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Abstract

Forests can be characterized by many attributes such as mean height, volume, diameter at breast
height (DBH), age, tree species distribution, and different indices describing productivity and diversity.
All these characteristics can be estimated using a wide range of remote sensing data from aerial
photography and airborne laser scanning (ALS) to spaceborne or airborne multispectral or
hyperspectral sensors, etc. Remote sensing is a science to obtain information of objects without making
any physical contact with it, typically from aircraft or satellites. In particular, this thesis focused on two
remotely sensed data sources that at the moment seem to be the most promising for abovementioned
purposes: ALS and airborne hyperspectral data. Their combined use or fusion can be beneficial as they
provide a complementary information for characterizing forest attributes. ALS and hyperspectral
technologies provide very high spatial resolution allowing us to map the forest attributes at a very high
spatial detail. This can be useful for certain applications but increasing the spatial detail does not always
improve the accuracy of the predictions. Indeed, many predicted forest characteristics can be explored
at many spatial scales, e.g. from tree to stand. Thus, the major objective of this thesis was to evaluate the
potential of fusing ALS and hyperspectral data for the prediction of forest characteristics and to evaluate
the benefits of different spatial details in the prediction of such characteristics. The fusion of ALS and
hyperspectral data and the spatial scale exploration were carried out simultaneously in this thesis, and
in particular it started with a focus on the spatial scale (development of a new ITC delineation algorithm)
and it finished with a focus only on data fusion (prediction of forest structural diversity measures).

The ALS and hyperspectral data were fused at two different levels, product and variable-level
fusion. The product-level fusion was used for the prediction of the site index and species-specific
volume, while the variable-level fusion was used for total and species-specific volume, as well as
structural diversity measures. For the evaluation of different spatial details in the prediction of forest
characteristics we considered three remotely sensed-based inventory approaches, namely the
individual tree crown (ITC) approach, the semi-ITC approach, and the area-based approach (ABA). In
order to apply the ITC and semi-ITC approaches, the individual tree delineation algorithm was needed
and developed based on the ALS point cloud. The forest characteristics evaluated in this thesis were:
individual tree attributes (such as tree height, DBH, stem volume, age, and species), forest attributes
(such as site index, total and species-specific volume), and forest structural diversity measures.

The ITC approach allowed an accurate determination of the height, species, DBH, and stem
volume, while the age was subject to a greater error. The ITC approach for site index determination in
combination with ALS and hyperspectral data was found to be an efficient and a stable procedure and it
reached similar accuracy as in the existing site index maps based on field surveys. For species-specific
volume, the ITC approach reached high accuracies but there were also large systematic errors for
minority species. For majority species, the semi-ITC approach resulted in slightly higher accuracies and

smaller systematic errors compared to ABA. In all three approaches, ALS and hyperspectral data were

vii



important to provide higher accuracies. The fusion of ALS and hyperspectral data for forest structural
diversity measures did not improve their accuracy but produced accuracy levels comparable to the
models built on ALS data alone, except for one measure. In these experiments, ALS data showed the best
predictions for the majority of the structural diversity measures taken into account.

To conclude, the ITC and semi-ITC approaches can provide higher spatial detail of the predicted
forest characteristics. This information can also be aggregated to coarser scales, e.g. stands. The use of
ITC and semi-ITC approaches has a potential in different forestry and ecology applications, where the
accuracy of the semi-ITC also showed the capacity in operational forest applications. The fusion of ALS
and hyperspectral data improves the predictions of forest characteristics, such as volumes and site
index, while for some forest structural diversity measures the fusion did not improve the accuracy of

results. Fusion of such data, especially for structural diversity measures has to be further explored.
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1 Introduction

Forest structure can be characterized by many biophysical attributes such as canopy
cover, stem density, basal area, mean height, volume, diameter at breast height (DBH), age,
biomass, and tree species distribution (Dalponte et al., 2014; Hakkenberg et al., 2016; Hernandez-
Stefanoni et al,, 2014; Listopad et al.,, 2015; M Maltamo et al., 2009). Additionally, such forest
characteristics are a key element for retrieving information on site productivity, forest structural
diversity, richness of wildlife communities, wildfire behavior, etc. (Guo et al.,, 2017; Hill and
Hinsley, 2015; Kandare et al., 2017b; McElhinny et al., 2005; Riafio, 2003). Thus, accurate and
reliable measurements of forest characteristics are important for sustainable forest management
to enable forest managers, silviculturists, and ecologists to make sound decisions in a variety of
applications.

Silvicultural practices and natural events such as landslides, wildfires, drought, and insect
outbreaks alter stand composition and structure. Therefore, frequent updates of forest attributes
are requested. Nowadays, remote sensing data are commonly used to describe, predict, and
assess forests attributes and they can provide important knowledge to support national forest
inventories (McRoberts and Tomppo, 2007) and for conservation monitoring (Nagendra et al.,
2013). Furthermore, the remote sensing technologies, such as aerial photography, spaceborne or
airborne laser scanning, spaceborne or airborne multispectral and hyperspectral images, and
synthetic aperture radar (SAR), enable observation of forest areas at different temporal and
geographical scales (Eitel et al., 2016; Fassnacht et al., 2016; Latifi et al.,, 2015; White et al,, 2016;
Yuetal, 2015). Among all the available remote sensing data, this thesis focuses on airborne laser
scanning (ALS) and airborne hyperspectral data. Airborne sensors were shown to be effective in
covering large areas with high detail. Among the mentioned sensors, ALS and airborne
hyperspectral data are at the moment the most interesting sources for characterizing forests. In
particular, ALS is a key source providing a three-dimensional (3D) point cloud, which appears as
dense xyz coordinates (Figure 1). ALS data have shown to produce accurate estimates compared
to other remote sensing techniques for forest biophysical attributes (e.g. volume, height, DBH,
crown area, and stem density) (Hollaus et al., 2006; Holmgren, 2004; Kankare et al., 2013; Nzesset,
2002; Neesset and @kland, 2002; Wing et al., 2012; Yu et al,, 2015). For identifying tree species,
airborne hyperspectral images (Figure 2) are a very promising data source due to their ability to
detect subtle variations in the chemical and structural properties of the tree canopy. In such
images, radiance data are available for many narrow contiguous bands (>50), from the visible to
the near-infrared part of the spectrum. Due to its high spectral resolution, hyperspectral imagery

was found to be superior for the classification of tree species compared to multispectral imagery
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(Dalponte et al., 2012; @rka et al., 2013). Currently, the fusion of ALS and hyperspectral data
sources is the most promising approach to improve the accuracy of models predicting species-
specific biophysical attributes and various forest characteristics, i.e. forest structural diversity
(@rka et al., 2013; Torabzadeh et al., 2014).

In forestry and ecology studies, sample plots are generally established in order to relate
field and remote sensing data. Field data collection is carried using sample plots distributed over
an area of interest, and can follow different strategies (e.g. stratified sampling, random sampling,
etc.). After co-registering sample plots and remote sensing data, several metrics or variables can
be extracted from ALS and hyperspectral data for each sample plot. Subsequently, these variables
are used to construct statistical relationships with field-observed forest attributes. The
relationships, typically in the form of regression models, are then used to predict forest attributes
for a grid-cell size of the same size as the sample plots. Such approach refers to the area-based
approach (ABA) (Neaesset, 2002).

To increase the spatial detail, individual trees can be detected within a sample plot and
forest characteristics can be provided for each tree. Such approach is called the individual tree
crown (ITC) approach and it was introduced by Hyyppa and Inkinen (1999). Based on an ALS
point cloud or a spectral image, crown segments, often referred to as ITCs, are detected and
delineated applying a segmentation algorithm (Eysn et al., 2015; Ke and Quackenbush, 2011;
Wang et al,, 2016). Each crown segment is matched with one field-observed tree as the ITC
approach presumes that one crown segment contains exclusively one field-observed tree. For
each crown segment, various ALS- and spectral-derived variables are extracted, such as ALS
maximum height, crown area, spectral mean band values and spectral indices. Based on these
variables, the biophysical attributes, such as species, volume, age, and DBH can be predicted for
each crown segment, and can be aggregated to any grid-cell size or other scales, e.g. to a forest
stand. The detection accuracy of the ITC approach is usually measured with omission error
(failure to detect a tree or segmenting multiple trees into a single crown segment) and
commission error (detecting an object that is not a tree or splitting a single tree into multiple
crown segments). Omission error usually leads to underprediction of the forest attributes. This is
a common problem as delineation algorithms tend to not detect all the trees within an area of
interest. To reduce these errors, the semi-ITC approach has been proposed (Breidenbach et al.,
2010), which is equivalent to the ITC approach -regarding the delineation algorithm and remote
sensing variables extraction- but it has a different matching procedure. In contrast to the ITC
approach, the semi-ITC approach allows a crown segment to contain, beside none and one, also
multiple field-observed trees. Forest characteristics for each crown segment are obtained by
relating field measurements of trees and remote sensing variables of crown segments to develop

prediction models. The work presented in this thesis combines ALS and hyperspectral data by
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adopting the three aforementioned inventory approaches (ABA, ITC, and semi-ITC) for the
prediction of various forest characteristics.

