabilities of coupled 

simulations and (iii) validation results of the meso-microscale coupling methodologies. 

Findings (i) focuses only in the strengths of the proposed classification, independent of the 

application. Findings (ii) and (iii) are related qualitatively and quantitatively results to the 

simulations of the coupled models.  

 

3.1 Capabilities of the SOM2L classification 
The SOM2L methodology proposed in Paper II provides in a fully automated manner the 

predominant patterns in the input data. In Paper II, the methodology was capable of finding 

wind speed profiles of various shapes. Some of these shapes correspond to well-known profiles, 

such as high shear, low shear or low-level jets. It was found that some of the obtained profiles 

had similar shape as the ones manually obtained in a observational study by Peña et al. (2014)38, 

as shown in Figure 3.1. It is clear that the use of the SOM2L approach can be a better alternative 

to a more arduous manual approach. 

 

 
Figure 3.1. Comparison of a few wind speed vertical profiles reported by Peña et al. (2014)38 against the 
SOM2L-based results. Reproduced from Paper II. 
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In Paper IV, the SOM2L is applied to the 3-D mesoscale fields simulated for the CK site. The 

SOM2L clearly provides distinctive patterns, regarding wind speed, wind direction and 

atmospheric stability. The methodology allows for an easy characterization of these patters. In 

particular for this site, relationships regarding wind direction, atmospheric stability, wind 

shear, time of the day and season were effortlessly explored due to the ordering provided by 

the SOM. Furthermore, a total number of 14 patterns were found, which is adequate for the 

computational resources typically available in the industry for downscaling purposes. 

 

3.2 Capabilities of coupled simulations to downscale mesoscale patterns 
Mesoscale models can reproduce some wind patterns that are not possible to obtain when 

utilizing a standalone microscale model. For some of the representative mesoscale fields, the 

coupled models are capable to downscale such mesoscale patterns. As shown in Figure 3.2, the 

overall mesoscale pattern is sustained in the microscale domain. However, the wind flow is 

modified by the microscale model by including the influence of finer terrain features in the 

local wind flow. As discussed in Paper III, the microscale model includes the influence of the 

mesoscale model in a better way in complex terrain, when the thermal effects are considered. 

 

 
Figure 3.2. Horizontal planes of wind speed @ ⁓100 m from sector 150° at the CM site for mesoscale (left) 
and coupled (right) simulations. The black lines in the map correspond to the contour lines of terrain 
elevation for every 50 m. Adapted from Paper III. 
 

Some wind patterns that are of interest for the wind energy community, namely strong wind 

turning and low-level jets, were reproduced by the WRF simulations. The coupled simulations 

are able to downscale these patterns into the microscale. As reported in Paper III, these patterns 

are very different from the ones obtained when using analytical profiles. In the case of the wind 

turning (Figure 3.3), the standalone microscale simulation does not present a turning at all. The 

same is true in the case of the low-level jets (Figure 3.4), as analytical formulations follow 
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logarithmic shapes. For both patterns it was found that the use of atmospheric stability is 

necessary to maintain the wind turning and the low-level jet shape. 

 

 

 
Figure 3.3. Horizontal planes of wind speed @ ⁓100 m from sector 300° at the CK site for mesoscale (left) 
and coupled (right) simulations. The black arrows indicate the direction of the wind. The black lines in 
the map correspond to the contour lines of terrain elevation for every 50 m. Adapted from Paper III. 
 

 
Figure 3.4. Vertical planes of wind speed from sector 0° at the CK site for mesoscale (left) and coupled 
(right) simulations. The black line corresponds to the digital terrain height. Adapted from Paper III. 
 

3.3 Validation results 
In this section the meso-microscale coupling results are evaluated. As mentioned in Section 

1.1, the wind flow models are utilized to extrapolate onsite measurements. Therefore, the 

performance of the models is compared with respect to their capability to accurately do such 

extrapolations. The comparisons are conducted by using the crosscheck prediction errors 

explained in Section 2.4. This error metric is obtained by extrapolating a measurement to the 

location of another measurement and comparing the prediction against the observed values. 
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Further technical details of the meso-microscale coupling results using the mesoscale fields 

obtained from the directional average and from the SOM2L, can be found in the Papers III and 

IV, respectively. 

 

3.3.1 Meso-microscale coupling using directional average 

In Figure 3.5, the coupled models that utilize the directionally averaged mesoscale fields are 

compared against the mesoscale and the standalone microscale simulations. For vertical 

extrapolations, the coupled simulations have for most sectors smaller errors than the mesoscale 

or standalone simulations. Improvements of the coupled results respect to the mesoscale 

results, are mainly due to a better accounting of the influence of the finer features in the terrain. 

This is more evidently when comparing the results of the CM site, which is very complex. 

