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Abstract 

Airborne LiDAR (Light Detection and Ranging) has become an important remote sensing 

tool for forest inventory. In the past two decades, this technology has seen a rapid status 

transition from experimental to operational, mainly driven by the cost saving – precision 

increasing duality and paralleled by accelerating technological availability. For large-area 

resource estimation, airborne laser scanning (ALS) has been proposed as a sampling tool.  

Two-stage model assisted (MA) and two-phase hybrid (HY) estimators have been proposed 

for this type of survey. This thesis investigated biomass stocks and biomass change 

estimation using repeated ALS strip sampling survey and national forest inventory field data. 

Emphasis was on simulative methods to assess the properties of the estimators.  

Initially, a method to perform spatially consistent nearest neighbor imputations of forest data 

was developed (paper I). The method was used to generate spatially explicit forest 

populations with realistic spatial structure under a prescribed semivariogram model. In 

addition, the population distribution was controlled by a prescribed histogram. The method 

was tested in a small forest area (Våler municipality, Norway) using wall-to-wall ALS data, 

Landsat 7 imagery, and a dense network of field plots that facilitated semivariogram analysis.   

In paper II, MA and HY post-stratified estimators were used to estimate above ground 

biomass (AGB) stock and change over a period of five years in the southern portion of 

Hedmark County, Norway. The reference points in time were 2006 and 2011. A nested post-

stratification scheme was trialed, combining land cover classes with change classes. 

Parametric bootstrapping was demonstrated as a simulative alternative to estimate the model 

uncertainty component in the hybrid estimator.  

Finally, in paper III a practical methodology to create realistic artificial forest populations for 

two points in time was proposed, using multiple sources of empirical data and prescribed 

parameters. To this end, the method of paper I was combined with a copula approach to 

model multivariate relationships, preserving the integrity of the multivariate relationship both 

horizontally (ALS-AGB) and longitudinally between the two points in time. The method 

ensured that different types of change were proportionally represented in the artificial 

population. Sampling simulations were performed on a surrogate population tailored to the 

southern portion of Hedmark County. The simulations closely followed the actual Hedmark 

survey rather than the theoretical multi-stage sampling design. It was shown that indirect 

change estimation is prone to large bias. In paper II, HY was found to be a very precise 
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estimator for change. The simulations confirmed its precision, but exposed biases of up to 

75% which depreciated the benefits of using ALS in terms of accuracy in most strata. In the 

absence of a geographical trend in AGB and AGB change, the systematic sampling design 

had a minimal effect on the sampling variance, and the variance estimators were not always 

conservative.  
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1. Introduction 

Forests are an indispensable resource. From an anthropocentric perspective, the roles of 

forests range from our basic subsistence to increasing the comfort of our daily lives. For this 

reason, decision makers starting from forest managers to government agencies and 

international regulatory bodies are committed to sustainability. Having been identified as a 

major carbon sink (Pan et al. 2011), the forests could play a key role in climate change 

mitigation given the international commitment to reduce greenhouse gasses emissions (IPCC 

2014). Making sensible decisions rely on timely and accurate information about the forests at 

different spatial scales. Most developed countries have well-established national forest 

inventories (NFIs), which typically consist in countrywide field surveys (Tomppo et al. 

2010). Field based estimates are commonly used as information for policy makers, or 

reporting under international commitments (e.g. Kyoto Protocol). While the national forest 

inventory surveys were designed to be adequately accurate for countrywide estimates, the 

relatively small sample size at the level of smaller regions, may not meet precision 

requirements. Increasing the sampling intensity is not practical, due to the costs. In 

developing countries, the cost of intensive field based inventory may be temporarily 

worthwhile but this approach could be prevented by poor infrastructure and inaccessibility. 

These impediments apply to remote regions and inaccessible areas of developed countries as 

well. The feasible alternative in these situations is to support the surveys with remotely 

sensed data. Remote sensing may reduce the cost of forest surveys and increase the precision 

of the estimated parameters. Tomppo et al. (2008) give a review of how NFIs are enhanced 

with remotely sensed data.  

1.1. LiDAR assisted forest surveys 

Among the remote sensing technologies, lasers have earned a special prestige in forestry. In 

the past few decades we have learned their excellent ability to characterize the vertical 

structure of the forests, and thus carry abundant information on numerical parameters such as 

above ground biomass, mean canopy height, or standing wood volume, but also qualitative 

characterization of ecological parameters (Coops et al. 2016; Lone et al. 2014). First lasers 

were tested in the early 60s and like most of the technological exploration in the cold war era, 

work advanced in parallel on both sides of the iron curtain.  Nelson (2013) gives an insightful 

historical account of laser development from the early days when the vegetation laser returns 

were seen as noise that ought to be removed rather than useful information to the first 
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successful experiments using laser profiling to predict timber volume (Maclean and Krabill 

1986) or biomass (Nelson et al. 1988).  

Area based methods with airborne laser scanning (ALS) surveys have seen the most 

operational success (Koch 2010; Næsset et al. 2004; Næsset 2014; Zolkos et al. 2013). The 

general methodology was initially proposed by Næsset (1997). It entails tessellation of the 

area of interest into units that typically match the size of the field plots. For every unit, a set 

of ALS metrics is computed from the georeferenced point cloud of laser echoes. 

Georeferenced field plots are the basis of determining the relationship between ALS metrics 

and the variable of interest, a relationship that is subsequently generalized over the area of 

interest using parametric and nonparametric methods (Gagliasso et al. 2014).  

