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Abstract 

Aerial imagery have long been used as auxiliary information to reduce the costs of forest 

inventories. Due to the high correlation between tree height and forest biophysical properties, 

manual photogrammetric techniques have been applied to aerial imagery for the measurement 

of vertical canopy structure, an important variable in forest inventories. In the past decade 

years, major advances have resulted in the development of photogrammetric software for the 

automatic generation of photogrammetric data from digital imagery. As a result, user-friendly 

advanced photogrammetric software are now available on the market, allowing for an increasing 

number of users to produce dense three-dimensional (3D) photogrammetric point clouds. The 

increased accessibility to advanced software in addition to the large availability of aerial 

imagery has led to a renaissance in the use of photogrammetry for forest inventory. The 

smaller costs of acquiring photogrammetric data compared to alternative 3D remote sensing 

data (i.e., airborne laser scanning; ALS), make their use appealing. The four studies included 

in this thesis addressed the use of photogrammetric data for the two main categories of forest 

inventories, namely: forest management inventories (FMI) and large-scale forest surveys 

(LSFS). For both categories, this thesis illustrated potential applications for which 

photogrammetric data may be advantageous over alternative 3D remote sensing data.  

Wall-to-wall photogrammetric data produced from imagery collected using different 

platforms, i.e. a manned aircraft in paper I and an unmanned aerial vehicle (UAV) in paper II, 

were used to model forest biophysical properties of interest in FMI. Both structural and 

spectral variables from photogrammetric data were used as predictor variables. Furthermore, 

when available, accuracy figures from ALS based inventory were used as a benchmark. The 

accuracy assessment revealed that photogrammetric data were able to predict forest 

biophysical properties with similar accuracy to ALS data. Furthermore, the first two papers 

highlighted some advantages related to photogrammetry, namely: 1) the possibility to use 

spectral information for species-specific FMI, and 2) the versatility of acquiring 

photogrammetric data using UAVs.  

Moreover, the possibility to use UAVs in forest inventories was further addressed by 

illustrating LSFS applications for which UAVs could be cost-efficient. As a means of 

reducing the costs for RS auxiliary data acquisition, UAV data were acquired as a sample (i.e. 

partial-coverage) over a large area. In paper III the sample of UAV data, together with a 

subsample of field data were used in a hybrid inferential framework to estimate growing 



vii

stock volume (GSV) and assess its uncertainty. Such an approach enabled an increase in 

precision compared to design-based estimates using only field data. In paper IV, these data 

sources were augmented by a third wall-to-wall layer of Sentinel-2 multispectral data as a 

means of further increasing the precision of the estimator. In the latter case, the recently 

developed hierarchical model-based inference was adopted to enable a statistically rigorous 

estimation of the GSV and its uncertainty. This approach resulted in a slight increase in the 

precision of the hybrid estimator. Nevertheless, it allowed for a reduction of the UAV 

sampling intensity, hence reducing the UAV acquisition costs substantially.  

Overall, the thesis concluded that photogrammetric data will have an increasingly 

important role in forest inventories. Not only are comparable levels of accuracy achievable, 

but their use can be more cost-efficient than alternative 3D remotely sensed data. Even 

though further research in different forestry settings should confirm our findings, the 

applications described in this thesis were found to have potential for operational use.  
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1. Introduction 

1.1 Aerial imagery   

Aerial images have been and continue to be widely used in forest inventories as a means to 

reduce the overall inventory costs and to produce maps of forest resources. These represent 

the oldest source of remote sensing (RS) data (Wulder 1998). The first examples of the use of 

aerial images for forest inventory purposes date back to the 1920’s in the United States (Seely 

1929, Standish 1945, Taniguchi 1961). Further examples in Scandinavian countries are 

described by Korpela (2004a) and Packalén (2009). At that time, the possibility to obtain 

large coverage of auxiliary data offered opportunities to reduce the costs and time needed to 

inventory large forest areas (Standish 1945). The use of the bi-dimensional (2D) spectral 

information from aerial images has been largely applied to accomplish tasks of stratification 

to support more efficient sampling design in large scale forest surveys (LSFS) as well as for 

estimation purposes in forest management inventories (FMI) (Korpela 2004a). In FMI, there 

is a particular interest in the use of aerial images for modelling forest biophysical properties. 

Examples using 2D spectral data for estimation of forest biophysical properties can be found 

in Chiao (1996), Hyyppä et al. (2000). A drawback of using imagery for these tasks is that the 

relationship between 2D spectral information and forest biophysical properties such as 

growing stock volume ( ) or height is often weak because of a lack of information on the 

vertical canopy structure. Because of this limitation, the accuracy yielded by forest 

inventories based on aerial images has typically been lower than that of traditional field based 

inventories (Packalén 2009). 

1.2 Photogrammetry  

Since the 1940’s, soon after the first studies using 2D information from aerial imagery, 

researchers started looking into applying photogrammetric techniques to obtain three-

dimensional (3D) information on the forest canopy (Taniguchi 1961, Korpela 2004a). Such 

techniques, aided by analogue stereo-plotters enabled the measurement of tree heights from 

image stereo-pairs (Baltsavias 1999). The importance of these 3D measurements in 

describing the forest canopy structure were rapidly acknowledged. As a result, 

photogrammetric measurements were included to support FMI (Næsset 1990, Næsset 1991, 

Eid and Næsset 1998). Because these measurements were carried out manually, only a coarse 

spatial representation of the vertical structure of the canopy could be produced. The advent of 

digital imagery enabled the automation of photogrammetric workflows allowing the shift 
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from scattered photogrammetric measurements to the concept of the point cloud, i.e. a set of 

continuous and spatially uniform 3D measurements. Digital photogrammetric software began 

to be developed in the late 1980’s - early 1990’s (Lohmann et al. 1989, Leberl 1994, 

Baltsavias 1999). Initially, the applications in forestry were limited but in the late 1990’s and 

early 2000’s, thanks to advances in computing, the potential for digital photogrammetric data 

for forest inventory increased (Halbritter 1996, Næsset 2002a, Korpela 2004a, Korpela 

2004b). The study by Næsset (2002a) was the first of its kind in thoroughly evaluating the 

potential of digital photogrammetric point clouds for the determination of stand mean tree 

height. In this study, two adjacent stereo pairs of panchromatic digital images were processed 

with an automated image matching software (i.e. Match-T, version 2.2). This produced sparse 

point clouds (0.03 – 0.05 canopy points m2) from which explanatory variables were extracted 

and then used to model mean tree height according to an area-based-approach (ABA; see 

section 4.1.1). The results by Næsset (2002a) showed the presence of rather large systematic 

errors leading to an underestimation of 5.42 m of the ground-truth stand mean height, 

especially for mature forests. Furthermore, Næsset (2002a) also found that the precision 

obtained was equal to manual photogrammetric measurements and smaller than that achieved 

using airborne laser scanning (ALS) data. These results did not indicate any particular 

advantages of the use of digital photogrammetry compared to alternative manual methods or 

methods using alternative RS technology. At the time, the development of photogrammetric 

algorithms was relatively slow and improvements in the automation of the image matching 

and the processing speed were critically needed (Baltsavias 1999, Næsset 2002a). During the 

same years, ALS data also became an attractive 3D RS data source and after encouraging 

results from initial case studies (Næsset 2002b, Holmgren 2004) became the main source of 

RS auxiliary data in state-of-the-art FMI. As a result, in the past 20 years, FMIs based on 3D 

RS data have relied mostly on ALS as a more effective RS data source than photogrammetric 

point clouds. Because of the importance of ALS data in forest inventories, this data source 

was used throughout this thesis as the benchmark to compare the performance of 

photogrammetric data. 

1.3 Modern digital photogrammetry 

Although ALS data have many advantages (e.g. direct measurement of height, penetration of 

vegetation), aerial imagery still represents an essential data source for forest inventory. 

