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Abstract

Since the millennium there has been a huge increase in ecological studies which deals with 

distribution modelling, and it is a fact that distribution modelling has branched of from 

mainstream ecology and is now considered an independent branch within ecological science, 

as a key subfield of Conservation Biology under the name: Conservation Biogeography. 

When developing distribution models regardless of whether it is for the distribution of 

species or nature types it is essential to have environmental data of high quality covering 

large geographical areas. Such data is available through remote sensing. Airborne laser 

scanning (ALS) is a relatively new remote sensing technique providing modellers with 3D 

data which can be used as proxies for environmental variables e.g. terrain slope, vegetation 

height and density of forest canopies. Within the last decade ALS has been implemented in 

many studies which deals with distribution modelling.  

In this thesis the main objective was to implement ALS data in ecological studies to 

gain more knowledge about the object in focus and to create guidelines for future use of ALS 

in similar studies. This thesis consists of three studies which all were conducted within an 

old-growth forests reserve in southeast Norway. Specific objects were addressed in the 

individual papers: For Paper 1 and 2 the main objective was to develop distribution models 

for boreal swamp forests. The two studies differed in the sense that Paper 1 used variables 

which described the topography of the terrain as environmental variables. Models were 

developed using the distribution modelling software Maxent. Two distinct MaxEnt modelling 

methods were compared, the standard MaxEnt procedure (SMP) where models were created 

using default settings in the software and the alternative MaxEnt procedure (AMP) where 

default settings were deactivated and manual selection of variables were conducted when 

models were built. In Paper 2 proxies for forest structures were used as environmental 

variables when GLM models were built. In Paper 3 the object in focus was forest dwelling 

birds. Models were developed for both total species richness and eight single bird species. 

Distribution models were developed using both GLM and Random Forest. We used ALS 

variables to describe forest structure, and variables derived from spectral images to describe 

tree composition in each of 157 counting stations.  

Highly informative distribution models were developed in Paper 1. SMP models tend 

to be overfitted compared to AMP models. Slope, topographic position, ruggedness and 

curvature play an important role for the location of swamp forests. In Paper 2 we found that 
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forest structures differ between the two nature types. The mean vegetation height is 

approximately 3 m lower within swamp forests compared to non-paludified forests. The best 

model classified 62% of the cells correctly. For Paper 3 variables which described the density 

of the canopy within certain one meter sections turned out to be the most important sort of 

variables for six out of the eight most abundant bird species and species richness. The best 

distribution models were created for Goldcrest (Regulus regulus) and Wren (Troglodytes 

troglodytes), for the other species and species richness the models predicted poorer but still in 

accordance with previous field measures. We conclude that ALS data has an important role to 

play in the future development of distribution models and thereby Conservation 

Biogeography.  

We recommend future modellers to always evaluate distribution models on an 

independent evaluation data set before implementing them into management plans.  
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Sammendrag

Siden årtusenskiftet har det vært en økende interesse for bruken av utbredelsesmodellering i 

økologiske studier. Dette har resultert i at utbredelsesmodellering har blitt etablert som en 

egen disiplin innen økologiskforskning under navnet: Bevaringsbiogeografi. Uansett om man 

bygger utbredelses-modeller for ulike arter eller naturtyper, er det essensielt at man bruker 

data av høyeste kvalitet som dekker store geografiske områder. Denne type data er 

tilgjengelig fra flybåren laserskanning (ALS).   

Hovedformålet med denne avhandlingen var å implementere ALS data i ulike typer av 

økologiske studier for å øke kunnskapen om bruken av ALS i denne typen studier, samt 

utarbeide mulige fremtidige retningslinjer for bruk av ALS data i liknende studier. Denne 

avhandlingen består av tre uavhengige manuskripter som alle bygger på ALS data og feltdata 

registrert i et gammelskogreservat i Sørøst-Norge. I første manuskript var hovedformålet og 

predikere utbredelsen av boreal sumpskog ved hjelp av variabler som beskriver topografien i 

studieområdet. To forskjellige utbredelsesmodeller ble bygget ved hjelp av 

utbredelsesmodelleringsverktøyet Maxent. En type modeller bygger på forhåndsinnstillinger i 

programmet en annen type modeller bygger på manuell seleksjon av variabler. I det andre 

manuskriptet ble ALS-data brukt til å lage variabler som beskriver skogstrukturen. Det ble 

undersøkt om skogstrukturen i sumpskog skiller seg fra skogstrukturen i ikke-sumpskog. 

Skogstrukturvariablene ble brukt til å lage generelle lineære modeller (GLM) for å finne en 

mulig sammenheng mellom sumpskog og skogstruktur. Disse modellene ble evaluert mot 

uavhengig evalueringsdata. I det tredje manuskriptet ble forekomsten av fugl modellert. 

Informasjon om skogstruktur og treartssammensetning fra 157 fugletakseringspunkter ble 

brukt til å bygge GLM-modeller og Random Forest-modeller for både total artsrikdom og åtte 

enkeltarter.  

 Utbredelsesmodellene som ble bygget ved hjelp av forhåndsinnstillingene i manus nr. 

1 inneholdt flere variabler enn de alternative modellene. De variabler som best beskriver 

forekomsten av sumpskog er: helling, topografisk posisjon, mikrotopografi, samt informasjon 

om terrengets krumning. Resultatene fra manus nr. 2 viser at skogstrukturen er forskjellig 

mellom sumpskog og ikke-sumpskog, i gjennomsnitt er vegetasjonen 3 meter lavere i 

sumpskog. Den beste modellen fra dette studiet klassifiserte 62% av cellene fra et uavhengig 

evalueringsdatasett korrekt.  Den type variabel som best beskriver tilstedeværelsen av fugler 

er en tetthetsvariabel som beskriver tettheten av kronen i bestemte én metersseksjoner. De 
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beste utbredelsesmodellene ble bygget for fuglekonge (Regulus regulus) og gjerdesmett 

(Troglodytes troglodytes). For de andre artene og artsrikdom ble det bygget mindre gode 

modeller, men disse modellene inneholdt variabler som i tidligere studier har vist seg å være 

viktige for de respektive artene. Konklusjonen på denne avhandlingen er at vi anbefaler 

videre bruk av data fra flybåren laserskanning i arbeidet med utbredelsesmodellering av både 

enkeltarter og naturtyper. Vi anbefaler fremtidige modellbrukere å alltid evaluere sine 

distribusjonsmodeller mot et uavhengig (evaluerings)datasett før de implementeres i 

forvaltningsplaner.  
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1. Introduction
Understanding how and why species and nature types distribute as they do has always been 

of great interest for ecologists (MacArthur and MacArthur 1961, MacArthur and Wilson 

1967). We know that species distribute along environmental gradients which affect their 

ecological niche in different ways, both on a local and global scale (Økland et al. 2001, Elith 

et al. 2006, Wollan et al. 2008). One way to gain more knowledge about the relationship 

between species or nature types and the environmental gradients affecting these is to built 

species distribution models (niche-based modelling, ecological niche modelling and habitat 

suitability models is just other names for species distribution models). In this thesis I will 

refer to the species distribution models as simply distribution models (or prediction models) 

since I use distribution modelling not only for species but also for nature types.  

Since the millennium there has been an almost exponential growth in published 

studies which deals with distribution modelling (Lobo et al. 2010) and distribution modelling 

is now considered an independent branch within ecological science, as a key subfield of 

conservation biology under the name: Conservation Biogeography (Whittaker et al. 2005). 

This growth in publications has been boosted by technological innovations (Miller et al. 

2004), access to digitalized environmental data (Telenius 2011) and new remote sensing 

techniques (Lefsky et al. 2002, Turner et al. 2003, Aplin 2005).  

1.1 Distribution modelling

Before building a distribution model there are two important issues that needs to be taken into 

consideration: 1) Modelling purpose. The purpose with a distribution model can be three fold: 

i) to built spatial prediction models (SPM), these models are evaluated on their abilities to 

create reliable spatial predictions for the object in focus; ii) to build ecological response 

models (ERM), these models are evaluated on their ability to find relationships between 

response variables and a specific set of environmental variables, resulting in increasing 

ecological knowledge for the object in focus; iii) to build projective distribution models, these 

models are evaluated on their ability to make correct predictions outside of the study area 

and/or into the future with e.g. different climate scenarios (Halvorsen 2012). Within this 

thesis I will focus on prediction and explanatory models only. 2) Type of data. It is common 

to differentiate between two different types of data: presence only and presence-absence data. 

Presence only data brings information about the presence locations i.e. places where the 



5

object in focus e.g. a species has actually been recorded no information about where the 

species was not recorded i.e. was absent is available, whereas presence-absence data bring 

information about both presences and absences. For both presence only data and presence-

absence data it is preferable that the presence observations are gathered randomly from a 

large geographical area, unfortunately this is rarely the case. Presence observations are often 

prone to bias since samples are gathered from a small geographical area or easily accessible 

areas e.g. near roads, cities, rivers and nature reserves, so-called preferential sampling (Raes 

and ter Steege 2007, Merckx et al. 2011). Preferential sampling opens up for the possibility 

that parts of a species niche is not represented within the presence data i.e. the whole gradient 

for a certain environmental variable has not been accounted for when search for the species 

was conducted. When this is the case the distribution model which have been built, using the 

biased samples, will lead to a systematic under-prediction for the species i.e. the species is 

likely to be found in areas which is not predicted by the model (Raes and ter Steege 2007).  

The purpose with the model and the data type available can work as a guideline when 

searching for an appropriate modelling method among the innumerable modelling method 

available (e.g. Elith et al. 2006). Recently several comparative studies have tried to find the 

best overall method for distribution modelling (Elith et al. 2006, Hernandez et al. 2006, 

Pearson et al. 2007, Peterson et al. 2007, Williams et al. 2009, Mateo et al. 2010, Merckx et 

al. 2011). In many of these studies a relatively new method MaxEnt (Maximum entropy, 

Phillips et al. 2004) stands out as the best or among the best (Elith et al. 2006, Phillips et al. 

2006, Pearson et al. 2007). 

 

1.2 MaxEnt

After its release the Maxent software (Phillips et al. 2004) was quickly accepted as a reliable 

distribution modelling method and therefore became popular among ecologists (e.g. Wollan 

et al. 2008, Edvardsen et al. 2011, Erikstad et al. 2013). There are several reasons for 

MaxEnt’s popularity: 1) its top ranking in several comparative studies; 2) it creates reliable 

models with presence only data (Phillips et al. 2004, Phillips and Dudík 2008); 3) it requires 

only a few presence observations to build reliable models (Hernandez et al. 2006, Pearson et 

al. 2007) and finally it is free of cost and user friendly (Phillips 2011). The fact that MaxEnt 

requires only a few presence observations makes is an advantage when creating distribution 

models for rare species e.g. species which are found in natural museum collections around the 

world (Graham et al. 2004, Mateo et al. 2010). MaxEnt has been used to predict the 
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distribution of different species: e.g. red listed plants (Edvardsen et al. 2011), birds (Smart et 

al. 2012, Paper 3), insects (Tognelli et al. 2009) and fungi (Wollan et al. 2008) but also to 

predict areas with certain nature types (Riordan and Rundel 2009, Bässler et al. 2011, Paper 1 

and 2), areas likely to be invaded by alien species (Giovanelli et al. 2008) and areas prone to 

wildfires (Parisien and Moritz 2009). Even the distribution of the North American Sasquatch 

(i.e. Bigfoot) has been predicted by MaxEnt (Lozier et al. 2009).  

 Even though MaxEnt has been a success and has been implemented in many studies 

worldwide, some modellers have started to question MaxEnt’s reliability when it comes to 

creating unbiased and non overfitted models (Raes and ter Steege 2007, Merckx et al. 2011, 

Halvorsen 2013). The term overfitting can be explained in different ways: i) “Overfitting 

means that a model adjusts to specific random features or noise of the training data but, 

works poorly on other datasets” Packalén et al. (2012); ii) “Overfitting generally occurs when 

a model is excessively complex, such as having too many degrees of freedom in relation to 

the amount of data available” (Merckx et al. 2011); iii) “when number of predictors > number 

of observations” (Guisan and Thuiller 2005). Halvorsen (2012) differentiate between three 

types of overfitting: Type I, that a more complex model has lower predictive performance on 

independent data than a simpler model; Type II, that a more complex model is similar (in the 

meaning ‘not significantly better’) in predictive performance on independent data than a 

simpler model; and Type III, that a more complex model with higher predictive performance 

on independent data than a simpler model fails to fit realistic overall ecological response 

curves. As a tool to prevent overfitting in MaxEnt models the 1-regularization (  = 1) has 

been implemented as default (Phillips et al. 2006). This regularization should help create 

simpler models, according to the principle of parsimony: that the simplest model is the best. 

It is believed that the regularization multiplier is one of the main reasons for MaxEnt’s good 

performance (Elith et al. 2006, Phillips and Dudík 2008, Elith et al. 2011). However, recently 

the default settings for the regularization multiplier has been questioned by several authors 

which claims that the default settings results in overfitted models (Raes and ter Steege 2007, 

Anderson and Gonzalez 2011, Merckx et al. 2011, Halvorsen 2013). Regardless of modelling 

purpose, data type or 1-regularization settings it is essential to have environmental data of 

high quality covering large geographical areas when developing distribution models. Such 

data is available from remote sensing (Lefsky et al. 2002, Turner et al. 2003).  
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1.3 Remote sensing: airborne laser scanning

Remote sensing defined as: “Any method of observing the earth`s surface without being 

directly in contact with it” (Strand et al. 2007). According to Wang et al. (2010) remote 

sensing will play a large role in the future not just in distribution modelling but also in the 

everyday life as well: “It is believed that remote sensing will develop in a path similar to that 

of computer science, which has penetrated all aspects of human life”.  

Aerial photographs were the first remote sensing technique, and it has since 1964 

been used to conduct forest inventories worldwide (Loetsch and Haller 1964). From the mid 

– 1970s and until today remote sensing satellites has made it possible to achieve images 

covering larger spatial areas than what is possible with aerial photographs (Strand et al. 

2007). Both aerial photographs and satellite images are still used in forest inventories today, 

though being challenged by the new remote sensing technique: airborne laser scanning 

(ALS).  

ALS is an active remote sensing technique, which can provide information about the three 

dimensional structures of a forest canopy by measuring the time span from a laser pulse is 

emitted from an aircraft mounted laser scanner and until its echo is received by the laser 

scanner after the pulse has been reflected from an object near the ground or the ground 

surface itself. The distance between the sensor and the point of reflection is estimated from 

the recorded time span between emission and reflection of the laser pulse. The spatial 

location of the individual echoes can be accurately determined since the exact position and 

orientation of the sensor is provided by use of global satellite navigation systems and internal 

navigation systems. The result from an ALS acquisition is a three dimensional point cloud, 

each point being an echo with its own unique position in an x, y, and z coordinate system. 

Ground echoes were classified using the progressive Triangular Irregular Network (TIN) 

densification algorithm (Axelsson 2000) of the TerraScan software (Terrasolid LTD., 2004). 

A TIN was created from the x and y coordinates and corresponding heights of the laser 

echoes classified as ground echoes. The relative height of each echo was computed as the 

difference between the height of the individual return and the TIN.  

ALS have been used in operational forest inventories in Norway since 2002 (Næsset 

et al. 2004), and in many other countries on a routine basis since around 2005 (McRoberts et 

al 2010). In such inventories important biophysical stand variables such as mean tree height, 

timber volume, and diameter distribution are easily estimated from ALS data with high 

precision and high spatial resolution and yet with a large geographical coverage, often 500-
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1000 km2 or more (Næsset 2007; Gobakken and Næsset 2004). In addition, a numerous 

number of research articles dealing with e.g. biomass change (Næsset et al. 2013, Bollandsås 

et al. 2013) estimation of above- and below-ground biomass (Næsset and Gobakken 2008), 

estimations of forest maturity (Weber and Boss 2009), characterization of successional stage 

(Falkowski et al. 2009), detection of small single trees (Thieme et al. 2011) and estimation of 

single-tree branch biomass (Hauglin et al. 2013) have used ALS data. 

 

1.4 Airborne laser scanning in ecological studies 

During the last decade ecologists have recognized ALS as a tool to derive metrics which can 

be used as proxies for the three dimensional structures of forests (Lefsky et al. 2002, Turner 

et al. 2003, Aplin 2005, McDermid et al. 2005, Wang et al. 2010). Traditionally measures for 

these structures have been both time consuming and difficult to obtain especially for large 

geographical areas, but now proxies for e.g. successional stages (Falkowski et al. 2009), 

understory density (Hill and Broughton 2009, Martinuzzi et al. 2009, Wing et al. 2012), 

canopy gaps (Koukoulas and Blackburn 2004), standing dead trees (Bater et al. 2009, Kim et 

al. 2009), tree species (Holmgren et al. 2008, Ørka et al. 2009) and the vertical distribution of 

canopy density (Turner et al. 2003, Lefsky et al. 2002) can easily be obtained from ALS data. 

Even though ALS has been used in several studies focusing on mammals, e.g. studies on bats 

(Jung et al. 2012), mule deer (Coops et al. 2010), and Pacific fisher (Martes pennant 

Erxleben), it is within bird ecology that ALS has been the most implemented (e.g. Clawges et 

al. 2008, Graf et al. 2009). This is not surprisingly since bird species are known to respond to 

forests structures (Cramp 1988, 1992, 1993, 1994, Hill et al. 2004, Broughton et al. 2006, 

Bergen et al. 2007, Bellamy et al. 2009, Graf et al. 2009, Hinsley et al. 2009, Müller et al. 