The acquisition cost of ALS remains relatively high. With increased size of areas of interest, 

the cost efficiency of wall-to-wall ALS surveys is hampered by high acquisition costs relative 

to the gain in precision (Ene et al. 2016a). ALS sampling has been suggested as a cost 

effective alternative (Næsset 2005; Wulder et al. 2012). Given the airborne platform of 

acquisition, the natural way to collect ALS samples is along narrow corridors. One way to 

carry out partial acquisition of ALS is by strip sampling. This approach has been trialed in 

several different large-area surveys: Hedmark County, Norway – 27390 km2 (Gobakken et al. 

2012; Næsset et al. 2013b), western lowlands of the Kenai peninsula – 9400 km2 and upper 

Tanana valley – 2012 km2 in Alaska, USA (Andersen et al. 2009; Andersen et al. 2011), and 

Liwale District, Tanzania - 15867 km2 (Ene et al. 2016b). In Maltamo et al. (2016) ALS data 

was acquired along a 1500 km long north-south transect spanning most of Norway. In the 

context of laser sampling, laser profiling has also seen renewed interest (Nelson et al. 2012). 

The parameter of interest in all of these studies was forest biomass, or more precisely above 

ground biomass. Information about the stocks of forest biomass is important for at least two 

reasons. First, forest biomass is a robust proxy for carbon (i.e. about 50% content), and 

second for its energetic value (e.g. Andersen et al. (2011)).  Repeated acquisition of ALS 

samples over large areas opened the opportunity to investigate the change in forest biomass 

(Ene et al. 2017; Strîmbu et al. 2017).    

1.2. Estimation and uncertainty 

The Kyoto Protocol signatories have committed to report the carbon stock changes yearly. 

Unbiasedness, transparency and consistency are some of the so called good practices that 

should guide the process (IPCC 2006). Uncertainty is of central concern (Frey et al. 2006) 
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and should be approached rigorously under sound statistical inference (Gregoire et al. 2016a; 

Magnussen et al. 2014).  

Design-based (DB) and model-based (MB) are two inferential paradigms that assert different 

sources of estimation uncertainty. In DB inference, uncertainty originates in the sampling 

variability, whereas in MB inference, the uncertainty in the model parameters induce 

uncertainty in the estimates. DB inference relies on the properties of a probability sample, 

therefore a probability sample is essential, whereas for MB is not. In MB, sampling is 

intended for estimating the parameters of the so called superpopulation model. In this case 

nonprobability sampling such as purposely sampling is just as valid (Royall 1970). DB 

inference extrapolates properties of a sample that is random to the entire population that is 

fixed. MB views the population as random, or better said as a random realization of the 

superpopulation described by a model whose parameters are fixed. For a revelatory 

discussion on the differences between DB and MB inference see Gregoire (1998).  

Estimation frameworks are constructed on the theoretical foundation provided by the two 

inferential philosophies. For ALS sampling surveys, two such frameworks have been 

advanced: a two-stage model assisted framework (MA) (Gregoire et al. 2011) and a two-

phase hybrid framework (HY) (Ståhl et al. 2011). The MA framework lays exclusively in the 

DB inference. Both stages of sampling are probabilistic, and are subject to sampling error. In 

two-stage sampling, the population is partitioned into primary sampling units (PSU), and 

each PSU consists in a set of secondary sampling units (SSU). The first stage of sampling 

selects a sample of PSUs, and the second stage subsamples SSU within each PSU selected in 

the first stage. The ALS strips correspond to PSUs and the field plots to SSUs. Since the two 

stages of sampling are independent, the variance estimated within the MA framework adds 

two components: the variance due to the first stage sampling and variance due to the second 

stage sampling. Both components depend on the sampling design in their respective stage, 

being a consequence of how much the estimated parameter of interest (i.e. mean AGB) varies 

across all the possible first stage samples, respectively across all the possible second stage 

samples. At the basis of the MA framework is the so-called difference estimator (Särndal et 

al. 1992, p. 222) that works by adjusting a rough but informed prediction across population 

elements by the differences observed in probability sample. In the case of two-stage MA 

estimation, synthetic predictions are made at the level of the first stage sample, where 

auxiliary data are available, followed by adjustments within each PSU based on the 

subsampled SSUs. The HY framework combines the properties of the probabilistic sample in 
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the first phase, with the properties of the model in the second phase. Just as with the MA 

framework the estimate variance adds two independent components, the first being a 

consequence of the variation between all possible samples of auxiliary data, and the second a 

consequence of uncertainty in the model that links the auxiliary variables (e.g. ALS) with the 

variable of interest (AGB). Here model uncertainty refers strictly to uncertainty in model 

parameters since the residual error can be ignored when estimating parameters of a large 

population (Ståhl et al. 2011). The estimation is entirely synthetic and does not involve field 

sampling (except when the model parameters are estimated, a process typically assumed to be 

external). With exclusive reliance on the model, HY estimation (and MB in general) is under 

an inherent risk of estimation bias.  Ståhl et al. (2016) illustrates the roles of models in 

different estimation frameworks including hybrid estimation. Since the initial publication of 

the two estimation frameworks a certain amount of experience has been gained with 

inference following ALS sampling. Several new estimators have been developed, in 

particular within the MA framework. Ringvall et al. (2016) used a ratio estimator in the first 

stage of sampling, with the ALS strip size as auxiliary, and added covariance terms between 

estimates from different post-strata (similar to the HY estimator proposed by Ståhl et al. 

(2011)). Gregoire et al. (2016b) improved the second stage variance estimation, by 

conditioning on the sample size in the second stage of sampling. This also introduces 

covariance terms in post-stratified estimation, as for a fixed second stage sample size the 

number of field plots falling within a post-stratum is inversely correlated with the number of 

plots that fall within the other post-strata. Saarela et al. (2017) introduced a new variance 

estimator that uses the auxiliary information to a greater extent and showed that it was more 

stable that a traditional Horvitz-Thompson MA estimator (i.e., the variance of the estimated 

variances was smaller). 