Therefore, nowadays aerial imagery are acquired frequently for vast areas for orthophoto 

production. In several countries in Europe there are national programs devoted to the regular 
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acquisition (i.e., intervals of 5 – 6 years) of aerial imagery (Stepper et al. 2014a, Ginzler and 

Hobi 2015, Waser et al. 2015). In addition to an increased availability of imagery, the 

development of photogrammetric software has seen a rapid increase in the past 15 – 20 years. 

Since the late 2000’s, advances in computer vision, image matching algorithms and increased 

computing power have fueled a renaissance in the use of aerial images for the generation of 

high-resolution 3D data using image matching (Baltsavias et al. 2008). Many 

photogrammetric software packages (proprietary and open-source) have been and continue to 

be developed, offering unparalleled possibilities to produce 3D data from any kind of 

overlapping imagery. Furthermore, photogrammetric data can be generated by single users on 

their own desktop (Baltsavias 1999).  

In this thesis, modern photogrammetric data from large-format frame-cameras 

acquired from manned aircrafts was defined as digital aerial photogrammetry (DAP). DAP 

has become attractive both for research and commercial activities because of a combination 

of: 1) smaller acquisition costs than ALS due to the larger coverage attainable due to the 

higher flying altitudes and larger swath widths (Baltsavias 1999) and (2) high resolution of 

the point cloud (i.e. up to the size of ground sampling distance). The studies from Baltsavias 

et al. (2008), Waser et al. (2008), and St Onge et al. (2008) represent the first examples of 

DAP applied to forest environments. During the past four years there has been increasing 

interest in the use of DAP to model forest biophysical properties as a cost-effective solution 

to airborne laser scanning (ALS) for ABA forest inventories. Initial benchmarking studies 

compared the performances of DAP point clouds against ALS for modeling typical forest 

biophysical properties of interest (Bohlin et al. 2012, Järnstedt et al. 2012, Nurminen et al. 

2013, Straub et al. 2013a, Vastaranta et al. 2013, Gobakken et al. 2014, Pitt et al. 2014, Rahlf 

et al. 2014, Ota et al. 2015, White et al. 2015, Yu et al. 2015, Puliti et al. 2016). These studies 

proved that despite intrinsic differences between the data and the models used, the predictions 

of forest attributes using DAP models were similar to ALS based forest inventories (Figure 

1). The differences in root mean square error as percentage of the mean ( ) reported in 

the abovementioned studies between the two methods were limited to 0.22 – 9.62% for tree 

height, 0.58 – 8.41% for mean diameter, 1 – 8.34% for basal area, 1.6 – 4.5% for stem 

number, and 0.5 – 9.13% for .  
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Figure 1. Scatterplots of root mean square error as percentage of ground 

reference mean value ( ) obtained using ALS on the horizontal axis, and 

the obtained using DAP on the vertical axis. The different observations 

illustrate the comparisons of the two data sources by different studies. The 

graphs represent the  for height, basal area, and volume since these were 

some of the common forest biophysical properties to most of the studies. The 

1:1 line is represented as a dark dashed line, while the trend lines for the data 

used are given in lighter colors. 
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Although most studies were carried out in boreal conifer-dominated forests, there 

were also some conducted in seasonal tropical forests (Ota et al. 2015), temperate broadleaf-

dominated forest (Stepper et al. 2014a, Stepper et al. 2014b), and highly timbered (maximum 

gross volume = 2481.9 m3 ha-1) coastal temperate rainforests (White et al. 2015). Irrespective 

of the different forest types, the results were highly consistent, showing similar accuracies 

between DAP data and ALS.  

The main limitation in these studies was the need for a high-resolution digital terrain 

model (DTM) from ALS data in order to obtain relative height above ground (i.e. normalize) 

from the DAP point cloud. In the only case where a DTM was generated from DAP rather 

than an ALS (Ota et al. 2015), the accuracy of the results worsened significantly. In some 

countries in Europe, ALS DTMs are increasingly available thanks to national ALS 

acquisition campaigns, however these data are only available in a few countries. 

One important aspect that makes photogrammetry competitive with ALS data is the 

larger variety of platforms and sensors that can be used to acquire imagery. There are 

examples in the literature of forest inventories carried out using photogrammetric data 

generated from satellite image stereo-pairs (Hobi and Ginzler 2012, Persson et al. 2013, 

Straub et al. 2013b, Montesano et al. 2014, Neigh et al. 2014, Yu et al. 2015, Immitzer et al. 

2016, Persson 2016), DAP (see the already mentioned studies), and unmanned aerial vehicle 

(UAV) imagery (see section 1.4 below).  

1.4 UAV photogrammetry 

In recent years, the civilian market for UAVs has increased rapidly and as a result, these RS 

data acquisition platforms are nowadays largely available. UAVs may be equipped with a 

variety of sensors, however most often consumer grade cameras have been used for acquiring 

imagery. Differently from the imagery used to generate DAP, UAV imagery is often 

characterized by large perspective distortions, poor camera geometry, lack of spectral 

consistency, and poor positioning accuracy. Such characteristics limited the use of such 

imagery for photogrammetric processing in the past. Nevertheless, since the inclusion of 

advanced structure from motion (SfM) algorithms in photogrammetric pipelines (Whitehead 

and Hugenholtz 2014), there has been a boost in the interest in UAV photogrammetry. SfM 

algorithms allow for the estimation of the camera’s exterior parameters (i.e. position and 

orientation) from an unordered but overlapping series of images (Dandois and Ellis 2013). 

Such parameters are fundamental in order to ensure accurate photogrammetric measurements. 
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Because of these technological advances, photogrammetric data from UAV imagery, 

hereafter denoted as UAV data, have become an increasingly popular photogrammetric 

product. The combined effect of advances in photogrammetric software and wide availability 

of UAVs (Puliti et al. 2015) provides a large number of users not only with advanced 

photogrammetric software but also with the possibility of acquiring their own 3D RS data on 

demand.  

Since the first studies using UAV data for forest inventory purposes (Dandois and 

Ellis 2010), there has been a rapid increase in the literature available on the topic (Dandois 

and Ellis 2013, Lisein et al. 2013, Getzin et al. 2014, Paneque-Gálvez et al. 2014, Sperlich et 

al. 2014, Dandois et al. 2015, Puliti et al. 2015, Tuominen et al. 2015, Zahawi et al. 2015, 

Kachamba et al. 2016, Wallace et al. 2016, Zhang et al. 2016, Puliti et al. in submission). 

UAVs have become attractive because of the flexibility they offer in data acquisition and 

thanks to the very high level of detail characterizing the imagery acquired at low flight 

altitudes (e.g. 120 m above ground). The flexibility of UAV data is demonstrated by the large 

variety of forest types studied, including: temperate broadleaves-dominated forests (Dandois 

and Ellis 2013, Lisein et al. 2013), boreal conifer-dominated forests (Puliti et al. 2015, 

Tuominen et al. 2015), tropical forests (Paneque-Gálvez et al. 2014, Zahawi et al. 2015), 

tropical woodlands (Kachamba et al. 2016), sclerophyll eucalypt forests (Wallace et al. 

2016), evergreen broadleaved forest (Zhang et al. 2016). Overall, the results have 

demonstrated that UAV data could be used to model forest biophysical properties of interest 

like  or biomass with  in the range of: 14.5% – 46.7%. Regardless of the large 

range in , the results were comparable to what could be obtained using ALS data. 

This thesis further investigated the possibility to use these data in forest inventories (both 

FMI and LSFS).  