2010). Data derived from ALS has also been used to detect nature types of high biological 

importance (Mücher et al. 2009, Vehmas et al. 2009, Bässler et al. 2011) 

 

1.5 Research objectives

The main objective of this thesis was to implement ALS data in three different ecological 

studies, all carried out in an old-growth forests reserve in southeastern Norway. In paper 1 the 

distribution of boreal swamp forests was modelled using terrain variables derived from a 

digital elevation model. In paper 2 differences in forest structure between swamp forests and 

non-paludified forest were modelled. In paper 3 a bird survey was conducted and explanatory 
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and prediction models for species richness and eight single-species created. The individual 

goals for each paper are described below. 

 

Paper 1 – “MaxEnt modelling of swamp forest distributions overfitting and importance of 

spatial autocorrelation in response data” – This study has three main aims: Firstly: MaxEnt 

models built with default settings was compared against models build through a manual 

stepwise forward selection approach to test whether or not MaxEnt models build with default 

settings was overfitted. Models were built using ALS derived metrics describing the terrain in 

the study area. Secondly: we tested whether or not spatial autocorrelation in the response 

variable (presence of swamp forest) influenced the predictive performance of MaxEnt models 

and thirdly: we identified key factors determining the occurrence of swamp forests.  

 

Paper 2 – “Structural differences between boreal swamp forests and non-paludified forest in 

a forest reserve measured by airborne laser scanning” – This study has three main aims: 

firstly: to test the hypothesis that swamp forest differ from the surrounding non-paludified 

forest in structural properties that can be recorded on at least one of the scales: 25 m2,  225 m2 

or 625 m2. Secondly: to model structural differences between swamp forests and surrounding 

non-paludified forests and thirdly: we evaluate the developed models on two independent 

evaluation data sets to test how well they performed.  

 

Paper 3 – “Modelling richness and presence of bird species in a boreal forest reserve using 

airborne laser scanning and aerial images “ – The main aims of this paper were firstly: to 

assess the utility of ALS metrics for explaining bird species richness and single-species 

occurrence. Secondly: to assess the utility of ALS metrics for predicting bird species richness 

and single-species occurrence and thirdly: to compare the ability of ALS-derived predictors 

against aerial imagery for predicting richness and single-species occurrence. A secondary aim 

was to assess the relative utility of different statistical techniques for prediction modeling 

(generalized linear models and Random Forest).  
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2. Study area and data collection

2.1 Study area

The study area, which was the same for all three papers, was situated in Østmarka Nature 

Reserve (59º50´ N, 11º 02´E, 190–368 m.a.s.l.), which is located in the southern boreal zone 

of Southeast Norway (Moen 1999) (Figure 1).  

 
Figure 1. The location of the study area in the Østmarka Nature Reserve in Southeast Norway. The 

red polygons show the 121 swamp forest polygons. Lakes appear in blue. Altitude is indicated by 

shading; low-lying areas are dark and higher elevations have light grey shading. A raster (grey lines) 

with cells of size 100 m × 100 m is superimposed on the map to help illustrate the size of the 

polygons. 
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The study area comprised approximately 6 km2. Annual mean precipitation and temperature 

(1961–90 normals) at the nearest meteorological stations (Enebakk, ca. 10 km SE of the area, 

and Hakadal–Bliksrudhagan, ca. 30 km N of the area) were 816 mm and 3.9 °C, respectively 

(Aune 1993, Førland 1993). The bedrock is of proterozoic age and quartz diorite, tonalite and 

gneisses of diverse origins dominate (Sigmond et al. 1984). The topography of the study area 

is dominated by north south facing ridges and valleys (Figure 1). On finer scales, the 

landscape is dissected by ravines, resulting in a very broken topography with structures on 

several scales and a mixture of ridges, valleys, stream beds, large boulders, steep cliffs and 

more gentle slopes (Figure 2).  

 

 
Figure 2. Fine scale terrain variation within Østmarka nature reserve.  
  
Parts of the reserve have been protected since 1990 and additional areas were protected in 

2002 so that the whole reserve now covers approximately 12.5 km2. The reserve is dominated 



12

by old-growth spruce (Picea abies L. Karst) forests (Fig). Pine (Pinus sylvestris L.) 

dominates on nutrient poor and shallow soils on ridges, and deciduous trees, mainly birches 

(Betula pubescens Ehrh. and B. pendula Roth.), are scattered throughout the study area.  

Even though selective logging has been conducted within the study area until around 1940 

the forest has retained many of the characteristics found in primeval forests i.e. multi layered 

canopy, mixture of tree species, good spacing between the trees, open areas and large 

amounts of dead wood (Figure 3). The study area, which covers the center of the reserve, was 

conceptualized as a rasterized geographical space with resolution (grid-cell size) of 5 m, 

resulting in a total of 233774 grid cells this raster was used in paper 1 and 2. 

2.2 Study objects in focus

Paper 1 and 2 focused on boreal swamp forests whereas paper 3 focused up on the bird 

community within the study area.  

2.2.1 Boreal swamp forests

Boreal swamp forests (Figure 4, hereafter named swamp forests) are in this thesis defined as 

forest which grows on peat deposits, with a high water table which varies with precipitation. 

Swamp forests are mainly located within valleys, depressions and along stream beds, but are 

also occasionally located on hills and ridges large enough to contain minor depressions. In 

Fennoscandian swamp forests spruce is the dominating tree species. Several studies 

conducted on Fennoscandinavian swamp forests back in the 1990’s emphasized the 

biological importance of swamp forests in the boreal forests landscape (Segerström et al. 

1994, Kuusinen 1996, Ohlson et al. 1997, Hörnberg et al. 1998). Sjöberg and Ericson (1992) 

argued that: “Forested wetlands generally should be preserved, since otherwise late 

successional forest stages will disappear from the managed forest landscape outside reserves. 

This is the best possibility of ensuring the survival of species dependent on forest stand 

continuity and characterized by low dispersal abilities”. Hörnberg et al. (1998) draws the 

conclusion that swamp forests are to be considered: “biodiversity hotspots in the boreal forest 

landscape”. Timonen et al. (2010) classifies spruce wetland as a woodland key habitat in 

northern Europe.  
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Figure 3. Large variation in forest structure is found within the study area.  

That swamp forests are rich in biodiversity is nicely exemplified with the results from a study 

conducted by Ohlson et al. in 1997. In this study as many as 517 species were registered 

within 10 small remnants of swamp forests in Sweden (148 vascular plants, 131 mosses, 64 

hepatics, 142 lichens and 32 wood-inhabiting fungi). This high number of species becomes 

even more remarkable when the average size of these 10 swamp forests was only 2 hectares. 

The bryophyte species alone resembles 33% of all bryophyte species registered in Sweden. 

Another example which documents the importance of swamp forests for forest dwelling birds 

is a study from 1993 where Sundberg compared bird species richness and number of 
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individuals between swamp forests and managed forest. He found that swamp forests had 

42% more species and 55% more individuals than managed forests.  

There are several explanations for why swamp forests are so rich in biodiversity: 1) 

long forest continuity. Even though swamp forests are no longer considered to be truly fire-

free refugia the fire frequencies within swamp forests are considerably lower within swamp 

forests than in ordinary boreal forests (Hörnberg et al. 1995, Ohlson et al. 2006) resulting in a 

more stable environment where species can accumulate and survive over time; 2) a 

hydrotopographical gradient. Within a relatively small area it is possible to have the whole 

gradient from 100 percent water saturation to dry areas e.g. on hummocks and tree bases. 

This gradient in water saturation results in many different ecological niches where many 

different species will be present (Hörnberg et al. 1998, Økland et al. 2008); 3) a nutrition 

gradient. As species distribute along the water saturation gradient they will distribute along a 

nutrition gradient as well (Økland et al. 2008). In a single swamp forest it is possible to have 

nutrition poor area as well as nutrition rich areas e.g. rich areas could be located close to an 

underground spring or areas where drainage from higher elevated areas are rich in nutrition; 

4) dead wood. Large quantities of dead wood also play an important role for the high amount 

of species found within swamp forests (Ohlson et al. 1997). 

 

2.2.2 Forest dwelling birds

As mentioned in the introduction, ALS data has often been used to gain more knowledge 

about how bird distributions are related to different forest structures, but that has never been 

done for species located in Fennoscandia. We therefore decided to use the same ALS data as 

was used to predict the location of swamp forests in paper 1 and  2 to predict the habitat 

preferences for the hazel grouse (Tetrastes bonasia L.), a forest dwelling grouse species 

which has a preference for swamp forests, in Paper 3. Unfortunately a pilot study revealed 

that hazel grouse was difficult to detect within the study area, the explanation for this could 

be twofold: (1) either the hazel grouse population within the study area consisted of few 

individuals or (2) the broken topography within the study area resulted in large territories for 

the individual birds which again made it difficult to detect the birds. Based on these facts we 

decided that it would be too risky too rely only on hazel grouse in our study. As a 

consequence of this we changed the objectives of Paper 3 from just focusing on hazel grouse 

to perform a survey of the whole bird community in the study area. The bird community 
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within the study area is relatively species-poor, a total of 28 species were recorded during the 

bird censuses (see section 2.3.2)   

 

2.3 Collection of field data

2.3.1 Swamp forest registrations

The location of swamp forests were registered during summer and fall 2010. I systematically 

searched the entire study area for swamp forests larger than 100 m2. When swamp forests 

were encountered the edges of these were drawn manually onto a topographic map (1:1000) 

in the field. The locations of the edges were found by use of a handheld Garmin eTrex H 

Global Positioning System (GPS) receiver. The recorded swamp forest edges were digitized 

as polygons in a geographical information system project, using ArcMap 9.3 (Anonymous 

2008). A total of 121 swamp forest polygons were recorded (Figure 1). The centroid cells for 

each of these 121 polygons constituted one presence-only data set, while another presence-

only data set included all 7175 cells included in the 121 swamp forest polygons both data sets 

were used as training data in Paper 1. For Paper 2 we used a presence-absence data set, where 

the 121 centroid cells from the 121 swamp forests polygons constituted the presence 

observations and 121 randomly assigned non-paludified forest cells constituted the absence 

cells. 

 

2.3.2 Bird census

To collect the bird data we followed the random stratified point transect technique (Bibby 

2000). A total of 157 counting stations, with a radius of 50 m, were visited twice between the 

8th of May and the 10th of June 2012, by the same experienced observer, between sunrise and 

10:00 AM. At each visit the observer recorded birds for five minutes. Only birds recorded by 

visual and/or audio observations within the 50 m radius were registered. To avoid counting 

the same male twice the centers of the counting stations were positioned at least 150 meters 

apart. The 50 m radius was determined by visual estimation. To ensure effective sampling of 

the study area i.e. to capture as much of the variation in vegetation structure (height) and 

composition (tree species) as possible the counting stations were stratified, into different 

strata: spruce, pine and deciduous trees and low, middle and tall trees (see Paper 3 for further 

details). These strata should resemble habitat characteristics that are known to be important 
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for birds in general (e.g. Sutherland et al. 2004). Bird counting was terminated if it was 

raining and/or the wind-speed was above 8 meters/second. 

 

Figure 4. Illustrations of boreal swamp forests included in the study.  
 
2.4 Acquisition of airborne laser scanning data

The same ALS data set was used for all three papers. The acquisition of the ALS data was 

performed 2th of July 2010 by the contractor Blom Geomatics AS, Norway (see Table 1 for 

technical information). In Paper 2 and 3 echoes below 0.5 m were considered as ground hits 

and echoes above 0.5 m were considered vegetation hits. We used a threshold of 0.5 m since 
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the ellipsoidal height accuracy of the TIN model was expected to be around 20–30 cm (Kraus 

and Pfeifer 1998, Reutebuch 2003) in addition a small measurement error (the z-error) will 

always be present in the individual echoes (z < 10 cm; Baltsavias 1999) large stones and logs 

that occurred scattered throughout the study area could also be confused with shrubs.  

 

Table 1. Technical details for the ALS acquisition.  
 Technical specifications 
Aircraft  PA31 Piper Navajo 
Laser scanner instrument Optech ALTM-Gemini 
Average speed (m s-1)  80  
Flying altitude (m) 900 
Scan side overlap (%) 55 
Scan frequency (Hz) 55 
Swath width (m) 440 
Max. number of echoes per pulse 4  
Mean pulse density (m-2) 5 
Half-scan angle (degrees) 13.8 
Footprint diameter (cm) 23 
Pulse repetition frequency (kHz) 100 
 

2.4.1 ALS derived metrics for paper 1

From a digital elevation model (DEM) we derived metrics which described the topography of 

the terrain. A total of 11 variables describing the terrain were used as environmental variables 

(EVs) in the MaxEnt modelling of swamp forest distribution in the study area.  

 

2.4.2 ALS derived metrics for paper 2

To describe as much of the variation in the three dimensional forest structure as possible we 

derived 24 variables: mean height, kurtosis of heights, coefficient of variation of heights and 

standard deviation of height, nine percentiles, nine variables describing the canopy density 

and one variable describing shrub density between 0.5 and 2 m. Canopy density was 

computed by dividing the 95th percentile minus 0.5 into 10 vertical bins of equal height and 

calculating the proportion of echoes within a certain bin to the total number of vegetation 

echoes. The shrub density was computed as the proportion of echoes between 0.5 and 2 m to 

total number of vegetation echoes. We used two echo categories: ‘first’ echoes and ‘last’ 

echoes (‘first’ echoes were constituted by single echoes and first of many echoes; ‘last’ 

echoes were constituted by single and last of many echoes) resulting in a total of 48 variables. 

Each of the variables was analyzed on three spatial scales: 25 m2, 225 m2 (3x3 cells) and 625 
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m2 (5x5 cells). Variables describing the two broadest scales were derived using a mowing 

window approach.  

2.4.3 ALS derived metrics for paper 3

For each of the 157 counting stations a total of 66 variables describing the forest structure 

were computed from the ALS data. Variables which described the height of the vegetation 

was: maximum height, mean height, standard deviation, coefficient of variation, kurtosis of 

height, skewness of height in addition nine percentiles were computed for all vegetation 

echoes (i.e. echoes above 0.5 m). Two different measures for canopy density were computed: 

canopy density and density layers. Canopy density was computed in the same manner as 

described for Paper 2 in section 2.4.3. Density layers relates to the proportion of echoes 

registered within a certain 1 m layer (e.g. between 1-2 m, 2-3 m or 10-11 m) to total amount 

of vegetation echoes for each individual counting station, calculations were done for a total of 

40 layers. Finally, two variables described the density of the shrub layer: proportion of pulses 

between 0.5 and 2 m to total amount of vegetation echoes, and proportion of pulses between 

0.5 and 3 m to total amount of vegetation echoes. 

 

2.5 Acquisition of spectral data

The Vexcel sensor acquired both panchromatic and four multispectral bands (red, green, blue, 

and infrared). To co-register the ALS and image data, each laser echo coordinate where 

mapped to the image planes of the Vexcel UltraCam digital images using a rotation matrix 

(Mikhail et al. 2001). The digital numbers from all bands of the pixel position of the laser 

echo were assigned to the respective laser echo in the original scale. If the laser echo pixel 

position occurred on more than one image, the mean band value of the pixels from all images 

was assigned to the respective laser echo. Furthermore, since only ‘first’ echoes will be 

reflected close to the canopy surface and all other subsequent echoes will penetrate into the 

canopy image pixel values were only assigned to the first returns. From each of the four 

bands of the UltraCam imagery descriptive features (mean, standard deviation, coefficient of 

variation, skewness, kurtosis and percentiles (10th, 30th, . . ., 90th) were used to compute the 

relative band values (the individual band divided by the sum of all bands), and the band ratios 

(one band divided by another band).  
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3. Methods

3.1Modelling procedures Paper 1

The MaxEnt software (Phillips et al. 2006, Phillips and Dudík 2008, Hijmans and Elith 

2011), version 3.3.3k (Phillips 2011), was used for modelling the distribution of swamp 

forests in the study area as a response to the 11 EVs. MaxEnt was run in batch mode via a set 

of customised R scripts (Mazzoni & Halvorsen unpublished material).  

The main steps of MaxEnt modelling, after presence only data for the modelled target 

and EVs have been prepared, are (Halvorsen 2013): (1) to transform EVs to derived 

explanatory variables (DVs; for a full explanation of how the DVs are derived refer to 

appendix B in Paper 1); (2) to choose a model selection strategy, or regularisation method; 

and (3) to choose a method for internal model performance assessment to be used in step (2); 

and (4) to parameterize the model. The transformation step (1) is required to open for 

modelling nonlinear relationships between the modelled target and the EVs. The choice of 

model selection strategy (2) implies choosing one specific among many alternative models; 

model selection is typically carried out by an iterative process by which the selected model 

performance statistic (3) is used to assess the contribution of EVs, directly or via the DVs that 

represent the EVs, and, thus, to rank alternative models. A specific threshold value for the 

performance statistic, the model improvement criterion, may be used to test the hypothesis 

that more complex models do not improve a simpler reference model significantly. In this 

study we wanted to test two different types of MaxEnt models: standard maxent procedure 

(SMP) and alternative maxent procedure (AMP) models.  