State of the art remote sensing data acquired from airborne platforms are characterized
by a high spatial resolution (<1 m), which can improve the spatial scale of forest characteristics’
predictions on maps (with the spatial scale of interest either being an individual tree, a stand, or
aregion). If the spatial detail of forest characteristics estimations improve different communities,
ecologists, forest managers, and forest users are able to use this enhanced information in their
activities related to natural resource policy and planning, forest management and conservation,
biodiversity, and ecology.

Several forest characteristics (tree heights, tree positions, tree species, DBH, stem volume,
site index, and forest structural diversity measures) should be investigated, and innovative
inventory approaches should be explored to evaluate whether the increase of spatial detail is
possible. In particular, the development of an ITC delineation method would allow to obtain
refined maps at a smaller grid size, if the ITC and semi-ITC approaches are able to provide
accurate predictions of forest characteristics. Moreover, the comparison among the ITC, semi-ITC,
and ABA approaches at the grid-cell level should be further investigated to evaluate the accuracy
of forest characteristics obtained with each approach. In many studies, forest characteristics are
generally predicted with only one type of remotely sensed data. Thus, the synergy among
different data sources appears to be a key step to achieve greater accuracy in the prediction of
forest characteristics. In particular, ALS and hyperspectral data provide complementary and
independent information: one related to the forest 3D structure and one to the spectral
characteristics of the forest. In this context, the efficiency of such data synergy needs to be further
investigated.

The major objectives of this thesis were to evaluate the potential of fusing ALS and
airborne hyperspectral data (Papers I1, I11, IV) for the prediction of forest attributes and to explore
different spatial levels in the prediction of biophysical attributes (Papers I, II, III). The specific
objectives were: 1) to establish a 3D ITC delineation method and to quantify the influence of forest
structure and airborne laser scanning point cloud density on the ITC delineation algorithm (Paper
[), 2) to improve the existing site index maps by applying the developed ITC delineation method
together with fused ALS and hyperspectral data (Paper II), 3) to predict species-specific volume
using fused ALS and hyperspectral data in order to analyze the performance of three remotely
sensed-based forest inventory approaches to assess how different spatial details influenced the
results (Paper IlI), 4) to predict forest structural diversity with ALS and hyperspectral data,
separately and fused, in order to investigate the benefits of each data source (Paper IV). The
illustration of relationship between papers, and major and specific objectives is summarized in

Figure 3.
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Figure 2: Example of hyperspectral image over forest area.
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Figure 3: Flowchart explaining the connection between papers and objectives united in the current thesis.

2 Background

2.1 Airborne laser scanning (ALS) data

ALS is a method of adopting active laser sensor mounted on aircrafts which use the light
detection and ranging (LiDAR) technology. LiDAR systems used in forestry mostly operate in the
near-infrared region (e.g. 1064 nm), although some sensors also operate in the shortwave-
infrared or green bands (e.g. Optech Titan sensor), for example to penetrate water and detect
bottom features. LiDAR technology consists of an emitter and a receiver. The sensor emits many
thousands of individual pulses of, i.e. near-infrared, light per second (Baltsavias, 1999). Each
pulse penetrates partly into and possibly through the vegetation cover, and when the pulse
reaches a target surface (e.g. branch, leave or ground), part of its energy is reflected back to the
receiver. Most of the LiDAR devices used for ALS are time-of-flight LIDARs, and they measure the
elapsed time between the emission of a pulse and the arrival of the reflection of that pulse at the
sensor’s receiver. Knowing the speed of the light and time of the pulse travel, the range is
computed (Wehr and Lohr, 1999). From the range, the angle at which the pulse was “fired” (i.e.

scan angle), and the absolute location of the LiDAR device the three dimensional (3D)
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coordinates (x,y,z) of the target object are computed. The position and orientation of the
LiDAR device is continuously recorded along the flight path with a global positioning system
(GPS) and an inertial measurement unit (IMU), which allow direct georeferencing. As the LiDAR
device can measure for example 300,000 pulses per second, the resulting product is a densely-
spaced cloud of highly accurate georeferenced elevation points often called ALS point cloud
(Figure 1). In addition to the coordinates, information on the intensity of the backscattered pulse
is usually recorded with the LiDAR system.

Each LiDAR system can have different specifications and settings related to the
wavelength, power, pulse duration and repetition rate, beam size and divergence angle, the
specifics of the scanning mechanism, and the information recorded for each pulse (Wehr and
Lohr, 1999). Each emitted pulse can record the range and intensity of various objects along the
pulse path and within the area illuminated by the light - footprint. According to the type of
information recorded by the LiDAR system, two categories of sensors are distinguished, discrete
return and full-waveform. The first can record up to five echoes, i.e. returns per pulse, which
represent discrete objects in the path of the laser backscatter. The latter records the time-varying
intensity of the returned pulse energy and captures the entire pulse trace. Both sensor types can
operate with small (<1 m) or large (>10 m) footprint size. For example, forest inventory sample
plot or a single tree can be characterized by a small footprint size, since such size of footprint
allows high spatial resolution and can resolve the canopy structure up to a single tree. The vertical
and horizontal accuracy can vary between 5-30 cm and 20-80 cm, respectively (Hohenthal et al.,
2011). Data derived from a large footprint size are generally at a coarser resolution and can be
used to characterize canopy structure of larger areas. The vertical and horizontal accuracy vary
between 18-35 cm and 100-250 cm, respectively (Hohenthal et al,, 2011).

The ALS technology is widely used in the surveying community to collect high precision
3D survey data. As LiDAR sensors provide a 3D representation of forest structure, it is possible to
accurately assess forest biophysical attributes, such as height, basal area, volume, biomass, and
canopy structure (Ferraz et al., 2016; Holmgren, 2004; Lee and Lucas, 2007; Lefsky et al., 1999;
Naesset and @kland, 2002; Ozdemir and Donoghue, 2013; Varvia et al., 2016), and to provide high-
resolution topographic maps (Jung et al.,, 2013; Tonolli et al.,, 2010; Valbuena et al., 2013). In
addition, ALS data are used to estimate yields (Dash et al., 2015) and carbon stocks (Li et al.,, 2014;
Stephens et al., 2012) of forest stands to ensure a sustainable supply of timber products, and to
formulate silvicultural strategies (Coops, 2015; Pedersen et al., 2012). Moreover, ALS-based
geometric reconstruction of forest stands also enables to manage wildland fire (Morsdorf et al.,
2004), to monitor urban trees (Holopainen et al., 2013) and habitats (Hill and Hinsley, 2015), and

to assess the assemblages of beetles (Miiller and Brandl, 2009).
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2.2 Airborne hyperspectral data

Hyperspectral remote sensing combines imaging and spectroscopy into a single system,
also called imaging spectroscopy. Hyperspectral sensors are passive systems that collect and
record through a detector the electromagnetic energy that is reflected or emitted by the surface
of the objects. Hyperspectral imagery is created using an electro-optical sensor, which defines the
range of angles through which incident light travel termed as “field of view”. All objects within
the field of view are imaged with the detector that records the spatial data and spectra of an object
(i.e. radiance). The radiance is the amount of light the instrument detects and that is emitted by
the object being observed.

Airborne hyperspectral sensors can be classified into four groups: whiskbroom (point
scan), pushbroom (line scan), tunable filter (wavelength scan), and snapshot, and the first two
are the most commonly used in remote sensing applications. Whiskbroom hyperspectral imagers
are based on a single hyperspectral detector that collects the spectral signature of a single pixel
at a time. The detector moves along a scanning line that is perpendicular to the flight line. The
opposite is true for the pushbroom technology, also known as line scanning, where a series of
many detectors, aligned perpendicularly to the flight line, scans the ground along a line parallel
to the flight line. On the platforms, the IMU and GPS systems are used to correct the geometry of
the data and relate each pixel in the output imagery to a location on the ground. Hyperspectral
data used in this thesis were based on airborne platforms and the pushbroom spectral scanning
concept.