1.5 Forest inventories based on 3D RS auxiliary 

When describing forest inventories it is important to distinguish between forest management 

inventories (FMI), and large scale forest surveys (LSFS). Both types have in common a long 

history of combining sample of field plots with RS data for the assessment of forest resources 

(McRoberts et al. 2014a). The advantage of including RS data to samples of field plots 

derives from the correlation between RS data and forest biophysical properties. In this regard, 

3D RS data sources have proven to be highly correlated with variables like mean height, 

basal area, and . FMI and LSFS differ in the end-users and in the spatial scale at which 
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they are carried out. FMI are performed at a local level (i.e. forest property level) to support 

the decision making of forest managers and typically result in detailed maps (i.e. stand level) 

of the forest biophysical properties of interest. On the other hand, the aim of LSFS is to 

provide overall estimates over large areas (i.e. from municipality to national/international 

level) to support strategic decision making of policy makers.  

1.5.1 Forest management inventories 
As previously mentioned (see section 1.2), in the past 16 years FMI based on 3D RS data 

have become increasingly popular. The operational use of these data for FMI has proven 

effective in reducing the costs of forest management compared to alternative approaches (Eid 

et al. 2004). FMI typically rely on an area based approach (described in detail in section 

4.1.1), to obtain stand level predictions. In ABA FMI large focus is on the quality of the 

model predictions at stand level and little work has been done to estimate the uncertainty at of 

the estimated stand level means (McRoberts et al. 2014a).  

1.5.2 Large scale forest surveys 
Differently to FMI, the objective of LSFS is to estimate a population parameter (mean or 

total) for a variable of interest (e.g.  or biomass) over a defined study area. An important 

part of LSFS is the estimation of the uncertainty of the population parameter (i.e. variance).  

Historically, LSFS have been carried out using a probability sample of field plots in 

design-based inference (DB). The population parameter is estimated from the field plot 

information and the reliability of this estimate lies in the probabilistic nature of the sampling 

design. DB has the advantage of providing design-unbiased estimates; however the estimate 

of the population parameter can deviate from the true value especially when only a small 

sample size is available. In this thesis, DB inference was used to provide a reference for an 

LSFS approach relying only a probability sample of field plot data, i.e. no RS were available. 

When RS auxiliary data are available for the entire area in addition to georeferenced 

field plot data, models can be developed linking the two sources of information and 

predictions can be made for the area covered by the RS data. In this case, the model forms the 

base for inference as the population parameters are estimated from the predicted values 

according to an ABA. The estimated variance of the population parameter derives from the 

uncertainty in model parameter estimates (McRoberts 2006). Thus, this inferential framework 

is referred to as model-based (MB). One of the main advantages is that for MB the field plots 

are only used for fitting a model that is suitable to the study area. Hence, the inference does 

not rely on the randomization in the field plots enabling the use purposive sampling or even 
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the use of external models. A drawback of MB is that the model parameter estimates can be 

biased if the model is not correctly specified. In this thesis, MB inference was used when 

wall-to-wall RS auxiliary data was available (i.e. ALS data and Sentinel-2 imagery). 

When the acquisition of RS auxiliary data are expensive over large areas (e.g. ALS or 

UAV data), the costs can be reduced by acquiring only a sample of RS data. This increased 

complexity in the sampling design allows for an increased precision of the field based 

estimates while not incurring in excessive costs. Nevertheless, the increased complexity 

requires a rigorous reporting of the uncertainty estimates (Gregoire et al. 2016). In an effort 

to ensure this rigorousness, Ståhl et al. (2011) developed an inferential framework based on a 

two-phase design. In the first-phase a probability sample of RS data are acquired and in the 

second-phase a subsample of field data are acquired. Similarly to MB, a model linking field 

plot information and RS auxiliary is developed and applied to the first phase sample and the 

predictions used to estimate the population parameter. The uncertainty of the estimates in this 

case derives both from the uncertainty of the model parameter estimates and from the 

sampling error related to the sample of RS data (first-phase sample). As this inferential 

framework draws from both DB and MB, it is often referred to as hybrid (HYB) inference. 

This method has proven to be effective in increasing the precision compared to pure field 

based estimates (Ene et al. 2012, Ene et al. 2013, Ene et al. 2016) while not incurring 

excessive costs for extensive RS data acquisition. HYB inference similarly to MB has the 

advantage of being rather flexible in terms of not requiring a probability sample of field plots, 

enabling both the estimation in inaccessible areas (McRoberts et al. 2014b) as well as the use 

of purposive sampling designs. In this thesis, HYB inference was adopted using a sample of 

field plots and UAV data as a means to reduce the costs of UAV data acquisition for forest 

inventories. 

The recent increase in the availability of RS data has inspired researchers to combine 

multiple RS data sources as means to further increase the precision and the extent of LSFS 

and therefore their cost-efficiency. One of the most interesting applications has been the use 

of multiresolution approaches linking field plots, a sample of high resolution 3D RS auxiliary 

(e.g. ALS) and global coverage space-borne information. The different levels of information 

are characterized by an increase in resolution, quality of the information, and acquisition 

costs when going from space-borne to field data. These type of LSFS have been object of 

study since the late 2000’s (Boudreau et al. 2008, Nelson et al. 2009, Andersen et al. 2012, 

Neigh et al. 2013, Strunk et al. 2014, Margolis et al. 2015, Nelson et al. 2016). The 
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assessment of the benefits from these types of LSFS has been difficult because of the lack of 

statistically rigorous variance estimators accounting for the uncertainty of the different 

models involved in the estimation. Groundbreaking research from Saarela et al. (2016) aimed 

at developing an inferential framework for this type of LSFS. In their work, Saarela et al. 

(2016) used three levels of information: (1) field plots, (2) a sample of ALS data, and (3) 

wall-to-wall Landsat data. The different levels of information were linked through nested 

models, upscaling ground reference  to the sample of ALS data and then to the entire 

study area using Landsat data. The novelty of the hierarchical model-based inference (HMB) 

lies in the variance estimator, which accounts for the uncertainty of each of the models’ 

parameters. This thorough reporting allows for a clear picture of the precision of these 

estimators when compared to MB or HYB estimators. An advantage of this method is that 

being in the realm of MB inference, both the field plots and the sample of RS auxiliary can be 

collected according to purposive or opportunistic criteria. In this thesis, HMB inference was 

used when combining a sample of field plots, with partial-coverage UAV data, and with wall-

to-wall Sentinel-2 data. 

 

2. Objectives 

The objective of this thesis was to investigate the potential of using digital photogrammetry 

for FMI and for LSFS. The specific objectives were to:  

1) quantify the accuracy of FMI when using structural and spectral information obtained 

from photogrammetric data acquired with different image acquisition platforms 

(Paper I and II); 

2) identify operational niches for UAV data in LSFS by using it as part of a sampling 

strategy (paper III and IV). 

The papers included in the thesis are: 

I. Assessing 3D point clouds from aerial photographs for species-specific forest 

inventories – Explores the possibility to use structural and spectral variables from 

DAP for species-specific FMI. The DAP data was generated from UltraCamXP 

imagery collected from a manned aircraft. 
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II.  Inventory of small forest areas using an unmanned aerial system – Illustrates one of 

the first examples where a UAV was used for acquisition of high resolution 

photogrammetric data for small scale (2 km2) FMI. Structural and spectral variables 

were used to model forest biophysical properties like Lorey’s height, dominant height, 

basal area, number of trees, and . 

 

III. Use of partial-coverage UAV data in sampling for large scale forest inventories – 

Shifts the focus from the use of UAV data for FMI to using them as part of a sampling 

strategy in LSFS. UAV data were acquired as a sample (UAV blocks) over a large 

area (130 km2) and together with a sample of field plots were used to estimate mean 

 and its uncertainty for the entire area in a hybrid inferential framework.  

 
IV. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume 

prediction through hierarchical model-based inference – Builds upon the sampling 

approach adopted in paper III by adding a wall-to-wall layer Sentinel-2 multispectral 

data. Hierarchical model-based inference was adopted for the estimation of the 

uncertainty of all of the models linking the three levels of information (i.e., field plots, 

UAV, and Serntinel-2 data).  