Moreover, in CA, where the terrain is very flat, the differences are rather small and actually 

mesoscale simulations perform slightly better as the wind profile is mostly influenced by the 

weather conditions rather than the terrain. Differences between coupled and standalone 

simulations are in general lower, as the latter uses analytical profiles whose parameters were 

adapted to the observed profiles. Nevertheless, there are important differences in the 

performance at some sectors. The source of these differences is the limitation of the analytical 

boundary conditions to reproduce non-analytical shapes. For example, very stable conditions 

present at CA were, as expected, associated with very high wind shear. This shear is well 

reproduced in the standalone simulation close to the ground. Nevertheless, it fails in 

reproducing very fast vertical changes of shear that are observed at the site as they do not follow 

an analytical shape. In the case of the CL site, very low shear profiles are observed due to the 

presence of wide low-level jets that are not possible to capture in the standalone simulations. 
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Figure 3.5. Comparison of crosscheck prediction errors between the mesoscale and coupled simulations 
(top panels), and standalone and coupled simulations (bottom panels). Adapted from Paper III. 
 

For horizontal extrapolations in complex terrain (e.g. CM site), the coupled model performs 

better than the mesoscale and standalone simulations. This indicates that to properly model 

such sites it is not only sufficient to utilize models with finer resolution, but also with the 

adequate stability conditions. In the case of the very flat and very stable sites (e.g. CA site), it 

is better not to couple the potential temperature and run with neutral stratification instead. As 

discussed in Paper III, the inclusion of the atmospheric stability under these conditions results 

in too low turbulence in the microscale model to transfer the momentum downwards. At the 

remainder of the studied sites, the relative performance of the mesoscale and coupled 

simulations are very dependent on the wind direction. If the wind is perturbed by even smalls 

obstacles like small valleys, rivers, ridges or small hills, the coupled simulations tend to 

perform better. It must be noted that even when the mesoscale and coupled errors are similar, 

the latter have much finer features in the wind flow due to their higher resolution. Similar as 

with the vertical extrapolation, the coupled models perform better than the standalone 

simulation for most sectors, independent of the terrain or stability conditions. Depending on 

the sector, these differences are product of improver stability conditions in the standalone 

model (due to limited information) or due to the influence of mesoscale patterns that are 

significantly different to the analytical formulations. 
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3.3.2 Meso-microscale coupling using SOM2L patterns 

Similar to the results in Section 3.3.1, most of the extracted patterns by the SOM2L are 

significantly modified by the microscale model. The main factors for these modifications are 

the finer terrain features included in the microscale model as well as the propagation of the 

wind conditions at the inlets into the domain. For most patterns with stable atmospheric 

conditions (patterns 1, 2, 4 and 8; see Figure 3.6), the microscale model reduces the error 

significantly, ranging from 4 to 15 % in error reduction (Figure 3.7). For most patterns with 

unstable atmospheric conditions (patterns 5, 9, 11 and 13) the microscale simulation performs 

worse than the mesoscale one, with an error increase between 3 to 7 %. A similar trend is 

observed for the neutral simulations, where the most stably stratified (pattern 12) has an error 

reduction of 2% and the most unstably stratified (patterns 6 and 10) have an error increase of 

7% and 4% after downscaling, respectively. Overall, the error is reduced by 2.7% when using 

the downscaling procedure. 

 

The mesoscale and microscale simulations of the SOM2L patterns produce very similar vertical 

profiles of wind speed. In addition, for most patterns both simulations reproduce well the 

measured winds speed profiles. For patterns with unstable atmospheric conditions (patterns 5, 

9, 11, 13 and 14), the wind speeds profiles are particularly well reproduced. For patterns 4, 7 

and 8, none of the models is able to reproduce the negative shear observed at the measurements. 

These deviations are due to the inability of the WRF model to reproduce the height of the jet 

for these patterns, a defect that is transferred to the microscale model. In the case of the pattern 

3, the jet height is well reproduced and therefore is also correct in the microscale. 
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Figure 3.6. Extracted (top row) and downscaled (bottom row) patterns 1, 2, 4 and 8. The wind direction is 
indicated by the black arrows. Adapted from Paper IV. 
 

 
Figure 3.7. Left panel: Comparison of the crosscheck prediction errors between the mesoscale and 
downscaled patterns. The arrow and color of each circle indicate the wind direction and the atmospheric 
stability condition of the pattern, respectively. Right panel: Crosscheck prediction error reduction after 
downscaling the patterns. Reproduced from Paper IV. 
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4Conclusions and further work  
 

Two methodologies have been proposed for the coupling of mesoscale simulations with steady-

state CFD microscale model. The first methodology utilizes the average values of the variables 

of interest per directional sector. Such a methodology is an easy way to produce more realistic 

boundary conditions for the microscale model. However, in some cases the averaged values of 

different weather conditions do not provide a good representation of the mean state of the 

atmosphere. The second proposed methodology derives predominant weather patterns utilizing 

a two-level self-organizing map clustering technique. This clustering technique fully automates 

the obtention of the mesoscale patterns and splits them according to their characteristics. 

Compared to the previous method, the loss of information is much lower as the averaging of 

values is conducted over similar mesoscale fields. This methodology is also able to deal with 

sites with different weather conditions despite of having similar wind directions.  

 

Further remarks of the research conducted in this thesis are provided in the following 

paragraphs. In addition, recommendations for further research are provided for each topic. 

