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Abstract 

Dry tropical forests, such as the miombo woodlands, play an important role in the global 

carbon budget as well as in contributing towards the sustainable development of countries 

such as Malawi. To ensure sustainability of these forests, availability of models and methods 

for assisting forest managers in quantifying volume and biomass are indispensable. This 

thesis therefore sought to develop volume and biomass prediction models as well as to test 

the potential of applying unmanned aerial vehicles (UAVs) in biomass prediction and 

estimation in miombo woodlands. In Paper 1 and 2, we developed models for predicting tree 

sectional (twigs, merchantable stem and branches) volume and biomass, total tree volume as 

well as tree above-and belowground biomass. The performances and evaluations suggested 

that the models can be used over a wide range of geographical and ecological conditions in 

Malawi with an appropriate accuracy in predictions. Application of UAVs for biomass 

prediction and estimation were tested and the results are presented in Papers 3 and 4. In Paper 

3, we tested methods to derive digital terrain models (DTMs) while Paper 4 focused on the 

assessment of the efficiency of UAV-assisted inventories as well as the influence of sample 

plot sizes and number of sample plots on the precision of biomass estimates. The results, 

presented in Paper 3, show that among the tested DTMs, the model developed from 

unsupervised ground filtering based on a grid search approach performed best. Furthermore, 

the observed prediction errors for the biomass predictions are similar to results from previous 

studies using airborne laser scanning (ALS) data, thus showing the potential of applying this 

technology in miombo woodlands. Finally, Paper 4 demonstrated that UAV-assisted 

inventories produce more precise estimates compared to those based on purely field-based 

inventories. The results also indicated that large sample plot sizes and sample sizes favour 

UAV-assisted inventories and that UAV-assisted inventories are more efficient than purely 

field-based inventories. The developed models and the results from the tested methods 

presented in the thesis have taken us some steps forward that are expected to support and 

improve forest management decision-making in general as well as the implementation of a 

REDD+ MRV system covering the miombo woodlands of Malawi. 
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1.0 Introduction 

Dry tropical forests cover central and south America, Africa, India, south-east Asia and 

northern Australia (Miles et al. 2006). In southern Africa, dry forests are mainly dominated 

by miombo woodlands. These woodlands were estimated to cover an area of approximately 

2.7 million km2 (Frost 1996), but this area is most likely lower today due to deforestation and 

forest degradation. Miombo woodlands are presently spanning 11 countries in Africa, 

including Malawi (Chidumayo & Gumbo 2010; Ryan et al. 2011). The miombo ecoregion 

occurs in a climate with a dry season of three months or more and has mean annual 

precipitations and temperatures of 710 – 1365 mm and 18.0 – 23.1°C, respectively (Frost 

1996). Unlike other African savannas and woodlands, miombo woodlands are dominated by 

three key deciduous tree species belonging to the family Fabaceae, subfamily 

Caesalpinioideae in the genera Brachystegia, Julbernadia and Isoberlinia (Frost 1996; Ryan 

et al. 2011). A similar tree species composition is found in the miombo woodlands of Malawi 

(Mwase et al. 2007).  

 

Miombo woodlands are multi-species and multi-layered and are regenerated through 

coppicing as well as seed dispersal. Structurally, the canopy of miombo woodlands is 

dominated by trees that are umbrella-shaped whose heights usually range from 14 to 18 m. 

The sub-canopy is composed of a highly variable scattered layer of shrubs, suppressed 

saplings of canopy layer trees, grasses and sedges (Abbot et al. 1997; Frost 1996). Tree forms 

in these woodlands vary from small, multi-stemmed trees to tall single-stemmed trees with 

straight boles (Abbot et al. 1997). Fires occur frequently in miombo woodlands both in time 

and space (e.g. Tarimo et al. 2015). Fires are regarded essential to the structure and stability 

of miombo woodlands (Frost 1996), and the biomass may be reduced substantially if the fire 

frequency is high (Ryan & Williams 2011). Some tree species have a thick bark to protect 

them from fires (Frost 1996). 

 

In miombo woodlands, tree species richness and densities vary widely with location, i.e. 

ranging between 70 and 300 species, and up to 4100 stems ha-1 depending on rainfall and 

anthropogenic factors (Abbot et al. 1997; Dewees et al. 2011; Frost 1996; Furley et al. 2008; 

Giliba et al. 2011; Malimbwi et al. 2016; Williams et al. 2008). In Malawi, the number of tree 

species is estimated to exceed 130 with tree densities ranging from about 260 to 1640 stems 

ha-1 (Government of Malawi 2012).  
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Miombo woodlands provide a wide variety of food and ecosystem services to millions of 

people in the region including fruits, bush meat, edible insects, beeswax, honey, traditional 

medicines, biodiversity and watershed conservation (Abbot & Homewood 1999; Blackie et 

al. 2014; Chidumayo & Gumbo 2010; Kajembe et al. 2015; Luoga et al. 2005; Mwase et al. 

2007; Ryan et al. 2016). In Malawi, the woodlands constitute 92% of the country’s total 

forest area (Government of Malawi 2010; Government of Malawi 2012). The Malawi 

government recognizes the role the woodlands play towards achieving sustainable 

development for the country. However, increases in population growth has led to high 

demand for firewood, charcoal and timber products leading to deforestation, currently 

estimated at 1% per annum (Government of Malawi 2001; Government of Malawi 2010).  

 

Dry tropical forests, including miombo woodlands, are currently the least studied compared 

to wet tropical forests despite their significant contribution to the global carbon budget and to 

livelihoods of a lot of people (e.g. Dirzo et al. 2011). In recognition of the importance of 

forests, including the dry tropical forests, the global community, through the United Nations 

Framework Convention on Climate Change (UNFCCC), established the Reducing Emissions 

from Deforestation and Forest Degradation, plus forest conservation, sustainable 

management of forest and enhancement of carbon stocks (REDD+) mechanism (Barquín et 

al. 2014; Goetz et al. 2015; UNFCCC 2014). This mechanism has given a financial incentive 

to developing countries in their efforts to reduce deforestation and forest degradation through 

increased forest conservation and implementation of sustainable forest management. The 

payment scheme for REDD+ is based on reported national level carbon stock estimates to the 

UNFCCC (Goetz et al. 2015). To implement REDD+, each participating country is therefore 

expected to have a credible forest monitoring system that supports the functions of 

monitoring, reporting and verification (MRV) of forest carbon stocks at a national scale 

(Gizachew & Duguma 2016). The system is thus expected to establish a national baseline 

carbon stock estimate as well as changes of carbon stocks over time (Goetz et al. 2015). 