 

3. Materials 

3.1 Study areas 

Three study areas located in southeastern Norway (see Figure 2) were used in the thesis:  

a) A boreal forest area in Våler municipality (8.5 km2) was used in paper I. The forest 

area is dominated by conifer species, with Norway spruce (Picea abies (L.) Karst.) 

being the dominant species (51% of the ) followed by Scots pine (Pinus 

sylvestris L.) and a small portion of deciduous species (13%). The area is 

characterized by a rather flat terrain with the altitude ranging between 70 and 120 m 

above sea level. The forests have been actively managed and the area has been 

subject to repeated ALS assisted FMI (Næsset 2002b, Gobakken et al. 2014); 

b)  A subset of the study area at Våler (1.9 km2) was used in paper II. The area was 

selected as it represented an example of private forest property in Norway.  
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c)  A forest area in Gran municipality (131 km2) was used in paper III and IV. The area 

was selected as a subset of a larger operational FMI ongoing in the district. As in the 

Våler study area, the dominant species was also Norway spruce (Picea abies (L.) 

Karst.), followed by Scots pine (Pinus sylvestris L.), and deciduous species. The 

topography was more hilly than in Våler and the altitude varied between 130 to 560 

m above sea level.  

For all of the above sites, the forests of interest had a mean height > 7 m as the forest in this 

development stage are typically inventoried by means of RS in FMI in Norway (Puliti et al. 

in submission).  

3.2 Field data 

For each study area, field measurements were collected during the same vegetative season as 

the RS data acquisition. For all studies, a systematic sampling design was adopted for the 

selection of the location of the field plots. This allowed for a uniform distribution of the plots 

throughout the study areas while also ensuring a probability sample. For study area a, two 

different sets of field plots were acquired: a sample plot dataset including 151 circular field 

plots (400 m2), and a stand validation dataset composed of 63 stands within which 744 field 

plots (125 – 250 m2) were distributed systematically ensuring an average coverage of 37.3% 

of the stand area. For study area b, a subset of 38 plots from the sample plot dataset used in a 

were chosen. For study area c, 33 field plots (500 m2) were acquired in two different sets of 

plots. The first included 26 field plots within the study area and the second included seven 

field plots collected as part of a larger inventory in a contiguous area. Figure 2 illustrates the 

sampling designs adopted in his thesis for the different study areas. 

For all of the field plots, diameter at breast height, i.e. 1.3 m above ground (DBH) 

was measured for all trees with DBH  4 cm. Heights were measured for a sample of trees 

selected based on probability proportional to stem basal area. The position of the center of 

each plot was recorded with sub-meter accuracy using differential global positioning systems 

and global navigation satellite systems. Forest biophysical properties were directly computed 

from the DBH and height measurements. These included Lorey’s height ( ), dominant 

height ( ), number of trees ( ), and basal area ( ).  values were obtained using the 

DBH and height measurements with the allometric equations from Braastad (1966), Brantseg 

(1967), and Vestjordet (1967), Vestjordet (1968), Fitje and Vestjordet (1977). 
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Figure 2. Overview of the location and field sampling designs adopted in this thesis. 

Study area b (paper II) was a subset of a (paper I).  

 

3.3 Remotely sensed data 

Different RS data sources were used for each study area. These differed in the type of sensor 

used (active and passive sensors), data acquisition platforms (satellites, manned aircrafts, and 

UAVs), and coverage (wall-to-wall and partial-coverage). A summary with the technical 

specifications of all the remote sensing datasets used in this thesis is provided in Table 1. 
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3.3.1 ALS data 
For all of the study areas, wall-to-wall ALS data were acquired using fixed-wing manned 

aircrafts. These consisted of two dataset: 1) in study areas a and b ALS data were acquired 

using an Optech ALTM-Gemini laser scanner and resulted in an average pulse density of 

7.45 points m 2; 2) in study area c the ALS data were acquired using two Leica ALS70 and 

also had an average point density of 7.45 points m 2.  

In this thesis, ALS data were used as a benchmark data source for forest inventories to 

compare the results obtained with photogrammetric data. Also, in all of the studies, the ALS 

derived DTMs were used to normalize the photogrammetric point clouds.  

3.3.2 Digital aerial photogrammetry 
The same aircraft used for acquisition of ALS data in study area a, was used to acquire wall-

to-wall aerial imagery using Vexcel UltraCamXP. This is a large-format digital aerial frame-

camera. The flight altitude was 2850 m above ground and the acquisition of two flight strips 

lasted for approximately 7 minutes. The ground sampling distance (GSD) of 0.17 m for the 

panchromatic images and 0.51 m for the multispectral bands (i.e., red, green, blue, near infra-

red). The images were captured with a forward and lateral overlap of 80% and 30%, 

respectively.  

Photogrammetric processing was performed using Agisoft Photoscan (Agisoft 2014). 

The data vendor provided internal and external orientation parameters. The resulting point 

clouds were “colorized” by co-registering them with the unrectified imagery using the 

interior/exterior camera parameters and x, y, z coordinates of each point. The 

photogrammetric processing also produced a panchromatic orthophoto at 17 cm resolution.  

3.3.3 UAV data 
UAV data was collected in study areas b and c using a fixed wing senseFly eBee UAV 

(senseFly 2014). The fixed wing solution was adopted in this thesis as it enabled larger area 

coverage compared to multirotors. For study area b, the acquisition was done on several 

contiguous flights ensuring wall-to-wall coverage, while for area c, UAV data was acquire 

only as partial-coverage on 55 systematically distributed blocks of 41.1 ha on average. 

Two different consumer-grade cameras were used for this thesis: Canon S110 near 

infra-red (NIR) camera (in study area b) and a Canon IXUS/ELPH camera (in study area c). 

The NIR camera produced a three bands image representing the red, green, and near infra-red 

bands, while the second camera registered only the RGB bands. The resolution for the NIR 
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camera was lower (12 MP) than the RGB one (16 MP) while the focal length was the same 

for both sensors (i.e. 24 mm). For both acquisitions, the overlap was set to 90% forward 

overlap and 80% later overlap. However, as explained in Puliti et al. 2015 this did not 

correspond to the actual overlap because of limitations in the UAV used. In addition, 

perpendicular flight lines were also flown. In a preliminary testing phase, this image 

redundancy was found to be necessary to reduce the occlusions and generate a uniform 3D 

geometry through photogrammetric processing in forested environments. National aviation 

regulations limited the acquisition of UAV imagery in altitude (i.e. maximum of 120 m above 

ground) and horizontally (i.e. visibility of the UAV at all times). This resulted in the need for 

conducting 15 flights in area b and 55 flights for study area c. 

Photogrammetric processing was performed using Agisoft Photoscan (Agisoft 2014) 

as it was found to be a versatile and user friendly software for generating 3D point clouds 

from UAV imagery. A minimum of five ground control points (GCPs) were always used for 

correcting shifts and distortions due to the poor geolocation and inertial measurement 

information from the UAV. The resulting dense point clouds (i.e., 60 – 90 points m2) were 

normalized using the available ALS DTM.  

A visual comparison between DAP data acquired from a manned aircraft and UAV 

data used in this thesis is shown in Figure 3. 
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Figure 3. Visual comparison of UAV data (black dots), DAP acquired from a 

manned aircraft (green dots), and ground ALS returns (red dots) for a transect using 

the three data sources in area b. The UAV data were collected in November 2014, 

while DAP data were acquired in July 2010.  