Change following repeated ALS surveys was studied in several smaller scale surveys with 

repeated wall-to-wall ALS acquisition (Bollandsås et al. 2013; Magnussen et al. 2014; 

Magnussen et al. 2015; McRoberts et al. 2015b; Næsset et al. 2013a; Økseter et al. 2015; 

Skowronski et al. 2014). These studies show two approaches to change estimation. Change 

can be estimated directly with a single variable of interest representing the difference in AGB 

between two points in time, or indirectly by estimating the AGB stock separately for each 

time instance, and subsequently taking the difference of the two estimates. McRoberts et al. 

(2015b) explores several ways to model change. Indirect change estimation has the advantage 

of enabling reporting AGB change that is consistent with individual stock values (i.e. single-
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time estimates). The same estimation frameworks described above may be used for change 

estimation following repeated ALS strip sampling. 

1.3. Simulations 

Assessing the statistical properties of these estimators, among which those related to 

estimation uncertainty, are of prime concern. This however proves to be an intricate task, as 

multiple deviations from the theoretical assumptions upon which the estimators are 

constructed amount to a complexity that is not easily captured analytically. A feasible 

alternative is to perform Monte Carlo simulations, by exploring the space of all possible 

estimation inputs empirically. The credibility of a simulative approach stands in the quality of 

the artificial simulation environment and how accurately the domain of possible inputs is 

defined. In assessing estimators, the simulation environment is typically an artificial 

population, and the input domain is dictated by a sampling design. The level of detail in the 

artificial population must be appropriate for the objective of the simulations (i.e., the 

particular effect under investigation). For instance, simulating a simple random sampling 

strategy would not require a spatially explicit forest population.  Kangas et al. (2016) 

performed simulations on a spatially inexplicit copula population to investigate the effect of 

internal versus external models in estimation. In this case, the only important aspect of the 

artificial population was the multivariate relationship between different variables, a property 

secured by modeling the multivariate relationship with copula functions. When for instance 

the sampling design effect is under inquiry, a spatially explicit population is required. 

Grafström and Ringvall (2013) investigated the possibility to use auxiliary data to balance the 

field samples both spatially and in the auxiliary space. For this purpose, the authors 

performed sampling simulations on a small population of 846 observations coming from a 

dense field inventory. Grafström et al. (2014) further investigated the new sampling 

technique with improved simulations on an artificial surrogate of 30 000 ha area in Kuortane, 

Finland. The forest population was generated with a method pioneered in Ene et al. (2012), 

where the multivariate variable relationship was modeled with copula functions, and then a 

copula sample of observations was generalized on a wall-to-wall auxiliary using nearest 

neighbor (NN) imputations.  The technique has since been used in several forest survey 

simulations. Using this artificial population generation technique, several multi-step 

modeling techniques for model-based inference (Saarela et al. 2016), as well the prediction-

based variance estimator for MA estimation (Saarela et al. 2017), were validated. Both 

innovations were relevant for large-area forest survey. Using similar simulation methods, 
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Saarela et al. (2015) investigated the effects of sample size, model form, and model 

parameter covariance matrix estimation on the accuracy of model based estimators. The 

copula technique expands a relatively small set of observations to a population of arbitrary 

size while maintaining the integrity of the multivariate relationship between population 

variables. Furthermore, performing NN imputations preserves the general geographical trend 

in the population as defined by the wall-to-wall covariates. An aspect that has not been 

addressed is the short-range autocorrelation of proximal population units, which can further 

expose the design effect of certain sampling strategies. In addition, methods to create realistic 

change populations are needed to assess MA and HY estimators of change. In general, more 

experience with large-scale change estimation is needed as a prerequisite to devise robust 

estimation strategies to be used operationally.  

1.4. Research objectives 

The broad objective of this thesis was to investigate large-area forest biomass stock and 

change estimation supported by ALS sampling. To this end, assessing the performance of 

MA and HY estimators was an important goal.  A particular objective was to develop 

simulation methodologies necessary in assessing complex forest surveys.  

The thesis comprise three scientific papers, with the following individual objectives: 

Paper I: Spatially consistent imputations of forest data under a semivariogram model 

The objective was to develop a method to perform NN imputations of spatial data that 

conform to a prescribed semivariogram model, as well other prescribed distributional 

properties (e.g. mean or histogram). This was the basis of the methodology to generate 

complex change population used as support for simulations in paper III. 

Paper II: Post-stratified change estimation for large-area forest biomass using repeated ALS 

strip sampling 

The main objectives of this study was to investigate post-stratified model assisted and hybrid 

change estimation. Specific objectives were to test a nested post-stratification scheme by 

cover class and change class, and to assess parametric bootstrapping as a simulative approach 

to estimate the model uncertainty component in hybrid estimation.  

Paper III: Simulative assessment of model assisted and hybrid estimation of change using 

repeated ALS sampling 
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This study had two objectives: (i) to develop a methodology to construct spatially explicit 

change populations with prescribed properties tailored to an area of interest, and (ii) asses 

model assisted and hybrid estimators by sampling simulations.  

2. Materials 

2.1. Study areas 

The materials in this thesis were acquired from two study areas: a 852 ha forest in the 

municipality of Våler, and the southern portion of Hedmark County spanning 9758 km2 

(Figure 1). Both areas are located in southeast Norway, a region with some of the most 

productive forests in the country, and therefore subjected to intense forest management. The 

tree species composition here is typical to the boreal forests of the Nordic countries with 

relatively low diversity. Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus 

sylvestris L.) dominate the landscape. Birch (Betula pubescens Ehrh.) is the only deciduous 

with a somewhat noteworthy presence.  