 

Currently, Malawi is in the preparatory phase of implementing REDD+. The first step in this 

phase has involved establishing legal and institutional frameworks. In 2012, the government 

released a draft version of the national climate change policy to support all climate change 

related programs in the country. In the same year, the government also launched the Malawi 

REDD+ program aiming for streamlining the process of operationalizing REDD+ 
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(Government of Malawi 2015). Through the program, the Forestry Institute of Malawi 

(FRIM) was mandated with the development of a national forest carbon MRV system.  

 

A fully functional national forest carbon MRV system for REDD+ implementation in Malawi 

shall require establishment of a data collection and management system comprising three 

pillars, namely: a) a remote sensing based land monitoring system for collecting and 

assessing activity data related to forest cover changes over time (Goetz et al. 2015; UNFCCC 

2014), b) conducting national forest inventories (NFIs) for quantifying carbon stock changes 

and c) a data analysis and reporting system for production of reports to the UNFCCC. Among 

these pillars, NFIs form a critical component since they are directly linked with carbon stock 

changes, which is a key component of the REDD+ payment system (Gizachew & Duguma 

2016; Goetz et al. 2015). NFIs rely on the utilisation of both reliable biomass/volume models 

and state of the art remote sensing techniques. Currently, reliable biomass and volume 

models are lacking and modern remote sensing techniques for volume or biomass prediction 

and estimation are yet to be tested for application in REDD+ in Malawi. So far, through 

funding from a number of multi-and bilateral donors, including Food and Agriculture 

Organization (FAO), United States Agency for International Development (USAID), Japan 

International Cooperation Agency (JICA) and World Bank, national land use and land cover 

maps have been developed for benchmarking land use and land use change in the forests of 

Malawi. However, a fully functional national forest carbon MRV system is yet to be 

established.  

 

Apart from the anticipated financial benefits from carbon credits, the Malawi government 

considers REDD+ as an opportunity for instituting sustainable forest management in the 

country. Currently, the management of miombo woodlands is suffering from lack of reliable 

models and methods that may support forest managers in decision-making. The existence of 

such models and methods is instrumental in the efforts to accomplish a sustainable 

management of these resources. 
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2.0 Objectives 

The main objective of this thesis was to develop models and methods for predicting and 

estimating volume and biomass of miombo woodlands in Malawi. The models and methods 

developed are based on both field and remotely sensed data and are expected to support forest 

management decision-making in general as well as the implementation of a REDD+ MRV 

system in the country. The following specific sub-objectives were addressed in four different 

papers;  

 

a) Develop general (multiple tree species from several sites) models for volume 

prediction in miombo woodlands (Paper 1); 

b) Develop general (multiple tree species from several sites) models for biomass 

prediction in miombo woodlands (Paper 2); 

c) Explore the possibility of using UAVs in biomass prediction in miombo woodlands 

(Paper 3); 

d) Assess the efficiency of UAV-assisted inventories as well as the influence of sample 

plot size and sample size on error estimates in biomass estimation in miombo 

woodlands (Paper 4). 
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3.0 Conceptual framework 

Forest volume and biomass estimates are basic information needed generally for forest 

management decision-making as well as when implementing a REDD+ MRV system. A 

conceptual framework for estimation of volume and above- and belowground biomass for 

forest areas is presented in Figure 1.  

 

When employing field-based methods for volume or biomass estimation, sample plot 

inventories are first conducted, and subsequently, individual tree volume or above- and 

belowground biomass models, if readily available, are applied. In cases where reliable 

individual tree models are lacking, they can be developed. The process of developing the 

models involves conducting sample plot inventories to guide the selection of representative 

trees for destructive sampling. The destructive sampled tree data are then used to develop 

individual tree volume or above-and belowground biomass models, which can finally be used 

for forest area volume or above-and belowground biomass estimation. 

 

In cases where remote sensing is the main method applied for estimating forest area volume 

or biomass, remotely sensed data can be collected using different sensors mounted on 

different platforms. Application of imagery captured from UAVs is an example of a method 

that has recently gained ground in forestry. In addition to the remote sensing based data 

(processed UAV images), sample plot inventory data are also needed. The processed UAV 

images, sample plot inventory data and individual tree aboveground biomass models 

(alternatively individual tree volume models) are then used to develop area-based models that 

can finally be used to estimate forest area aboveground biomass (or forest area volume). 
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4.0 Background 

4.1 Volume models 

Availability of volume models is regarded as a basic prerequisite for implementation of 

sustainable forest management. Volume models are important for establishing current 

growing stock of forests, timber valuation, selection of forest areas in harvest scheduling, 

growth and yield studies and as a basis for estimation of biomass and carbon stocks. 

Furthermore, the government of Malawi uses a licensing system that permits the issuance of 

permits to individuals for accessing timber in public forests. In this context, merchantable 

stem volume models are required. Merchantable stem volume models may also be useful in 

cases where compensation payments to tree/forest owners are required when trees are being 

cleared for infrastructure development, such as roads, railways and buildings. Branch volume 

models can be used as tools for assessing wood quantities related to brick burning as well as 

in the production of domestic fuelwood, charcoal and construction poles.  

 

A review by Henry et al. (2011) showed that many models for predicting tree volume in 

miombo woodlands have been developed previously. Most of these models were developed 

in miombo woodlands located in neighbouring countries like Tanzania (Chamshama et al. 

2004; Malimbwi et al. 1994; Mauya et al. 2014; Mwakalukwa et al. 2014), Zambia 

(Chidumayo 1988) and Mozambique (Mate 2014). Due to high biogeographical variability in 

the miombo ecoregion, there is a need for developing models that can be applied locally. The 

only existing tree volume models for miombo woodlands in Malawi were developed by 

Abbot et al. (1997). However, application of these models is limited due several reasons 

regarding the data used for model calibration: a) narrow geographical ranges of study sites, 

(b) relatively small ranges of diameter at breast height and (c) relatively few tree species.  

 

The main objective of Paper 1 was therefore to develop general total tree volume models, as 

well as general tree sectional models for branches and merchantable stems, applicable across 

the entire distribution of miombo woodlands in Malawi. 

 

4.2 Biomass models  

Estimation of biomass is the first step towards calculation of carbon stocks in forest 

ecosystems. Due to the natural capacity of trees to sequester carbon dioxide, miombo 

woodlands are considered an important element in global climate change mitigation programs 

such as REDD+. Establishment of credible national MRV systems for REDD+ 
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implementation requires estimation of biomass using either field or remote sensing-based 

methods. Both these methods rely on the availability of reliable biomass models. 