To create SMP models default settings for the MaxEnt software was retained i.e. 

transformation of EVs into derived variables (DVs) was performed as an integrated part of 

the model parameterisation procedure. Model selection was carried out by 1-regularisation 

and SMP models were obtained for six values of the regularisation multiplier  = 1,  = 2,  = 

4,  = 8,  = 16,  = 32. 

AMP models were parameterised using the aforementioned R-scripts for stepwise 

forward variable selection. This method for model selection includes three phases (see 

appendix A Paper 1): (1) derivation of a parsimonious set of DVs from each EV; this set of 

DVs was used to represent the EV in the next model-building phases; (2) building a MaxEnt 
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model without interactions by sequentially adding EVs until no more EVs can be found that 

increases model performance; and (3) building a MaxEnt model with interactions by 

sequentially adding product variables [products between DVs representing the EVs included 

in the final model from phase (2)] to the final model from phase (2) until no more EVs can be 

found that increases model performance. The F-ratio test developed for MaxEnt by 

Halvorsen (2013) was used for comparison of nested MaxEnt models, with significance level 

 as model improvement criterion (hence the regularisation multiplier was deactivated i.e.  = 

0). Seven different  were used: 1 = 0.25, 2 = 0.1, 3 = 0.05, 4= 0.01, 5 = 1.0e–03, 6 = 

1.0e–04, 7 = 1.0e–05, 8 = 1.0e–07 and  9 = 1.0e–11.  

 All SMP and AMP models were created using two different numbers of presence 

observations i.e. response variables: 121 presence observations which resemble the centroid 

of each of the 121 swamp forest polygons, and 7175 presence observations which resemble 

all the grid cells within the 121 swamp forest polygons.  

3.2 Modelling procedures Paper 2

To detect structural differences between swamp forests and non-paludified forests we 

performed Kruskal-Wallis tests for all variables from both first and last echoes on each of the 

three spatial scales (25m2, 225m2 and 625m2). We used  = 0.05 as the significance level.  

One explanatory logistic regression model [generalised linear models (GLM) with 

binary response variable and binomial distribution of errors; (Venables and Ripley 2002)] 

was obtained for each of the spatial scales by best-subset selection, as implemented in the R-

package glmulti. The criteria for selection of the best model were an internal ranking of the 

models BIC values (the Bayesian Information Criterion, or Schwarz' criterion; Schwartz 

1978). When models were developed first and last echoes were pooled together. Since the 

main purpose with these models was to gain more knowledge about how forest structure 

differs between swamp forest and non-paludified forest, we decided to include a maximum of 

four variables into these models using the R-package glmulti (best subset selection).  

3.3Modelling procedures Paper 3

Explanatory models and prediction models were created for both species richness and each of 

the eight most abundant bird species. To create the explanatory models ALS variables were 

used as explanatory variables whereas for the prediction models three different groups of 

explanatory variables were used: 1) ALS variables, 2) spectral image variables and 3) ALS 
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and spectral image variables pooled (ALS+spectral). Response variables used in the modeling 

were species richness (y = number of species) and binary presence of each of the eight most 

abundant bird species (y = 1 means that the species was observed while y = 0 means not 

observed i.e. absent). For each response variable, we used GLM to create both an explanatory 

model and a prediction model. In addition we used Random Forest to create additional 

prediction models, for each of the response variables, in order to compare the predictive 

abilities and performance of two different prediction modeling techniques.  

 To build the explanatory models for each of the eight species we fitted a logistic 

regression model, for species richness we fitted a Poisson regression model. For all models 

we used the R-package glmulti to ensure that the models included a maximum of four 

variables. We created prediction models for species richness and single-species in the same 

way as when we created explanatory models the only difference was that up to 10 variables 

were allowed to be included in the prediction models (prediction models build using GLM 

are hereafter referred to as GLM10 models). Random Forest models (hereafter RF models) 

were created using the random forest algorithm (Breiman 2001). The randomForest package 

in R (Liaw and Wiener 2002) was used to build the models for regression (species richness) 

and classification (presence-absence of single-species).  

 

3.4 Evaluation data

The best way to evaluate models, and thereby get reliable estimates of the models predictive 

performance, is by use of an independent presence/absence test data set i.e. presence and 

absence locations are sampled independently of the training data (Elith et al. 2006, Austin 

2007, Veloz 2009, Edvardsen et al. 2011, Halvorsen 2012).  

3.4.1 Independent evaluation data set for paper 1

Grid cells, which were included in the evaluation data set, were obtained by creating a pilot 

distribution model using logistic regression with manual forward stepwise selection among 

individually significant EVs. All EVs that were found to be significant in the pilot model 

were used to obtain a pilot MaxEnt model, for swamp forests in the study area. As a result of 

this MaxEnt model each grid cell was assigned a value between zero and one (cells with a 

value close to one had the highest probability of being a swamp forest). We divided the cells 

into nine classes. Grid cells which potentially could be included in the evaluation data set 
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were selected as follows: Starting with class one (the class which contained the cells with 

highest probability of containing swamp forest) and proceeding to class seven, 10 cells were 

selected at random from each class. Additional, 15 cells were selected from each of classes 

eight and nine, a higher number of cells from these two classes were included in the 

evaluation data set because they represented a higher proportion of the total number of grids 

cells, resulting in a total of 100 cells. This procedure was repeated four times resulting in a 

total of 400 potential evaluation cells, out of these 203 cells were included in the evaluation 

data set. These cells were visited in the fall 2011 to determine if they contained swamp forest 

or non-paludified forest. We used (AUC) [the area under the receiver operating characteristic 

(ROC) curve (Pearce and Ferrier 2000)] as the evaluation criteria when models were 

evaluated on the evaluation data set.  

 

3.4.2 Independent evaluation data set for paper 2

For evaluation of the explanatory models we created two different independent evaluation 

data sets. The presence cells i.e. cells containing swamp forests were the same for both of the 

evaluation data sets, these cells were encountered in the following way: for each of the 121 

swamp forest polygons cells which was surrounded by other swamp forest cells in each of the 

four cardinal directions were located. One-hundred-and-three swamp forests had several cells 

which fulfilled this criterion. From each of these swamp forests we randomly picked a single 

cell resulting in 103 presence cells. Two sets of absence cells were derived for evaluation of 

the models. The first set included 103 absence cells, which were positioned no closer than 5 

m and no longer away than 10 m from the edge of the swamp forests which contained the 

presence cells. The second set enclosed 103 cells which were randomly picked from all the 

non-paludified forests cells within the study area. We wanted to use these two different sets 

of absence cells to see if the model predictions differed between non-paludified forests 

located close to swamp forests versus non-paludified forests situated longer away from the 

swamp forests. The evaluation data sets were named: ‘close evaluation data set’ and ‘random 

evaluation data set’, respectively. As a measure for the proportion of variation explained by 

each model we used the modified version of R2 proposed by Nagelkerke (1991). 

 

3.4.3 Evaluation data for paper 3

Unfortunately we did not have an independent evaluation data set which could be used to 

evaluate the models developed in paper 3 and was therefore compelled to performed a 10 fold 
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cross-validation. For evaluation of the prediction models we used Cohen’s kappa ( ) and 

AUC in parallel. It was not possible to compute AUC and kappa values for GLM10 and RF 

models describing species richness since species richness is a count response variable. For 

evaluation of the explanatory models we used the modified R2 proposed by Nagelkerke 

(1991). 

 

4. Results and discussion

4.1 MaxEnt modelling of swamp forest distributions overfitting and importance of 

spatial autocorrelation in response data 

Our results clearly demonstrate that MaxEnt models built with default setting for the MaxEnt 

software (SMP models) are overfitted regardless of how overfitting is defined (Halvorsen 

2013). SMP models consistently included more EVs and DVs than did the AMP models, 

even though both types of models were initialized with the same 11 EVs. Number of DVs 

included in the SMP models differs widely when the regularisation multiplier ( ) was 

changed. The SMP models which used  = 1 (default setting in MaxEnt, and the least strict 

criteria for including additional DVs into the model) included as many as 101 and 240 DVs 

when developed for 121 and 7175 presence observations, whereas SMP models created with 

 = 32 included 9 and 28 DVs, respectively. The AMP models which used  = 0.25 (the least 

strict model selection criteria for AMP models) included only 14 and 12 DVs when 

developed for 121 and 7175 presence observations, AMP models created with  = 1E–11 

included 9 and 12 DVs, respectively. SMP models built with =1always had the highest 

training AUC values among the SMP models, whereas when evaluated on the independent 

evaluation data these models had the second lowest test AUC. The fact that the SMP models 

which uses the default setting for the regularisation multiplier (  = 1) are overfitted, and 

predicts the location of swamp forests poorer than simpler SMP models is important findings 

since this default value originally was implemented to avoid overfitting in MaxEnt models 

and to make MaxEnt more users friendly (Phillips and Dudik 2008), several studies even 

claim that the good performance of MaxEnt models in comparative studies is due to the 

default settings for the regularization multiplier (Elith et al. 2006, Phillips and Dudík 2008, 

Elith et al. 2011). No doubt the default settings in MaxEnt have made the software more user 

friendly: a mini review of 87 papers, performed by Halvorsen (2013) showed that the 

majority of studies which used MaxEnt for distribution modelling used the default settings 
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without questioning its right, unfortunately these studies might have emphasized models 

which are in fact overfitted and do not predict distribution of the object in focus properly 

(Halvorsen 2013 and references herein). 

Our results are supported by other studies which also question the default settings in MaxEnt 

(Raes and ter Steege 2007, Anderson and Gonzalez 2011, Merckx et al. 2011, Warren and 

Seifert 2011). Merckx et al. (2011) build models with default settings for the regularisation 

multiplier and concluded that these models were overfitted. Anderson and Gonzalez (2011) 

conclude that the optimal regularization multiplier for their MaxEnt models often was higher 

than the default, similar to our results. Several aspects of the training data can influence the 

outcome of the modelling exercise and both Merckx et al. (2011) and Anderson and Gonzalez 

(2011) emphasize that data sets which includes data from preferential sampling or data which 

contains only a few presence observations are more prone to overfitting since the full niche of 

a species is not represented in the data. Our data set is influenced by neither preferential 

sampling, nor has it too few observations. Our training data includes a minimum of 121 

presence observations which is a lot more than what is needed to create reliable MaxEnt 

models (e.g. Hernandez et al. 2006, Anderson and Gonzales 2011). In addition, we search for 

swamp forests with equally intensity throughout the whole study area to avoid preferential 

sampling. Even though it is not well understood how spatial autocorrelation among presence 

observations i.e. response variables, affect distribution models (Dormann et al. 2007, Santika 

and Hutchinson 2009). Merckx et al. (2011) mention spatial autocorrelation among the 

presence observations as a potential reason for getting overfitted models. Spatial 

autocorrelation will affect distribution models in the same manner as preferential sampling. 

In our study we looked at the affects of spatial autocorrelation among presence observations 

but were not able to show any significant differences in the  predictive performance for 

models which were build using 121 presence observations which were not spatially 

autocorrelated as response variables and models which included 7175 highly autocorrelated 

presence observation as response variables.  

 To get a better understanding of how the distribution of swamp forests is affected by 

the terrain formations, complies with the ERM purpose of distribution modelling. For a 

model to be appropriate for ERM it should include only a few EVs but at the same time 

predict the object in focus with a high accuracy (Halvorsen 2013). The best ERM model in 

our study included four EVs: slope, topographic potion index, plan curvature and vector 

ruggedness measure. The single most important EV for describing the distribution of swamp 
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forests is slope, nearly all swamp forests are situated on slopes between 0 and 3°. The 

topographic position index variable indicates that swamp forests are located in valleys or 

depressions and not on ridges. Plan curvature distinguishes between convex and concave 

slopes and its presence in the model indicate that swamp forests are mainly situated on 

concave slopes. The vector ruggedness measure variable indicates that the surface of swamp 

forests is smoother than the surrounding landscape a result of the in-filling of depressions in 

the landscape by peat accumulation during swamp forest development (Ohlson et al. 2006). 

These EVs accord with those pointed out as important for swamp forest development in 

previous studies (see Ohlson et al. 2006, Hörnberg et al. 2012) 

 

4.2 Structural differences between boreal swamp forests and non-paludified forest in a 

forest reserve measured by airborne laser scanning

In this study we show that forest structure do differ between swamp forests and non-

paludified forest on all three spatial scales: 25m2, 225m2 and 625m2, mean vegetation height, 

standard deviation of height and the percentiles was significantly different for all the models. 

The mean vegetation height for swamp forests was 3.1 m lower than in non-paludified forests 

when first echoes covering 25m2 were analyzed. The fact that we were able to show that 

swamp forest vegetation is significantly lower within swamp forests supports the hypothesis 

we set out to test: ‘that vegetation in swamp forests is lower than vegetation in non-paludified 

forest’. Even though the variables which were included in the models were highly significant, 

the predictive performance of these models varied in an inconsistent manner among spatial 

scales and evaluation data sets e.g. the highest and lowest proportion of correctly predicted 

cells was found for the model developed for the largest spatial scale, when evaluated on the 

random evaluation data set this model predicted 62% of the presence/absence cells correctly, 

whereas it only 54% of the cells correctly when evaluated on the close evaluation data set.  

We believe that there are at least two issues which are responsible for the difficulties 

we experienced when trying to distinguish between forest structures in the two nature types: 

1) size of the swamp forests: most of the swamp forests within the study area are relatively 

small (less than 1000 m2). Swamp forests which cover only a small geographical area are 

more prone to erroneous classification of the ALS echoes than larger swamp forests (Næsset 

et al. 2013). Imagine a scenario where a large spruce tree is growing just outside of a swamp 

forests, most of its crown is situated outside the swamp forest but a proportion of the 

branches are stretching into the swamp forest. When echoes are reflected from the branches 
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which are stretching into the swamp forests these echoes are erroneous recorded as echoes 

reflected from vegetation growing in the swamp forest, resulting in an unnaturally increase in 

the mean vegetation height for the swamp forest; 2) heterogeneous forest structure: there 

were distinct differences in forest structure both between and within individual swamp forests 

in the study area. Two swamp forests could have very different forest structures: one swamp 

forest could be dominated by small spruce and birch trees, whereas another could be entirely 

dominated by large spruce trees. Differences in structure could also be pronounced within 

individual swamp forests, e.g. with large trees in one end and an almost treeless area in the 

other end (Figure 4). These differences in structure between different swamp forests and 

within the same swamp forest corroborate the results in Hörnberg et al. (1995) and Økland et 

al. (2001) and complicate the distinction between the two nature types.  

We are not aware of any other studies which have used ALS data to compare forest 

structure between boreal swamp forests and non-paludified forest in Fennoscandia or other 

places in the world. A few other studies have analyzed ALS data from related ecosystem: 

mires or forested wetlands (i.e. forested areas where repeated flooding is common but 

continuously standing water is lacking) but these studies have mainly looked upon 

geomorphic characters of these nature types (Hopkinson et al. 2005, Richardson et al. 2010, 

Korpela et al. 2009). For example Korpela et al. (2009) among other things used ALS data to 

model the surface patterns of mires to detect hummocks and hollows in Finland. Other 

studies have used ALS data to distinguish between different nature types: Mücher et al. 

(2009) and Bässler et al. (2011) mapped the distribution of nature 2000 nature types. Vehmas 

et al. (2009) predicted the location of herb-rich forest stands. Vehmas et al. (2009) reports 

that herb-rich stands were classified correctly in 55% of the cases which is approximately the 

same chances as we had for classifying swamp forests correctly in our study. In their study 

the size of the stands had no effect on the classification, most likely because the variation in 

forest structures found in rich versus poor forest stands are more pronounced than between 

swamp forests and non-paludified forests in our study area. 

 

4.3 Modelling richness and presence of bird species in a boreal forest reserve using 

airborne laser scanning and aerial images 

That ALS variables were significantly related to both species richness and occurrence of six 

of the eight single bird species is in accordance with several other studies which have used 
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ALS data as explanatory variables in models describing the distribution of birds (e.g. Goetz et 

al. 2007, Graf et al. 2009, Lesak et al. 2011, Tattoni et al. 2012, Smart et al. 2012).   

One or more density layer variables was included in each of the seven developed 

explanatory models indicating that certain canopy heights and the density of the canopy 

around this height is important for the individual species and species richness. We believe the 

advantage of density layer is that they express the density within a certain layer 

independently of the canopy height in the counting stations whereas canopy density variables 

are dependent on the maximum height of the canopy. It has been shown that different species 

relate differently to certain sections of the canopy and therefore will be affected by the 

density of branches in the particular layer(s) (Alatalo et al. 1987). We have not seen any other 

studies which have divided the canopy into vertical 1 m bins as we did for the density layers, 

but our results show that this could be an important variable to include in future bird studies. 

Vegetation height has turned out to be the most important variable, regardless of forest type, 

in other studies which used ALS data to predict overall species richness of forest-dwelling 

birds (Clawges et al. 2007, Goetz et al. 2007, Lesak et al. 2011). 