Each hyperspectral image consists of pixels, with spatial information collected in the xy-
plane, and a spectral information represented in the z-direction. The image spatial resolution is
defined by the pixel size, and it could be smaller than 1 m when mounted on airborne platforms.
For all the objects captured in the image, the spectral signatures are measured in a large number
of narrow spectral bands from the visible to the shortwave infrared part of the spectrum. The
number of bands can vary from several tens to hundreds of bands, with narrow bandwidth,
usually between 5 to10 nm. The band width may be larger in the near infrared or shortwave
infrared wavelength range. The greater is the number of bands, the higher is the level of spectral
detail in the hyperspectral images, which gives better capability to see the unseen. Thus, each
pixel contains a unique spectral signature, which can be used by the processing techniques to
identify and characterize particular objects or materials within a scene. Different objects, for
example different tree species, have different spectral signatures (Figure 4). The spectrum is a
plot of wavelength versus radiance or reflectance. For example, the spectral signature of trees in

the near infrared bands can be different due to species type, plant stress, and canopy state.
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When the radiance is processed in order to compensate for the atmospheric effects and
the solar illumination, reflectance can be obtained (Schaepman-Strub et al., 2006). In this context,
the quality of the atmospheric correction algorithms directly impacts further data post-
processing and exploitation. However, it was demonstrated that for certain applications the
atmospheric correction process is not necessary and is not strictly required (Schaepman-Strub et
al,, 2006). Due to illumination effects, the time of acquisition is very important, and the ideal time
interval is between 10:00 a.m. and 2:00 p.m. as this provides better illumination and a favorable
angle of incidence, or sun angle (Borengaser et al., 2008).

The major advantage of the hyperspectral sensors is that their narrow bandwidths allow
a high spectral resolution, which provides more detailed information on the spectral
characteristics of the target respect to the wide bands used by the multispectral sensors
(Dalponte et al., 2013). Additionally, hyperspectral data have been found to be more efficient in
tree species classification than multispectral data (Dalponte et al., 2012; @rka et al., 2013). The
main disadvantages of hyperspectral data are that the processing of the information is more
difficult and that the acquisition constraints are higher than with the multispectral data.

Many studies found that hyperspectral data are useful to provide information on
vegetation types, tree and canopy phenology, physiology, foliar biochemistry content of forest
canopies, and spectral signatures for selected tree species (Asner, 2008; Asner et al., 2017; Kokaly
etal,, 2009; Ustin et al.,, 2004).

In the forestry and ecology domains, hyperspectral data are powerful in tree species
classification and plat traits prediction, which is needed by a wide variety of applications. These
applications include forest inventories (van Aardt and Wynne, 2007), biodiversity and wildlife-
habitat assessment and monitoring (Clawges et al., 2008; Shang and Chisholm, 2014), hazard and
stress management (Fassnachtetal,, 2014, 2012), monitoring of invasive species (Boschetti et al.,
2007), wildlife habitat mapping (Santos et al., 2010), disturbances in the vitality of forests (Lausch
etal,, 2016, 2013), changes of plant communities and ecosystems (Asner et al., 2015), floodplain
vegetation prediction (Geerling et al., 2007), and forest trait diversity mapping (Asner et al,
2017). Tree species information is as well as important to predict species-specific forest

biophysical attributes (Kandare et al., 2017b; @rka et al., 2013).

10
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Figure 4: Example of spectral signatures of different tree species.

2.3 ITC approach and delineation algorithm

Individual trees are the smallest unit on which the forest management is carried out
within the tree level forest inventory (Maltamo et al,, 2014). The idea is to base the inventory on
the characterization of individual trees in the area of interest. The first step of the tree level
inventories is to detect and delineate individual tree crowns, also referred to as crown segments.
For the delineation of tree crowns, ALS data were found superior to passive optical data as they
are less affected by occlusions and shading (Voss and Sugumaran, 2008), and it is also possible to
reach higher delineation and detection quality with ALS data (Dalponte et al., 2015b, 2014). For
each delineated crown segment, the biophysical attributes, such as tree height, crown area, DBH,
stem volume, and age, can be extracted or modelled (Ferraz et al., 2016; Kandare et al., 2016).
When crown segments are co-registered with the hyperspectral data, hyperspectral variables can
also be obtained as the aggregation of the digital value of the pixels within each crown segment
as first order statistics (e.g. mean, variance, skewness, and kurtosis)(Kandare et al., 2017a).
Moreover, forest attributes can be modelled by relating field observations with ALS and/or
hyperspectral variables calculated for each crown segment. The most common point-based ALS
variables computed for each crown segment based on height are: percentiles, mean, maximum,
minimum, coefficient of variation, standard deviation, variance, skewness, and kurtosis
(Breidenbach et al.,, 2010; Neaesset and @kland, 2002; @rka et al., 2013; Yu et al., 2010). In addition,
crown projection area and crown density metrics computed as cumulative proportional densities
for different height thresholds (Nasset and @kland, 2002; Yu et al., 2011). All these ALS variables
can be calculated for the first, intermediates, and/or last returned LiDAR pulses. Some forest

characteristics can be obtained without modelling. For instance, tree height and crown area can
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be directly extracted from each crown segment by maximum ALS point (z) and the projection of
x and y coordinates of ALS points on horizontal plane, respectively (Kaartinen and Hyyppa, 2008;
Morsdorf et al., 2004; Neaesset and @kland, 2002; Yu et al.,, 2011, 2010). The obtained biophysical
attributes of each crown segment can be further aggregated to any grid-cell size.

One of the first delineation algorithm was proposed by Hyyppa and Inkinen (1999). In the
last two decades, numerous delineation algorithms were developed (Duncanson et al., 2014; Ene
etal, 2012; Kandare et al., 2016; Persson et al.,, 2002; Reitberger et al., 2009; Solberg et al., 2006;
Strimbu and Strimbu, 2015). Some of them are based on 2D canopy height model, 3D ALS points,
or the combination of both. The evolution of such a great number of delineation algorithms
emerged as there is no such method that would be applicable in different forest types (e.g. boreal,
tropical, temperate deciduous forests) and conditions (e.g. structure, productive capacity, cover)
governed by a variety of different management regimes (Kaartinen etal.,, 2012; Wang et al., 2016).
Moreover, the performance of the delineation algorithm is quantitatively validated by different
detection accuracy measures: omission error, commission error, detection rate, and accuracy
index. The omission error is accounting for the number of field-observed trees that were not
detected by the delineation algorithm (Equation 1). This kind of error occurs especially in dense
forests, when trees grow close to each other and are consequently segmented as one crown
segment. When a delineation algorithm detects a crown segment that is not matched with any
field-observed trees, it leads to the commission error (Equation 2). This usually happens when
tree crowns are big and the algorithm split one tree into two or more crown segments. The
detection rate indicates the rate of correctly delineated field-observed trees (Equation 3). The
accuracy index considers both omission and commission errors into a single metric (Equation 4).

NF_

Omission error = ———2100% Equation 1

Np

o Cnm 0
Commission error = N 100% Equation 2
F

. Cu
Detection rate = N 100% Equation 3

F
Accuracy indec = 100% — (Omission error + Commission error) Equation 4

In Equations 1-4, Ng is the actual number of field-observed trees, C,, is the number of correctly
matched, and Cy,, is the number of crown segments without a match with a field tree. To obtain
Cy and Cyp values, a matching procedure is conducted, following various thresholds for
permitted horizontal and/or vertical distance between field-observed trees and crown segments

(Eysn et al, 2015; Wang et al,, 2016).
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2.4 Semi-ITC approach

The semi-ITC approach is equivalent to the ITC approach regarding the ITC delineation
algorithm and the computation of the ALS and hyperspectral variables. They are distinguished by
the matching procedure (Kandare et al., 2017a). In the common matching procedure of the ITC
approach, the rule is that only one field tree can be matched with one crown segment, if not a field
tree remains unmatched. Differently, in the semi-ITC approach more than one field tree can be
matched with one crown segment (Breidenbach et al., 2010). Furthermore, all field trees must be
matched with the closest crown segment. With such matching procedure, the omission and
commission errors are substantially reduced in the following prediction models (Breidenbach et
al,, 2010; Kandare et al., 2017a). Subsequently, field measurements of biophysical attributes from
accurately georeferenced sample plots are related to the remote sensing variables of crown
segments taken from exactly the same area, and prediction models are developed. The predicted
values of forest attributes are provided for trees within a sample plot area. Moreover, the
prediction models can be exploited to predict the forest attributes of interest at any grid-cell size
by aggregation of predicted attributes. According to the literature, the semi-ITC method has never
been used in an application context and only a few studies exist (Breidenbach et al., 2010;