 

Biomass can be estimated using either direct or indirect methods. Direct methods involve

harvesting all trees in a known area and measuring the oven dry weight of the different 

components of the harvested trees such as the stem, leaves, roots and branches. Although this 

method determines biomass accurately for a particular area, it is time and resource 

consuming, strenuous, destructive, expensive and not feasible for large scale analysis 

(Vashum & Jayakumar 2012). On the other hand, indirect methods involve applying 

individual tree models for predicting biomass, or expansion factors and/or root to shoot ratios 

(Brown 2002). Application of individual tree models is now the most widely used method in 

forest biomass estimation.  

 

By 2011 there were approximately 370 models for predicting tree biomass in sub-Saharan 

Africa (Henry et al. 2011). The majority of these models were developed for tropical 

rainforests in western Africa. Among the reviewed models, and those developed after the 

review in south-eastern Africa, only a few were developed for miombo woodlands 

(Chamshama et al. 2004; Chidumayo 2014; Kuyah et al. 2016; Malimbwi et al. 1994; Mate et 

al. 2014; Mugasha et al. 2013; Mwakalukwa et al. 2014; Ryan et al. 2011). Among these, the 

models developed by Kuyah et al. (2016) are the only ones based on data from Malawi. 

However, these models are also limited for the same reasons limiting existing volume models 

(narrow geographical ranges, relatively small ranges of diameters and relatively few tree 

species). The models developed by Kuyah et al. (2016) were also developed using miombo 

trees from outside forests, hence limiting their applicability in the REDD+ mechanism which 

is currently targeting trees in forest reserves.  

 

Furthermore, most of the described models for miombo woodlands focused on aboveground 

biomass only. However, estimation of belowground biomass is also vital. Existing 

belowground biomass models for miombo woodlands in neighbouring countries were 

developed by Mugasha et al. (2013), Chidumayo (2014) and Ryan et al. (2011). For Malawi, 

however, no belowground biomass models exist.  

 

The main objective of Paper 2 was therefore to develop general above- and belowground 

biomass models applicable across the entire distribution of miombo woodlands in Malawi. 
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The models were also accompanied with information on their covariance structure to enable 

quantification of model-related uncertainties in biomass and carbon estimation. 

 

4.3 Application of UAVs in biomass prediction 

Remote sensing methods can be used to collect data for estimating forest volume or 

aboveground biomass. Prediction of these attributes using this approach involve conducting 

sample plot forest inventories based on a relatively small number of sample plots to 

determine field reference biomass. The field reference biomass is then regressed with metrics 

derived from remotely sensed data for the respective sample plots. The developed models are 

finally used to predict volume or biomass for the entire study area. For forestry applications, 

remotely sensed data is mainly sourced from three main systems, namely, airborne laser 

scanning, radio detection and ranging (e.g. synthetic aperture radar) and optical (e.g. satellite 

and aerial images) (Kumar et al. 2015). Currently, application of UAVs for predicting volume 

or aboveground biomass is slowly gaining ground due to UAVs ability to acquire high quality 

3D data on forests at relatively low costs (Dandois & Ellis 2013; Getzin et al. 2012; Puliti et 

al. 2015; Tang & Shao 2015). Furthermore, the availability of user-friendly image processing 

software has made the application of the technology attractive (Dandois & Ellis 2013; Puliti 

et al. 2015). Application of this technology to potential REDD+ projects in Malawi could be 

an attractive option since the sizes of approximately 50% of potential project areas are ideal 

for efficient application of UAVs in biomass prediction (see Puliti et al. 2015). However, the 

application of this newly developed technology for biomass prediction in the miombo 

woodlands of Malawi still needs to be tested.  

 

Successful prediction of forest attributes using remotely sensed data is dependent on the 

availability of a reliable digital terrain model for correct estimation of ground elevation for 

the study area. Images collected by UAVs may not be suitable for generating reliable digital 

terrain models since it is mainly concentrated in the top of the forest canopy. Reliable digital 

terrain models are usually generated from airborne laser scanning data. However, due to the 

high costs associated with acquiring such data, it is imperative for researchers utilizing UAVs 

in developing countries to strive to search for relatively accurate, but also cost efficient 

digital terrain model generating approaches. 

 

The main objective of Paper 3 was therefore to evaluate the application of photogrammetric 

point cloud data generated from UAV acquired images in aboveground biomass prediction 
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for miombo woodlands. Digital terrain models generated from the photogrammetric point 

cloud based on different methods and parameter settings were also compared. 

 

4.4 Influence of plot and sample size on UAV-assisted biomass estimates 

Data from field-based probability sample plot inventories are important for estimating forest 

biomass/volume during UAV-assisted inventories as they reportedly improve the estimates 

(Næsset et al. 2011). Determination of field plot size is an important design decision when 

planning field-based probability sample inventories. In estimation based on field-based 

probability sample data combined with auxiliary data from remote sensing i.e. design-based 

and model-assisted inferential framework, an appropriate geographical correspondence 

between plots on the ground and the remotely sensed data is paramount. An increased sample 

plot size can reduce the effects of errors arising from co-registration problems (Frazer et al. 

2011). Larger plots will also tend to reduce the plot boundary effects (McRoberts et al. 2014). 

 

Several authors have studied the effect of sample plot size on biomass estimates and other 

forest attributes in inventories assisted by remotely sensed data in tropical wet forests (Asner 

et al. 2009; Hansen et al. 2015; Keller et al. 2001; Mascaro et al. 2011; Mauya et al. 2015b; 

Saatchi et al. 2011), temperate forests (Frazer et al. 2011; Levick et al. 2016), boreal forests 

(Gobakken & Næsset 2008; Næsset et al. 2015) among others. Apart from sample plot size, 

sample size, i.e. the number of sample plots employed during an inventory, will also have a 

large effect on the efficiency of biomass estimates and the associated total inventory costs (Eid 

et al. 2004; Gobakken & Næsset 2008; Strunk et al. 2012). 

 

To the best of our knowledge, no studies on the influence of sample plot size and sample size 

on efficiency of biomass estimates (or other forest attributes) have been done in UAV-

assisted sample plot inventories, i.e. using design-based and model-assisted inferential 

framework in miombo woodlands. The main objective of Paper 4 was therefore to assess the 

efficiency of using a UAV-assisted estimation of biomass in a case study in miombo 

woodlands of Malawi based on different sample sizes and sample plot sizes.  
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5.0 Materials and methods 

5.1 Study sites 

Figure 2 presents the location of the study sites. The sample trees for the development of 

volume and biomass models in Papers 1 and 2 were selected from four forest reserves, 

namely Mtangatanga (northern Malawi), Kongwe (central Malawi), Mua-livulezi (central 

Malawi) and Tsamba (southern Malawi). The selection of sites was based on geographical 

location and climatic conditions to capture a wide range of factors influencing tree growth. 

Data for Papers 3 and 4 was collected from Muyobe community forest reserve in the northern 

Malawi.  