 

4.1 Coupled models for wind resource assessment 
Coupled simulations reproduce better the observed profiles compared to standalone 

simulations, if the shape of the profiles does not follow analytical formulations. Otherwise, the 

difference between the models is rather low. However, vertical validations in this study (and 

in general) are rarely conducted for heights higher than 150 m. For these heights, the coupled 

simulations present more realistic wind shear compared to the standalone simulations as the 

analytical formations (which are based on Monin-Obukhov similarity theory) are usually not 

valid anymore. This is important to consider in wind resource assessment as wind turbines get 

higher and higher. Coupled simulations tend to better reproduce the profiles at higher heights 

because of the information about the wind shear provided by the mesoscale model. However, 

the coupled models also perform better than the mesoscale model in vertical extrapolations 

because the latter are not able to properly take into account the influence of the surface on the 

lower part of the profiles. 

 

For horizontal extrapolations, the use of coupled models performs better compared to 

mesoscale or standalone microscale models. In the case mesoscale models, the coupled models 
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are simple more beneficial due to their higher resolution. In the case of microscale simulations, 

the coupled models have the advantage of a proper stability effects without the need of 

tweaking the stability conditions. Furthermore, make use of spatial distribution of the 

atmospheric stability in the site. This appears to be as important as using a finer resolution. 

which is of big importance for a proper modelling in complex terrain. Even if mesoscale 

simulations perform similar than the coupled model in terms of errors (typically at relatively 

flat terrain), the coupled model is able to include finer features in the wind flow, like rivers or 

forest clearings. This makes the coupled approach more advantageous for the micro-siting of 

the wind turbines.  

 

For very stable conditions at flat sites, the coupled model is not capable to perform well in both 

vertical and horizontal extrapolations, simultaneously. Vertical extrapolations are better than 

any of the other models when thermal effects are considered. For horizontal extrapolations, the 

mesoscale and coupled models where similar, if in the latter neutral stratification is considered. 

When stable stratification is used instead, there is not sufficient turbulence in the microscale 

model to transfer momentum downwards. For very stable conditions, the wind has a quasi-

laminar behavior, while turbulence models like the k-ε standard model are designed for 

turbulent flow. In order to enable the use of steady-state CFD models for meso-microscale 

coupling, it is recommended to further research modelling alternatives or modifications to 

RANS. This may include the addition of forcing terms based on observational data (nudging). 

 

The validation study carried out through this work can be extended to other problems in wind 

resource assessment, like assessing the sensitivity of the energy yield and/or wind farm layout 

due to the use of mesoscale, standalone or coupled approaches. Moreover, it is recommended 

to further investigate and validate the turbulence intensity simulated by these set-ups. The 

turbulence intensity is key for site suitability studies of the wind turbines, which is important 

for wind energy project developers as well as for wind turbine manufacturers.  

 

4.2 Two-level self-organizing map clustering methodology 
The two-level self-organizing map technique proposed in this PhD thesis can in an objective 

manner extract the predominant wind patterns from a dataset. The methodology does not 

require any a priori prescription of cluster size and prevents the use of excessively large number 

of clusters by reducing redundant classes. The self-organizing map allows for the analysis of 
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how the extracted patterns evolve with respect to time and space, and therefore associate them 

with underlying atmospheric phenomena or processes. The SOM2L has a lot of potential for 

different applications in wind energy. Below, some possible applications are listed:  

 
i. With use concepts from the field of symbolic dynamics, it would be possible to study 

the evolution of certain wind patterns. Predominant sequences of patterns can be then 
be identified to be downscaled 
 

ii. Classification of onsite measurements to explore the different conditions monitored by 
the instruments 
 

iii. The patterns extracted from measured or simulated datasets can be used as states in 
Markov chains (or similar) for data reconstruction or for the generation of a typical year 
 

iv. Wind energy forecasting frameworks  
 
The applications listed above are only tentative and they require further research to be properly 

implemented. 

 

4.3 Potential of coupled models using SOM2L 
For the studied site in Paper IV, the meso-microscale coupling framework utilizing SOM2L 

improves the wind estimations compared with the use of the mesoscale model. Nevertheless, 

the microscale model is not able to properly downscale some of the obtained wind conditions. 

The reason is that the microscale model is only able to provide information from the inlets into 

the domain. Therefore, any pattern that is located within the domain and not “seen” at the inlets 

is not kept in the microscale simulation. In general, the weather conditions at the studied site 

were rather extreme (from very stable to very unstable stratification). Further validation of the 

methodology is required for simpler weather conditions as well as for more complex terrain. 

 

Assuming that it is possible to properly downscale the extracted patterns by the SOM2L, the 

proposed framework has a lot of potential for wind turbine wake simulations. In order to resolve 

the turbine wake in a steady-state CFD model, different wind speeds for the same wind 

direction must be simulated. This increase the number of total simulations dramatically, even 

more if different atmospheric stability classes must be taken into account. With the SOM2L, 

infrequent combinations can be skipped, and only simulate the predominant ones.  
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