Kandare et al., 2017a; @rka et al., 2013; Rahlf et al., 2015).
2.5 ABA approach

In the majority of the forest management purposes assisted by ALS data, the area based
approach (ABA) is used (Neaesset et al., 2004). This approach was introduced by Neesset (2002).
In the ABA, forest attributes are predicted for each element (e.g. grid cell) of a population with
the size of each element being equal to the area of the sample plots. For each sample plot several
remote sensing variables are extracted, for which predictive relationships with field-observed
forest attributes are constructed. Furthermore, the prediction models can be utilized to predict
the forest attributes of interest where the smallest grid-cell size is equal to the size of the sample
plots. Typical ALS variables used in this approach are the height metrics (percentiles, mean,
maximum, minimum, coefficient of variation, standard deviation, variance, skewness, and
kurtosis) and the canopy density metrics (Naesset, 2004; Packalén et al., 2012). The canopy
density variables can be calculated as the proportions of laser echoes above each defined height
threshold in relation to the total number of echoes. All these variables can be computed for all
echoes’ categories. The hyperspectral variables can be computed as the average value of first
order statistics for pixels within a grid-cell or sample plot (Kandare et al., 2017a). Additionally,
variables can be computed from vegetation indices (Luo et al., 2017) or grey level co-occurrence

matrices (e.g. contrast, energy, and correlation) (Meng et al, 2016; Packalén et al, 2012).
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Currently, the ABA is the most used approach for operational forest inventories due to less
demanding collection of the field data, and it can work quite well also at very low ALS point

density (e.g. < 3 pulses m™2).
2.6 Fusion of ALS and hyperspectral data

In order to fulfil the requirements for a comprehensive forest ecosystem characterization
some complex forest characteristics cannot be accurately determined by one remote sensing
system alone (Zhang, 2010). In such cases, the fusion of the complementary remote sensing data
could offer a good solution to retrieve robust assessments. Due to accurate 3D measurements of
forest structure and spectral measurements, specifically rich on information for biophysical and
chemical canopy properties, obtained by ALS and airborne hyperspectral data, respectively, the
fusion of both data systems has become very promising for evaluating forest characteristics
(Fassnacht et al.,, 2016; Luo et al., 2017). Although, such fusion can be complicated due to the
differences in the measured physical quantities (elevation vs radiance), geometry of data
acquisition (3D points vs 2D image) and sources of illumination (laser vs solar radiation). Data
fusion, sometimes also called data combination or integration, can be employed by 1) empirical
or statistical, 2) physical, or 3) hybrid approaches (Torabzadeh et al, 2014). The most
straightforward is the statistical approach, which will be the main focus in the current thesis,
based on predictive models e.g. generalized linear models, ordinary least squares, k-nearest
neighbor algorithm, support vector machines, etc.

One of the first attempts exploring the fusion of ALS and hyperspectral data in forestry
domain was carried out in 2004 (Gillespie et al., 2004), followed by other studies assessing and
producing land cover maps (Asner et al., 2008; Dalponte et al., 2012; Hill and Thomson, 2005;
Koetz et al., 2008), above ground biomass (Anderson et al., 2008; Clark et al., 2011; Dalponte et
al,, 2015b; Luo et al., 2017; Swatantran et al.,, 2011; Vaglio Laurin et al., 2014), volume (Kandare
et al., 2017a), species composition (Dalponte et al., 2008; Jones et al., 2010; Koetz et al., 2008;
Richter et al.,, 2016), etc. mostly in tropical and temperate forests. These studies were carried out
mostly in tropical and temperate forests, and there is a need to test data fusion over a wider range
of forest cover and types. Among this studies, only a few were conducted on temperate forests in
the Alps and boreal forest types (Dalponte et al., 2014, 2012; @rka et al., 2013).

The statistical data fusion approaches used in this thesis could be categorized into 1)
product-level, where separate processing chains for ALS and hyperspectral data are conducted to
compute biophysical attributes, i.e. tree species with hyperspectral and volume by ALS, and then
the attributes are fused to provide species-specific volume; and 2) variable-level, where both ALS
and hyperspectral variables are combined into empirical models to predict biophysical attributes,

i.e. species-specific volume. The product-level fusion is more common for the ITC approach and
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the variable-level fusion for semi-ITC and ABA approaches. ITC and semi-ITC approaches allow
to obtain accurate biophysical attributes at tree level thanks to the delineation algorithm. When
ALS and hyperspectral data are co-registered, both ALS and spectral variables are computed for
each crown segment. For the ITC approach, spectral information per crown enables to preform
tree species classification resulting in high accuracies (Dalponte et al., 2013, 2008). Fusing species
information with ALS-derived forest attributes per each crown segment, results can be obtained
in species-specific forest attributes such as volume, basal area, and stem density, which are
valuable information for forest managers. With the semi-ITC approach, the classification of tree
species per crown is not possible because crown segments can contain one or more tree species.
Thus with semi-ITC and ABA approaches only species proportions within a segment/grid can be

predicted.
2.7 Forest characteristics investigated in this thesis

Based on biophysical attributes, such as tree age, species, position, DBH, and height, many
forest characteristics, such as site index or structural diversity measured can be obtained. Site
index is a very common quantitative measure and widely accepted method of forest site
productivity defined as expected height of the trees at a given base age (e.g. 70 years) for certain
tree species in area of interest (Skovsgaard and Vanclay, 2008). In order to ensure a sustainable
supply of timber products and to formulate silvicultural strategies the reliable site index
estimates are important. Forest structural diversity can be described by variability in spatial
arrangement of trees, tree dimensions, and mingling of different tree species (Aguirre etal., 2003;
McElhinny et al.,, 2005; Pommerening, 2002). These characteristics, called structural diversity
measures, can be quantified through, e.g. diameter differentiation index, Gini coefficient of basal
area, uniform angle index, mean nearest neighbors, Shannon’s index, species mingling index, etc.
(Meng et al.,, 2016; Neumann and Starlinger, 2001; Pommerening, 2006). Structural diversity
measures are crucial in order to gain a better understanding of forest ecosystems as they express
the sustainability of management practices for economic as well as environmental purposes.
Moreover, information of structural diversity is also important to describe forest health, to model
animal and forest plant species behavior, and to predict forest fire behaviors (Lausch et al., 2016;

Martinuzzi et al., 2009; Morsdorf et al., 2004).

3 Material

3.1 Study areas

In the current thesis, two study areas were used: 1) a temperate forest in the municipality of

Pellizzano in the Italian Alps (46°17'22"'N, 10°46'05"'E, 900-2220 m above sea level) (Figure 5);
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and 2) a boreal forest in the Valer municipality in south-eastern Norway (59°30'N 10°55E, 70-

120 m above sea level) (Figure 6).
3.1.1 Pellizzano

The Pellizzano study area extends on 3200 ha. The forest is dominated by Norway spruce
(Picea abies (L.) Karst.), with the presence of other coniferous species (e.g.,, larch (Larix decidua
Mill.), silver fir (Abies alba Mill.)) and broadleaves species (e.g., rowan (Sorbus aucuparia L.),
common hazel (Corylus avellana L.), silver birch (Betula pendula Roth), and sycamore maple (Acer
pseudoplatanus L.)). At higher altitudes, the forest is sparse, whereas at lower altitudes, the forest
structure is more complex, varying from a one-to multi-layer forest with patches of mixed and
homogeneous tree species composition. The area has been managed since 1950 with silvicultural
plans implemented every 10 years. Selective logging is done with the help of cableway focusing
on the productive forest area, especially Norway spruce, and trees are harvested according to

their stem diameter.
3.1.2 Viler

The Valer study area cover 853 ha. The dominant species are Norway spruce (Picea abies
(L) Karst.) and Scots pine (Pinus sylvestris L.). Younger stands have large proportions of
deciduous species dominated by birch trees (Betula pubescens Ehrh.). The active forest
management in the forest area is directed towards the timber production with clear-cuts and
shelterwood cutting applied at the end of the rotation depending on the site fertility. For the
former harvest method, the regeneration is achieved by plantation, and for the latter by natural

regeneration after selective logging.
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Figure 5: Map of the Pellizzano study area. The pink dots are indicating the field plots.
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Figure 6: Map of the Viler study area. The pink dots are indicating the field plots.
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3.2 Field data