 

 

Figure 2. Map of Malawi showing the location of the study sites. 
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5.2 Data collection 

a) Sample plot inventory data 

Sample plot field inventory data was required for all the four papers. For Papers 1 and 2 the 

inventories were conducted on systematically distributed 0.04 ha circular plots. The 

inventories covered a total of 221 plots with 70, 30, 71 and 50 plots for Mtangatanga, 

Kongwe, Mua-livulezi and Tsamba, respectively. On each plot, all trees with diameters at 

breast height > 4 cm were identified and had their diameters at breast height measured. In 

addition, we sampled three trees within each plot (with the smallest, medium and largest 

diameters at breast height), and measured their total height using a Vertex hypsometer. In 

total, for all the study sites, we identified 139 tree species. The sample plot inventory data 

was then used for selection of sample trees that were destructively sampled. 

 

For Papers 3 and 4, the inventory was conducted on 107 systematically distributed probability 

sample plots which were circular (radius = 17.84 m, 0.1 ha each). On each plot, the following 

tree variables were recorded: Total horizontal distances from the plot centres to each tree 

(using a Haglöf vertex hypsometer), diameter at breast height (using a caliper or a diameter 

tape) and scientific name of all trees  5 cm. The total horizontal distances from the plot 

centres to each tree were calculated as the sum of the horizontal distance to the front of each 

tree and half of the tree’s diameter at breast height. These distances were subsequently used 

to subset the sample plot data into different sizes, i.e. 250, 500, 750 and 1000 m2, for further 

analysis.  

 

In order to assess the effect of sample size on precision of biomass estimates we considered 

three different systematic samples of different sizes, i.e., the full sample of 107 plots, one 

sample with half the size (54 plots) in which every second plot was excluded, and finally one 

sample of one third of the full size (36 plots) in which every third plot was retained. In total 

12 datasets (i.e. four sample plot sizes × three sets of sample sizes) were created and used for 

the analyses. 

 

Furthermore, total tree height of up to 10 randomly selected sample trees within each plot 

were measured using a Haglöf vertex hypsometer. Precise registration of the positions of 

centres for sample plots is very important in remote sensing-assisted forest inventories. In this 

study, positions of the plot centres were measured with a differential Global Navigation 

Satellite Systems (dGNSS) unit. The dGNSS unit is comprised of two Topcon legacy- E +40 
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dual frequency receivers. One of the receivers was used as a base station unit and the other as 

a rover field unit. The receivers observe pseudo-range and carrier phase of both the Global 

Positioning System (GPS) and the Global Navigation Satellite System (GLONASS). During 

the study, the baseline between the base station and rover units was approximately 25 km. 

The position of the base station was determined using Precise Point Positioning (PPP) with 

GPS and GLONASS data collected continuously for 24 hours as suggested by Kouba (2015) 

before commencement of the forest inventory. The rover field unit was placed at the centre of 

each sample plot on a 2.98 m rod for an average of 33±20 minutes using a one-second 

logging rate. The recorded plot centre coordinates were post-processed using the RTKLIB 

software (Takasu 2009) and the results revealed that the maximum deviations for northing, 

easting and height were 1.16 cm, 3.02 cm and 3.06 cm, respectively. 

 

b) Destructively sampled tree data 

For development of above- and belowground biomass models, as well as volume models in 

Papers 1 and 2, a total of 74 trees were selected based on the observed diameters at breast 

height and tree species frequency within the sites. We ensured that the trees were selected 

from all diameter at breast height classes observed in the sample plot inventories. In addition, 

we selected a total of eight trees with larger diameter at breast height than those observed in 

the sample plot inventories to reduce uncertainty when predicting biomass of very large trees. 

We also selected at least one tree among the eight most frequently observed species in each 

site. The remaining sample trees were selected randomly among all species. In total, 33 tree 

species were selected, comprising 10, 10, 12 and 10 different tree species in Mtangatanga, 

Kongwe, Mua-livulezi and Tsamba, respectively. Before felling the selected trees, we 

measured their diameters at breast height and total tree height, and also determined their 

species names. Out of the 74 trees, 41 trees were excavated for determination of belowground 

biomass. 

 

For determination of aboveground biomass, the aboveground portion of each of the 74 trees 

was separated into the following components: merchantable stem (from the stump at 30 cm 

above ground to the point where the first branches start), branches (all parts of the tree above 

the defined merchantable stem and up to a minimum diameter of 2.5 cm) and twigs (all 

branches with a diameter less than 2.5 cm). For small trees not considered suitable for timber 

production (diameter at breast height < 15 cm, in total 14 trees), merchantable stem 

volume/biomass were allocated to branches. To facilitate measurements, the stems and 
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branches were crosscut into manageable logs of approximately 1–2 m in length. We 

measured the lengths and the mid-diameters over bark of each of the logs and then weighed 

their fresh weight using a mechanical hanging spring balance (0 – 200 kg). Twigs from each 

tree were separately bundled and weighed to determine their fresh weight.

For determination of belowground biomass, our strategy involved root sampling at two levels 

(Mugasha et al. 2013), namely main roots (roots branching directly from the root crown) and 

side roots (roots branching from the main roots). The first step in excavation involved 

clearing the topsoil around the tree base to expose the points at which the roots were 

branching. We then selected three main roots, i.e. the main roots with the largest, medium 

and smallest diameters and recorded their diameters at the points where they joined the root 

crown. The diameters of all main roots not excavated were recorded at the point where they 

joined the root crown. From each of the selected main roots, we selected up to three side 

roots, i.e. the side roots with the largest, medium and smallest diameters. For each of the 

selected side roots, we recorded the diameter where they joined the main root. For the 

remaining side roots, we also recorded the diameters at the branching point from the 

mainroot. The selected side and main roots were then fully excavated up to a minimum 

diameter of 1 cm and then weighed. 

 

In cases where the full roots could not be excavated due to obstacles such as rocks, the 

diameter of the last bit of the root was recorded and we treated the remaining unexcavated 

part as a side root. An effort was made to ensure that all the taproots were fully excavated up 

to a diameter of 1 cm. In total, 38 out of the 41 trees had taproots. Out of these 38 trees, we 

were not able to fully excavate the taproots of 16 trees. In such cases, the diameter at the 

breaking point of the unexcavated taproot was recorded and treated as a side root. On 

average, tap roots were dug down to 2.5 m depth. Lastly, we recorded the fresh weight of the 

root crown for each tree. For all sample trees, three small sub-samples, varying in weight 

between 0.1 and 1.0 kg, were taken from each main and side root, and one was taken from the 

root crown. We obtained the fresh weight of the sub-samples using an electronic balance and 

brought them to the laboratory for oven drying. 
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Photo 1. Miombo woodlands during dry season (a), weighing a log during destructive 

sampling (b), Sensefly eBee Unmanned Aerial Vehicle (c), preparing to fly the Sensefly eBee 

Unmanned Aerial Vehicle (d). 