 

3.3.4 Sentinel-2 data 
For the purpose of paper IV, Sentinel-2 multispectral imagery were acquired using the Multi 

Spectral Instrument (MSI) during August 2015 for study area c. The MSI is a push-broom 

sensor. The entire area was covered by two overlapping Sentinel-2 level 1-C tiles. Level 1-C 

top-of-atmosphere reflectance were processed into level 2-A bottom-of-atmosphere products 

using software provided by the European Space Agency (ESA).  
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Figure 4. Overview of the photogrammetric (on the left column) and image 

datasets (on the right column) used in this thesis. In the left column the colors 

represent the altitude above sea level (i.e., higher altitudes with warmer colors) 

for the photogrammetric point clouds derived from: UltraCamXP imagery 

(study area a, paper I), UAV imagery using the NIR camera (study area b, paper 

II), and UAV imagery using the RGB camera (study area c; paper III and IV). 

In the right column the multispectral data used in the thesis are shown: RGB-
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NIR unrectified imagery from UltraCamXP (paper I), RG-NIR orthophoto from 

UAV (paper II), and Sentinel-2 imagery displayed in false color (paper IV).  

 

Table 1. Summary of the technical specifications for all the RS datasets used in 

the different study areas (a, b, and c). 

  Technical specifications 
Study area a b c 

Platform Manned Aircraft UAV Manned 
aircraft UAV Satellite 

Sensor 
Optech 
ALTM-
Gemini 

UltraCam 
XP 

Canon 
S110 
NIR 

Leica 
ALS70 

Canon 
IXUS/ 
ELPH 

MSI 

Altitude above 
ground (m) 900 2850 120  120 786 Km 

Side overlap - 30 80 - 80 - 
Forward 
overlap - 80 90 - 90 - 

Ground 
sampling 
distance 

7.4 points 
m-2 

Pan: 17 cm 
4 cm 7.4 points 

m-2 4 cm 10 - 30 
m RGBI: 51 

cm 
 

 

  

4. Methods 

4.1 Common methods to all papers 

4.1.1 Area based approach 
In all the studies included in this thesis, an area based approach (ABA) was adopted for 

combining the RS with field data. The ABA relies on the area-based relationship between RS 

information and ground reference forest biophysical properties (Vauhkonen et al. 2014). In 

this thesis the RS data were clipped from the area covered by the field measurements (i.e., 

area of the field plot). These predictor variables were then used to fit models at plot level 

against ground reference forest biophysical properties. With the exception of paper II, these 

models were then applied to predict the forest biophysical properties on the entire auxiliary 

space. Prior to applying the model, the study areas were tessellated into grid cells with equal 

size corresponding to the size of the field plots. RS predictor variables were extracted for 

each grid cell. The grid cell predictions were then averaged at stand level when stand 

boundaries were available (paper I), or used as the basis for the estimation in LSFS (paper III 

and IV).  
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4.1.2 Modelling 
For all of the studies included in the thesis, multiple linear regression models were used to 

link field observations to RS predictor variables. The choice to use these models was driven 

by the fact that: 1) they enable a clear reporting of the variance covariance matrices, 2) they 

can be used when only small samples of field plots are available. Other than in paper IV, 

transformations of the variables were performed as these have been found to this has 

previously been shown to be suitable for the modeling of these properties (Næsset 2002b). In 

paper IV, no transformations were applied to ensure a comparison with some of the methods 

presented in this paper which only allowed for linear models. 

For all of the studies, a maximum of five predictor variables were selected 

automatically using a branch-and-bound search for the best subset (i.e., R-package leaps; 

Lumley and Miller (2009)). The Bayesian information criterion was used for model selection. 

Furthermore, the variance inflation factor was used to account for multicollinearity. The 

subset with one variable less was iteratively selected if any of the variables in the current 

subset had a variance inflation factor 5.  

In addition to multiple linear regression models, Dirichlet regression (i.e. R-package 

DirichletReg; Maier (2014)) was used to model tree species proportions by means of spectral 

variables in paper I. The Dirichlet regression is similar to the beta-regression with the 

advantage that it allows for simultaneously modelling of all of the species proportions.  

4.1.3 Structural variables 
Structural variables were extracted for each plot and grid cell from the photogrammetric and 

ALS point clouds. These included height and density variables: height percentiles ( , 

,…, , ), density metrics ( , ,…, ), and standard deviation ( ). In paper I 

these were used to model species proportions (in addition to spectral variables, see section 

4.1.4), and . In paper II, in addition to , structural variables from UAV data were 

used to model additional forest biophysical properties, i.e. Lorey’s height ( ), dominant 

height ( ), stem number ( ), basal area ( ). In paper III and IV, the same height and 

density metrics were used to develop  models using ALS data or UAV data.  

4.1.4 Spectral variables 
Spectral variables were also used in paper I, II, and IV. These were derived at plot and grid 

cell level either from the digital number value of pixels or directly from the “colorized” point 

clouds. The spectral variables were subdivided into tonal and textural variables. The 

following tonal variables were used in paper I, II, and IV: mean band values, standard 
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deviations, and band ratios. Textural variables (Haralick et al. 1973) extracted at pixel level 

from the panchromatic orthophoto were also tested in paper I.  

The spectral variables were used in paper I for modelling species-proportions using 

Dirichlet regression, while in paper II tonal variables were used in addition to structural 

variables in the modelling of , , , , and . In paper II, to better understand 

the benefit of using the spectral information, models including spectral and structural 

variables were compared to models using only structural variables. In paper IV, tonal 

variables extracted from coarse resolution Sentinel-2 imagery were used to model .  

4.2 Accuracy assessment FMI  

The accuracy of FMI based on photogrammetric data was assessed for data generated from 

imagery captured using different sensors (i.e., large-format frame-cameras and consumer-

grade cameras) and acquisition platforms (manned aircrafts and UAVs). In paper I and II, the 

performance of DAP and UAV data was assessed based on the accuracies of the  models. 

In paper I, the accuracy assessment was done for the following response variables: species 

proportions, dominant species classification, and species-specific . In paper II, additional 

biophysical properties were assessed, i.e. , , , and . The models were 

evaluated in terms of: adjusted R2 ( ), root mean square error ( ),  as percentage 

of the mean ( ), mean difference ( ), and  as percentage of the mean ( ). For the 

dominant species classification (paper I) a confusion matrix was used to evaluate 

commission, omission, and overall errors. For both studies, these values were calculated at 

plot level using leave-one-out cross validation. Furthermore, in paper I the accuracy 

assessment was also carried out at stand level using the available independent data (see 

section 3.2). In paper I, the results obtained using ALS were used as reference to evaluate the 

performance of DAP.  

4.3 Use of UAVs as a sampling tool for LSFS  

After assessing the accuracy of FMI using UAV data for modelling  in paper II, the focus 

of the thesis shifted towards defining cost-efficient applications for the use of UAV data in 

forest inventories (paper III and IV). One possible way to reduce the costs is to use UAV data 

as part of a sampling strategy to estimate  in LSFS. Hence, paper III introduced an 

inventory approach where a sample of field data and a sample of UAV data were used in a 

HYB inferential framework for the estimation of  for a study area of approximately 70 

km2 (denoted as case B). Paper IV, building upon paper III attempted to further increase the 



 

20

precision of the estimation by including an additional wall-to-wall layer of Sentinel-2 

imagery (denoted as case C). In paper IV the HMB estimator developed by Saarela et al. 

(2016) was adopted. 

The proposed cases B and C were compared against the following alternative 

inventory cases that differed in terms of sampling designs, mode of inference, and source of 

auxiliary data: 

Case A.1: Standard model-based inference with wall-to-wall ALS data (paper III and 

IV). This case represented the best-case scenario in terms of the quality of the 

auxiliary data and auxiliary data coverage. 

Case A.2: Standard model-based inference with wall-to-wall Sentinel-2 data (paper 

IV). This case was used to gain insights on the attainable precision using field plot 

and Sentinel-2 data alone for estimation of . 

Case B: Hybrid inference with a sample of UAV data (paper III and IV). See 

description above. 

Case C: Hierarchical model-based inference with wall-to-wall Sentinel-2 and a 

sample of UAV data (paper IV). See description above. 

Case D: Design-based inference with a probability sample of field plot data (paper 

III). This case was the only one where no remote sensing data was available. 