 

Figure 1. Study areas location within Norway. In Våler, grey lines delineate forest stands, 

small black dots are the stand-wise inventory plots, and hollow circles are the systematic field 

survey. In Hedmark, dots indicate the locations of NFI plots and the white strips constitute 

the ALS survey. 
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2.2. Field data 

In Våler, two independent field surveys were carried out in 2010 (Table 1). A systematic 

survey, with 177 plots laid out on a 150 m × 150 m grid, and a more intense survey with 923 

plots in a subset of the forest stands (12 plots per stand on average).  The size of these plots 

varied with the forest type from 80 m2 (see Table 1 note) to 400 m2. For a more detailed 

description of Våler survey see Næsset et al. (2013a). 

In Hedmark, the field survey was provided by the Norwegian NFI (Tomter et al. 2010). The 

NFI permanent circular plots have a fixed area of 250 m2, and are laid in the nodes of a 3 km 

× 3 km grid. According to the longitudinal survey protocol, a fifth of the plots are revisited 

yearly, which results in five years inventory cycles. In our study, we used 316 plots (Table 1) 

measured once in 2005, 2006 and 2007 (during the 9th inventory cycle), and then again in 

2010, 2011 and 2012 (10th inventory cycle). 

Table 1. Field survey summary.  

Forest/cover class Area (m2) Count Mean AGB (Mg ha-1) Area (m2) Count Mean AGB (Mg ha-1) 

Hedmark 2006 2011 

Nonproductive - Nonforest 250  71 16.42 250  71 17.94 

Young  250  90 31.28 250  90 41.90 

Low productive 250  46 48.64 250  46 51.40 

Medium productive 250  63 111.81 250  63 119.94 

High productive 250  46 129.62 250  46 135.64 

Våler Systematic survey Stand survey 

Recently regenerated  80* 23 5.03 80* 178 5.79 

Young 400 42 112.32 125 244 108.75 

Mature spruce-dominated 400 62 150.11 250 437 152.17 

Mature pine-dominated 400 50 162.49 250 64 121.32 

Note: * cluster of 4 subplots, 20 m2 each 

2.3. Remotely sensed data 

Satellite imagery and ALS data were used throughout the thesis. The satellite data consisted 

in freely available Landsat 5 (Hedmark) and 7 (Våler) products (Table 2). In Våler, ALS data 

were acquired for the entire area. In Hedmark, the ALS survey comprised a sample of east-

west parallel strips that covered only around 8% of the whole region. The strips were 

approximately 500 m wide and spaced 6 km apart, centered on every second row of NFI plots 

(Figure 1 b). In 2006, 53 strips were scanned across the entire county. Five years later, 

unfavorable weather conditions led to a less successful acquisition campaign with only the 
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southmost 24 strips being reflown, in the vegetative seasons of 2011 and 2012. As the focus 

here was on AGB change estimation, we were constrained to use only the 24 overlapping 

strips, and to restrict the extent of the study area accordingly.  The essential acquisition 

parameters for the ALS surveys are summarized in Table 3. In addition to the raw remotely 

sensed data we used a land cover classification derived from official AR5 land use maps 

(Bjørdal and Bjørkelo 2006), digital terrain models, and Landsat 5 images.  

Table 2. Satellite imagery  

Parameter Våler Hedmark  

Sensor Landsat 7 ETM+ Landsat 5 TM 

Resolution 30 m 30 m 

Date 3 June 2010 3-10 June 2007 

 

Table 3. ALS datasets 

Parameter Våler Hedmark 2006 Hedmark 2011 

Laser scanner Optech ALTM Gemini Optech ALTM 3100 Leica ALS70 

Pulse density (m-2) 7.3 2.8 ~5 

Date 2 July 2010 22 July 2006 – 16 September 2006 
4 August 2011 – 24 September 2011 

29 August 2012 – 30 September 2012 

Extent Wall-to-wall 53 strips 24 strips 

 

3. Methods 

3.1. Data processing  

AGB values were predicted for individual trees using field measurements and allometric 

models (Marklund 1988), then aggregated at the plot level and scaled to Mg ha-1. The satellite 

imagery were atmospherically corrected and resampled using bilinear interpolation to an 

appropriate pixel size to match the field plot area. In Våler, since the plot sizes were between 

80 m2 and 400 m2, a compromise was made with a pixel size of 15 m (225 m2), which was 

close to the average plot size. In Hedmark, the NFI plots had a standard size of 250 m2, which 

corresponded to a pixel size of 15.81 m. In Våler, the near infrared and red bands were used 

to compute the normalized difference vegetation index (NDVI). In Hedmark, the first four 

bands (red, green, blue, and near infrared) were used as support to create the forest population 

(Paper III). Here, the satellite imagery also assisted, along existing land use and topographic 

maps, in classifying the area into land cover classes. Originally, there were eight such classes 

(Gobakken et al. 2012), four of which were merged as constrained by the small number of 
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field plots. The five resulting cover classes were: (1) nonproductive-nonforest, (2) young 

forest, (3) low, (4) medium, and (5) high productive forest. Basic processing of the ALS data 

was performed by the contractors (Blom Geomatics and Terratec), followed by ground 

surface reconstruction using the Triangular Irregular Network densification algorithm 

(Axelsson 2000), point cloud normalization, and building removal. Finally, the ALS point 

clouds were tessellated, just as the satellite images, with cell sizes of 15 m (Våler) and 15.81 

m (Hedmark). In each cell, height and density variables were computed as described in 

Gobakken et al. (2012). The height percentiles are denoted by , , …, , the mean and 

maximum height by , , and the density metrics by , , …, . In Hedmark, 

the raw ALS strips were cropped out to a width of 500 m together with portions that did not 

overlap between the two acquisition times. This ensured that all ALS observations had ALS 

metric values for both points in time.  