 

 

c) Processed UAV images data 

The images used in Papers 3 and 4 were acquired using a SenseFly eBee fixed-wing UAV 

(Sensefly 2015). The UAV was made from flexible foam weighing 537 g without camera. 

The UAV was equipped with a Canon IXUS 127 HS Digital camera. The dimensions and 

weight of camera with battery and memory card were 93.2 × 57.0 × 20.0 mm and 135 g, 

respectively. The camera produces 16.1 megapixel images in the red, green and blue spectral 

bands. The UAV is also equipped with an inertial measurement unit as well as an on-board 

Global Navigation Satellite Systems (GNSS) to control the flight and to provide rough 

positioning (Sensefly 2015). Prior to taking images, positions of ground control points 

(GCPs) as well as landing and take-off points, e.g. on open areas with no trees within the 

forest and agricultural fields near the forest, were identified and measured. The GCPs were 
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made of a set of 1 × 1 m cross-shaped timber planks painted white and some black and white 

50 × 50 cm checkerboards. The position of the centre of each GCP was fixed using the same 

procedure as used when locating plot centres for the sample plot inventory described above. 

The data were collected for an average of 13±6 minutes for each GCP with a 1-second 

logging rate. The recorded coordinates for each GCP were post-processed similarly as the 

sample plots. The results revealed that maximum deviations for northing, easting and height 

were 2.24 cm, 4.50 cm and 4.46 cm, respectively. 

 

Acquisition of images was controlled from a laptop computer with a mission control software 

eMotion 2 version 2.4 (Sensefly 2015). All the flights were planned in the mission control 

software prior to flying. For navigation purposes, a georeferenced base map from Microsoft 

Bing maps covering the study area. For this study we applied percentage end and side image 

overlaps of 80 and 90% respectively, as well as a fixed flight height above the ground of 

325 m. In total 20 flights were carried out to cover the forest. 

5.3 Data analyses 

For development of volume models (Paper 1), volumes of individual logs were calculated by 

multiplying the basal area of the mid-section of each log by its length. Subsequently, the stem 

and branch volumes for each tree were determined by summing all individual log volumes for 

the respective sections. Total tree volumes were determined by summing the merchantable 

stem and branches volumes for individual trees. 

 

Development of biomass models (Paper 2) started by first drying all sub-samples from both 

above- and belowground portions of each tree in an oven at a temperature of 80°C until a 

constant weight was achieved (constant weight was observed in 2–3 days) and subsequently 

recording their dry weights. The sub-sample dry and fresh weights were then used to 

determine the tree- and section specific dry to fresh weight ratios (DF-ratios) which were then 

used to calculate the dry weight of each section as a product of tree- and section specific DF-

ratios and the fresh weights of the respective trees and tree sections. Subsequently, we 

computed the total aboveground dry weight each tree by summing the dry weights of the 

merchantable stem, branches and twigs.  

 

To determine the total belowground dry weights of the excavated parts of the trees we first 

converted all the fresh weights from the different sections to dry weight biomass by 
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multiplying the tree- and section specific DF-ratios and their respective fresh weights. We 

then developed a general (combining data from all sites) side root model by regressing the 

dry weight biomass of the fully excavated side roots and their diameters (cm). The side root 

model was used to predict the dry weight biomass of all the side roots that were not 

excavated for the main sample root. The total dry weight of all side roots for each main 

sample root was then determined by summing dry weights of the excavated side roots and 

predicted dry weights of unexcavated side roots. Finally the complete dry weight of the 

sample main root was determined by summing the total dry weights of all side roots and the 

excavated parts of the main root. A main root model was then developed and applied to 

predict the dry weights of main roots not excavated. To determine the dry weight of 

unexcavated parts of the taproots (16 trees), we applied the general side root model. Total 

belowground dry weight biomass for each tree was finally determined by adding the dry 

weights of all excavated and unexcavated main roots, dry weight of the taproot and the dry 

weight of the root crown.  

 

Using the respective datasets, general and site specific volume, aboveground and 

belowground models for total tree, merchantable stem and branch were developed utilizing 

diameter at breast height, total tree height and species-specific mean wood specific gravity as 

independent variables. The species-specific mean wood specific gravity values were 

extracted from the global wood density database (Chave et al. 2009; Zanne et al. 2009). Since 

the data demonstrated heteroscedasticity for volume, above-and belowground biomass, we 

applied generalized methods of moments (GMM) estimation method for volume models and 

weighted nonlinear regression for above- and belowground biomass models. The analysis 

was implemented using SAS Institute (2012) software. For all models, pseudo-R2, root mean 

square error and mean prediction error values were reported. However, model efficiency and 

performance were based on root mean square error values calculated using leave-one-out 

cross validation procedure. Previously developed models were also tested and compared with 

the models developed in the current study. 

 

Both Papers 3 and 4 required calculating aboveground biomass of each tree in respective 

sample plots. Before calculating aboveground biomass, total heights of trees whose height 

was not measured were predicted using a height-diameter model developed (Paper 3) using 

the measured heights of sample trees from all the sample plots. We then calculated 

aboveground biomass for each tree in the sample plots by using a model developed in Paper 
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2, with diameter at breast height and total tree height as independent variables. Per hectare 

values for aboveground biomass of the respective plots were calculated by first summing up 

the individual tree aboveground biomass values within a given plot and scaling them to per 

hectare values.  

 

For both Papers 3 and 4, Agisoft Photoscan Professional version 1.1 (AgiSoft 2015) was used 

to generate a 3D dense point cloud from the acquired UAV images. To normalize the point 

clouds and subsequently extract metrics describing canopy height, canopy density and canopy 

spectral information in both Paper3 and 4, we developed, tested, and selected the best digital 

terrain models in Paper 3 using different approaches, and compared their performance to 

determine a suitable digital terrain model since the study area did not have an existing one. 

The tested approaches included a) supervised ground filtering based on visual classification, 

b) supervised ground filtering based on logistic regression, c) supervised ground filtering 

based on quantile regression and d) Shuttle Radar Topography Mission with quantile 

regression. In Paper 4, the metrics were extracted for each of the datasets for respective plot 

sizes (i.e. 250, 500, 750 and 1000 m2).  

 

To compare the performance of the different DTMs in Paper 3 as well as to estimate 

aboveground biomass for the study area in Paper 4 models relating reference aboveground 

biomass and the generated metrics were fitted on square root transformed dependent variables 

using multiple linear regression in R software (R Core Team 2016).

 

For both Papers 3 and 4, the developed models were evaluated using the squared Pearson 

correlation coefficient, root mean square error, relative root mean square error, mean 

prediction error and relative mean prediction error. Model selection was however based on 

the root mean square error values. 