The relative efficiency (RE), calculated as the estimated variance of one case divided 

by the estimated variance for another case, was used as a measure of improvement of 

precision of one case over another. Furthermore, as the main reason to use UAVs in a 

sampling context was to increase the cost-efficiency of UAV forest inventories, cost figures 

were reported and discussed. A graphical summary of the different field and RS auxiliaries 

used in the different cases is provided in Figure 5. 
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Figure 5. Schematic representation of the LSFS cases object of study.  

 

4.3.1 Hybrid inference  
Case B was adopted both in paper III and IV. In the former, it was used as a means to 

improve the precision of field DB estimates, while, in paper IV the precision of case B was 

used as reference for quantifying the improvement in precision when adopting case C. Case B 

relied on a two-phase design, where UAV data were acquired in the first-phase as a 

probability sample (i.e. 55 blocks) and a sample of field data (n= 26) were acquired in the 

second-phase as a subsample of the UAV data. Additionally, a set of field plots (n= 7) 

external to the area of interest where UAV data was also available. A model linking UAV 

data and ground reference  was fitted using the entire set of observations (n= 33). The 

models were then applied to the previously tessellated sample of UAV data and the grid cell 

prediction were used to estimate the expected value  (see equations 6 and 7 in paper III 

and IV, respectively). The variance of the population parameter  was estimated 

using the hybrid estimator by Ståhl et al. (2011) accounting for both the sampling error from 

the first phase sample and for the model error due to the uncertainty of the parameter 

Field plots 

UAV 

ALS 

Sentinel-2 

A.1) 

A.2) 

B) 

C) 

D) 
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estimates (see equations 7 and 8 in paper III and IV, respectively). The estimated standard 

error ( ), calculated as the square root of the estimated variance , and  as 

percentage of  ( ), were used as measures of precision. 

Furthermore, in paper III one of the objectives was to test the possibility to improve 

the precision of the estimates in a hybrid inferential framework by augmenting the field data 

with observations external to the study area. This was addressed by comparing precision of 

the estimation obtained using the entire set of field plots (n= 33) against those obtained using 

only the field observation from the study area (n= 26). 

4.3.2 Hierarchical model-based inference 
Case C was adopted in paper IV as a means of further improving the precision compared to 

case B and to produce wall-to-wall  maps. In case C, three sources of information were 

used, namely: a sample of field plots (n= 33), a sample of UAV data (55 UAV blocks), and 

wall to-wall Sentinel-2 data. Because of the wall-to-wall coverage of the Sentinel-2 data, case 

C was independent from any design assumptions. The three sources of information were 

linked though nested models. A first model linking ground reference  and UAV data 

( ~UAV) was developed and applied to the UAV grid cells. Furthermore, a second model 

linking the grid cells predictions  to the Sentinel-2 predictor variables ( ~Sentinel-2) 

was developed and applied to the entire study area. These wall-to-wall grid cell predictions 

were used to estimate the expected value  (see equation 12 paper IV). The variance of 

the population parameter (  was estimated with the HMB estimator by Saarela et al. 

(2016). This estimator accounted for the model error due to the uncertainty of the parameter 

estimates for the ~UAV and ~Sentinel-2 models (see equation 13 paper IV). As for 

case B, the  and  were used as measures of precision. 

Furthermore, paper IV investigated the possibility of reducing the sampling intensity 

for the UAV data without reducing the precision of the estimates. This was addressed by 

simulating an iterative reduction of the UAV samples and by comparing the estimated 

variance in case B and in case C. 
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5. Results and discussion 

5.1 Quantifying the accuracy of FMI when using structural and spectral information 

obtained with image-matching data generated from different image acquisition platforms 

(Paper I and II). 

Consistent with previous studies comparing the performances of DAP against ALS data, the 

results from paper I revealed comparable accuracies when modelling  using ALS or DAP 

data (Table 2) both at plot and stand level. Among the studies mentioned in section 1.3, our 

findings from paper I showed the smallest differences in  and  (i.e., 0.2 m3 ha-1; 

0.1%) between DAP and ALS models (see Figure 1, growing stock volume). Similar results 

were also obtained when using UAV data in paper II. The  obtained for models 

linking UAV data with Lorey’s height, dominant height, stem number, basal area, and  

were of similar magnitude of what was found by Gobakken et al. (2014) using ALS data in 

study area a (see Figure 2). In terms of  for the Lorey’s height, basal area, and  

models, the results of paper II (13.6%, 15.4%, and 14.9%) were similar to those found by 

Tuominen et al. (2015) also in boreal forests (14.4%, 23.9%, and 26.1). Furthermore, paper II 

reveled larger accuracy compared to other studies using UAV data to model above ground 

biomass across different forest types. The larger  values found by Kachamba et al. 

(2016) in tropical woodlands (46.7%) indicate that, as often found for ALS data, the accuracy 

of UAV models decreases in forests with more complex structure. Regarding the models 

developed using DAP or UAV data one interesting aspect was that both models included the 

80th height percentile, however only the UAV model included a density variable. The 

inclusion of a density variable in the UAV model was consistent in paper III and IV. A 

plausible explanation for the difference in selected variables between DAP and UAV models 

can be found in the larger variations in heights in the UAV point clouds compared to DAP 

(see Figure 3). The large overlaps used to acquire UAV data reduced the occlusions and 

therefore enabled a more continuous representation of the vertical distribution of the canopy. 

These findings confirm what was previously pointed out by Bohlin et al. (2012) and 

Nurminen et al. (2013), namely that increasing the image overlap results in larger height 

variations in the point cloud, and thus in a better representation of the vertical structure of the 

canopy. Furthermore, for UAV data it is also possible that the very high resolution and close 

range imagery enable a better detection of image features in shadowed areas and therefore a 

better 3D reconstruction within canopy gaps.  
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 Table 2. Summary of accuracy assessment for the models used in paper I and II 

using ALS, DAP, or UAV RS auxiliary data at plot (leave one out cross 

validation) and stand level. The accuracy assessment included adjusted , 

, , , and  for the  models for paper I and II. 
   Plot level LOOCV    Stand level 

Paper RS 
data 

Predictor 
variables         

I a ALS p95, d50 0.86 48.9 19.7 0.0 0.0 31.0 13.3 9.9 4.2 
DAP p10, p80 0.83 49.9 20.1 0.0 0.0 31.2 13.4 -0.9 -0.4 

II b UAV p80, d0 0.85 38.3 14.9 0.5 0.2   - - - - 
 

a the models were fitted using 151 field plots 
b the models were fitted using 38 plots 

As expected, the structural variables were strong predictors for , , , and 

. In the best case in paper II, UAV structural variables were able to describe 96% of the 

variation of  and  was as low as 0.7 m ( = 3.6%). The inclusion of spectral 

variables improved some of the models only marginally in paper II. These findings were not 

surprising, as the structural variables are often able to explain most of the variability of forest 

biophysical properties. However, these results are far from being conclusive as the UAV 

imagery used were severely affected by varying illumination and atmospheric conditions. 