The best explanatory model was created for Goldcrest and explained 27% of the 

variation in occurrence. In field-based studies Goldcrest have shown to have a preference for 

relatively dense well grown coniferous stands (Cramp 1992) this corresponds well with the 

ALS variables included in the model: the 70th and 90th height percentiles and the density layer 

between 28 and 29 m. In contrast to our results, Müller et al. (2009) had low predictive power 

(R2 close to zero) when modelling occurrence for Goldcrest in spruce forest in Germany, the 

best variable being standard deviation of mean vegetation height. That differences between 

important habitat characteristics are found for the same species is not unusual when two study 

sites are situated several hundred kilometers from each other (e.g. Cramp 1992, 1993). As 

another example we predicted the occurrence of Willow warbler (Phylloscopus trochilus) in a 

forest landscape dominated by coniferous forest whereas Bellamy et al. (2009) predicted the 

occurrence of Willow warbler in woodland areas in England dominated by mixed deciduous 

forest. In both their and our study reliable prediction models were created but a comparison 

between these models makes no sense. The same is the case for Great tit (Parus major) for 

which the habitat preferences have been investigated in several studies in mixed deciduous 

forests in England (e.g. Hinsley et al. 2002, Hill et al. 2004). The 2009 study by Müller et al. 

also looked upon Great tit and since this survey was conducted in an area dominated by 

spruce, it is easier to compare their results with ours. They registered Great tits in many 
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different habitats and no specific ALS variables could be related to the presence of Great tit, 

results which are in accordance with ours. Great tit are considered a generalist species which 

is present in almost any habitat which have at least some trees or shrubs and it is therefore 

reasonable that no ALS variables stands out as particularly important.  

The best prediction model were developed for the Wren (AUC = 0.8), useful models 

were constructed for Chaffinch, Robin, Goldcrest, Willow warbler, Tree pipit and species 

richness. It was not possible to create prediction models for Great tit and Siskin. Only minor 

differences in AUC or kappa values were found between corresponding models built with 

ALS, spectral or ALS+spectral variables. For three of the species in our study the best models 

contained ALS+spectral variables for two species the best model contained ALS variables 

alone and for one species the best model contained spectral variables alone. It is therefore 

difficult to state which group of variables is best at predicting the occurrence of birds from 

our study alone. Goetz et al. (2007) also built models for bird species richness with the same 

three variable groups and concluded that models built with ALS variables performed better 

than model built purely on spectral variables whereas no major differences were found 

between models built only with ALS variables and model built with both ALS and spectral 

variables. A study by Müller et al. (2009) which compared ALS variables, spectral variables 

and traditional field measurements, concluded that ALS variables were more useful for 

modelling the potential abundance of single bird species than were field measurements and 

spectral variables. If an overall conclusion of which variables groups to use should be based 

on our study in addition to the results from the study by Goetz et al. and Müller et al. ALS 

should in my opinion be preferred in future studies.  

 Irrespective of GLM10 and RF models are evaluated on AUC or kappa, RF models 

tend to have slightly better predictive ability than the GLM10 models. This result is in 

accordance with the result by Cutler et al. (2007) which compared GLM and RF models for 

nest sites for cavity nesting birds. An important distinction between GLM and RF models is 

RF method applies to classification and prediction and not to creation of explanatory models 

(Cutler et al. 2007).    

For most prediction models obtained for single bird species in this study the 

predictive ability was relatively low, with AUC values < 0.7 and kappa values below 0.3 

(considered as poor to slight fit according to Araújo et al. (2005) and Landis and Koch 

(1977), respectively).  One possible cause for these results is ‘Detectability noise’ in the 

response variables (bird occurrence) data. In many cases it is not possible to detect all species 
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of interest within a certain area of interest e.g. a counting station like in our study. If a species 

is actually present in a counting station, but not registered, it results in a false absence in the 

dataset (MacKenzie 2006, Lobo 2010). Lobo (2010) distinguises between three different kind 

of absences: (1) contingent absences which is defined as areas which might actually be 

suitable for the species of interest but which is not occupied due to dispersal limitations, 

historical factors, local extinctions, biotic interaction or the fact that the habitat is too small, 

(2) environmental absences is a fact when the environmentally and climatically conditions are 

not suitable for the species and finally (3) methodological absences caused by bias and 

scarceness gathering of the training data e.g. preferential sampling. In our case the 

environmental and methodological absence will play an important role. In addition it is likely 

that birds will pass undetected if they hide and stay quiet when a counting station is visited 

(Bibby 2000). Finally, the degree of elusiveness differs between species, time of the year, the 

time during the day that recordings are made and weather conditions. The experience of the 

observer can also influence the probability that a certain species is recorded. Although we 

tried to counteract or minimize these factors in our study design, detectability is likely to be 

less than 100 % and to vary among species since variation in detectability is unavoidable. 

Another cause for our results might be the size of the counting stations (7850 m2). In large 

counting stations the explanatory power will be reduced since not all parts of a large site will 

be equally suitable for a species. In our study area, high within counting station variation in 

important habitat characteristics is expected to be an important reason for suboptimal 

prediction models.  

When building models which relates birds to their habitat it is important to remember 

that birds are not solidly focusing on habitat heterogeneity when selecting habitat, they also 

depend on e.g. inter and intra specific competition (Alatalo et al. 1987), access to food 

(Hinsley et al. 2008), risk of predation (Møller 1988, Martin 1993) and changes in weather 

conditions (Hinsley et al. 2006).  

 

5. Conclusions

The main conclusions from this thesis highlight the advantages of implementing ALS data in 

ecological studies.  

In Paper 1 good distribution models were created for boreal swamp forests, when 

terrain variables computed from a digital elevation model, derived from ALS, were used as 
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explanatory variables in the novel distribution modelling software: MaxEnt. Not only did we 

create good distribution models, we also showed how important it is to ask questions about 

novel methods reliability. We examined the reliability of the default settings in MaxEnt and 

showed that the use of default settings results in overfitted models. We therefore recommend 

future studies to use the alternative approach for developing MaxEnt models as outlined in 

Paper 1. At least future users of MaxEnt, which continues to develop models using the 

default settings, should be aware of the high risk of creating overfitted models and as a 

minimum use different settings for the regularisation multiplier (easy to change in the 

software), and evaluate the models on independent evaluation data to find the least overfitted 

model, before implementing them into any kind of management plans. To complement the 

results from Paper 1, we in Paper 2 developed models to distinguish between swamp forest 

and non-paludified forest solidly on differences in the forest structure. Result from Paper 2 

was not as convincing as those from Paper 1, but we show that e.g. mean vegetation height is 

lower in swamp forests compared to the surrounding forest. The developed models correctly 

classified between 54 and 62% of the cells when evaluated on independent evaluation data. 

An obvious future study would be to combine the variables from the best model in Paper 1 

with the variables from the best model in Paper 2 and use these terrain and forest structure 

variables as environmental variables in a new MaxEnt model developed with the alternative 

MaxEnt procedure. This will most likely improve the best model from Paper 1 since one of 

the draw backs with models from Paper 1 is that they cannot distinguish between swamp 

forests and open mire, a task which is easily accomplished if forest structure variables are 

included in the model. Future studies working with the distribution of nature types in general 

and boreal swamp forests in particular can benefit from our results. 

Paper 3 is the first study which combines ALS data and spectral images with the 

distribution of birds in Fennoscandia. Explanatory models were successfully created for six 

single bird species and species richness, no models were built for Great tit and Siskin 

(Carduelis spinus). Within all the explanatory models one or more density layer variables 

were included indicating that one or more 1 m sections of the canopy were of particular 

interest for the individual species and overall species richness. We recommend future studies 

to implement density layer variables as a variable which combines important aspects of both 

vegetation height and density in one. Good prediction models were created for Goldcrest and 

Wren, for the other species and species richness only moderate models were built. We argue 

that even moderate models can add new knowledge to how birds distribute within a certain 
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area, but it is important to remember that birds are not only focusing on habitat heterogeneity 

when selecting habitat, they also depend on e.g. inter and intra specific competition, access to 

food, risk of predation, and changes in weather conditions. If only data from one remote 

sensing technique, either ALS or spectral images, should be used in future studies of birds we 

recommend the use of ALS. Future studies which use ALS in bird studies might consider 

using single-tree variables as an alternative to the area-based approach for acquiring ALS 

derived variables used in the present study it might though be challenging to merge single-

tree variables with standard sampling techniques for birds. It is however, possible that single-

species bird studies based on data collected by use of other sampling techniques (e.g. territory 

mapping), may benefit from using the single-tree approach.  
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Abstract 

 

In this study, we investigate the relationship between model selection criteria and potential 

overfitting in distribution modelling MaxEnt methods. We do this by applying two different 

approaches when modelling the occurrence of swamp forests, using terrain variables derived 

from a LiDAR based digital elevation model. Furthermore, effects of spatial autocorrelation 

in the response and explanatory variables are studied. Parallel models were built by manual 

forward stepwise selection (AMP models) of variables, using an F-ratio test as selection 

criteria, and by the default option for model selection and transformation of variables in the 

Maxent software (SMP models) by 1-regularization. A wide range of significance levels  in 

F-ratio tests, and regularization multipliers  were used. All models were evaluated by use of 

the AUC criterion, as applied to an independent evaluation data set as well as to the training 

data. Even though the training data did not contain systematic sampling bias, training AUC 

was considerably higher than test AUC for all models. Accordingly, the importance of using 

independent data for evaluation is emphasized. SMP models turned out to be very complex, 

with up to 240 variables derived from the original 11 variables. AMP models were much 

simpler, with up to 14 derived variables. No significant differences in performance between 

SMP and AMP models were found, indicating that the regularisation procedure may not be 

the main or only reason for MaxEnt's good performance in comparative tests. The concept of 

overfitting is discussed with reference to these results. We argue that the modelling purpose 

has to be taken into account when decisions about overfitting of distribution models are 

made. Additionally, predictive performance did not differ between models made with 

different numbers of presence observations, indicating that spatial autocorrelation in the 

response variable did not influence the models' predictive performance. Finally, the most 

important variables for explaining swamp-forest presence were slope and terrain position. 

This is consistent with current explanations of swamp forest formation. Thus we conclude 

that distribution modelling can be a valuable tool in conservation and management of this and 

other nature-types. 
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Introduction  

 

Proper management of biodiversity requires precise information about the distribution of rare 

or threatened nature types and species. The need for efficiency in locating rare species and 

nature types (e.g., Edwards et al. 2005, Guisan et al. 2006, Williams et al. 2009, Gogol-

Prokurat 2011) is one among several reasons for the rapid growth of distribution modelling as 

a discipline within ecology and conservation biology over the last decade (Guisan and 

Zimmermann 2000, Austin 2007, Elith and Graham 2009, Franklin 2010). A wide spectre of 

statistical methods and software implementations have been developed for distribution 

modelling (Guisan and Zimmermann 2000, Elith et al. 2006), amongst which the maximum 

entropy (MaxEnt) modelling method has increased strongly in popularity since it was made 

available in the free, user-friendly MaxEnt software (Phillips et al. 2004, 2006). The 

popularity of MaxEnt for distribution modelling has been boosted by the method's consistent 

ranking among the best in comparative studies (Elith et al. 2006, Hernandez et al. 2006, 

Phillips et al. 2006, Wisz et al. 2008, Mateo et al. 2010). Another reason for MaxEnt's 

popularity is the functionality to apply presence-only data (Phillips and Dudík 2008), which 

means that enormous amounts of digital data now available from natural history collections 

worldwide, e.g., through the Global Biodiversity Information Facility (GBIF; Telenius 2011), 

can be utilized (Graham et al. 2004). Furthermore, MaxEnt is reported to produce good 

prediction models with small sample sizes, i.e., when relatively few presence locations are 

available (Hernandez et al. 2006, Wisz et al. 2008, Mateo et al. 2010) 

 Despite documented good performance in practical distribution modelling, MaxEnt is 

reported to be susceptible to spatial autocorrelation in the response variable and its ability to 

avoid overfitting of the data has been questioned (Raes and ter Steege 2007, Merckx et al. 

2011). A model is commonly regarded as overfitted to the data when its predictive 

performance is poorer than that of simpler models (Guisan and Thuiller 2005, Merckx et al. 

2011, Halvorsen 2013). However, overfitting can be understood in additional ways according 

to modelling purpose. Halvorsen (2013) distinguishes between two different modelling 

purposes; spatial prediction modelling (SPM) and ecological response modelling (ERM). The 

purpose of a distribution modelling study is SPM if models are to be evaluated exclusively by 

their ability to produce good spatial predictions. Whereas, the purpose is ERM if, the focus of 

the study is to understanding the relationship between the response variable and 

environmental variables of importance for the modelled target's distribution. With this in 
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mind, three types of overfitting can be defined: Type I, that a more complex model has lower 

predictive performance on independent data than a simpler model; Type II, that a more 

complex model is similar (in the meaning ‘not significantly better’) in predictive performance 

on independent data than a simpler model; and Type III, that a more complex model with 

higher predictive performance on independent data than a simpler model fails to fit realistic 

overall ecological response curves. Thus, type III is only relevant in terms of ERM purposes 

(Halvorsen 2012). 

Several model selection strategies, or regularization methods (Reineking and Schröder 

2006), can be used to fine-tune model complexity with modelling purpose and avoid 

overfitting to the training data. The standard selection strategy implemented in MaxEnt 

software is a shrinkage method of the lasso penalty type, often referred to as 1- regularization  

(Tibshirani 1996). This procedure is often regarded as one of the main reasons for MaxEnt’s 

good performance for SPM (e.g., Elith et al. 2006, Phillips and Dudík 2008, Elith et al. 2011). 

There are, however,  indications that MaxEnt models created by default settings tend to be 

strongly overfit to the data (Raes and ter Steege 2007, Anderson and Gonzalez 2011, Merckx 

et al. 2011), regardless of modelling purpose (Halvorsen 2013). Comprehensive comparisons 

with alternative model selection methods, such as the manual forward stepwise selection 

procedure often used in maximum likelihood estimation approaches (e.g., Hastie et al. 2009), 

still remain to be carried out.  

The main aim of this study was to test the following hypothesis: "The standard 

MaxEnt procedure (SMP), i.e. models created by use of default settings including 1-

regularization, and with all variables of interest included, are not overfitted, neither from an 

SPM nor from an ERM point of view, when compared to models created by the alternative 

MaxEnt procedure (AMP) using stepwise forward selection of variables". A proper test of 

this hypothesis requires an evaluation test dataset, which is collected independently of the 

data used to train the model and that consists of presence or absence observations of the 

modelled target(Austin 2007, Edvardsen et al. 2011, Peterson et al. 2011, Halvorsen 2013). 

Evaluation data that meet these requirements are, however, rarely collected because of 

resource constraints (but see, e.g., Newbold et al. 2010, Rebelo and Jones 2010, Edvardsen et 

al. 2011, Gogol-Prokurat 2011). The main reason why independent data are mandatory for 

proper evaluation of distribution models is that preferentially sampled presence-only data, 

which is the most common type of data used to train distribution models (Franklin 2009, 

Peterson et al. 2011), tend to be strongly biased e.g., towards easily accessible sites (Pearson 
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et al. 2007, Wollan et al. 2008) which again results in sampling/collection bias (Raes and ter 

Steege 2007, Merckx et al. 2011, Halvorsen 2012). One type of bias in such data is patchy 

distribution of presence observations, typically resulting in pairs or groups of presence 

observations located so close to each other that they are no longer spatially independent  

(Veloz 2009, Anderson and Gonzalez 2011, Merckx et al. 2011). Independently collected 

presence/absence data efficiently circumvents all kinds of potentially confounding effects of 

sampling bias on model evaluation results, including eventual effects of spatial 

autocorrelation in the training data, how spatial autocorrelation affect the performance of 

distribution models is still not well known or understood (Dormann et al. 2007, Santika and 

Hutchinson 2009). We used a sample of presence/absence data collected according to a 

design in which a priori model predictions were used as auxiliary data in the design phase for 

testing our second hypothesis: "Spatial autocorrelation in the response variable (presence-

only observations for the modelled phenomenon) does not influence the predictive 

performance of MaxEnt models".  

We accomplished these aims by using swamp forests in a study area in SE Norway as 

our study object. Swamp forests were chosen as study objects because of the considerable 

conservation interest associated with them (Ohlson et al. 1997, Hörnberg et al. 1998). 

Motivated by the need for more knowledge about how topography of the terrain and 

hydrological conditions determines swamp forest occurrence (Sjörs 1948b, Økland 1989, 

Gorham 1983), for evaluation of the models' appropriateness for the ERM purpose, the 

following secondary aims were also addressed: to assess the extent to which swamp forest 

sites can be identified by distribution modelling methods (i.e., an SPM purpose); and to 

identify key factors determining the occurrence of swamp forests.  

 

Material and methods 

 

Study area 

The study was carried out in the Østmarka Nature Reserve (Fig. 1) (59º50´ N, 11º 02´E, 190–

368 m.a.s.l.), which is located in the southern boreal zone of Southeast Norway (Moen 1999). 

Annual mean precipitation and temperature (1961–90 normals) at the nearest meteorological 

stations (Enebakk, ca. 10 km SE of the area, and Hakadal–Bliksrudhagan, ca. 30 km N of the 

area, respectively) were 816 mm and 3.9 °C, respectively (Aune 1993, Førland 1993).  
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Figure 1. The Østmarka study area and its location in Southeast Norway. The red polygons show the 
121 swamp forests recorded by systematic search; these polygons comprise the presence-only training 
data. A raster (grey lines) with cells of size 100 m × 100 m is superimposed on the map to help 
illustrate the size of the polygons. Lakes appear in blue. Altitude is indicated by shading; low-lying 
areas are dark and higher elevations have light grey shading. The black square delimits the area from 
which a preliminary distribution model was created to extract the cells which should be included in 
the independent evaluation data set.  
 