 

To assess the efficiency of UAV-assisted as well as the effect of sample plot and sample sizes 

on error estimates in biomass estimation in Paper 4, field-based biomass estimates and 

corresponding variances were based on the simple random sampling estimator. On the other 

hand, a model-assisted regression estimator described by Särndal et al. (1992), and its 

corresponding variance estimator, were applied for UAV-assisted biomass estimation. The 

relative efficiency (RE) of UAV-assisted inventory was assessed by a ratio of the variance 
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estimates for the biomass based on purely field-based inventory data to that based on UAV-

assisted inventory data.  

 

Furthermore, to assess the cost efficiency of UAV-assisted over pure field-based inventories 

in Paper 4, during field work we randomly selected 16 sample plots and for each plot 

recorded three categories of time consumption, i.e. fixed time (time spent when recording 

sample plot attributes such as plot number, date, etc.), variable time (time spent on measuring 

trees) and walking time (time spent during walking from one plot to another). The average 

recorded time consumption was 7.5, 25.0 and 7.0 minutes for each of the aspects, 

respectively. We then set the relative cost of a sample plot inventory of 107 sample plots 

(1000 m2 each) in a 220 × 220 m grid to 100% based on the recorded information. We then 

used the cost information from the current inventory (4 persons working for 15 days with a 

daily salary of USD 25.13 each) to calculate the variable costs for each plot scaled according 

to plot size and walking distance.  

 

The costs for the UAV data acquisition were fixed for all sample plot sizes and sample sizes 

because the need for auxiliary remotely sensed information would be the same regardless of 

plot size and sample size. The cost was computed based on the experience from the current 

study. The cost included pre-flight preparations and the actual flying where a two-man crew 

was required. Each person worked five days with a salary similar to the field crew. Post-

processing of the acquired images required four days. 
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6.0 Main findings and discussion 

6.1 Volume and biomass models 

The developed volume, above- and belowground biomass models (Papers 1 and 2) offer 

options for forest inventory scenarios in which data on diameter at breast height only or both 

diameter at breast height and total tree height are available. For both volume and biomass, the 

root mean square error and mean prediction error values of the models with both diameter at 

breast height and total tree heights as independent variables were better than those of the 

models with diameter at breast height as the only independent variable. This result also 

conforms to previous studies (Abbot et al. 1997; Mauya et al. 2014; Mwakalukwa et al. 2014) 

for volume models and Mugasha et al. (2013) for aboveground biomass models. On the other 

hand, for belowground biomass, the only viable model had diameter at breast height as the 

only independent variable. The fit of this model is similar to that of the models developed by 

Mugasha et al. (2013), Chidumayo (2014) and Ryan et al. (2011). 

 

If diameters at breast height and total heights of all trees are measured in an inventory, the 

model including both variables should, of course, be applied. Otherwise, models with 

diameter at breast height alone are still reliable since much of the variation in volume and 

aboveground biomass was explained by diameter at breast height, while the addition of total 

tree height resulted in only small improvements. Since total tree height measurements are 

time consuming, they are usually estimated from height-diameter models developed from a 

few sample trees. If all tree forms in the forest are not represented among the sample trees, 

additional uncertainties in predictions are introduced. With appropriate sample trees and 

small measurement errors in tree heights, the accuracy of predictions will probably be 

improved by including total tree height as an independent variable, in spite of the uncertainty 

added by using a height-diameter model. For aboveground biomass models, inclusion of 

species-specific mean wood specific gravity values in place of total tree height did not 

improve the performance of the model. This could be attributed to the fact that the species-

specific mean wood specific gravity values were not obtained directly from the sampled trees, 

but from the global wood density database (Chave et al. 2009; Zanne et al. 2009).  

 

Tree component volume and aboveground biomass models, i.e. for twigs, branches and 

merchantable stem, may be useful when planning commercial extraction of timber or 

quantification of volume or aboveground biomass for domestic fuelwood or charcoal 

production. All tree component models with significant parameter estimates produced mean 
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prediction error values not significantly different from zero, an indication of appropriate 

model performance. 

 

When the selected volume and aboveground biomass models were tested on our dataset over 

different sites, none of the mean prediction error values were significantly different from 

zero, except for the volume model with both diameter at breast height and total tree height as 

independent variables in Tsamba, where volume was over-estimated. Furthermore, when 

previously developed models were tested on our dataset, the results showed that these models 

either over- or underestimated biomass (Table 1) or tree volume (Figure 3). These results 

demonstrate the importance of developing local models and also highlight the dangers of 

applying models beyond their geographical ranges because a change in geographical site in 

most cases also mean changes in ecological, climatic and edaphic conditions. 

 

Table 1. Performance of previously developed biomass models tested on our dataset. 

Component Model Independent 
variable(s) 

No. 
of 

trees 

Observed Predicted MPE 

(kg) (kg) (kg) (%) 

Above-
ground 

Mugasha et al. (2013) dbh 74 1239.7 1135.7 104.0     8.4 
Mugasha et al. (2013) dbh, ht 74 1239.7 1076.7 163.0 13.2 ** 
Ryan et al. (2011) dbh 74 1239.7 1068.8 170.9   13.8 * 
Chidumayo (2014) dbh 74 1239.7 1205.6   34.1     2.8 
Chave et al. (2014) dbh, , ht 74 1239.7   953.7 286.1   23.1 *** 

Below-
ground 

Mugasha et al. (2013) dbh 41   527.2   377.5 149.7  28.4 *** 
Mugasha et al. (2013) dbh, ht 41   527.2   364.8 162.4  30.8 *** 
Ryan et al. (2011) dbh 41   527.2   426.9 100.3  19.0 *** 
Chidumayo (2014) dbh 41   527.2   551.9 24.7    4.7 

* MPE is significantly different from zero at (p < 0.05); ** MPE is significantly different from zero at (p < 
0.01) and *** MPE is significantly different from zero at (p < 0.001), dbh = diameter at breast height, ht = 
total tree height,  = species-specific mean wood specific gravity. 
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Figure 3. Display of total tree volume over diameter at breast height (dbh) for models 

developed in this study and previously. For the models with total tree height included as an 

independent variable, a height–diameter model developed from our sample trees was applied. 

Vertical dotted lines are the maximum diameter at breast height of the modelling datasets 

used by Abbot et al. (1997) (a), Mauya et al. (2014) (b) and in this study (c), respectively. 

 

Recently, Kuyah et al. (2016) also developed aboveground biomass models for miombo 

woodlands in Malawi. These models were based on miombo trees outside forests collected 

from three sites in the central and southern region of Malawi. These models are thus suitable 

for biomass estimation for miombo trees in agroforestry systems during national forest 

inventories when biomass of trees outside forests is also considered (Schnell et al. 2014). 