3.2.1 Pellizzano

During the summers of 2013 and 2015, 47 circular sample plots were surveyed. The size
of the sample plots was 700 m?. The center location of each plot was determined with a GPS and
global navigation satellite system (GLONASS) measurements, resulting in a positional error of
less than 1 m. For all trees within the sample plot, the location was recorded as a polar
coordinates to the center of the plot (azimuth and range). In addition, DBH along two orthogonal
directions and tree species were recorded. Tree height on two-thirds of randomly selected trees
was measured using a Vertex III hypsometer. Tree heights of the remaining trees were predicted
with allometric equations (Scrinzi et al., 2010). Dead or damaged trees were excluded. The tree
species observed for the 1888 trees were: 72.9% Norway spruce, 7.9% rowan, 7.1% larch, 1.7%
silver birch, 1.3% silver fir, 1.3% common hazel, 1.2% sycamore maple, and the rest were other

minority broadleaves.
3.2.2 Viler

In 2010, 153 systematically distributed circular sample plots were inventoried. The size
of each plot was 400 m?. For all trees inside the plots with DBH above 4 cm the tree position, tree
species, and DBH were recorded. Tree height was measured only on selected sample trees,
approximately for 10 trees per plot. The polar tree coordinates were established by using
measurements of distance and angle from the plot center. These measurements were carried out
with a tape measure and a compass with a sight. The plot center was measured using differential
GPS and GLONASS receiver. Out of 9414 recorded trees, 52% were spruce, 25% were pine, and
23% were broadleaves.

In July 2013, 96 of the forest inventory plots dominated either by spruce or pine were
revisited to measure data for site index determination. Out of 384 recorded trees, 58% were
spruce and 42% were pine trees. In each plot, the four largest trees according to DBH of the
dominant species were selected as sample trees, which corresponds as closely as possible to the
definition of the dominant trees, i.e., the 100 largest trees per ha (Rennolls, 1978), given the
limited plot size of 400 m?. For each sample tree, the position, height, and DBH were recorded.
For further age analyses, core samples of two dominant trees per plot were taken at 1.3 m height.
In the laboratory, the age was obtained by counting growth rings on the core samples. The ring
widths were measured manually with the LINTABTM 6 tree-ring measurement station and the

TSAP-WinTM software for tree-ring measurement.
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3.3 ALS and hyperspectral data

3.3.1 Pellizzano

ALS data were acquired between 7t and 9th September, 2012 with a Riegl LMS-Q680i
laser scanner. The system, mounted on a Multi Mission Aircraft, was optimized to measure canopy
structure with a flying speed of about 51 m s™2 at an altitude of 660 m above ground level. The
pulse repetition frequency was 400 kHz with a 60° field of view and the overlap for each stripe
was at least 30%. The result of the scanning was an ALS point cloud (x, y, z) with a mean point
density of 48 pulses m™? for the first returns. The scanner recorded up to five returns for each
laser pulse. The data vendor generated a digital terrain model (DTM) with TerraScan software
with a spatial resolution of 0.5 m. Furthermore, ALS point cloud was normalized to obtain a
canopy height above ground by subtracting the DTM elevations from the z values of the ALS
pulses.

Hyperspectral data were acquired on 13t June 2013 with an AISA Eagle Il sensor with a
spatial resolution of 1 m. Twenty-one images were acquired between 12:00 a.m. and 1:12 p.m.
and mosaicked in order to create a uniform image. The minimum overlap among the images was
20%. Each image was characterized by 65 spectral bands acquired between 403.1 nm and
995.3 nm with a spectral resolution of 9 nm. Non-vegetated areas were removed by filtering out
pixels with a normalized difference vegetation index (NDVI) below 0.5. To reduce minor
differences in reflectance occurring between different images, the value of each pixel was
normalized dividing it by the sum of the (original) values of the same pixel along all the bands (Yu

etal, 1999).
3.3.2 Viler

ALS and airborne hyperspectral data were simultaneously acquired over the study area
on 9t September 2011. The flying altitude was 1500 m above ground level. Twenty-one flight
lines were flown between 10:48 a.m. and 2:22 p.m., having sun zenith angle between 59° and 61°.
ALS data were acquired using the Leica ALS70 system with a pulse repetition frequency of 180
kHz. The system recorded up to five returns per pulse and the average pulse density was 2.4
pulses m~2,

Hyperspectral data were acquired using the HySpex VNIR-1600 sensor with spatial
resolution of 0.5 m. The images consisted of 80 bands between 410 nm and 990 nm with 7.2 nm
spectral resolution. All the hyperspectral images were acquired in non-nadir conditions
regarding the field plots. Hyperspectral data were orthorectified using a DTM derived from ALS

data by the data vendor. To minimize co-registration problems the vendor also applied a

transformation based on tree top detection in the two datasets. In the pre-processing, the
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hyperspectral images were atmospherically corrected using the QUAC algorithm (Bernstein et al.,
2005). Afterwards, the value of each pixel was normalized with respect to the sum of the values
of the same pixel in all the bands to reduce a minor difference in reflectance occurring between

the different images (Yu et al., 1999).

4 Methods

In this thesis, the fusion is employed by a statistic approach, which is based on predictive
models, such as generalized linear models, k-nearest neighbor algorithm, support vector
machines (SVM) classifier etc. The statistic approach was investigated on product and variable-
level, using exploratory data analysis, parametric and non-parametric machine learning
algorithms for modeling and different statistical tests (Table 1). The detection accuracy of the
delineation algorithm was evaluated with omission error (OE), commission error (CE), and
accuracy index (Al). The model accuracy for the forest characteristics was evaluated in terms of
the root mean square error (RMSE) and the coefficient of determination (r2) computed as the
square value of Pearson correlation coefficient. The systematic error was assessed with the mean
differences (MD). For the ITC approach, the tree species classification accuracy was validated
with the overall accuracy (OA), kappa coefficient (KA), and the producer’s and user’s accuracies
derived from the confusion matrix. The reliability of the predicted forest characteristics was
tested by means of the cross-validation technique.

Table 1: Summary of exploratory data analysis, machine learning algorithms for modeling, test statistics, and accuracy
measures applied in Papers I, 11, III, and IV.

Paperl Paper II Paper III Paper IV
P t tuni
Exploratory data arame <.er.s 'unmg
: and sensitivity / / /
analysis .
analysis

Linear and non-
linear regression, k- Partial least square
nearest neighbors, regression

Linear regression,
K-means clustering Poisson regression,
SVM classification

Machine learning
algorithms
SVM classification

Wilcoxon signed

Two-sided Mann- >
L. . . rank test, Friedman .
Test statistics Whitney-Wilcoxon / Permutation test
test, Conover post-

test
es hoc analysis
OE, CE, OA, KA,
producer’s accuracy OE, CE, OA, KA,
Accuracy OE, CE, Al, " producer’s and
RMSE, MD, standard RMSE, MD, g2
assessment RMSE, MD, r2 standar user’s accuracies, 4

deviation of the 5
) 2 RMSE, MD, r
differences, r

The ITC delineating algorithm was based on a K-means clustering applied on horizontal

slices followed by vertical merging based on overlapping among clusters. In addition, the effects
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of different forest structures (characterized by mean DBH, number of stems per hectare, mean
nearest neighbor distance, and Gini coefficient of basal area) and point cloud densities (50, 30, 20,
10, 6 and 4 pulses m~2) on the ITC delineation algorithm were analysed in terms of omission and
commission errors. To test if the differences among accuracies obtained with different point cloud
densities and original data were significant, a two-sided Mann-Whitney-Wilcoxon test was
carried out. For each crown segment, biophysical attributes (tree height, crown area, and crown
position) were extracted at the ITC level and aggregated at the plot level (Paper I).

The same ITC delineation algorithm was applied in the study of Paper II. Moreover, once
the crown segments were delineated, they were co-registered with the hyperspectral data in
order to obtain ALS and hyperspectral variables for each delineated crown segment. These
variables were used to predict forest attributes at the ITC level. Tree species were predicted with
SVM classifier and used to predict age per species with Poisson regression using ALS and
hyperspectral variables, while stem height and DBH were predicted with ALS variables fitting
species-specific linear models. The models were validated using a 10-fold cross validation
approach. Subsequently, these biophysical attributes were used to compute dominant height,
species, and age for each sample plot in order to determine the site index at grid level (Paper II).