The bedrock is of proterozoic age and quartz diorite, tonalite and gneisses of diverse origins 

dominate (Sigmond et al. 1984). The topography of the study area is dominated by ridges and 

valleys in the N S direction. On finer scales, the landscape is dissected by minor valleys, 

resulting in a broken topography with structures on several scales and a mixture of ridges, 

valleys, stream beds, large boulders, steep cliffs and more gentle slopes. The study area 

comprised approximately 8 km2.  
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The study area was conceptualized as a rasterized geographical space with resolution (grid-

cell size) of 5 m × 5 m which, given the fine-scaled topography of the study area, was 

expected to capture variation in the topographically conditioned hydrological factors 

responsible for swamp forest occurrence (cf. Sjörs 1948a, Økland 1989, Økland et al. 2001). 

The total number of grid cells in the area, cells located in lakes excluded, was 233 774.  

 

Presence-only training data 

Swamp forests larger than 100 m2 were systematically searched for in the field in the summer 

and fall of 2010 by a manual protocol. Edges of all swamp forests, that were found, were 

drawn manually onto a topographic map (1:1000) in the field, the location of the edges were 

found by use of a handheld Garmin eTrex H Global Positioning System (GPS) receiver. The 

recorded swamp forest edges were digitized as polygons in a geographical information 

system project, using ArcMap 9.3 (Anonymous 2008). A total of 121 swamp forest polygons 

were recorded (Fig. 1). 

 In order to evaluate the second hypothesis, that spatial autocorrelation in the response 

variable does not influence the performance of MaxEnt models, we derived two sets of 

response variables from the digitized polygons: (i) response variable 1, consisting of the 121 

grid cells containing the centres of gravity (centroids) of the 121 swamp forest polygons; and 

(ii) response variable 2, consisting of all 7175 5 m × 5 m grid cells in which swamp forest 

was recorded as present. The first set resembles a typical response variable in species 

distribution modelling, whereby each locality is represented by one presence observation 

(often referred to as samples in the literature e.g. Merckx et al. 2011). Whereas the second 

set, with 7175 presence observations, is meant to represent a very strongly spatially 

autocorrelated response variable. 

  

Environmental explanatory variables 

Airborne laser scanning (ALS) data were acquired for the study area 2 July 2010. Technical 

details about the scanner and the scanning attributes are shown in Table 1. The initial 

processing of the data was accomplished by the contractor (Blom Geomatics, Norway). 

Planimetric coordinates (x and y) and ellipsoidal height values were computed for all echoes. 

Ground echoes were found and classified using the progressive Triangular Irregular Network 

(TIN) densification algorithm (Axelsson 2000) of the TerraScan software (Anon. 2005). 

 

7



Table 1. Technical details for the ALS acquisition.  
 Technical specifications 
Platform PA31 Piper Navajo 
Sensor Optech ALTM-Gemini 
Mean flying speed (m s-1)  80  
Flying altitude above ground (m) 900 
Side overlap (%) 55 
Scan frequency (Hz) 55 
Swath width (m) 440 
Max. number of echoes per pulse 4  
Pulse density (m-2) 5 
Half-scan angle (degrees) 13.8 
Footprint diameter (cm) a 19 
Pulse repetition frequency (kHz) 100 
Date of acquisition 2 July 2010 
Contractor Blom Geomatics AS, Norway 
a 

A TIN was created from the planimetric coordinates and corresponding heights of the laser 

echoes classified as ground points. The ellipsoidal height accuracy of the TIN model was 

expected to be around 20-30 cm (Kraus and Pfeifer 1998, Reutebuch et al. 2003). The TIN 

was converted to a 5 m x 5 m raster digital elevation model (DEM). Descriptors of terrain 

shape, obtained for each cell in the 5 m x 5 m raster, were therefore used as environmental 

explanatory variables (EVs) in the modelling of swamp forest distribution in the study area. 

A total of 11 EVs were used in this study (Table 2). 

 

Maximum entropy modelling (MaxEnt) 

The MaxEnt software (Phillips et al. 2006, Phillips and Dudík 2008, Hijmans and Elith 

2011), version 3.3.3k (Phillips 2011), was used for MaxEnt modelling. MaxEnt was run in 

batch mode via a set of customised R scripts (Mazzoni et al., in prep) to model the 

distribution of swamp forests in the study area as a response to the 11 EVs. The MaxEnt 

method is based on the maximum entropy principle (Jaynes 1957b, Jaynes 1957a, Jaynes 

1982) by which a target probability distribution is estimated by finding the probability 

distribution of maximum entropy. Essentially, MaxEnt finds the combination of variables 

which best describes the distribution of the modelled target. This method can be explained 

from a machine-learning perspective (Phillips et al. 2004, 2006, Phillips & Dudík 2008 and 

Elith et al. 2011) or from a from a maximum likelihood estimation perspective (Halvorsen 

2013). 
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Table 2. Description of the environmental explanatory variables (EVs) used in this study. 
Variable Name Description 

Slope Calculated from the difference in height between a single cell and its eight 
neighbor cells. 

Topographic 
Position Index (TPI) 
for three different 
neighborhoods: 
TPI3, TPI5, and 
TPI10  

Position of cell relative to surrounding cells; positive values indicate convex 
terrain. The TPI index (Jenness 2006) is naturally scale dependent; i.e., if a cell 
is considered to be convex or concave depends on the scale used to analyse the 
landscape. The scale addressed by the index is determined by the neighborhood 
used in the analysis. The TPI values reflect the difference between the elevation 
in a particular cell and the average elevation of the cells around that cell. 
Neighborhoods of 3, 5, and 10 cells, denoted TPI3, TPI5, and TPI10, were used. 

Vector Ruggedness 
Measure (VRM)  
for three different  
neighborhoods: 
VRM3, VRM5, and 
VRM10 

VRM combines slope and aspect into a single measure that describes the 
ruggedness of the terrain around a cell (Sappington et al. 2007). VRM is 
naturally scale dependent in the same way as TPI. Neighborhoods of 3, 5, and 10 
cells denoted VRM3, VRM5, and VRM10, respectively, were used. 

Plan 
curvature 

The curvature at a cell perpendicular to the slope (Kimerling et al. 2009). 

Profile 
curvature 

The curvature at a certain cell in the direction of the slope (Kimerling et al. 
2009). 

Curvature 
 

The curvature of a raster surface, i.e., a combination of plan and profile 
curvatures (Kimerling et al. 2009). 

Flow 
accumulation 

The accumulated weight of all cells flowing into each down slope cell in the 
output raster. 

 

Modelling procedures  

The main steps of MaxEnt modelling, after presence only data for the modelled target and 

EVs have been prepared, are (Halvorsen 2013): (1) to transform EVs to derived explanatory 

variables (DVs; for a full explanation of how the DVs are derived refer to appendix B); (2) to 

choose a model selection strategy, or regularisation method; and (3) to choose a method for 

internal model performance assessment to be used in step (2); and (4) to parameterize the 

model. The transformation step (1) is required to open for modelling nonlinear relationships 

between the modelled target and the EVs. The choice of model selection strategy (2) implies 

choosing one specific among many alternative models; model selection is typically carried 

out by an iterative process by which the selected model performance statistic (3) is used to 

assess the contribution of EVs, directly or via the DVs that represent the EVs, and, thus, to 

rank alternative models. A specific threshold value for the performance statistic, the model 

improvement criterion, may be used to test the hypothesis that more complex models do not 

improve a simpler reference model significantly.  
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The main aim of this study is to compare MaxEnt models obtained by two different model 

selection procedures, each with different settings (tuning parameters) for several options 

(variants of the method). These two procedures are referred to as the alternative and the 

standard MaxEnt procedures, AMP and SMP, respectively.  

AMP models were parameterised using the aforementioned R-scripts for stepwise 

forward variable selection. This model selection method includes three major phases (see 

appendix A): (1) derivation of a parsimonious set of DVs from each EV; this set was used to 

represent the EV in the next model-building phases; (2) building a MaxEnt model without 

interactions by sequentially adding EVs until no more EVs can be found that increases model 

performance; and (3) building a MaxEnt model with interactions by sequentially adding 

product variables [products between DVs representing the EVs included in the final model 

from phase (2)] to the final model from phase (2) until no more EVs can be found that 

increases model performance. The F-ratio test developed for MaxEnt by Halvorsen (2013) 

was used for comparison of nested MaxEnt models, with significance level  as model 

improvement criterion. The AMP models were obtained by use of Maxent software by setting 

the regularisation multiplier to zero (  = 0), thus detaching the 1-regularisation procedure. 

AMP models were obtained for all combinations of the two response variables (121 samples 

and 7175 samples) and seven model improvement criteria ( 1 = 0.25, 2 = 0.1, 3 = 0.05, 4= 

0.01, 5 = 1.0e–03, 6 = 1.0e–04, 7 = 1.0e–05, 8 = 1.0e–07, 9 = 1.0e–11).  

 For the AMP model with the highest test AUC (i.e., upon evaluation on independent 

evaluation data), the sequence of models obtained at the end of each set expansion step (step 

3c in appendix A) was subjected to evaluation by the independent evaluation data set in order 

to investigate if a more complex AMP model performed better than simpler models (models 

with fewer DVs). 

 SMP models were obtained by use of default settings in the Maxent software, by 

which transformation of EVs into DVs of six feature types is performed as an integrated part 

of the model parameterisation procedure and model selection is carried out by 1-

regularisation or the lasso penalty (Tibshirani 1996), a shrinkage method which evaluates 

DVs as such without taking into account from which EVs they are derived (see Phillips & 

Dudík 2008, Elith et al. 2011 and Halvorsen 2013 for a more detailed description). SMP 

models were obtained for all combinations of the two response variables (121 cells or 7175 

cells) and six values of the regularisation multiplier ( 1 = 1, 2 = 2, 3 = 4, 4 = 8, 5 = 16, 6 

= 32). 
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For each model (both AMP and SMP), the number m of DVs with nonzero parameters, the 

number of EVs from which these DVs were derived, and the number of interaction (product) 

variables in the final model, were retrieved from the NN.lambdas output file produced by the 

Maxent software (Warren & Seifert 2011). The 'raw' output format was used for both AMP 

and SMP models. Both AMP and SMP models were evaluated on an independent presence-

absence evaluation data set.  

 

Evaluation of MaxEnt models by use of independent presence-absence data 

An evaluation dataset that consisted of true presence-absence information was obtained by 

visiting 203 grid cells in the field in the fall of 2011. Positions for cells to be included in the 

evaluation data set were obtained in the following way. (1) A pilot distribution model I was 

obtained by use of logistic regression [GLM with binomial errors (Venables and Ripley 

2002) with manual forward stepwise selection among individually significant variables, as 

implemented in R version 2.14.1 (R Core Development Team 2009)], following 

recommendations of Wollan et al. (2008). All 11 EVs were used untransformed. (2) EVs that 

were found to be significant in pilot model I were used to obtain a pilot MaxEnt model II for 

swamp forests in the study area by the SMP procedure (  = 1 and default settings for all other 

options). The pilot models were obtained by use of presence observations for swamp forests 

in 524 5 m × 5 m grid cells in the 25 252 grid cells located on land in a 1-km square centrally 

placed in the study area (Fig. 1). This area was chosen because it contained the full range of 

variation in elevation and terrain shapes encountered in the study area (results not shown). 

Model predictions (RPPP values in raw output format) from pilot model II were obtained for 

the entire study area. (3) We divided the set of RPPP values for all grid cells into nine classes, 

each class spanning a fixed RPPP range. (4) Potential positions for grid cells to be included in 

the evaluation data set were selected as follows: (i) Starting with class one (the highest RPPP 

values) and proceeding till class seven, 10 cells were selected at random from each class. To 

avoid spatial autocorrelation in the evaluation data set, cells were not allowed to be located 

within a buffer zone with radius = 40 m around an already chosen cell. (ii) Additional, 15 

cells were selected from each of classes eight and nine. A higher number of cells from these 

two classes were included in the evaluation data set because they represented a higher 

proportion of the total number of cells. Procedures (i) and (ii) were repeated four times to 

select a total of 400 cells, all of which were visited in the field. Recordings of presence or 
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absence of swamp forests in the 203 grid cells that could be located with a precision of ± 2 

cm by use of a Real Time Kinematic (RTK) GPS made up the evaluation data set. 

 We used the AUC value (the area under the receiver operating characteristic (ROC) 

curve, derived from the test data) to evaluate the performance (Pearce and Ferrier 2000) of all 

AMP and SMP models. For the AMP model with the highest test AUC, the entire sequence 

of models obtained at the end of each set expansion step (see appendix A Step 3c) was 

subjected to evaluation, in order to compare the performance of AMP models along a model 

complexity gradient. AUC values were obtained for the evaluation as well as the training data 

sets, which are referred to as test AUC and training AUC, respectively. The expected (test or 

training) AUC value for a model that assigns RPPP values randomly to grid cells, regardless 

of presence or absence of the modelled target, is 0.5. AUC values are often translated into 

qualitative characterizations of model goodness-of-fit.  

 Following Lobo et al. (2008), AUC is often stated to be a suboptimal model 

performance criterion for distribution models. We used AUC because it evaluates model 

performance over all possible thresholds for conversion of RPPP values to binary predictions, 

with equal weight to predicted presences and predicted absences. These properties of the 

AUC are in line with the general purpose of comparing models in our study, for which none 

of the five reasons of Lobo et al. (2008) for not using AUC apply: (1) that AUC ignores if the 

model is well calibrated [the term model calibration is used for the degree to which the 

numerical accuracy of model predictions corresponds to real probabilities of presence; cf. 

Pearce & Ferrier (2000)]; model calibration is irrelevant to our aim which is to evaluate the 

ability of different models to separate presence from absence grid cells, i.e. to provide RPPP 

values that rank grid cells so that real presence grid cells have higher RPPP values than real 

absence cells, because the ranking of RPPP is independent of how well the model is 

calibrated; (2) that AUC summarises model performance over regions of the ROC space in 

which one rarely operates, and (3) that AUC weighs omission and commission errors equally 

is irrelevant because when the prevalence of the modelled target is unknown and the models' 

general performance is addressed, no reasons then exist for unequal weighting of the two 

types of errors, or, which is equivalent, to emphasise some regions in the ROC space above 

others; (4) that AUC does not give information about the spatial distribution of model errors, 

which is irrelevant because we want to evaluate the overall predictive performance of the 

models; and (5) that the AUC is influenced by the total extent of the study area is irrelevant 

for our study because the extent is kept constant throughout the study.  
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Response functions 

In order to judge the ERM performance of the different models and, notably, to detect Type 

III overfitting, response functions for swamp forest to selected EVs were calculated from 

model output in 'probability-ratio' output format. Generalized additive models (GAMs; e.g.,  

Hastie et al. 2009) with up to 10 degrees of freedom were used to model q  as a function of 

each EV. 

 

Results 

 

AUC values and additional information for all 30 MaxEnt models are summarized in Table 3. 

The labeling of models in Table 3 is used throughout the result chapter when specific models 

are referred to. 

 

Relationship between model selection procedure and test AUC 

The SMP model with highest test AUC (model No. 3, AUC = 0.8684) was built for 121 

samples and regularisation multiplier  = 4. For SMP models built for 7175 samples, the 

highest test AUC, AUC = 0.8633, was obtained for model No. 21, with  = 32. The AMP 

model with highest test AUC, AUC = 0.8627, was model No. 13, built for 121 samples by 

internal performance criterion  = 1·10–5 in the F-ratio test, while for AMP models built for 

7175 samples the highest test AUC = 0.8618 was obtained for model 30, with  = 1·10–11. A 

majority of SMP models created with 121 samples and AMP models created with 7175 

samples had test AUC > 0.86. 

Among models built for 121 samples, four out of six SMP models (models 2, 3, 4 and 5) had 

higher test AUC than the best out of nine AMP models (model No. 13). The difference in test 

AUC between SMP and AMP models created with 121 samples was barely significant (Two-

sample unpaired Wilcoxon-Mann-Whitney test against the two-tailed alternative hypothesis: 

p = 0.045, n = 30). Among models built for 7175 samples, the highest test AUC was found 

for SMP model No. 21 while, ranked by test AUC, the next five models (models 25, 26, 27, 

28 and 30) were AMP models. The difference in test AUC between model selection 

procedures for models built for 7175 samples was not significant (Wilcoxon-Mann-Whitney 

test:  p = 0.155, n = 30). 
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Relationship between sample size and test AUC  

Five out of the six SMP models built for 121 samples had higher test AUC than the 

corresponding SMP model built for 7175 samples, only for  = 32 did a model built with 

7175 samples perform better than the corresponding model built for 121 samples (Fig. 2, 

Table 3; Two-sample paired Wilcoxon-Mann-Whitney test against the two-tailed alternative 

hypothesis: p = 0.063, n = 12). 

 

 
Figure 2. The effect of model selection strategy on model performance, measured as test AUC. The two model 
selection strategies are the standard MaxEnt procedure (SMP), with different regularisation parameter values, 
lambda , and the alternative MaxEnt procedure (AMP), by which explanatory variables are selected by a 
forward selection procedure, using the F-ratio test with different significance levels, alpha , as model 
comparison criterion. For both model selection procedures, results are shown for models built by use of 121 and 
7175 presence observations. 