3.2. Spatially optimized imputations 

The wall-to-wall ALS together with the dense field survey in Våler recommended this dataset 

as an excellent support to investigate the spatial autocorrelation of forest and variables from 

remotely sensed data. This dataset was used in paper I to develop the methodology to 

optimize nearest neighbor imputations with respect to spatial and distributional properties.  

The methodology builds upon Barth et al. (2009), who demonstrated the use of simulated 

annealing to perform what they called spatially consistent imputations. The authors used 

simple measures of autocorrelation that quantify the relationship of adjacent units (pixels). 

We extended the notion of spatial consistency to the more general parameters of a 

semivariogram, which quantify the spatial relationship of observations at arbitrary distances 

apart. In addition, our methodology controls the distribution of the imputed observations with 

the help of a target histogram. 

First, semivariogram models were fitted to the empirical observations at the field plot level, 

to analyze the spatial autocorrelation of an ALS metric (  – the variable most correlated 

with AGB), the NDVI derived from the satellite image, and AGB. Several experiments were 

performed (Figure 2) with variables changing roles between carrier and reference, and using 

different objective functions. First,  was imputed on the NDVI carrier (Figure 2, a). 

Having complete control of the true parameter values of the population, which was 

available wall-to-wall, we were able to compare the imputation results obtained with the new 

method to those obtained using Barth et al. (2009), and to the “ground truth”.  NDVI to AGB 
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(Figure 2, b) and  to AGB (Figure 2, c) imputation were also performed, to test real 

scenarios where AGB is the variable of interest and when the carrier is a poor, respectively 

good predictor for AGB.  

Every unit in the carrier was initially assigned k possible elements from the reference set of 

observations, based on a proximity measure in the feature space of the carrier (the k NNs). 

We used a simulated annealing algorithm to select one of the k NNs per carrier unit, assisted 

by an objective function. The objective function is a measure of distance from an arbitrary 

solution to the desired solution, in this case quantifying the difference between a given 

semivariogram and histogram and their respective targets. For the semivariogram this 

distance was calculated as: 

 

where  is the number of lag distances,  is the semivariation at distance  and 

 is the target semivariation at distance . The histogram distance was calculated as: 

 

where  is the number of histogram bins, and  and  are the number of 

observations, respectively target number of observations in the -th bin. The objective 

function was constructed by adding components corresponding to each parameter. In paper I, 

we tested different objective functions:  

 

 

 

where  corresponds to Barth et al. (2009) with targets for three variables: short range 

variance (SRV), adjacent pixel correlation, and the population mean. The SRV was defined 

as the average variance of observations in 3×3 pixel windows. The objective components of 

these parameters have only one term, e.g., .  The method was implemented in a 

Java application that allows the user to parametrize and visualize the optimization process.   
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Figure 2. Overview of the experiments in paper I.  

 

In paper III,  was used as objective function to construct the artificial population. Here 

the population was generated in two stages of imputations (Figure 3). First, the ALS 

population was generated with the support of the Landsat 5 images, then the AGB population 

on the wall-to-wall ALS carrier generated in the previous stage. The reference set for the 

ALS imputations consisted in real observations sampled from the ALS strip survey data, and 

in the second stage of imputations, the reference consisted in synthetic observations 

generated with a copula approach. 
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Figure 3. Summary chart of the artificial population in Hedmark. A more detailed chart is 

shown in Figure 1, paper III 

3.3. Models 

Two types of models were used throughout the thesis: semivariogram models and predictive 

models for AGB. For the semivariograms, exponential (paper I) and powered exponential 

(paper III) models were used: 

 

Where  is the lag distance,  is the sill,  is the range parameter, and  is the power 

parameter (in paper I, ). The semivariogram parameters were estimated directly by 

ordinary least squares fitting to empirical semivariances where possible (i.e. remotely sensed 

data, or the dense field survey in Våler), or indirectly, by using the sample variance as proxy 

for the sill (Barnes 1991) and borrowing parameter values that were fitted to a correlated 
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variable (i.e. AGB semivariograms in Hedmark). The semivariogram analyses were 

performed with the R package geoR (Ribeiro and Diggle 2016). 

The ALS-AGB relationship was modeled within the frameworks of ordinary least squares 

(OLS) and generalized least squares (GLS) using time-invariant models (Magnussen et al. 

2015). Predictors and the response variables were log transformed to linearize their 

relationship. The models were selected using backward and best subset methods with 

Bayesian information criterion (BIC), and mindful of the variance inflation factor. During the 

selection phase, parameters were fitted using OLS to admit likelihood tests. Finally, the 

coefficients of the selected model were refitted using GLS with a compound symmetrical 

covariance structure to account for the longitudinal correlation between observations (i.e. 

measurements in 2006 and 2011 on the same plot). Stratum specific models were selected 

and fitted in each cover class: 

 

where  is the cover class,  is the vector of estimated coefficients, and  is the vector of 

predictors (i.e. ALS metrics). 