The species-specific volume was predicted with ITC, semi-ITC, and ABA approaches. For
the ITC approach, hyperspectral variables were used to predict tree species with SVM classifier,
and ALS variables to predict DBH with non-linear regression models. Knowing the predicted
species and DBH, the species-specific volumes were computed based on allometric models. For
the semi-ITC and ABA approaches, the statistical relationships between the ALS and
hyperspectral variables, and the field-observed species-specific volumes were constructed based
on multivariate k most similar neighbor (MSN) method. The ALS and hyperspectral variables
were calculated for each crown segment in the semi-ITC approach and for each sample plot in
ABA. The species-specific volumes for ITC and semi-ITC were aggregated at the same grid size as
ABA in order to compare and evaluate the performance of each approach. Wilcoxon signed rank
test was performed to test the significance of the differences between the observed and predicted
volumes for each inventory approach. The Friedman test was applied to check the significance of
the differences in the distribution of the differences between the observed and predicted species-
specific volumes among sample plots for the three inventory approaches. For validating species-
specific volumes, leave-one-out (LOO) cross-validation procedure was applied (Paper III).

The ALS (height and density matrices) and hyperspectral variables (1st and 2nd order
image statistics) were computed for each sample plot and used in partial least square (PLS)
regression models in order to predict six forest structural diversity measures. We checked if the
encoded information may be useful for prediction purposes when considering ALS and

hyperspectral variables, either alone or fused. The optimal number of latent variables was
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selected by minimizing the RMSE of predictions based on a 5-fold cross-validation. The number
of ALS and hyperspectral variables was balanced using the correlation threshold, thus, equally
weighing the impacts of both kind of variables on the PLS model. A permutation test was applied
to test each model’s reliability. The model accuracy and systematic error were compared using

ALS and hyperspectral data, separately or fused (Paper VI).
5 Major findings

5.1 Quantification of influence of forest structure and ALS point cloud density on

established ITC delineation algorithm (Paper I)

With the field measurements and a well-established reference delineation method, the
performance of the developed ITC delineation method based on ALS data was evaluated in terms
of detection accuracy and tree attributes estimation. Both methods reached similar detection
accuracies and both were effective in tree attributes estimation. Forest structure characterized
by stem density, distribution of trees, number of stems per hectare, and the evenness expressed
by Gini coefficient of basal area, had significant influence on the detection accuracy in terms of
omission and commission errors. The omission error was lower (in range of 25%-60%) in plots
with a homogeneous forest structure and tree species, and higher (in range of 60%-85%) in plots
with a heterogeneous forest structure and tree species. In addition, the forest structure only had
a slight effect on the commission error as it was similar for all plots. The point density analysis
showed that the detection accuracy, in terms of accuracy index, marginally increased for the point
densities from 6 to 50 pulses m~2 applying Mann-Whitney-Wilcoxon test. However, the accuracy
index of the ITC delineation algorithm was the highest with the original point cloud density at 60

pulses m~2 and significantly different from the other point cloud densities.

5.2 Improvement of site index maps using ITC approach together with fused ALS
and hyperspectral data (Paper II)

Plot level-derived biophysical attributes via ITC approach using ALS and hyperspectral
data provided a reliable input for the determination of site index. ALS variables obtained for each
crown segment were important for the height and DBH modeling, while the fused ALS and
hyperspectral variables were important for tree species and age modeling. The selection of the
dominant crown segments derived from ITC delineation algorithm from which the inputs for the
site index were computed, did not affect the accuracy of the predicted site index. The prediction
accuracies of dominant height and species were high (RMSE = 1.12 m and kappa accuracy = 0.85)
in contrast to errors related to age (RMSE = 34.01 years). The RMSE for site indices was 4.30 m

when all biophysical attributes (dominant height, tree species, and age) were predicted from the
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remote sensing data and 1.18 m when only the age was taken from the field measurements. Age
prediction based on remotely sensed data is still a challenging task, especially in mixed age stands.
The site index determination based on ITC delineation at the variable-level fusion was stable and

efficient for the site index determination.

5.3 Evaluation of the performance of three remotely sensed-based forest inventory
approaches to assess how different spatial details influenced the predictions of

species-specific volume using fused ALS and hyperspectral data (Paper III)

Three remotely sensed-based forest inventory approaches were compared (ITC, semi-ITC
and ABA approach). The fusion for the first approach was conducted on the product-level, and for
the others at the variable-level. The hyperspectral data were important in the ITC approach for
the classification of tree species, and ALS data for the DBH and height prediction which together
allowed the predictions of species-specific models. For the semi-ITC and ABA approaches, ALS
and hyperspectral variables were combined into k-mean nearest neighbor models. The ITC
approach performed better according to relative RMSE for the volumes of minority species but in
general resulted in larger systematic errors (relative mean differences of the mean) compared to
the semi-ITC and ABA approaches. The ABA approach resulted in relatively high accuracies and
small systematic errors for the dominant species and vice versa for the minority species. For
majority species, the semi-ITC performed slightly better compared to the ABA, resulting in higher
accuracies and smaller systematic errors. The total volume of the ITC, semi-ITC, and ABA resulted
in relative RMSEs of 25.31%, 17.41%, and 30.95% of the mean and relative mean differences of
21.59%, 0.27%, and 2.69% of the mean, respectively. The results indicated that the semi-ITC
outperformed the two other inventory approaches, considering the greatest balance between
accuracies and the systematic errors. The Friedman’s test demonstrated that the pairs of the
inventory approaches (ITC vs. semi-ITC, ITC vs. ABA, semi-ITC vs. ABA) were significantly
different (p < 0.05) from each other for the total and species-specific volumes, except for the pair
of semi-ITC vs ABA, where the Norway spruce and larch volumes were not statistically significant.
For the ITC approach, hyperspectral variables were important for tree species identification,
while ALS data were important for ITC delineation in order to extract crown segment height and
crown area for predicting DBH. Both species and DBH, were considered as inputs for volume
prediction. In the semi-ITC and ABA approaches, the ALS and hyperspectral variables were both

important for volume modeling.
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5.4 Investigate the benefits of ALS and hyperspectral data, separately and fused, to

predict forest structural measures (Paper IV)

Six types of measures of forest structural diversity that describe the variability of tree
sizes (Gini coefficient of basal area and diameter differentiation index), the spatial distribution of
tree positions (mean nearest neighbor distance and uniform angle index), and the tree species
diversity (Shannon’s index and species mingling index) were considered. The forest structural
diversity measures were predicted with ALS and hyperspectral data, alone and combined, where
the data fusion was conducted at variable-level. None of the structural diversity measures based
on hyperspectral data passed the permutation test meaning that the predictions were not
different from a random prediction. The uniform angle index was the only one that was not
predictable with any remote sensing data combination. Fused data improved the prediction
performances of the diameter differentiation index only, when obtained as a combination of ALS
and 2nd order image statistics on hyperspectral data. Compared to predictions based on ALS data,
the predictions based on fused data reached higher relative RMSE for 5 percentage points and
variance explained by model was higher for 28 percentage points. The fusion of ALS and
hyperspectral data did not improve any other structural diversity measures, but produced
accuracy levels comparable to the structural diversity measures derived from ALS data alone. In
this experiment, ALS data showed the best predictions for the majority of the structural diversity

measures taken into account.

6 Discussion

6.1 Fusion of ALS and hyperspectral data (Papers I1, 111, IV)

ALS and hyperspectral data were fused to provide species information, total and species-
specific volume, height, DBH, age, site index, and structural diversity measures at different fusion
levels. In particular, the fusion in Papers Il and Il was conducted at product-level, while in Papers
I, I, and IV at variable-level (see Table 2). In the same order, the aforementioned forest
characteristics will be discussed.

Tree species are characterized by different plant chemical and physical properties, which
results in differing levels of reflectance (amplitude). Such differences significantly affect the
reflectance spectrum shape (Fassnacht et al.,, 2016). These differences in reflectance from the
visible to the shortwave infrared part of the spectrum are therefore the main drivers to
discriminate species. Moreover, tree species also have different architecture of crowns (e.g.
conical, rounded), branching, and foliage (Coops et al., 2007). Thus, the hyperspectral and ALS

data can be considered the most promising combination for discriminating tree species and to
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outperform other data fusions, e.g. fusion of ALS and multispectral data (Dalponte et al., 2012;
@rka et al.,, 2013). In Paper II, such fusion was proved to be suitable in distinguishing tree species,
especially for spectrally similar tree species. Similar was confirmed in the study of Dalponte et al.
(2012). The classification accuracy was higher for the dominant species as they were more
representative in samples compared to the minority species. This was also showed by @rka et al.
(2013). The species accuracy obtained in Paper II, was in line with the study of Dalponte et al.
(2015a) conducted on the same study area. Moreover, the fusion of ALS and hyperspectral data
was shown as a powerful basis for the discrimination of tree species also in other studies
conducted on different study areas (Alonzo et al., 2014; Dalponte et al., 2014).