 The opposite pattern was found for AMP models (Fig. 2, Table 3): eight out of nine AMP 

models built for 7175 samples had higher test AUC than the corresponding AMP model built 

for 121 samples (Two-sample paired Wilcoxon-Mann-Whitney test against the two-tailed 

alternative hypothesis: p =  0.017, n  = 18). Only one 121-sample model (model No. 13) had 

a clearly higher test AUC than the corresponding 7175-sample model, but the test AUC of 

this model was the highest test AUC encountered among all AMP models (Table 3).  No 

consistent overall difference in test AUC was found between models built for 121 and 7175 

samples, when the 15 pairs of models built for different modelling procedures were compared 
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(Two-sample paired Wilcoxon-Mann-Whitney test against the two-tailed alternative 

hypothesis: p =  0.712, n  = 30).  

 

Table 3. MaxEnt models for swamp forests in Østmarka, based upon 121 and 7175 presence 
observations and built using two contrasting model selection procedures: The standard MaxEnt 
procedure (SMP) refers to models obtained by use of 1-regularisation with different values for the 
regularization multiplier  (lambda). The alternative MaxEnt procedure (AMP) refers to models 
obtained by forward selection of explanatory variables and derived variables, with different values for 
the significance level  (alpha) in an F-ratio test, used as internal performance criterion. Training and 
test AUC values refer to AUC values obtained for the data set used to build the model, and for the 
independent evaluation data set, respectively. Presence observations = the number of presence 
observations used to build the model. EV = number of explanatory variables represented by DVs in 
the final model; DV = number of variables derived from EVs; P = product (interaction) variables. R = 
model rank according to test AUC. 

No Model 
procedure 

Presence 
observations 

Lambda ( ) 
Alpha ( ) 

Training 
AUC 

Test 
AUC 

AUC 
difference EV DV P

 
R 
 

1 SMP 121  = 1 0.9666 0.8616 0.1050 11 101 1 8 
2 SMP 121  = 2 0.9266 0.8675 0.0591 10 51 3 2 
3 SMP 121  = 4 0.9570 0.8684 0.0886 9 25 4 1 
4 SMP 121  = 8 0.9250 0.8666 0.0584 8 13 4 3 
5 SMP 121  = 16 0.9512 0.8639 0.0873 9 13 5 4 
6 SMP 121  = 32 0.9231 0.8569 0.0662 7 9 3 30 
7 AMP 121  = 0.25 0.9456 0.8584 0.0872 7 14 6 22 
8 AMP 121  = 0.1 0.9456 0.8584 0.0872 7 14 6 23 
9 AMP 121  = 0.05 0.9456 0.8584 0.0872 7 14 6 24 

10 AMP 121  = 0.01 0.9456 0.8584 0.0872 7 14 6 25 
11 AMP 121  = 0.001 0.9456 0.8584 0.0872 7 14 6 26 
12 AMP 121  = 0.0001 0.9456 0.8584 0.0872 7 14 6 27 
13 AMP 121  = 0.00001 0.9429 0.8627 0.0802 6 9 5 6 
14 AMP 121  = 0.0000001 0.9429 0.8589 0.0840 6 9 4 19 
15 AMP 121  = 1E–11 0.9427 0.8596 0.0831 6 9 3 14 
16 SMP 7175   = 1 0.9465 0.8584 0.0881 11 240 2 28 
17 SMP 7175  = 2 0.9216 0.8587 0.0629 11 211 2 21 
18 SMP 7175  = 4 0.9388 0.8592 0.0796 11 122 3 18 
19 SMP 7175  = 8 0.9199 0.8573 0.0626 8 100 3 29 
20 SMP 7175  = 16 0.9338 0.8608 0.0730 7 46 4 12 
21 SMP 7175  = 32 0.9186 0.8633 0.0553 9 28 6 5 
22 AMP 7175  = 0.25 0.9167 0.8595 0.0572 7 12 5 15 
23 AMP 7175  = 0.1 0.9167 0.8595 0.0572 7 12 5 16 
24 AMP 7175  = 0.05 0.9167 0.8595 0.0572 7 12 5 17 
25 AMP 7175  = 0.01 0.9165 0.8608 0.0557 8 11 6 13 
26 AMP 7175  = 0.001 0.9166 0.8618 0.0548 7 10 6 7 
27 AMP 7175  = 0.0001 0.9155 0.8612 0.0543 8 11 5 10 
28 AMP 7175  = 0.00001 0.9155 0.8612 0.0543 8 10 5 11 
29 AMP 7175  = 0.0000001 0.9149 0.8589 0.0560 8 11 4 20 
30 AMP 7175  = 1E–11 0.9147 0.8615 0.0532 7 12 4 9 
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Relationship between number of EVs, DVs and test AUC 

AMP models included significantly fewer DVs than did SMP models (Two-sample unpaired 

Wilcoxon-Mann-Whitney test against the two-tailed alternative hypothesis: p = 0.0008, n = 

30), while the number of EVs varied little (from 6 to 11) among models (Two-sample paired 

Wilcoxon-Mann-Whitney test against the two-tailed alternative hypothesis: p = 0.784, n = 

12). In SMP models, the number of EVs and DVs included in models decreased consistently 

with increasing regularisation parameter , from 11 and 11 EVs, and 101 and 240 DVs for  

= 1 with 121 and 7175 samples, respectively, to 7 and 9 EVs, and 9 and 28 DVs, respectively, 

with  = 32. SMP models built for 7175 samples consistently included more DVs than the 

corresponding models built for 121 samples (Two-sample paired Wilcoxon-Mann-Whitney 

test against the two-tailed alternative hypothesis: p = 0.031, n = 12). In contrast, AMP 

models included 6–8 EVs and 9–14 DVs, regardless of significance level  used as internal 

performance criterion or the number of samples upon which the model was built (Table 3). 

 The large number of DVs in SMP models with low  was due to inclusion of many 

hinge- and threshold-type DVs, while the number of interaction (product) variables never 

exceeded 6 (Table 3). The number of interaction variables was significantly higher in AMP 

than in SMP models (3–6 and 1–6, respectively; Two-sample unpaired Wilcoxon-Mann-

Whitney test against the two-tailed alternative hypothesis: p = 0.0008, n = 30). No 

relationship between the number of DVs in models and test AUC was found (Kendall's rank 

correlation coefficient:  = – 0.0986, p = 0.468, n = 30).  

 

Relationship between strictness of the model selection criterion and test AUC  

Test AUC varied very little as a function of strictness of the model selection criterion (the 

regularisation parameter  in SMP models and the significance level  of the F-test in AMP 

models, respectively) within the series of SMP and AMP models (Fig. 2). No general 

relationship between test AUC and each of  and  was found (Fig. 2). For AMP models, test 

AUC peaked at intermediate  values (  = 0.001 and  = 1·10–5 for models built for 7175 and 

121 samples, respectively; Fig. 2), while for SMP models, test AUC was unimodally related 

to  and peaked for  = 4 for the model built for 121 samples, while for the model built for 

7175 samples the highest test AUC was obtained for the strictest regularization,  = 32. 
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Relationship between training AUC and test AUC 

All models had values for training AUC > 0.91. Training AUC values were consistently more 

than 0.05 units higher than the corresponding test AUC values (Table 3). The highest training 

AUC values were found for the most complex SMP models, i.e. models with regularisation 

parameter  = 1, regardless of the number of samples used to build the model (Table 3). For 

corresponding SMP models built on 121 and 7175 samples, no significant difference between 

training and test AUC was found (Two-sample paired Wilcoxon-Mann-Whitney test against 

the two-tailed alternative hypothesis: p = 0.156, n  = 12). AMP models built for 121 samples 

had consistently higher difference between training and test AUC than models built for 7175 

samples (Two-sample unpaired Wilcoxon-Mann-Whitney test against the two-tailed 

alternative hypothesis: p = 0.009, n = 18). No general relationship between training and test 

AUC was found (Kendall's rank correlation coefficient:  = 0.1069, p = 0.630, n = 30).  

 

Comparison among AMP models that make up a sequence of increasing model 

complexity 

The best performing AMP model, as evaluated by test AUC was the 6-EV model obtained 

with interaction (0.8627; Fig. 3). The number of DVs with nonzero coefficients was the same, 

9, in both models because five of the nine DVs in the 6-EV model without interactions 

obtained zero-valued coefficients in the model with interaction DVs. Interestingly, the 4-EV 

model which included Slope, TPI05, Curv_plan and VRM05, had a higher test AUC than did 

the 6-EV model without interactions; test AUC values were 0.8527 and 0.8519, respectively 

(Fig. 3). Test AUC was reduced to 0.8402 for the 3-EV model (not including VRM05), while 

remaining almost unchanged for the 2-EV model (not including VRM05 and Curv_plan, 

AUC = 0.8385, Fig. 3). Even the model with Slope as the only EV had a fairly high test AUC 

value (AUC = 0.7901; Fig. 3). Training AUC followed a slightly different pattern, with very 

gentle reduction from the 6-EV model without interactions (training AUC = 0.9361) to the 2-

EV model (training AUC = 0.9280). The model with Slope as the only EV had training AUC 

= 0.8888. 
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Figure 3. The relationship between number of environmental variables (1–6) included in AMP models created 
with 121 samples, using  = 10–7 in the F-ratio test as internal performance criterion, measured as test AUC. 
Interaction (product variables) is allowed in the '6 incl. P' model only.  
 

Response functions 

The modelled response functions for swamp forests with respect to the four main variables 

(Slope, TPI05, Curv_plan and VRM05) for the 2-EV, 4-EV, best AMP and the best SMP 

models are shown in Fig. 4. The range of output values q  and the complexity of response-

curve shapes increase with increasing model complexity (towards the right in Fig. 4). 

Suitability increased slightly towards steeper slopes (upper row in Fig. 4 for the 2-EV model), 

while a monotonous response to slope is shown for all other models, most strongly for the 4-

EV model. Response curves to TPI and Curv_plan changed from near indeterminate (weak 

trends) for the 2-EV model to distinctly hinge-shaped and distinctly unimodal, respectively, 

when Curv_plan and VRM5 were included (i.e., from 2-EV to 4-EV models). Except for 

small increases in the complexity of response-curve shapes, response curves differed very 

little between the 4-EV, the best AMP and the best SMP models. 
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Figure 4. Response functions for swamp forests with respect to four environmental variables (EVs), Slope, 
TPI05, Curv_plan and VRM05, based upon probability-ratio output q for 2-EV, 4-EV, best AMP and best SMP 
models based upon 121 presence observations. Orange dots = presence observations; Grey dots = uninformed 
background observations; red line = trendline obtained by GAM with 10 degrees of freedom allowed. 
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Discussion 

 

Overfitting of MaxEnt models 

Consistent differences in the number of environmental variables (EVs) and derived variables 

(DVs), and in training and test AUC values, were found among alternative MaxEnt procedure 

(AMP) models and standard MaxEnt procedure (SMP) models built by use of the same 11 

EVs and the same sets of presence observations, but that differed with respect to 

regularization criteria [alpha ( ) and lambda ( ) values, respectively, for the model 

improvement criteria used in the model selection processes]. Most notably, SMP models 

obtained by weak regularization (low  value) included the largest number of DVs and at the 

same time had lowest test AUC values. This indicates that models built with the Maxent 

software’s default settings, include considerably more EVs and DVs than needed to produce a 

model with good predictive capability, and hence are overfitted by any definition. Widely 

used definitions of overfitting are: 1) when models have lower predictive ability on 

independent data than a simpler model (e.g., Hastie et al. 2009) and 2) that they are overfit if 

predicting poorer than a model of comparable complexity (Merckx et al. 2011, Halvorsen 

2012). 

 Judgement of overfitting of distribution models should, however, take the purpose of 

modelling into account (Jiménez-Valverde et al. 2008, Stokland et al. 2011, Halvorsen 2012). 

Most notably, the distinction between SPM and ERM made by Halvorsen (2012) is 

important. Models which suffer from Type I overfitting are considered poor models both 

from the SPM and ERM perspectives. From the gradient analytic perspective on distributions 

of species and nature types (Halvorsen 2012), it follows that good models for the ERM 

purpose should have few EVs and relatively few DVs.  Preference for models with few EVs 

follows from the fact that few, often only two or three, major complex-gradients, i.e. sets of 

more or less strongly correlated environmental variables (Whittaker et al. 2005), are usually 

sufficient to describe and understand variation in species’ responses to the environment. 

Preference for models with few DVs follows from response curves with respect to these 

major complex-gradients typically being relatively simple, unimodal or truncated unimodal 

(Oksanen and Minchin 2002, Austin 2005, Halvorsen 2012). Accordingly, Halvorsen (2012) 

suggested in the context of distribution modelling with the ERM purpose that the concept of 

overfitting should be broadened also to include cases in which a model includes many 

variables which do not improve the model's predictive performance substantially (Type II 
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overfitting), as exemplified by more complex models with similar or almost similar AUC 

values than simpler models. Furthermore, Halvorsen (2012) also argued from a theoretical 

point of view that also models that do not suffer from Type II overfitting may be too complex 

to comply with standards for good ERM models (Type III overfitting; Halvorsen 2012). 

 Our results show that modelling by the SMP procedure, which implies construction of 

several derived variables (DVs) of different types from each EV and model selection by 1-

regularisation, tends to result in complex models with many DVs unless much stricter 

regularisation than the default regularisation parameter  = 1 is applied (Table 3). The most 

complex SMP models, with suboptimal test AUC values, clearly satisfy the criteria given 

above for Type I overfitting and are suboptimal for SPM as well as for ERM purposes. We 

do, however, argue that even the best SPM models suffer from overfitting type II because 

their test AUC values are almost similar to that of simpler models, and that they also seem to 

suffer from Type III overfitting because the response function is unrealistically complex and 

because the complexity of the model prevents interpretation of ecological relationships of the 

target (see below). From an SPM perspective, as many as 13 out of the 30 models had test 

AUC > 0.86, and many of these models are simple in terms of DV numbers and therefore 

accord with type I overfitting avoidance.  

These results provide another case of failure of the 1-regularization procedure, which 

is implemented as standard in MaxEnt, to prevent overfitting. Our results thus accord with 

results of some other studies (Raes and ter Steege 2007, Merckx et al. 2011, Halvorsen 2013), 

adding to a growing pile of evidence which indicates that the frequent claims in the literature 

that the regularization procedure is a major reason for good performance of MaxEnt in 

practical distribution modelling (e.g. Elith et al. 2006, 2011, Phillips et al. 2006, Parolo et al. 

2008, Phillips & Dudík 2008) does not hold true.  

As an alternative to the potentially overfit SMP models, we created AMP models by 

forward stepwise selection of EVs and DVs to be included in the models. The AMP models 

obtained by use of the F-ratio test as model comparison method, with different significance 

levels  as performance assessment criterion, included fewer EVs and DVs than did the SMP 

models. The best AMP model, obtained for 121 presence observations with  = 1·10–5, 

included as few as six EVs and nine DVs and had a test AUC value of 0.8627, which is 

comparable with the test AUC value of 0.8684 for the best SMP model obtained for 121 

presence observations with  = 4. The latter model included nine EVs and 25 DVs. The two 

models are more or less indistinguishable from the point of view of SPM modelling: while 
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the best SMP model had slightly higher test AUC, it is also clearly more complex than the 

best AMP model and the difference in test AUC was so small that it may be a result of 

random variation in the evaluation data set (cf. Fig. 2). Applying Ockham's razor, the best 

AMP model should be preferred also from the perspective of SPM purposes. From a strict 

ERM perspective, the best AMP model in terms of test AUC is also the simplest and certainly 

the best among the 30 models obtained as end-products by the AMP and SMP procedures. 

However, judgment of the response curves in Fig. 4, together with consideration of the 

number of EVs and DVs in the models, indicates that even this model suffered from Type III 

overfitting. This shows that even the strictest model comparison criterion applied in this 

study,  = 1·10–11, did not result in models as simple as desired from the ERM point of view. 

 The forward selection procedure leaves behind a sequence of models of increasing 

complexity, created in the process that leads to a final model. Examination of this sequence 

for the best AMP model shows that the steady increase in explained variation in the training 

data (reflected in the increase of training AUC) is not necessarily followed by increase of test 

AUC on independent evaluation data (Fig. 3). While the overall best AMP model (model No. 

13; samples = 121,  = 1·10–5, test AUC = 0.8627, EVs = 6, DVs = 9) had the highest test 

AUC value, test AUC of the equally complex 6-EV model without interactions was lower 

than that of the simpler 4-EV model (0.8519 vs. 0.8527). Large difference in test AUC was 

found also between the models which contained 1 and 2 EVs (i.e., when TPI05 is added to 

Slope), and between models which contained 3 and 4 EVs (i.e., when Plan curvature and 

VRM05 are added to Slope and TPI05). From the AUC alone it is difficult to tell which of 

the 2-EV model with test AUC = 0.8385 or the 4-EV model with test AUC = 0.8527 that is 

the best model from the ERM perspective. However, comparison of response curves (Fig. 4) 

suggests that the 4-EV model should be preferred because the slight bimodality of the 

response to slope in the 2-EV model is corrected in the 4-EV model and a more realistic 

distinctly unimodal response to plan curvature is obtained. 