Unlike the models developed in this study, application of models developed by Kuyah et al. 

(2016) for the REDD+ mechanism in Malawi is limited, since the potential project areas are 

forest reserves scattered across the country.  

 

6.2 Application of UAVs in biomass prediction 

Reliable biomass estimates from remotely sensed 3D data are heavily reliant on the 

availability of a good digital terrain model. In paper 3 we first tested different methods of 

generating digital terrain models. The comparisons of plot centre height predictions from 

different digital terrain models showed that predictions from the digital terrain model 
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generated using Shuttle Radar Topography Mission data are unreliable as compared to those 

derived from the other methods. This indicates that when digital terrain models based on 

Shuttle Radar Topography Mission data are used in biomass estimation, the estimates can 

hardly be trusted.  

 

Biomass predictions from the digital terrain models developed based on the tested approaches 

show that the digital terrain model developed using unsupervised ground filtering based on a 

grid search approach performed slightly better than others. This performance demonstrated 

that with some effort, it is possible to find good parameter settings in the AgiSoft Photoscan 

software (AgiSoft 2015). Furthermore, despite performing slightly less than the digital terrain 

model developed using unsupervised ground filtering based on a grid search approach, the 

digital terrain model based on supervised ground filtering using visual classification, was 

equally good. However, since unsupervised ground filtering is relatively easier to implement, 

future studies should consider application of this approach. On the other hand, the relatively 

poor performance of the digital terrain model developed from unsupervised ground filtering 

based on Shuttle Radar Topography Mission could be attributed to the inherent random errors 

in heights associated with shuttle radar topography mission data (Hofton et al. 2006; Karwel 

& Ewiak 2008; Rodríguez et al. 2006). 

 

The root mean square error value for the best model from our study is similar to that reported 

in a study conducted in miombo woodlands of Tanzania by Mauya et al. (2015a) when using 

ALS data. On the other hand, in a study by Puliti et al. (2015), where data acquired from 

UAV was applied in boreal forests, a smaller root mean square error value compared to our 

study was observed when estimating forest stand volume. This might be attributed to the 

differences in forest structures between miombo woodlands and boreal forests. It should also 

be noted that Puliti et al. (2015) utilized ALS data for digital terrain model determination, 

which are superior in describing forest ground surface compared to optical sensors such as 

those applied in the current study (Baltsavias 1999). It is worth noting that the observed root 

mean square error in Puliti et al. (2015) is comparable to that observed in a study by 

Gobakken et al. (2015) also conducted in boreal forests. However, Gobakken et al. (2015) 

used exclusively ALS data. This demonstrates the efficiency of UAV data in forest 

inventories. 
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The findings from our study have also demonstrated that data generated by the UAV system 

have potential of being successfully used in estimating forest biomass in dry tropical forests 

such as miombo woodlands. Similar studies in other dry tropical forests are however 

recommended to validate the results of the current study because of the wide range of 

variations in structure, weather and terrain conditions seen in these forests.  

 

6.3 Influence of plot and sample size on UAV-assisted biomass estimates 

The results from Paper 4 have demonstrated that incorporation of UAV derived 

photogrammetric data in a forest inventory can improve forest biomass estimates beyond 

what can be achieved by purely field-based sample plot inventories (see Table 2). The 

relatively smaller mean biomass standard error values for the UAV-based estimates indicate 

that inclusion of remotely sensed data from UAV-imagery can improve the precision of 

biomass estimates. Thus the application of UAV-assisted inventories for REDD+ 

implementation in Malawi could potentially result in improved biomass estimates compared 

to pure field-based inventories.  

 

Table 2. Relative efficiency (RE), estimated mean biomass and associated standard error 

(SE) estimates based on field-based and UAV-assisted estimation for different sample plot 

sizes and sample sizes. 
Plot size (m2) Sample size (n) Field-based  

(Mg ha-1) 
UAV-assisted 

(Mg ha-1) 
Relative efficiency  

field SE uav SE 
250 107 36.86 3.29 44.12 2.75 1.44 
250 54 36.23 4.58 43.63 3.79 1.47 
250 36 36.37 6.21 49.69 5.20 1.43 
500 107 37.38 2.96 42.49 2.22 1.77 
500 54 39.87 4.57 45.60 3.59 1.62 
500 36 34.21 4.68 42.42 3.52 1.76 
750 107 38.12 2.79 42.16 1.86 2.26 
750 54 39.50 4.13 43.39 3.07 1.81 
750 36 32.63 4.15 43.81 2.56 2.63 
1000 107 38.99 2.85 43.30 1.72 2.75 
1000 54 39.59 4.09 43.11 2.30 3.16 
1000 36 33.12 4.39 40.96 2.36 3.46 
field = Estimated mean biomass from ground-based sample, uav = Estimated mean biomass from UAV-assisted 

data, SE = Estimated standard error of mean biomass, RE = ratio of the variance estimates for the biomass based 
on purely field-based inventory data to that based on UAV-assisted inventory data. 
 
Furthermore, correct choice of sample plot sizes is critical to the precision and accuracy of 

biomass estimates in remote sensing based forest inventories (Frazer et al. 2011). This is 

demonstrated by the increase in the magnitude of relative efficiency values with increasing 

sample plot size and the decrease in RMSE values with increasing sample plot sizes. The 
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same trend was observed by Frazer et al. (2011) and Mauya et al. (2015b). The improvement 

of biomass estimates with increasing sample plot sizes shows that large sample plot sizes 

favour UAV-assisted inventories. This could be attributed to reduction in plot boundary 

effects as the sample plot sizes increases as suggested by Goetz and Dubayah (2011). Thus 

for small sample plots, canopies of trees with wide crowns such as those in miombo 

woodlands (Frost 1996) tend to be partially included and thus under predicting sample plot 

biomass. On the other hand, as the sample plot sizes increase, this effect tends to decrease 

substantially since these variations are averaged out at larger sample plot sizes (Saatchi et al. 

2011).  

 

The fact that the results in the current study indicate that larger plots and larger sample sizes 

favour UAV-assisted forest inventories does not imply that larger sample plots and sample 

sizes should always be applied during the UAV-assisted inventory because of the associated 

costs. The results on cost efficiency analysis indicate that there is a trade-off between costs 

and required precision. On one hand, acquiring UAV data and field reference data from many 

large plots is expensive but produces more precise results. On the other, acquiring the data 

from many small plots is less expensive but produces less precise results. Based on the 

observed trends, if a standard error estimate of less than approximately 3 Mg ha-1 was 

targeted during a forest inventory, then a UAV-assisted forest inventory should be applied to 

ensure cost efficient and precise estimates. This demonstrates the need for carrying out a cost 

analysis during UAV-assisted inventory in order to determine the optimal sample plot size 

and sample size to apply.  