Using different inventory approaches to characterize the species composition was
demonstrated with the combined use of ALS and hyperspectral data, and higher accuracies were
achieved compared to other data fusions (@rka et al., 2013). Moreover, many methods have been
proposed for fusing ALS data with aerial photographs or airborne multispectral images
(Breidenbach et al., 2010; Packalén and Maltamo, 2006; Vauhkonen et al.,, 2012) in order to
predict species-specific volumes. According to the existing literature, in Paper I, the first attempt
to fuse the ALS and hyperspectral data were investigated in order to provide species-specific
volumes with three different inventory approaches. With the ITC approach, stem volume was
predicted based on ALS data, and the species were classified based on hyperspectral data. Both
coupled together enable to provide species-specific volume representing product-level fusion. In
contrast, in the semi-ITC and ABA approaches, both ALS and hyperspectral variables were used
for modeling total and species-specific volumes, and the fusion was conducted at a variable-level.
The fusion of such complementary data at product- and variable-level provided the predictions
with high accuracies. The results obtained in Paper Il were in line with the study of Breidenbach
etal. (2010) but we have to consider that both studies were applied to different forest types.

In Paper II, the fusion at the product-level was found important for the species-specific
models of height and DBH. The age was modeled by fusing data on variable-level. Both ALS and
hyperspectral variables were found important. In addition, the site index was determined by
applying product-level fusion which was based on the abovementioned forest characteristics, and
the results showed high potential to improve existing site index maps in an objective and
automatic way. The fusion of ALS and hyperspectral data was found powerful to predict age,
which was overpredicted in younger (< 60 years) and underpredicted in older (> 60 years)
stands. The reasons of the importance of the fusion of ALS and hyperspectral data is two sided.
First, with the aging, the canopy structure (Ishii and McDowell, 2002), plant chemical properties,
and the leaf morphology (Roberts et al., 1997) are changing. Thus, changes in reflectance are
measured by hyperspectral sensors. Dye et al. (2011) demonstrated that the hyperspectral data

were suitable to predict age in young stands. Furthermore, the better the site productivity is and
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the higher the tree age is, the higher the tree can grow. Thus, it was demonstrated that ALS data
can provide good age predictability (Racine et al., 2014). However, such relationship between ALS
heights and age is usually strong in stands with smaller age variability or in even-aged stands. In
the study area used in Paper I, the stands were mixed-age and the age-structure relationship in
such stands is more ambiguous, since the strength of the relationship becomes asymptotic with
aging. These was also confirmed by Ung et al. (2001) and Sharma et al. (2011). However, the
accuracy of age predictions vary considerably between different studies, using only ALS or
spectral data, and it seems to be strongly effected by forest management strategies, and forest
structure and type (M. Maltamo et al., 2009; Niemann, 1995; Pretzsch, 2009; Racine et al., 2014).

In Paper 1V, structural diversity measures describing tree size variation, spatial pattern of
trees, and tree species diversity were predicted by ALS and hyperspectral data alone and both
together fused at variable-level. According to the existing literature in relation to the forest
structural diversity of biophysical attributes, the fusion of ALS and hyperspectral data was mostly
explored for the estimation of the stem density and above ground biomass (Anderson et al., 2008;
Latifi et al.,, 2012; Luo et al,, 2017; Vaglio Laurin et al.,, 2014) and less for the structural diversity
measures explored in Paper IV. The ALS variables provided the most effective information
amongst the entire data source combinations, while the hyperspectral variables contributed only
slightly to describe the variation beyond those explained by ALS. Similar was also highlighted by
Anderson et al. (2008). Thus, data fusion generally did not contribute to the accuracy increase for
structural diversity measures accounted in this study. Image texture refers to the spatial variation
and arrangement of the pixels of which any image is composed. It could be that the distribution
of trees and the tree species were similar among the sample plots, therefore hyperspectral
variables did not make high contribution to the fused models. In many studies, the variables
calculated from grey level co-occurrence matrix, which was derived from spectral images, were
demonstrated as good variables in distinguishing spatial pattern in remote sensing imagery
analysis, and they were mostly used for classification purposes (Franklin et al.,, 2001; Murray et
al,, 2010; Ouma et al.,, 2008) and less for modelling purposes (Gallardo-Cruz et al., 2012; Meng et
al,, 2016). To explain why fusion in Paper IV did not increase the accuracy of structural diversity
measures, more research should be carried out in similar forest conditions, especially for
modeling purposes.

From the processing point of view, the disadvantage of data fusion is that ALS and
hyperspectral data require the co-registration of datasets, and any uncertainty at this stage could
influence the accuracy of the final products (Torabzadeh et al., 2014). The advantage of such data
fusion, when both sensors are combined on the same platform, is higher geometric accuracy for
data fusion and highly compatible datasets, also proved for similar data fusions (St-Onge et al.,

2008). In addition, when both sensors are mounted on a platform of the same mission, the cost is
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reduced. For mapping purposes, Jones etal. (2010) proved that ALS and hyperspectral data fusion
was superior to aerial photograph interpretation in terms of accuracy and cost.
Considering the achieved accuracies in Papers I], III, and IV it can be seen that in most

cases fused data obtain higher accuracies than ALS and hyperspectral data only.

Table 2: Fusion levels of predicted forest characteristics with ALS and hyperspectral data in Papers I1, I1I, and 1V.

Paper II Paper III Paper IV

Height, DBH,
Product level Species-specific volume with ITC approach /

Site index

Tree species Total and species-specific volume with semi-ITC Structural diversity
Variables level

and age and ABA approaches measures

6.2 Exploring different spatial scales in the prediction of forest characteristics

(Papers 1, 11, III)

The extraction and prediction of different forest characteristics (species information, age,
total volume, species-specific volume, and structural diversity measures) at different spatial
scales were investigated in Papers |, 1], and III (see Table 3). With the ITC approach, all papers
produced information with the highest spatial scale, the tree. Papers II and IIl provided
information on the grid-cell scale using the ABA, while Paper II also considered the tree group
scale using the semi-ITC. First, the ITC delineation algorithm and the point density is discussed,
continued with the forest characteristics obtained with the ITC, semi-ITC, and ABA approaches.

Low point density ALS data provide limited possibilities to detect and delineate co-
dominant and subordinate trees, i.e., the intermediate and suppressed trees. In this regard, ALS
point cloud with density above 5 pulses per m~2 (Peuhkurinen et al., 2011) already allows
development of delineation methods to better distinguish individual tree crowns. In many
studies, it was assumed that the higher the point density, the better the detection and delineation
of trees. This was shown to be particularly true in structurally complex and dense forests (Wang
etal, 2016). In a few studies (Kaartinen et al,, 2012; Wang et al., 2016; Yao et al., 2014), different
point densities were tested, up to 8 and 20 pulses per m~2. Kaartinen et al. (2012) and Yao et al.
(2014) reported that there were no significant improvements in performances of the ITC
delineation algorithms, at least for those datasets with a point density larger than 10 pulses per
m~2. Additionally, in both studies, the ITC delineation algorithms were mostly developed on 2D
canopy height models. Thus, in such 2D delineation methods after a certain point density the
information seemed to be saturated and the detection accuracy could not improve (Wang et al,,
2016). With a different perspective, Wang et al. (2016) also considered delineation algorithms

based on 3D ALS points and reported that such algorithms performed better with higher
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densities. However, the range of point densities considered in the abovementioned studies is too
small to make any conclusions. One of the objectives in Paper I was to test if a high point density
can improve the detection and delineation accuracy of the developed delineation algorithm based
on 3D ALS points. This study was the first to evaluate point densities above 20 pulses considering
point densities up to 60 pulses per m™2. It was demonstrated that the detection accuracy
increased with higher point densities, but it achieved marginal improvements when the point
density expanded from 10 to 50 pulses per m™2. This is in line with earlier research that have
found that the detection accuracy did not change between 10 and 20 pulses per m~2. However,
with 60 pulses per m™2 the detection accuracy was significantly different compared to other point
densities. Thus, a 3D delineation algorithm seems to be able to provide higher spatial detail using
the high point density data. The optimal point density most probably depends on tree size,
structure, and stand density of the forest. In Paper I, it was found that the detection accuracy was
higher in more sparse and single layered forest. Thus, to detect the dominant trees the lower point
densities could be used. This is in line with the suggestions of Wang et al. (2016) indicating that
ALS data with point density between 2 to 5 pulses m~2 may already provide satisfactory results
for the applications where the main focus is to obtain characteristics of dominant trees.