 

Model evaluation 

We found a large, consistent difference between training and test AUC for all the 30 MaxEnt 

models, regardless of model selection procedure and strength of regularisation. While test 

AUC can be interpreted as the probability that a randomly chosen presence observation has 

higher RPPP value than a randomly chosen absence point in the evaluation set (Hanley and 

McNeil 1982), training AUC measures the probability that a randomly chosen presence 
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observation in the training data set has higher RPPP value than a randomly chosen 

uninformed background observation (Phillips et al. 2006). While the theoretical maximum 

value for test AUC is 1, training AUC has a maximum of 1 – C/2 where C is the prevalence 

of the modelled target in the study area (Wiley 2003, Phillips et al. 2006). The estimated 

prevalence of swamp forests in Østmarka Nature Reserve is about 3 % (7175 presence grid-

cells out of a total of 233 774 grid cells), thus the theoretical maximum value for training 

AUC is about 0.985. Accordingly, the probability of randomly drawing a non-swamp forest 

grid cell with higher RPPP value than a swamp forest grid cell (1 – AUC) is about 0.14 for 

the independent test data set (test AUC  0.86) and only 0.02–0.07 for the training data 

(training AUC = 0.915–0.965). In general, differences between training and test AUC values 

may reflect strong sampling bias in the training data, the most commonly cited reason for low 

performance of distribution models, a tendency of models to be inappropriately closely fit to 

the training data and/or a tendency for performance measures based on training data to be 

misleading (e.g., Austin 2007, Veloz 2009, Halvorsen 2012). 

The training data used for our study differs from most training data sets used for 

distribution modelling by being more or less free of sampling bias: the presence-only data set 

was collected by a careful and systematic search for swamp forests throughout the entire 

study area, resulting in the registration of 121 swamp forests. The only sources of error 

expected to be present in the training data are the minor uncertainties regarding the precision 

of the hand held GPS used to draw borders for the swamp forests and, possibly, digitizing 

errors. Thus, the main reason for the observed difference between training and test AUC is 

likely to be a general tendency for models to be too closely fit to the training data (i.e. models 

predict the location of the swamp forests already included in the training data very well, but 

is not as good in predicting the locations of swamp forests in general, resulting in lower AUC 

when evaluated on independent data) and/or a tendency for performance measures based 

upon training data to be overly optimistic. We do not consider close fit to training data to be a 

result of a low number of presence observations in our study. One hundred and twenty one 

presence observations is a relatively high number compared to other distribution modelling 

studies, and higher than the recommended minimum number in several studies (Hernandez et 

al. 2006, Wisz et al. 2008, Mateo et al. 2010, Hanberry et al. 2012). Thus, the realised 

distribution of the modelled target in environmental variable space should be adequately 

represented by presence observations in the training data (Anderson and Gonzalez 2011). 

However, the occasional occurrence of presence observations with values for Slope and other 
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EVs that deviated strongly from the bulk of observations (Fig. 4) may have influenced the 

models strongly. An example of strong influence of presence observations with unusual 

values for environmental variables is shown by the 2-EV model, where Slope has an 

inappropriately shaped, bimodal response curve. 

 The strong increase in training AUC values with decreasing  for SMP models, and 

the relationship between training AUC and model complexity, demonstrate that overfitting is 

likely to be an important reason for discrepancy between training and test AUC values. This 

accords with the conclusion of the previous section, that all the 30 SMP and AMP  models 

are too complex to be appropriate for the ERM purpose, and indicates a general tendency for 

distribution models to be too closely fit to training data to reflect general relationships 

between modelled target and the environment. This is particularly problematic when 

modelling results are to be used for projection in space or time (PPM; projective distribution 

modelling; Halvorsen 2012). 

Our result that inappropriately complex models, revealed by large differences 

between training and test AUC (high values for training AUC and low values for test AUC), 

are obtained by SMP with default settings for the regularisation multiplier (  = 1) in the 

MaxEnt software, give empirical support to the conclusions of reviews of current MaxEnt 

practice by Yackulic (in press) and Halvorsen (2013), that using default regularisation 

settings is likely to result in models with suboptimal predictive performance. Furthermore, 

our results indicate that the tendency of MaxEnt models to be overfit to the training data will 

fail to be detected in most cases, because independently collected data are rarely used for 

evaluation. Our study thus provides strong empirical support for the frequently expressed 

view, but rare practice (e.g., Newbold et al. 2010, Edvardsen 2011) that distribution models 

should be evaluated by use of independent evaluation data (Elith et al. 2006, Austin 2007, 

Veloz 2009, Newbold et al. 2010, Edvardsen et al. 2011, Halvorsen 2013).  

 

Effects of number of presence observations and spatial structure in training data on 

model performance and model complexity  

MaxEnt models built by use of 7175 presence observations with the default SMP procedure 

were consistently more complex than models built by use of 121 presence observations. This 

tendency for models to be increasingly overfit with increasing number of presence 

observations is a logical outcome of the increasingly fine detail in which the relationship 

between observed presence and background can be described when the number of presence 
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observations increase. Models obtained by the AMP procedure do not show this tendency to 

be increasingly overfit when the number of presence observations increases, most likely 

because the AMP procedure implies a strong control over model complexity at each step in 

the forward selection procedure. 

  We did not find any consistent difference in performance on independent evaluation 

data (test AUC) between models trained on 7175 presence observations (all grid cells in 

which swamp forest was recorded as present) and models trained on centroids of the 121 

swamp forests, all other settings and options equal and the same environmental variables 

used. However, the overall best SMP and AMP models were both obtained by use of 121 

presence observations. The 121- and 7175-presence observations response data sets differ by 

the latter having strong fine-scaled spatial structure. Spatial structure in ecological data is 

common (Legendre 1993), and data used for distribution modelling are, in general, no 

exception to this (Chapman 2010, Dormann 2011); both the response and environmental 

variables are likely to be spatially structured (Segurado et al. 2006). This is also the case for 

the environmental explanatory variables used in our study, which mostly reflect terrain form 

in a landscape with main topographic features much larger than the grain size of 5 m used in 

our study (Økland et al. 2001). At a first glance, our results may be interpreted in support of 

the predictive performance of distribution models being unaffected by spatial autocorrelation 

in the response variable. This is, however, not necessarily the case. In the context of 

statistical testing (e.g., by the F-ratio test applied in the AMP procedure), it is not spatial 

structure in the raw response variable that matters, but eventual spatial autocorrelation in the 

residuals (Kühn and Dormann 2012). The distinction between spatial dependence and spatial 

autocorrelation as two components of spatial structure (Borrough 1987) is important; the 

former referring to spatial structure resulting from dependence of the response variable on 

spatially structured variables (e.g., dependence on swamp forest development on spatially 

structured terrain forms), the latter referring to spatially structure in the processes inherent in 

shaping the distribution of response variable, i.e. swamp forest encroachment (Segerström et 

al. 1994, Ohlson et al. 2006, Weckström et al. 2010). The spatial structure in swamp forest 

presence patterns in the 7175-observations data set is likely to be due to spatial dependence 

on topographic factors, which is fully accounted for by all AMP and SMP models. This 

indication that none of our models are likely to be burdened with spatial autocorrelation of 

residuals thus supports other findings (Kühn and Dormann 2012). This also explains why 

model performance may be unaffected by spatial structure in the raw response data as such, 
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and also explains why spatial structure (often referred to as 'spatial autocorrelation') in the 

response data have been found to lead either to inflation of AUC (Segurado et al. 2006, Veloz 

2009) or to decrease in AUC (Merckx et al. 2011).Our results support the view of (Dormann 

2011) that no specific measures need to be taken if presence of spatial autocorrelation does 

not affect modelling results, but also highlight the importance of ensuring that no such effect 

is present. Furthermore, our results show that increasing the number of presence observations 

does not necessarily improve the predictive performance of distribution models. 

 

Understanding swamp forest distributions: contributions from the distribution models  

To understand how the distribution of the modelled target is shaped by important 

environmental factors conforms with the ERM purpose of distribution modelling. Ecological 

response modelling calls for the simplest model with reasonably high predictive performance, 

in our case found to be the 4-EV AMP model which includes Slope, TPI05, Plan curvature 

and VRM05. Among these variables, Slope and TPI05 were selected first by the AMP 

procedure. Slope is clearly the best single predictor of swamp forest distribution, as 

demonstrated by the test AUC of 0.79 for the model with slope as the only EV. Nevertheless, 

the models' predictive performance increased considerably, to test AUC > 0.85, when more 

variables were included. The obvious reasons for this is that inclusion of the other variables 

improved the modelled response to slope, partly by improving the separation of swamp forest 

from non-swamp forest grid cells in nearly flat terrain (shown by the wider vertical amplitude 

of the grey cloud of background points for low slopes for the 4-EV than for the 2-EV model; 

almost all swamp forests are situated on slopes between 0 and 3°), and partly by improving 

predictions for steeper slopes for which presence observations are few (note the change from 

a slightly bimodal to a monotonously decreasing response curve in Fig. 4; which better 

reflects the fact that steep slopes almost never support swamp forests; Økland et al. 2001). 

The contribution of the topographic position index (TPI) to model performance reflects the 

fact that swamp forests are located in valleys and not on ridges. The contribution of the 

vector ruggedness measure (VRM) reflects the more smooth surface of swamp forests than of 

the surrounding mineral soil, a result of the in-filling of landscape depressions during peat 

accumulation and swamp forest development (Ohlson et al. 2006). The bimodal response 

curve to VRM shown by all models (Fig. 4) is therefore likely to result from a few presence 

observations with high ruggedness: a monotonously decreasing curve, resembling the curve 

for slope, should be expected.  Plan curvature distinguishes between convex and concave 
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slopes. The slight skew to the left in the response to this variable may reflect occasional 

occurrences of swamp forests on long slopes in shallow but distinctly concave-shaped 

depressions. 

 The EVs identified by our AMP models to be good predictor variables of local swamp 

forest distribution accord with those pointed out as important for swamp forest development 

in previous studies (see Ohlson et al. 2006, Hörnberg et al. 2012, and references therein). 

This adds to previous studies showing that distribution modelling can be a valuable tool in 

conservation and management of swamp forests and other nature-types that are biodiversity 

hotspots (Riordan and Rundel 2009, Weber 2011). However, occurrence of other nature-types 

under conditions that cannot be distinguished from those identified by the best MaxEnt ERM 

model as suitable for swamp forests by the environmental variables included in the model, 

will reduce the applicability of the model. For swamp forests in SE Norway this is the case 

for open mires, which are found adjacent to several lakes in the study area as well as in the 

central parts of large peatland complexes with swamp forests along their margins, hence 

sharing the 'topographic signal' of swamp forests. Presence of open mires in the study area 

therefore certainly adds to the observed commission error, i.e., that swamp forest presence is 

predicted for cells that support open mires. The possibility to separate swamp forests from 

open mires by use of vegetation structural variables, e.g., as obtained from ALS 

measurements, should be explored further (Lefsky et al. 2002, Lim et al. 2003, Korpela et al. 

2009, Vehmas et al. 2009, Bässler et al. 2011). 

  

Conclusion: recommendations for distribution modelling by MaxEnt and future studies 

Our results demonstrate a strong tendency for the default standard MaxEnt procedure (use of 

1-regularisation with a value of 1 for the regularisation multiplier) to result in overly 

complex models with lower than optimal predictive performance. We therefore strongly 

encourage comparisons of the stepwise forward selection procedure used in this study with 

other model selection procedures (e.g., see Reineking and Schröder 2006, Halvorsen 2013), 

using a large specter of data sets. Meanwhile, and regardless of modelling purpose and model 

selection procedure, we recommend using a strict model performance assessment criterion 

and that user’s take control over the important process by which explanatory variables are 

transformed to derived variables. Finally, our results clearly show that truly independent 

presence-absence data are mandatory for reliable evaluation of distribution models. 
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Appendix A. Outline of a manual procedure for forward stepwise selection of explanatory variables (EVs)
and derived variables (DVs) in MaxEnt. ISDV = individually significant DV (Modified from Halvorsen 2013: Table
4) 
Step Term Description
1 Initial steps: preparatory phase
1a Specification of

method for internal
model performance
assessment

Select a method for comparing two nested MaxEnt models (the F ratio test was
used for this study), including a threshold (model improvement criterion) to be
used to decide if a more complex Maxent model is better than a simpler model
(nine different significance levels were used as thresholds in this study).

1b Construction of
continuous DVs

Transform each continuous EV into continuous DVs, i.e., DVs of the L, M and D
types (appendix 2).

1c Construction of
spline DVs

Transform each EV into variables of the spline type (HF, HR, and T). Because
(almost) infinitely many DVs of each type can be constructed by shifting the
position of the knot, a method for limiting the number of DVs is required
(operationalisation of this step is explained in the text).

2 Analysis of single EVs and DVs phase
2a Single variable

modelling step
For each EV and DV resulting after Step 1c, make a 'plain' single variable MaxEnt
model (i.e., a model obtained without 1 regularisation, using the specifications
in Step 1a).

2b Single variable test
step

Compare each single variable MaxEnt model with the MaxEnt null model by use
of the method and the criterion specified in Step 1a.

2c Single variable
selection step

Select all ISDVs, i.e., EVs and DVs that satisfy the criterion specified in Step 1a,
for use in Step 3, and leave out all other EVs and DVs for which no ISDVs could be
obtained.

3 Selection of parsimonious sets of DVs for each EV
3a Finding the best DV

in each set
For each set of ISDVs derived from the same EV, select the ISDVs that performs
best in the single variable test of Step 2b. For sets with only one ISDV, this ISDV
makes up the parsimonious set of DVs for this EV. For all other EVs, proceed to
step 3b.

3b Model improve
ment test step

For each additional ISDV in each set, make a two variable MaxEnt model by
adding this ISDV to the best ISDV in the set. Use the criterion specified in Step 1a
to compare each two variable model with the one variable model for the best
ISDV in the set.

3c Set expansion step Consider the following three cases: (i) If no additional ISDV is found in Step 3b
that satisfies the criterion specified in Step 1a, the parsimonious set of DVs
consists of the best ISDV only. (ii) If one ISDV satisfies the criterion, the
parsimonious set consists of this ISDV and the best ISDV. (iii) If more than one DV
satisfies the criterion, select the one which performs best in the two variable
test of Step 3b and repeat Step 3b by comparing three variable models with the
best two variable model. Repeat the process until no more ISDVs can be added
to the set.

4 Finding the best MaxEnt model without interactions
4a EV test step Compare MaxEnt models for each EV represented by a parsimonious set of ISDVs

with the MaxEnt null model. Select the best EV according to the criterion
specified in Step 1a.

4b Model improve
ment test step

Similar to Step 3b, but applied to EVs represented by parsimonious sets of DVs
instead of single DVs

4c Model expansion
step

Similar to Step 3c, but applied to EVs represented by parsimonious sets of DVs
instead of single DVs.

4d Termination step The best MaxEnt model without interactions is found when neither more EVs
represented by parsimonious sets of DVs can be found that improve the model,
as judged by the criterion specified in Step 1a.

5 Finding the best MaxEnt model with Interactions
5a Construction of Specify the number s of continuous EVs for which interaction DVs are to be
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interaction DVs created. This will be the first s EVs selected in step 4a. Interaction DVs are
obtained as the products of all combinations of DVs in all s(s–1)/2 pairs of EVs.

5b Interaction DV test
step

For each interaction DV obtained in Step 5a, make a MaxEnt model by adding
this DV to the DVs in the best MaxEnt model without interactions, obtained in
Step 4d.

5c Model improve
ment test step

Similar to Step 3b, but applied to interaction DVs

5d Model expansion
step

Similar to Step 3c, but applied to interaction DVs

5e Termination step The best MaxEnt model with interactions is found when neither more interaction
DVs can be found that improve the model, as judged by the criterion specified in
Step 1a.
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Abstract 

Swamp forests are considered to be biodiversity hotspots in the Scandinavian boreal forests, 

yet little is known about structural differences between swamp forests and non-paludified 

forest. We used airborne laser scanning (ALS) to measure if forest structure differed between 

swamp forests and non-paludified forest in an old-growth forest reserve in south eastern 

Norway. Twenty-four structure variables were analyzed on three spatial scales: 25m2, 225m2 

and 625m2. Mean height, standard deviation of height and all percentiles differed 

significantly between swamp forests and non-paludified forest on all three spatial scales. On 

average the vegetation in swamp forests was 3.1m lower than in non-paludified forest. A 

logistic regression model was developed for each of the three spatial scales. These models 

were used to predict the location of swamp forests on two independent evaluation data sets. 

The proportion of correctly predicted presence and absence cells for the two evaluation data 

sets was 54–62 %. The individual variables which were included in the models differed 

between the three different scales. Although the predictive power of the prediction models 

was only moderate, they may still found a basis for development of prediction maps, which 

may be improved through field validation and subsequent improvement of models. 

2



Introduction 

 

Swamp forests cover only a small fraction of the boreal forest landscape in Scandinavia and 

are known to be biodiversity hotspots (Ohlson et al. 1997, Hörnberg et al. 1998). At least 

three important environmental factors are known to contribute to the high species richness 

found in swamp forests: 1) a gradient in plant nutrient availability (Økland et al. 2001), 2) a 

gradient in water saturation related to surface microtopography (Økland et al. 2008) and 3) 

the amount of dead wood (Ohlson et al. 1997). Furthermore, Økland et al. (2001) found that 

the species composition of swamp forests shows patterns related to tree spacing, i.e., that the 

vegetation under trees differs from the vegetation between trees. This accords with the 

general view that forest structure is of vital importance for forest-dwelling species (Brokaw 

and Lent 1994, Spies 1998) and opens for the possibility that the tree-layer structure in 

swamp forests may act as a fourth factor that may explain the high number of species 

typically found in swamp forests. Even though the species composition and biological 

diversity of Scandinavian swamp-forests have been addressed in several studies over the last 

decades (Hornberg et al. 1997, Ohlson et al. 1997, Hörnberg et al. 1998, Økland et al. 2001, 

2008), the extent to which the forest structure of swamp forests actually differs from that of 

non-paludified boreal forests is poorly known. However, Hörnberg et al. (1995) found large 

variation among ten boreal spruce-dominated swamp forests with respect to tree densities and 

tree-size distributions, indicating that swamp forests may lack specific, distinguishing 

structural properties. High potential importance and lack of knowledge motivates strong 

needs for an in-depth comparative study of forest structure between swamp forests and non-

paludified forests.  