3.4. Estimation  

MA and HY estimators were used to estimate AGB stocks and change. For change, the 

indirect approach was adopted (McRoberts et al. 2015b), by which change is derived by the 

difference in AGB stocks estimated separately for the two times. Both MA and HY are ratio 

estimators, as per Ringvall et al. (2016) and Ståhl et al. (2011), with the ALS strip area used 

as auxiliary. Mean AGB was estimated by 

 

 

where  is the number of ALS strips,  is the number of cells in strip ,  is the number of 

field plots in strip ,  and  are the observed, respectively predicted AGB values in the -

th field observation within strip , and  is the area in hectares of strip . The variances of 

 and  add two components that correspond to independent sources of variation: 
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In the case of MA, the two sources of variation are due to the two stages of sampling: strip 

sampling ( ), and the subsample of field plots ( ). For HY, the strip sampling ( ) in the 

first phase and the model uncertainty ( ) in the second phase. With post-stratification, the 

estimates of mean and variance are calculated separately for each post-stratum using the 

above equations. The overall estimates across stratum means and variances are calculated by:  

 

 

where  is the vector of post-stratum proportions, and  and   are vectors of 

estimated mean AGB in each post-stratum. Because of ALS strips intersecting several post-

strata, the per-stratum estimates are not independent, which means that variance estimators 

for the across stratum means must account for the covariances within  and  : 

 

 

where  and  are the estimated covariance matrices for  and . Just as 

before, they are composed of two components: 

 

 

where  , , and  are covariance matrices for the first stage sampling, second 

stage sampling, and model uncertainty. These constructs offer a generalized framework for 

post-stratified two-stage MA and two-phase HY estimation. The primary stratification 

scheme was by land cover classes and it was used in papers II and III. In paper II, a nested 

post-stratified scheme was trialed, by both cover class and change class. The change classes 

were established based on the ALS metrics from both times and represented four simple 

categories: unchanged forest (laser echoes above 1.3 m in both times), clear felled forest 

(laser echoes above 1.3 m in 2006 but not in 2011), regenerated forest (laser echoes above 1.3 

m in 2011 but not in 2006), and unchanged nonforest (no laser echoes above 1.3 m in either 

times). In this thesis, only  was always a proper covariance matrix with nonzero 
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elements.  was diagonal because the second-stage sample was assumed to be 

independently selected in each post-stratum.   was either diagonal with post-

stratification by cover class since models were selected and fitted independently in each 

cover class, or block diagonal when the post-stratification scheme nested cover and change 

classes. The estimation precision was reported in terms of the more intuitive standard error:  

. 

To assess the relative gain in precision or accuracy with ALS as auxiliary data, Horvitz-

Thomson (HT) (Horvitz and Thompson 1952) estimates were computed using the field plots 

only. Relative efficiencies (RE) were calculated for the analytically estimated standard errors 

( ). In paper III, the observed standard error ( ) and the 

observed root mean square error ( ) were calculated following 

sampling simulations. With respect to these, two other REs were calculated: 

 and . Values greater than one of the RE indicate a gain 

in precision (or accuracy for ) with the ALS survey.  

3.5. Simulations 

A major focus of this thesis was the simulative approaches intended to complement 

theoretical derivations or offer an alternative when the latter are not feasible. In paper II, 

parametric bootstrapping was demonstrated as an alternative to estimate the uncertainty due 

to the model, and in paper III sampling simulations were performed to assess the estimators’ 

properties, and compare their performance and adequacy for different types of estimation.   

With parametric bootstrapping the effect of the uncertainty in model coefficients was 

simulated by repetitively sampling from the multivariate distribution of the model 

coefficients, recalculating the predictions and the HY estimates according to each sampled set 

of coefficients, and finally analyzing the distribution of the estimates. Simply put, parametric 

bootstrapping was used as an empirical method to estimate . 

Sampling simulations in paper III were performed according to the real Hedmark survey, 

rather than the theoretical two-stage sampling design. The difference is that in theory, the 

primary sampling units are selected first (i.e. the ALS strips), and then a subsample of 

secondary units (field plots) are selected in a second stage. In reality however, the NFI plot 

grid was established prior to the ALS flight campaigns, thus conditioning the latter survey.  
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4. Results and discussion 

4.1. Spatially optimized imputations 

The method proposed in paper I proved to be efficient. The population semivariogram 

converged to the desired model in most cases (Table 4), and it was time efficient despite its 

complexity. Spatially optimizing the imputations also had the effect of improving the 

prediction error (NDVI to h40 imputations), which was something we did not explicitly aim 

for. The mean absolute error in predicted h40 decreased from 4.01 m to 3.63-3.69 m. This 

result should be further investigated as it may find applications in the domain of 

nonparametric estimation methods where recent efforts aimed to improve the k-NN technique 

to estimate forest parameters (McRoberts et al. 2015a; McRoberts et al. 2016). Convergence 

may be affected when the objective function is loaded with too many components (i.e. 

semivariance calculated for many lags, combined with multiple histogram bins; see 

semivariogram convergence with  in Table 4). The methodology to generate the artificial 

population in paper III was developed mindful of this result, and some measures of 

precaution were taken (i.e. imputations in two steps, fewer lag distances for the 

semivariograms, and dropping the histogram objective). The results in paper III demonstrated 

that is possible to construct artificial forest populations with prescribed parameters for two 

points in time and complex multivariate and spatial properties. Figure 4 shows a small 

portion of the population generated with and without spatial optimization for comparison. In 

this thesis, the sole application of this methodology was in sampling simulations for 

evaluating estimators’ properties. The spectrum of application is however wider. For 

instance, the field sampling effort can be optimized by balancing information with cost. This 

type of analysis has been done with sampling simulations (Grafström and Ringvall 2013; 

Grafström et al. 2014; Tokola and Shrestha 1999; Tomppo et al. 2014). The establishment of 

the Tanzanian NFI is a relevant example, where sampling simulations assisted in creating the 

NAFORMA clustered sampling design (Tomppo et al. 2014). Here among other design 

considerations, the number of plots per cluster and the distance between them could be 

adequately decided following sampling simulations, given an artificial population with a 

realistic spatial structure. Furthermore, realistic artificial populations with a consistent spatial 

structure may also be used in forest planning and forest scenario analysis, where it can be set 

as the initial state (Barth et al. 2009; Barth et al. 2012; Gustafson et al. 2000; Lämås and 