 

Finally, it should be noted that careful planning is needed for application of UAV-assisted 

inventories under the REDD+ mechanism in Malawi to be accomplished. For example, if the 

inventory is intended for smaller forest reserves, wall-to-wall coverage using a UAV is 

possible. On the other hand, in cases where inventories are conducted in larger forest 

reserves, the UAV can be applied as a sampling tool because wall-to-wall operations maybe 

found economically and logistically infeasible. Furthermore, this study was conducted on a 

single site and thus represents a forest inventory scenario at specific location. Although this 

case study has provided evidence of great efficiency of UAV-assisted inventory, similar 

studies should be conducted in other reserves across the country in order to be able to 

generalize and provide guidance for future operational inventories. 
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7.0 Concluding remarks and future studies 

The main objective of the thesis was to develop models and methods for estimating volume 

and biomass of miombo woodlands in Malawi (Figure 1). The results from this thesis have 

taken us some steps forward that are expected to support and improve forest management 

decision-making in general as well as the implementation of a REDD+ MRV system in the 

country. Still, however, much work and research are needed. In the following, we point at 

main achievements as well as some weaknesses and corresponding suggestions on more 

research directly linked to the individual papers. We have also tried to go beyond the scope of 

the thesis, and have identified a few interesting and relevant topics for future studies that 

potentially could provide valuable inputs for further improvements in forest management 

decision-making and REDD+ MRV implementation in Malawi. 

 

The performances and the evaluations of the models developed in Papers 1 and 2 suggest that 

they can be used over a wide range of geographical and ecological conditions in Malawi with 

an appropriate accuracy in predictions. The appropriateness of the models, and the 

importance of using local models in biomass estimation, was also supported by the fact that 

their mean prediction errors were much lower than some previously developed models tested 

on our data. In addition to the models for facilitating carbon assessments, we have also 

developed section models that can be applied when quantifying fuelwood and for timber 

valuation in compensation payments.  

 

It should, however, be noted that the number of tree species included in the modelling 

datasets were relatively low when considering the total number of tree species found in 

miombo woodlands. Future studies should therefore aim at updating the current datasets 

(displayed in full in Papers 1 and 2) with additional species to improve the robustness of the 

models (e.g Chave et al. 2014).  

 

The leaves were excluded from the biomass modelling dataset because most of the trees had 

started to shed leaves when the destructive sampling was carried out. Future studies may 

therefore attempt to collect the data when all the trees have leaves on them. Furthermore, 

inclusion of wood specific gravity as an independent variable, in addition to diameter at 

breast height did not improve the biomass predictions probably because the wood specific 

gravity values were obtained from the global wood density database. According to Baker et 

al. (2004), inclusion of wood specific gravity values from sample trees in biomass modelling 
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is important as it helps in explaining variation in aspects of forest structure that vary 

significantly at regional scales (Baker et al. 2004; Chave et al. 2014; Ramananantoandro et al. 

2015). So future studies should aim at utilizing wood specific gravity values from the sample 

trees.  

 

The results from the biomass predictions based on a combination of remotely sensed data 

captured using UAV and field-based inventory data (Paper 3), show that the observed 

prediction errors are similar to those from previous studies using ALS data in miombo 

woodlands, thus showing the potential of applying this technology in miombo woodlands. 

Furthermore, the study highlighted that digital terrain models developed using unsupervised 

ground filtering based on a grid search approach can produce reliable results in miombo 

woodlands. Additional studies, however, are recommended to validate these results under 

other conditions using different flight settings, i.e. flying altitude and image overlaps, to 

search for the optimum settings. According to Bohlin et al. (2012), both flight altitude and 

degree of image overlaps influence the accuracy of the 3D data produced.  

 

The results presented in Paper 4 demonstrated that UAV-assisted inventories produced more 

precise biomass estimates compared to those utilizing exclusively field-based methods. 

Furthermore, larger plot and sample sizes favour UAV-assisted estimates. The results on cost 

analysis of UAV-assisted inventory has shown that if a standard error estimate of mean 

biomass of less than approximately 3 Mg ha-1 is targeted during a forest inventory, then a 

UAV-assisted forest inventory should be applied to ensure cost efficient and precise 

estimates. However, similar studies should be conducted in other forest reserves across the 

country in order to be able to generalize and provide guidance for future operational 

inventories.  

 

If we go beyond the scope of this thesis, an exercise where questions related to error 

propagations in biomass estimation are approached, would be very important, since the 

Intergovernmental panel on climate change (IPCC) requires biomass and carbon estimates 

reporting under the REDD+ mechanism to be accompanied by appropriate measures of 

uncertainty. Such uncertainties occur when applying the sampling design (sample plot size 

and shape, sample size), during tree measurements and when applying biomass models 

(Chave et al. 2004; Clark & Kellner 2012; Magnussen & Carillo 2015; McRoberts & 

Westfall 2016; Molto et al. 2013). All datasets described in this theses could be applied for 
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error propagation in volume or biomass estimation. This could be done by using different 

biomass models (with corresponding covariance matrices as displayed in Paper 2), 

exclusively field-based methods and in combination with UAVs.  

 

Another step would to be study methods and uncertainty related to determination of biomass 

changes over time. This is also important in the context of IPCC requirements on biomass 

and carbon reporting under the REDD+ mechanism. In particular, uncertainties related to 

different biomass change detection procedures (e.g. Magnussen et al. 2015; McRoberts et al. 

2015) would be important. A study directly relevant for the miombo woodlands of Malawi 

could be done for the same study area as used in Papers 3 and 4, where, after some years, the 

sample plot inventory in combination with the UAV acquisition is repeated for estimating 

biomass. 

 

A third step to ensure a sustained reduction in emissions from deforestation and forest 

degradation should be to conduct further research to understand the drivers of deforestation 

and forest degradation (Gizachew & Duguma 2016; Kissinger et al. 2012). Further studies on 

the establishment of sustainable forest management regimes capable of enhancing forest 

conservation and carbon stocks are also necessary (Edwards et al. 2010). In order to facilitate 

a better planning environment, a decision-making tool based on growth, mortality and 

recruitment models, like the one developed from miombo woodlands in Tanzania, is required 

(see Mugasha et al. 2016a; Mugasha et al. 2016b). 

 

Finally, participation of local communities is critical for the sustainability of REDD+ in 

Malawi. Studies on assessing the feasibility of incorporating aspects of participatory MRV in 

the current preparatory phase of REDD+ implementation would therefore be important to 

check the interest of local communities surrounding the forest reserves (Danielsen et al. 2011; 

Hawthorne & Boissière 2014; Zahabu 2008).  
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