Additionally, the season (i.e., late fall, beginning of winter), the camera used, and the use of 

JPEG images were also sub-optimal. While UAV spectral variables were not found to be 

particularly relevant in paper II, in paper I, the spectral variables in combination with 

structural variables were useful in predicting species proportions, species-specific  and 

classifying dominant species. The maximum value found in paper I for species 

proportions (21.4%) was in line with the study by Ørka et al. (2013) who reported a 

maximum of 25% when predicting species proportion using a combination of ALS 

data and multispectral imagery. Furthermore, the overall stand level classification accuracy of 

the dominant species in terms of  was of a similar magnitude (79.0%) of that found for 

currently operational manual photointerpretation methods (82.5%; Maltamo et al. 2014). As 

in previous species-specific studies (Packalén and Maltamo 2007), large errors were observed 

for  prediction of the deciduous class (i.e., = 84.9%). Despite the low accuracy 

for the deciduous species, the findings were encouraging for the conifer species, which were 

the most representative in terms of , contributing to 88% of the total stand level . It 

is worth mentioning that our results may be overly optimistic as compared to what one may 

expect under conditions encountered in operational applications as the imagery used in paper 

I were collected under constant light and atmospheric conditions. 
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Overall, this thesis proved that photogrammetric data acquired using different 

platforms and different acquisition specifications can be used similarly to ALS in FMI when 

an ALS DTM is available. This thesis highlighted some of the strengths of photogrammetric 

data like the availability of structural and spectral information from the same acquisition. The 

spectral data were proven to be useful to discriminate between different tree species. This 

thesis also provided some of the first empirical results of the use of UAV data to model a 

variety of forest biophysical properties. Several other positive aspects of using UAVs were 

pointed out in paper II, including:  

1) availability of the platforms and sensors 

2) versatility both in planning and in data acquisition 

3) rapidity of data delivery 

4) cloud insensitivity.  

The results were encouraging for further use of UAVs and for this reason, this thesis 

further explored LSFS applications using UAVs. 

5.2 Identifying operational niches for UAV data in LSFS by using it as part of a sampling 

strategy (paper III and IV).  

The results from paper III revealed that for study area c, when adopting case B it was 

possible to increase the precision of the estimation compared to case D without incurring in 

prohibitive costs for wall-to-wall UAV data acquisition (see Table 3). The  and  were 

reduced by 8.8 m3 ha-1 and 3.8%, respectively, when case B was adopted rather than case D. 

The relative efficiency (i.e., / ) was 4.4, meaning that in order to attain the 

same level of precision of case B but using only field plot data in a DB framework, more than 

four times the number of field plots would be needed (i.e. 114 field plots). In both paper III 

and IV the levels of precision of the estimation for case B ( = 3.5) were similar to what 

was obtained in case A.1 using wall-to-wall ALS data ( = 2.6). Such findings support the 

hypothesis that UAVs can indeed be effective as sampling tools in LSFS. Up to date, no 

study has addressed the use of UAV data as part of a sampling strategy for LSFS, hence no 

comparison was available. The estimated precision for case A.1 was consistent with what 

found for a similar case by McRoberts et al. (2013, 2014b) who reported values ranging 

from 4.3% and 5.3% of the mean. The comparison for case B was limited because studies 
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adopting two-phase designs with ALS data rather than UAV data were carried on a much 

larger scale and with larger samples. Nevertheless, the increase in precision when adopting 

case B rather than D was in agreement with findings by Ene et al. (2012, 2013, 2016), who 

demontrated though simulaitions that the use of ALS data in two-phase designs under the 

HYB framework can be effective in increasing the precision of DB estimates. 

When including a layer of wall-to-wall optical multispectral data at moderate 

resolution (10 – 30 m) in the estimation, as in case C, the increase in precision compared to 

case B was only marginal (0.32 m3 ha-1). This result was in line with the small difference in 

the precision ( ) found by (Saarela et al. 2016) between two cases corresponding to cases B 

and C in this thesis (0.3 – 0.06 m3 ha-1).  

Table 3. Summary of the results from the estimation of  under the 

different cases studied in the thesis.  

Case    
A.1 a 250.3 37.1 6.1 2.6 
A.2 b 209.3 171.8 13.1 5.6 
B a 223.0 65.2 8.1 3.5 
C b 219.6 60.2 7.7 3.4 
D a 241.2 275.5 16.6 7.3 

 

a results from paper III. 
b results from paper IV. 

 
Further analysis addressing the possibility to reduce the sample size of UAV data 

when including wall-to-wall auxiliary data revealed an increase both for  and 

 when reducing the number of UAV blocks (see Figure 6). Interestingly, the 

precision obtained with case C and using only five UAV blocks, was on the same order of 

magnitude ( = 8.0 m3 ha-1) as case B using 55 UAV blocks ( = 8.4 m3 ha-1). These 

findings suggest that the inclusion of wall-to-wall auxiliary data can reduce the costs by 

reducing UAV sampling intensity, while maintaining the same level of precision.  
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Figure 6. Averages of estimated variances for cases B ( ) and C 

( ) over 6000 iterations for each UAV sample size. 

 

The uncertainty in the model parameter estimates for the ~UAV model was the 

main source of uncertainty for case B. This was consistent in paper III (43.76 m3 ha-1 or 

69.7% of the estimated variance) and in paper IV (65.0 m3 ha-1 or 99.6% of the estimated 

variance). A similar trend was observed for case C in paper IV, where the uncertainty due to 

the ~UAV model was also the main component in the estimated variance (59.9 m3 ha-1 or 

99.6% of the estimated variance). The contribution of this source of uncertainty was 

surprisingly large, however such a magnitude can possibly be explained by the fact that the 

sample of UAV data was rather large (i.e., approximately 20% of the entire population). 

Thus, it is evident that an increase in the precision of the estimation can be obtained through a 

reduction of the ~UAV model error. Some of the main factors affecting this model error 

relate to:  

1) Small number of observations: such issue made the inference very sensitive to the 

choice of the second phase sample. Hence, to reduce the strong influence of few 

extreme observations on the uncertainty in the models’ parameters larger sample sizes 

have to be collected. This, as suggested by Saarela et al. (2015) could ultimately result 

in a reduction of the ~UAV model error. In this regard, a major advantage in MB, 

HYB, and HMB comes from the possibility to include observations external to the 

study area. In paper III, it was demonstrated that the inclusion of field plots collected 

in an area contiguous to the study area can indeed lead to an increase in the precision 
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of the estimates. The possibility of including external observations represents an 

advantage in LSFS with limited budget for field data acquisition, as often is the case 

for UAV-based LSFS. In contrast to the RS data acquired using manned aircrafts, 

UAV data acquisition is more versatile for small scattered areas (i.e., field plots). 

Therefore, small sample sizes of field plots acquired locally can be augmented by 

single scattered plots acquired opportunistically or within other forest inventories 

(e.g., NFI). 

2) RS auxiliary data used: The present thesis demonstrated that UAV photogrammetric 

data can be used to accurately model , nevertheless smaller model errors can be 

expected when using laser scanning data acquired using UAVs. To date, these 

systems have mainly been used for research purposes as their operation costs are still 

high due to the hardware, software, limited flight time, and low flight altitude (i.e., 

small swaths at low altitudes). It is important to note that major developments in laser 

scanning systems are ongoing, enabled by advances made in the robotics industry. 

Future generations of compact laser scanning devices, or solid-state laser scanners, 

hold unprecedented potential for increasing the application of UAV laser scanning as 

a result of the limited dimensions of these sensors, the low battery consumption, and 

higher resolution of the data. It is possible that future applications of UAVs will be 

increasingly used for laser scanning data acquisition. The use of these active sensors 

could potentially result in a reduced ~UAV model error and therefore an increase 

in the precision of the estimation. 

The cost figures for the studied cases reported in paper III were updated with figures 

for case C and two examples of hypothetical cases (see Table 4) were included. The first 

example was denoted as case C.2 and represented the previously described case C with 

reduced UAV sampling intensity (i.e., only five UAV blocks). The second example was 

denoted as case D.2 and represented case D with an increased number of field plots in order 

to attain the same level of precision as in case C.2. The magnitude of the factor for the 

increase in number of field plots was equal to the relative efficiency (RE= 

/ = 4.2). Figure 7 shows the cost effectiveness of each studied case by 

plotting the  against the costs for each case. These results revealed that the lowest cost was 

for the acquisition of field data alone (i.e. case D). However, this came at the expense of the 

lowest precision of all studied cases. The cost to attain the same level of precision for case 

D.2 as for case C.2 was more than four times larger than for case D (i.e., 3.64 EUR ha-1). As 
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expected, given the wall-to-wall coverage of ALS data, the largest precision was found for 

case A.1. The costs for this case were intermediate and it is important to mention that these 

costs were calculated for Norwegian conditions, where a strong market competition 

contributes to low prices for ALS acquisition. Larger costs can be expected for the 

acquisition of ALS in countries where the required technology and expertise are not readily 

available (i.e., developing countries). Of particular interest was the hypothetical case C.2 by 

which the costs could be reduced to that of case D while ensuring a precision of the 

estimation similar to case A.1 (i.e., wall-to-wall ALS data). Even though such a case is 

unrealistic in operational settings, the example showed that in case C substantial cost 

reductions for acquiring UAV data can possibly be achieved when including wall-to-wall 

Sentinel-2 data. 