High point density could also affect the prediction accuracy of the forest characteristics
related to the detected crown segments. Kaartinen et al. (2012) found out that the use of different
point densities marginally improved the accuracy of the extracted tree heights, tree positions, and
crown areas. Unfortunately, there are no studies that tested such effect on higher point densities.
In addition, most studies were conducted on point densities below 8 pulses m~2 and were carried
out at plot level (Manuri et al., 2017; Ruiz et al., 2014; Tesfamichael et al., 2010). In Paper |,
attributes extracted from a 3D and a 2D algorithms were compared, and it emerged that they
were quite similar between the algorithms. Moreover, the 2D method provided better estimates
for the crown area.

The ITC and semi-ITC approaches can provide detailed forest characteristics, such as age,
DBH, species, volume, etc. for each crown segment (Breidenbach et al,, 2010; M Maltamo et al.,
2009; Yu et al., 2010). However, the accuracy of such characteristics depends on the success of
the ITC delineation algorithm and its calibration (Kandare et al., 2016; Latifi et al., 2015; Yu et al,,
2010). Although the delineation algorithm was applied in Paper Il and III, the results are hardly
comparable at the tree level, because the characteristics were further aggregated at grid-level. In
particular, in Paper I, only the four largest crown segments per plot were used for the calculation
of forest characteristics at grid-level (dominant height, species, age, and site index) while in Paper
[II all delineated crown segments were used. The biggest advantages of the ITC and semi-ITC
approaches are that they allow to obtain predictions at the minimum possible scale in a forest,

such as a crown segment, and allow better localization of forest characteristic due to the known
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tree positions (Paper II, III). Indeed, in Paper Il it was demonstrated that through the ITC
approach it was possible to obtain site index results at an accuracy similar to the existing site
index maps in Norway. We have to keep in mind that site index on the existing maps has one value
for each stand while with the ITC approach we are able to provide a more detailed information
within a stand. Thus, the proposed approach could provide a means to summarize site index in
more homogeneous areas within a stand, even at sub-grid-cell scale.

One of the advantages of ITC approach is also the ability to characterize tree species for
each tree with high accuracy since it is assumed that one crown segment is one tree (Paper Il and
[11). While methods such as semi-ITC and ABA assume that there could be many species in the
segment or grid, the species information is possible only through proportions of any forest
attribute (e.g. species-specific volume) per each crown segment and grid-cell, respectively (Paper
IIT) (Latifi et al., 2015). Knowing the species information for each tree, it is possible to develop
species-specific models for any forest attribute, and this is important for forest inventory
(Packalén and Maltamo, 2007, 2006). In this regard in Paper III, the ITC approach showed to
provide high accuracies for minority species (even if with large systematic errors). This was also
showed in a study by @rka et al. (2013). The aggregated volume at grid-cell was affected by
systematic error using ITC approach, while a high accuracy and low systematic error were
achieved with the semi-ITC approach (Paper III). In this thesis, it was found that the semi-ITC
approach provided prediction accuracies higher or similar to the ABA. This was also reported in
earlier studies, comparing the semi-ITC and ABA approaches (Breidenbach et al., 2010; Rahlf et
al,, 2015). Thus, based on trade-off between RMSEs and mean differences, the volume predictions
based on the semi-ITC approach outperformed the other approaches. In addition to the
aforementioned species-specific studies, other studies compared predicted forest characteristics
with ITC and ABA approaches and obtained comparable, higher or lower accuracies (Coomes et
al,, 2017; Latifi et al., 2015; Lee et al., 2017; Peuhkurinen et al., 2007; Yu et al., 2010). However,
the forest type in Paper | was different from the other studies. Thus, this phenomenon also
depend on the forest type, structure and the species present (Latifi et al., 2015).

Which spatial scale information should be provided and which approach is superior
depends on the user’s needs. In this thesis, the ITC approach provided means to accurate tree
species identification, especially for minority species, and was a way to provide site index
prediction with good accuracy. The semi-ITC approach seems to be the best choice to provide
accurate species-specific attributes. The resulted forest characteristics can be aggregated at any
other spatial scale (groups of trees, grids, and stands) with both approaches i.e. as it was done for
the volume. This improved the knowledge of within-stand variation at any scale, especially for
the minority species (@drka et al., 2013). The only drawbacks of the ITC approach are the large

systematic error unsuitable in operational forest inventories and the high cost of field surveys as
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tree positions are needed. The last statement also applies to the semi-ITC approach. However,
methods for positioning trees using different methods are under development (Holopainen et al.,
2014). In particular, detailed forest information obtained by ITC and semi-ITC can be used for
improvements in forest management decisions, for example to optimize selection of silvicultural
treatments (Wang et al., 2016), or for future tree-based growth simulations (Lo and Lin, 2013).
Knowing the position of each tree can be important for many applications with sound ecological
reasons, such as examination of habitat structure, distribution of dead trees (Dobbertin et al,,
2001; Gillespie et al., 2008; Polewski et al., 2015), identification of invasive species (Dash et al.,
2017), fire management (Morsdorf et al., 2004), and biomass estimation (Hauglin et al., 2013).

Table 3: Forest characteristics predicted in Papers 1, 11, and 11l with different spatial scales.

Spatial scale PaperI Paper II Paper III
T Tree positions, crown area, tree Tree species, height, DBH, and Tree species, stem
ree
heights age volume
Total and species-
Tree group / /
specific volume
Dominant height, species, age, Total and species-
Grid-cell /
and site index specific volume

7 Conclusion and further perspectives

This thesis demonstrated the potential to improve the prediction of forest characteristics
with fusion of complementary 3D ALS and 2D hyperspectral data at different spatial scales. First,
the fusion of complementary information derived from ALS and hyperspectral data was shown
as a powerful basis for the discrimination of tree species, especially at tree level, which indirectly
allows to reach high accuracies for species-specific models, such as height, DBH, volumes, and site
index. The age was predicted with a moderate accuracy but there are still many unexplored
fusions of ALS and hyperspectral data that could provide higher accuracies. Also, at grid-cell, the
fusion of such data contributes to a high accuracy of species-specific forest characteristics for
majority species. In contrast to abovementioned forest characteristics, the forest structural
diversity measures were the only ones that in general did not gain in accuracy from the variable-
level fusion of ALS and hyperspectral data. In addition, there is a huge lack of studies to make any
conclusions about the benefits of such data fusion in different forest conditions, and in order to
enlighten such data fusion properly, this subject should be further investigated in different
environments. The acquisition costs of high-density ALS and the integration of LiDAR technology
with hyperspectral sensors on the same platform are expected to decrease due to the technical

advances in acquisition equipment. Recently, the hyperspectral ALS sensors have been developed
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with a high potential to be used as a future single-sensor solution for forest studies and mapping.
However, they are still in the development stage and have not reached full maturity yet. Second,
the evaluation of different spatial scales, via ITC and semi-ITC approaches, reached high
accuracies for the site index, and total and species-specific volume determination, respectively.
The accuracies of both forest characteristics were comparable with the ones obtained in the field
and used in practice. Thus, the ITC and semi-ITC approaches have a high potential to map any
forest characteristic to any scale that would help silviculturists and ecologists in their
applications to facilitate their field work. In addition, the ITC approach was a successful method
for the determination of the species-specific volume of minority species, but it resulted in too
large systematic errors for all species to support forest inventories in contrast to the semi-ITC
and ABA approaches. The advantage of the ITC and semi-ITC approaches, when large sample plots
are observed, is that they can improve the estimation of certain forest characteristics as they
directly take into account the variability within a forest stand. From such approaches, ecologists
and silviculturists could profit greater knowledge to better model wildfires, monitor wildlife
habitats, map aboveground carbon stock, describe growth dynamics, and formulate silvicultural
strategies. As such approaches are more expensive due to more extensive field work, the
combination of ABA and semi-ITC methods could further pave the way also for operational forest
inventories by combining detection of individual trees in structurally complex and heterogeneous
stands, with the ABA approach in homogeneous stands. Further studies are needed to examine
the complementarity of different remotely sensed-based inventory approaches to obtain more

knowledge about their benefits in different disciplines over larger areas.
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