Eriksson 2003; Packalén et al. 2011).  
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Table 4. Spatial optimization results. Convergence is expressed as percentage of the distance 

travel from the initial state to the state at the end of the optimization with respect to the total 

distance from the initial state to the target (e.g., for unoptimized NN imputation convergence 

= 0%, and if it reached the target value for a parameter convergence = 100%). Bolded values 

correspond to parameters that were explicit in the objective function. * in paper III the 

convergence was >99% for all parameters, ALS metrics and AGB, in all strata, and for both 

points in time (2006 and 2011) 

Imputation type Objective 
Convergence (%) 

Semivariogram Histogram Mean 

Våler experiments (paper I) 

 78.0 42.8 100 

 99.9 47.5 99.8 

 93.8 100 97.0 

 98.9 35.3 100 

 94.8 99.8 -58.0 

 99.1 70.5 100 

 98.6 99.8 83.8 

Hedmark population generation (paper III) 

SAT to ALS  >99* - >99* 

ALS to AGB  >99* - >99* 
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Figure 4. A small portion of the AGB population generated in paper III. The top images 

show the AGB population of 2011 and the bottom images are the change population obtained 

by subtracting 2006 AGB values from 2011 AGB values. Black lines delineate cover classes. 

4.2. Biomass stock and change estimation 

The results in paper II suggested a general positive trend in AGB change over the 5 years 

(Table 5). MA was more precise than HY for biomass stock estimation (i.e., single-time) and 

both MA and HY estimated change more precisely than HT, with HY outperforming MA for 

estimation within individual cover classes (Table 6). The proposed nested post-stratification 

scheme did not always improve the estimation precision (Table 6, HY×), but it retains its 

merits of enabling detailed reporting for change, according to cause of change within each 

post-strata. The four change classed in paper II were rather simple, as the main purpose was 

to demonstrate the nested post-stratification scheme. In addition, the change class sizes were 

disproportionate (e.g., clear felling and regeneration represented together less than 4% of the 
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area sampled with ALS). A more advanced change class post-stratification, with more classes 

and balanced proportions could improve the estimation precision as well.  

Table 5. Estimation summary (paper II). Units are Mg ha-1 

Time 
MA HY HY× HT 

        
2006 69.1 2.03 67.6 3.12 69.3 3.35 58.4 2.81 
2011 70.4 1.93 70.6 2.99 72.5 3.27 64.8 3.06 
Change 1.36 0.81 3.05 0.90 3.18 0.92 6.38 1.65 

 

Table 6. Relative efficiencies ( ) of MA and HY estimators used with the Hedmark 

survey (paper II). Values > 1 are bolded and indicate an increase in precision relative to the 

direct estimation using field plots only. HY× is the HY estimator with nested post-

stratification by cover class and change class.  

Time Stratum MA HY HY× 
Nonforest 1.68 1.93 2.46 
Young 1.96 0.84 0.86 
Low 0.94 0.82 0.93 
Medium 2.22 1.36 1.37 
High 2.12 2.03 2.11 
All cover classes 1.39 0.90 0.84 
Nonforest 2.38 2.09 2.72 
Young 1.71 0.85 0.86 
Low 1.06 0.89 1.00 
Medium 2.23 1.67 1.66 
High 1.76 2.17 2.17 
All cover classes 1.58 1.02 0.94 
Nonforest 1.30 6.45 3.74 
Young 1.01 1.62 1.40 
Low 1.22 2.09 2.09 
Medium 2.48 2.68 2.69 
High 1.43 3.41 3.56 
All cover classes 2.04 1.83 1.79 

 

4.3. Simulations  

4.3.1.  Parametric bootstrapping 

The results of parametric bootstrapping were consistent with the theoretical estimates of 

uncertainty due to the model. The empirically estimated  converged to its analytical 

counterpart within 1000 bootstrap samples (Figure 5). Demonstrating parametric 

bootstrapping had a twofold role: first as mutual validation with the theoretical HY estimator, 
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and second, provide a viable alternative to isolate the model uncertainty effect when the 

analytical estimation becomes too complex (i.e., due to sampling design; multistage, post-

stratification, etc.).  

 

Figure 5. Parametric bootstrapping convergence of the empirically estimated  of the 

2011 across-stratum estimates of mean AGB. The gray line is the analytically estimated 

 

4.3.2.  Sampling simulations 

The sampling simulations in paper III revealed that bias can be a hindrance for indirect 

change estimation. Small bias in single-time estimates become large for change estimates, 

especially when change was small relative to the growing stocks. This is of particular concern 

with the HY estimation where biases of -2.69% to 8.34% for stratum-wise single-time 

estimates became in the range of -44.25% to 75.06% for change. For MA, the biases were 

between near 0% to 1.64% for single-time stratum-wise estimates, and -0.57% to 7.64% for 

change. The overall estimates of change with post-stratification had 0.36% bias with MA and 

-18.15% with HY. Without post-stratification, the bias of the overall change estimates was 

0.07% with MA and -14.65% with HY.  