Table 4: Summary of estimated costs for inventory cases studied in paper III and 

IV. 

Cost description  
Inventory costs (EUR ha-1)  

A.1 A.2 B C C.2a D b D.2 c 

Acquisition d  1.48 - 3.02 1.01 0.09 0.69 2.92 

Housing  - - 0.06 0.02 0.001 0.03 0.13 

Equipment e - - 0.18 0.18 0.01 0.14 0.59 

Data processing f - - 0.16 0.16 0.01 - - 

Field data 0.86 0.86 0.86 0.86 0.86 - - 

Total 2.34 0.86 4.28 4.28 0.96 0.86 3.64 

a case C.2 represents a hypothetical case where only 5 UAV blocks were used in a 
hierarchical model-based inference, i.e. the costs for acquiring UAV data were reduced by 
90% compared to the full acquisition of 55 UAV blocks. 
b Assuming that five plots (500 m2) are measured on average each day by a team of two 
people. 
c case D.2 represents a hypothetical case where only no RS data and the field plots 
sampling intensity was increased in order to attain the same level of precision as in case 
C.2. 
d Assuming cost of labor of 61.8 EUR hour-1. 
e Transport and other running expenses. 
f ~20 hours of work for one person. 
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Figure 7: Scatterplot of estimated standard error ( ; m3 ha-1) against costs (EUR ha-

1) for each LSFS case studied. The legend shows graphically the differences between 

the different cases included. In addition to the cases described throughout the thesis, 

the following two hypothetical cases were described: case C.2 was the same of case 

C but the sampling intensity of UAV data was reduced to only 5 blocks, and case D.2 

was the same as case D but with increased field plot sampling intensity to attain the 

same level of precision as for C.2. 

 

6. Conclusion and future perspectives 

6.1 Forest Management Inventories 

The use of DAP in FMI is becoming an increasingly interesting application. However, 

it is not yet clear to what extent these data will be used operationally in future FMIs. In some 

countries, since ALS data is so established in operational FMI, it is likely that DAP will have 

more of a complementary role to ALS. On the other hand, DAP have the potential to become 

the main source of information for FMI in other countries because of the lower costs.  

One particularly interesting application of DAP that should be addressed in the future 

is the use of time series of DAP canopy height models to obtain alternative sets of predictor 

variables to model forest biophysical properties that are otherwise difficult to model. For 
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instance, the use of multi-temporal CHM from DAP may provide valuable information 

regarding forest biophysical properties like site productivity (Véga and St-Onge 2009). This 

represents one of the most important variables in forest management (Eid 2000) and yet little 

effort has been dedicated to modelling this property. The main reason being the lack of multi-

temporal CHM. Future research should therefore look into the use of CHM temporal 

variables from DAP for FMI, as this represents a potential operational use of DAP.  

This thesis also concludes that UAV data can be used effectively in FMI in specific 

situations where there is a need to inventory single forest properties at specific points in time. 

Nevertheless, limitations to the use of UAVs for FMI were highlighted, especially in terms of 

the large costs for wall-to-wall acquisition. This thesis lacked an overview of the 

performances of UAV data across different forest development stages (i.e., only forest with 

mean height > 7 m were included in the studies). Nevertheless, thanks to the very high 

resolution of UAV data, their use may be advantageous also for regeneration forests. 

Therefore it would important to understand the accuracy attainable for these inventories using 

UAV data, as these data might outperform alternative 3D RS data sources (i.e., ALS or 

DAP).  

6.2 Large Scale Forest Surveys 

Concerning the use of UAV data for LSFS, this thesis concludes that the use of a sample of 

UAV data rather than wall-to-wall coverage could represent a cost-efficient application of 

UAVs in forest inventories. In the studied cases in this thesis (i.e., case B and C), the use of 

UAV data increased the precision when compared to DB estimates based on field data alone 

while keeping the costs of acquisition of UAV competitive to alternative RS data sources. 

The results of paper III and IV demonstrated that using UAVs as part of sampling strategies 

could be a cost-efficient solution for monitoring forest resources, especially in situations 

where acquisition of airborne RS data may be expensive due to the lack of technology and 

technical expertise (i.e., developing countries).  

Paper III and IV presented case studies primarily serving illustrative purposes. Our 

findings should be confirmed in future studies in different forest types and adopting different 

sample sizes. Further research should also look into the use of case B and C to estimate a 

variety of forest biophysical properties using different RS auxiliary data. Particularly 

interesting could be to attempt to reduce the GSV~UAV model error through the use of more 

explanatory UAV data (e.g., laser scanning data). Furthermore, in light of the limitations 
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found in paper IV for moderate resolution multispectral data for GSV estimation, further 

studies should attempt to utilize more informative wall-to-wall auxiliary data. In this regard, 

space-borne canopy height models from satellite image stereo-pairs or satellite 

interferometric synthetic aperture radar could represent alternative sources of wall-to-wall 

auxiliary data.  

Further research is also needed to apply methods for optimizing the sampling design 

both for field data and UAV data. The adoption of efficient sampling designs by spreading 

the samples across the auxiliary space could in fact enable a reduction in the sample sizes, 

hence a cost reduction. Furthermore, it is also important to mention that ongoing research is 

aimed at further developing the estimators. Hence, future LSFS will benefit from more 

advanced estimators. 

6.3 Conclusion 

The research done up to date clearly indicates that DAP has reached a level of maturity 

making it competitive with alternative 3D remote sensing data sources. The smaller cost, 

larger availability, and larger flexibility mean that DAP will likely play an important role in 

future forest inventories.  

It is important to mention that the findings of this thesis assumed that an ALS DTM is 

available and further research should further explore the possibility to use alternative RS data 

sources for the generation of DTMs. One interesting approach might be to derive a DTM 

from the combined use of multiple sources of height information. For instance, given that 

photogrammetric data provides highly accurate DTMs in open areas, this information could 

be used to co-register coarser resolution DTMs (i.e. from satellite stereo pairs) and therefore 

reduce the errors that affect these types of products (Kachamba et al. 2016). Furthermore, 

improvements towards the generation of DTMs from photogrammetric data could be 

achieved from a reduction of the gaps in the data caused by shadowed areas. This could be 

accomplished either though flying under full cloud cover or through image processing. 

Further research should address the latter as the adoption of image processing algorithms 

prior to the photogrammetric processing (i.e., image bracketing or shadow removal 

algorithms) could be beneficial for the production of higher quality photogrammetric data.  

The findings of this thesis were encouraging for further use of photogrammetric data 

both in FMI and LSFS. One important step towards the operational use of DAP in FMI is to 

better understand the accuracy obtainable in large area FMI and to determine the value of the 
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information obtained from DAP compared to ALS. Furthermore, the use of UAVs was found 

to be cost-effective for LSFS, nevertheless we presented some of the first results in the 

literature and for an operational use of the described applications, our findings should be 

confirmed by further studies. It is important to highlight that the LSFS applications described 

in this thesis are applicable to a variety of combinations of RS data sources. Hence, it is likely 

that future UAV assisted LSFS will benefit from future technological developments (e.g., 

advent of solid-state laser scanners). 
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