Stratum-wise change was most precisely estimated by HY (Table 7, ). This was in 

accord with the findings of paper II (Table 6) where change was estimated with the original 

Hedmark survey data. The simulations reveal that the bias in HY estimation, annuls the 

benefits of the gain in precision in terms of accuracy. The north-south spatial trend was weak 

in South Hedmark. For change the already weak trend in AGB stocks effectively canceled 

out. As a result, the design effect of the systematic sampling was reduced. In fact, many 

variances were underestimated, notably by the MA estimator. The second stage of sampling 

also contributed to this result. First, because of the use of endogenous models which were 

shown to induce variance underestimation of MA estimators (Kangas et al. 2016). Second, 
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due to the small number or lack of field plots per cover class and ALS strip. Among the 

simulated samples, 22% of the strip – cover class combinations had one or zero field plots. In 

these situations the second stage variance cannot be calculated and was set to 0 by default 

which resulted in underestimation of the second stage variance for the MA estimator. Future 

work should modify the estimators to handle these types of occurrence.  

Post-stratification did not improve the overall across-strata estimation accuracy. This was 

especially true for estimates of change where the differences between the cover classes fade 

out. If the purpose of post-stratification is to increase the estimation precision, different post-

stratification schemes should be employed (e.g., by criteria that differentiate change classes).  

We end this discussion with a remark on the methods presented in Saarela et al. (2016), 

which offer a good example that would benefit from parametric bootstrapping as well as 

sampling simulations on a spatially consistent population. Saarela et al. (2016) proposed a 

MB estimator that utilizes three sources of information (e.g. wall-to-wall satellite, partial 

ALS, and field data) in two modeling steps. The methodology was also used in Puliti et al. (in 

press), with partial coverage photogrammetric 3D data acquired with an UAV (unmanned 

aerial vehicle). First, parametric bootstrap is a straightforward empirical method to account 

for error propagation in multiple modeling steps. Second, one of the modeling steps involves 

model parameter estimation with a large set of observations from spatially compact areas 

(i.e., the ALS patches). Here the model parameter covariances that are the basis in model-

based estimation could be biasedly estimated as a result of the spatially auto-correlated 

observations. Simulations on a spatially consistent population could investigate this effect. 
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Table 7. Relative efficiencies of MA and HY estimators in simulated sampling (paper III). 

Values > 1 are bolded and indicate an increase in precision or accuracy relative to the direct 

estimation using field plots only. w/ PS – with post-stratification, w/o PS – without post-

stratification.  

Time Stratum 
MA HY 

      

Nonforest 1.62 1.54 1.42 1.30 1.68 1.37 

Young 1.49 1.58 1.54 1.46 2.10 0.75 

Low 1.31 1.69 1.55 1.10 1.87 1.70 

Medium 1.52 1.48 1.46 1.40 1.73 1.08 

High 1.63 1.50 1.47 1.49 1.82 1.46 

All w/ PS 1.41 1.53 1.45 1.30 1.83 0.92 

All w/o PS 1.56 1.71 1.72 1.24 1.89 1.11 

Nonforest 1.61 1.45 1.30 1.12 1.62 1.02 

Young 1.68 1.90 1.89 1.29 1.96 1.20 

Low 1.30 1.66 1.46 1.03 1.82 1.16 

Medium 1.65 1.62 1.60 1.65 1.77 1.18 

High 1.80 1.65 1.66 1.40 1.86 1.49 

All w/ PS 1.46 1.66 1.55 1.20 1.81 1.77 

All w/o PS 1.56 1.80 1.79 1.14 1.81 1.75 

Nonforest 0.84 0.77 0.72 1.49 2.13 0.91 

Young 0.89 0.89 0.86 2.25 2.79 0.36 

Low 0.97 0.93 0.85 1.42 1.31 0.55 

Medium 1.04 1.03 0.99 3.23 2.46 0.57 

High 1.32 1.30 1.26 4.78 3.65 1.36 

All w/ PS 1.04 1.02 1.00 2.56 2.60 0.68 

All w/o PS 0.97 0.98 0.98 2.83 3.48 0.86 
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5. Conclusions and perspective 

This thesis contributes with new simulative methodologies that facilitate the assessment of 

estimator properties following complex forest surveys that utilize auxiliary data. Experience 

has been gained with change estimation following repeated ALS sampling. This type of 

survey emerged in a context of recent efforts to devise cost effective solutions to increase 

local estimation precision of certain forest parameters in large-area surveys. The results 

reinforced previous findings, showing that ALS strip sampling supplementing the field 

survey substantially increase the estimation accuracy of AGB stocks. For change estimation 

however, this might not always be the case. Here the ALS survey did not improve change 

estimation. This matter requires further investigations. One direction would be to optimize 

the timeframe for the surveys, allowing the changes to become large enough for a more 

precise estimation, or to allow the change to be modeled directly. In the absence of a 

probabilistic field sample, as it may be the case of developing countries with poor 

infrastructure of the lack of an established NFI, the hybrid estimation remains as the sole 

alternative. In the context of HY estimation, the experience gained with ALS sampling paves 

the way for promising space LiDAR technology like ICESat-2 (Ice, Cloud, and land 

Elevation Satellite 2) or GEDI (Global Ecosystem Dynamics Investigation) to be used as a 

sampling tool for global carbon monitoring. This type of technology could enable more 

unified and transparent methodologies for carbon stocks monitoring across the countries. 

Although post-stratification did not improve the change estimation precision, it retains its 

merit of enabling detailed reporting at more local scales. For instance, a unique post-stratified 

methodology could be used for countrywide change estimation, and in the same time provide 

change information at regional and sub-regional scale. Countrywide estimates would be used 

for international reporting, and regional estimates would enable national governments to 

adopt more efficient differentiated policies tailored to regional particularities. Moreover, the 

regional estimates would be consistent with the overall national estimates (i.e. the whole 

equals the sum of the parts). This approach fits well with programs like REDD (reducing 

emissions from deforestation and forest degradation) in the developing countries, allowing 

the governments to report credible carbon stock changes as well as to direct the financial 

incentives to local communities proportionally with the success of implementing REDD 

policies.  
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