One reason why so little is known about structure of swamp forests is that, until 

recently, measuring forest structure in a proper way has been both challenging and time 

consuming. Structural characteristics like tree size and age, mean volume of living trees per 

hectare, number of standing dead trees per hectare, mean volume of dead wood on the 

ground, number of trees above a certain diameter, and number of stumps, are commonly used 

structural attributes of boreal forests (Hofgaard 1993, Kuuluvainen et al. 1998, Lie 2009). 

These measures do, however, reflect age and size distribution rather than the actual three-

dimensional structure of the forest. Expansion of our knowledge about forest structural 

properties, including how forest types differ in these properties, requires methods for 
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assessing three-dimensional forest structural properties, including distribution of biomass in 

three dimensions. This information can now be obtained from airborne laser scanning (ALS) 

data.   

Airborne laser scanning is a remote sensing technique, which provides measurements 

in three dimensions by measuring the time span from a laser pulse is emitted from a laser 

scanner mounted on an aircraft until its echo is received by the instrument after having been 

reflected from an object near the ground or the ground surface itself. The distance between 

the sensor and the object on which the laser pulse was reflected, is estimated from the time 

span recorded between emission and reflection of the laser pulse. Because the exact position 

and orientation of the sensor is provided by use of global satellite navigation systems and 

internal navigation systems, the spatial location of the echoes can be accurately determined. 

The result from an ALS acquisition is a three dimensional point cloud, each point being an 

echo with its own unique position in an x, y, and z coordinate system. Echoes returned from 

the ground are used to derive a terrain model, and a measure for vegetation height is derived 

by subtracting the terrain model from non-ground echoes. ALS has been used as a standard 

method in operational forest inventories in Norway since 2002 (Næsset et al. 2004). In such 

inventories important biophysical stand variables such as mean tree height, timber volume, 

and diameter distribution can easily be estimated from ALS data with high precision and high 

spatial resolution and yet with a large geographical coverage, often 500-1000 km2 or more 

(Næsset 2002, Gobakken and Næsset 2004). Over the last decade, ALS has also increasingly 

been used for ecological applications because of the possibilities ALS offers for describing 

three-dimensional forest structures (Lim et al. 2003, Turner et al. 2003, Aplin 2005, Vierling 

et al. 2008) over large areas (Nelson et al. 2005). Structures of ecological importance 

estimated by ALS are e.g. successional stages (Falkowski et al. 2009), understory (Hill and 

Broughton 2009, Martinuzzi et al. 2009, Wing et al. 2012), canopy gaps (Koukoulas and 

Blackburn 2004), standing dead trees (Bater et al. 2009, Kim et al. 2009), tree species and 

canopy density (Turner et al. 2003). Although most ecological studies so far that have made 

use of ALS data have focused on habitat requirements of individual species    (Hill et al. 

2004, Müller et al. 2009, Coops et al. 2010, Smart et al. 2012) some recent studies have 

focused on identification of structures that can assist localization of specific nature types 

(Mücher et al. 2009, Vehmas et al. 2009, Bässler et al. 2011). 
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Low-growing and less dense vegetation than in the surrounding forest may, potentially, 

enable identification of swamp forests by use of ALS data. The reason for this is twofold. 

Firstly, the anoxic soil conditions in waterlogged peaty soil limits tree growth in swamp 

forests and results in small, stunted trees with fewer branches and less foliage than forests on 

non-paludified ground. Secondly, swamp forests tend to be characterized by 

microtopographic (hummock-hollow) variation with trees of most species, including the 

characteristic species of swamp forests, Norway spruce (Picea abies L. Karst), growing on 

hummocks. Since hummocks typically cover only a small proportion of the area of most 

swamp forests, the canopy of swamp forests is likely to be more open than that of 

surrounding forests. Furthermore, observations in the field (J.W. Dirksen, pers. obs.) suggest 

that deciduous shrubs are more common and cover larger areas in swamp forests than in 

surrounding non-paludified forests. If these general assumptions about forest structural 

differences between swamp forests and the surrounding non-paludified forests hold true, 

swamp forests may potentially be separated from non-paludified forests by ALS-derived 

metrics describing vegetation height, canopy density and shrub density. An important 

advantage of ALS data compared to other remote sensing data in this respect is that ALS data 

can be aggregated on different scales, thus the same ALS data can be used to derive structural 

patterns at different spatial scales.  

This study has three main objectives: 1) to test the hypothesis that swamp forest differ 

from the surrounding non-paludified forest in structural properties that can be recorded in 

observation units of at least one of the scales: single grid-cells of 5×5 m (25 m2), 3×3 grid 

cells (15×15 m, 225 m2) and 5×5 grid cells (25×25 m, 625 m2); 2) to model structural 

differences between swamp forests and surrounding non-paludified forests; and 3) to evaluate 

the developed models on two independent evaluation data sets that contrast swamp forests, 

the first evaluation data set with absence cells located close to the swamp forests and the 

second evaluation data set with absence cells randomly selected within the study area.  

 

Materials and methods 

 

Study area 

The study was carried out in the Østmarka Nature Reserve (59º50´ N, 11º 02´E, 190–368 

m.a.s.l.), which is located in the southern boreal zone of Southeast Norway (Moen 1999) 
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(Fig. 1). The study area comprised approximately 6 km2. Annual mean precipitation and 

temperature (1961–90 normals) at the nearest meteorological stations (Enebakk, ca. 10 km 

SE of the area, and Hakadal–Bliksrudhagan, ca. 30 km N of the area) were 816 mm and 3.9 

°C, respectively (Aune 1993, Førland 1993). The bedrock is of proterozoic age and quartz 

diorite, tonalite and gneisses of diverse origins dominate (Sigmond et al. 1984). The 

topography of the study area is dominated by ridges and valleys in the north south direction. 

On finer scales, the landscape is dissected by minor valleys, resulting in a broken topography 

with structures on several scales and a mixture of ridges, valleys, stream beds, large boulders, 

steep cliffs and more gentle slopes. Parts of the reserve have been protected since 1990 and 

additional areas were protected in 2002 so that the reserve now covers approximately 12.5 

km2. Until around 1940 selective logging was performed in areas now located within the 

reserve. The reserve is dominated by old-growth Norway spruce forests. Scots pine (Pinus 

sylvestris L.) dominates on nutrient poor and shallow soils on ridges. Deciduous trees, mainly 

birch (Betula pubescens Ehrh. and B. pendula Roth.), occur scattered throughout the study 

area. The study area, which covers the center of the reserve, was conceptualized as a 

rasterized geographical space with resolution (grid-cell size) of 5 m, with a total of 233774 

grid cells. 

 

Training data  

During the summer of 2010 field work was conducted to locate swamp forests inside the 

study area. Swamp forests were defined as water-saturated areas dominated by trees, mostly 

spruce but also scattered birch, with Sphagnum mosses covering the ground. A total of 121 

swamp forests with a minimum size of 100 m2 were recorded (Fig. 1). The perimeter of each 

swamp forest was mapped to scale 1:1 000 in the field by walking the edges of each swamp 

forest and recording coordinates with a handheld Garmin eTrex H Global Positioning System 

(GPS, precision ±5 m) receiver. The swamp forest polygons delimited in the field were 

digitized using ArcMap 9.3 (ESRI 2011). A set of 2×121 observations was used as training 

data in the analyses: the centroid cells for each of the 121 swamp forest polygons constituted 

the presence observations (i.e. grid cells containing swamp forest), whereas 121 cells were 

randomly selected among the grid cells not registered as swamp forests, and these cells 

constituted absence observations (i.e. absence of swamp forest).  
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Figure 1. The location of the study area in the Østmarka Nature Reserve in Southeast Norway. The 
121 swamp-forest polygons are shown in red. Lakes appear in blue. Altitude is indicated by shading; 
from dark-shaded low-lying areas to white areas at high altitudes. A raster (grey lines) with cells of 
size 100 × 100 m is superimposed on the map to illustrate the size of the polygons. 
 

ALS derived metrics 

The acquisition of ALS data used to derive variables for each grid cell in the entire study area 

was performed 2 July 2010 by the contractor Blom Geomatics AS, Norway (see Table 1 for 

technical information). For all echoes we computed the planimetric coordinates (x and y) and 

ellipsoidal height. Ground echoes were found and classified using the progressive triangular 

irregular network (TIN) densification algorithm (Axelsson 2000) of the TerraScan software. 

A TIN was created from the planimetric coordinates and corresponding heights of the laser 
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echoes classified as ground points. An uncertainty of 20-30 cm was expected for the 

ellipsoidal height in the TIN model (Kraus and Pfeifer 1998, Reutebuch et al. 2003). 

Table 1. Technical details for the airborne laser scanning (ALS) acquisition.  
 Technical specifications 
Aircraft  PA31 Piper Navajo 
Laser scanner instrument Optech ALTM-Gemini 
Average speed (m s-1)  80  
Flying altitude (m) 900 
Scan side overlap (%) 55 
Scan frequency (Hz) 55 
Swath width (m) 440 
Max. number of echoes per pulse 4  
Mean pulse density (m-2) 5 
Half-scan angle (degrees) 13.8 
Footprint diameter (cm) 23 
Pulse repetition frequency (kHz) 100 
 
The TIN was converted to a digital elevation model (DEM) grid cells being 5 x 5 m). This 

resolution was chosen because a coarser resolution, e.g. of 10 m, was considered to be too 

large compared to the minimum size of a registered swamp forests of 100 m2 whereas a finer 

resolution, e.g. of 1 m, was considered too small to reflect important structures in the 

vegetation. 

Twenty-four ALS derived metrics, hereafter called variables, describing different 

aspects of the forest structure, were derived separately for first and last echoes (in the case 

where only a single echo was detected this was counted both as a first and as a last echo). All 

hits above 0.5 m were considered as vegetation hits in the calculations below. We decided to 

use a threshold of 0.5 m for several reasons: 1) this threshold matches the ellipsoidal height 

accuracy of the TIN model of 20–30 cm (Kraus and Pfeifer 1998, Reutebuch et al. 2003), 2) a 

small uncertainty will always be present in the individual echoes, z-error < 10 cm (Anon 

2013), 3) echoes which are classified as ground returns may actually be located a few 

decimeter above the actual ground since these echoes are often reflected from the ground 

vegetation and not from the actual ground (Næsset et al. 2004), and 4) to avoid stones and 

logs, which occur scattered throughout the study area, to be confused with small shrubs. 

The 24 variables were: mean height (Hmean), skewness of heights (Hskew), kurtosis 

of heights (Hkurt), the coefficient of variation of heights (Hcv), the standard deviation of 

heights (Hsd), and nine percentiles (notation: 10th percentile, 20th percentile, …, 90th 
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percentile). Furthermore, nine density variables Dn (n = 1, ..., 9) were derived for each grid 

cell by splitting the range between 0.5 m and the highest-situated echo into ten equally large 

vertical bins and subsequently calculating Dn as the proportion of all returns coming from 

bins above bin n. The proportion of echoes between 0.5 and 2 m was used as a proxy for 

shrub density. 

The ability to predict the occurrence of swamp forests from ALS-derived variables 

may depend on which spatial scale the ALS variables are extracted. Therefore, we analyzed 

the variables described above on three scales: 25m2 (single grid cell), 225m2, and 625m2. 

While variables calculated for 25m2 give information mainly about the vertical distribution of 

echoes, variables calculated for the two larger sampling scales also take into account the 

horizontal distribution of echoes. Variables at the two broadest scales were obtained by a 

moving window filter approach. The value for the center cell in each of these filter windows 

was calculated using two different operators: mean or standard deviation (sd). If e.g. the 

mean operator were used to derive a value for the median vegetation height in the center cell 

in a 225m2 window the value was calculated as the mean for all nine measures of median 

vegetation height within the filter.  

 

Statistical analysis, modeling and model evaluation 

The Kruskal-Wallis test was applied to all 24 variables to identify variables that differed 

between swamp forests and non-paludified forests.  

One explanatory logistic regression model [generalised linear models (GLM) with 

binary response variable and binomial distribution of errors; (Venables and Ripley 2002)] 

was obtained for each of the spatial scales by best-subset selection, as implemented in the R-

package glmulti (R version 2.14.2, R Core Development Team 2009), using BIC (the 

Bayesian Information Criterion, or Schwarz' criterion; Schwartz 1978) as selection criterion. 

Since the main purpose of this modelling was to identify differences between swamp-forest 

and non-paludified forests in general, we wanted to avoid overly complex models (Halvorsen 

2012). This was accomplished by limiting the number of variables in these models to a 

maximum of four. The modified version of R2 proposed by Nagelkerke (1991), which 

measures the proportion of variation explained by each model, was used for internal model 

performance assessment. 
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Scientific studies have frequently emphasized the importance of using an independent data 

set when evaluating models (Elith et al. 2006, Austin 2007, Edvardsen et al. 2011, Halvorsen 

2013). Two independent evaluation data sets were created for the study area in the following 

way: for each of the 121 swamp forests we tried to locate a single grid cell to be used as 

presence cell. The only criterion for these cells was that they should be surrounded by other 

swamp forest cells in each of the four cardinal directions. This criterion was used to ensure 

that presence cells resemble the interior of a swamp forest. A total of 103 swamp forests were 

large enough to fulfill this criterion, resulting in 103 presence cells to be included into the 

evaluation data. Two different sets of absence cells were derived for evaluation of the 

models. The first set of absence cells was positioned close to the 103 swamp forests which 

contain presence cells (hereafter called: close cell). These absence cells were located no 

closer than 5 m and no further away than 10 m from the swamp forest border. The second set 

of absence cells (also 103 cells) were picked at random from all the non-paludified swamp 

forests cells in the study area (hereafter called: random cell).  

 

Results  

 

Structural differences  

Variables that describe vegetation height (mean height, standard deviation of height and the 

percentiles) differed significantly between swamp forests and non-paludified forests, 

regardless of spatial scale (Table 2). The mean vegetation height, derived from first echoes, 

was 3.1 m lower in swamp forests than in non-paludified forests. The same trend was found 

for all percentiles. Only six density variables showed significantly difference between swamp 

forests and non-paludified forests, of which four were means from the 225m2 window (Table 

2).  

 

Logistic regression models  

Except for mean height, which was included in two of the models, the variables included in 

the three different models (different spatial scales) were not the same (Table 3). The 

individual variables included in the models were all highly significant (Table 3). Modified R2 

values for each of the models ordered from the finest to the broadest scale, were 0.22, 0.20, 

0.16, respectively (Table 3).  
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Model evaluation  

The boxplots and confusion matrixes show that none of the models predicted presence and 

absence of swamp-forests well (Fig. 2 and Fig. 3). The proportion of correctly predicted 

presences and absences in the training data was 62–66 %, while corresponding values for the 

two evaluation data sets were 54–62 %, without clear systematic variation among the two 

evaluation data sets (Fig 3). No systematic difference in predictive ability were found for the 

models when evaluated on the two evaluation data sets, except for the coarse (625 m2) scale, 

at which the performance in the random-cell set was considerably higher (62 % correctly 

predicted) than in the close-cell set (54 %). 

 

Table 2. P-values as a result of the Kruskal-Wallis test run for each of the variables, on three 
different spatial scales (25m2, 225m2 and 625m2).  

 
First 
echoes 
25m2 

Last 
echoes 
25m2 

First echoes 
225m2 

Last echoes 
225m2 

First echoes 
625m2 

Last echoes 
625m2 

Metric   mean sd mean sd mean sd mean sd
Hskew 0.069 0.018 0.0809 0.0153 0.0667 0.6180 0.0357 0.1581 0.0648 0.5317 
Hkurt 0.122 0.614 0.9583 0.3391 0.1166 0.3542 0.9334 0.4609 0.0544 0.3200 
Hcv 0.453 0.442 0.8249 0.5079 0.5937 0.3373 0.9101 0.2446 0.3648 0.3147 
Hmean 0.000 0.000 0.0001 0.0131 0.0005 0.0043 0.0006 0.0379 0.0018 0.0401 
Hsd 0.000 0.000 0.0001 0.6896 0.0000 0.8796 0.0009 0.9319 0.0008 0.3254 
P90 0.000 0.000 0.0001 0.5648 0.0002 0.1888 0.0004 0.7154 0.0007 0.3155 
P80 0.000 0.000 0.0001 0.4609 0.0002 0.1901 0.0005 0.3855 0.0011 0.1945 
P70 0.000 0.000 0.0001 0.3354 0.0003 0.1095 0.0005 0.2141 0.0014 0.1035 
P60 0.000 0.000 0.0001 0.2021 0.0003 0.0384 0.0005 0.0959 0.0017 0.0645 
P50 0.000 0.000 0.0001 0.0871 0.0004 0.0093 0.0006 0.0316 0.0016 0.0195 
P40 0.000 0.000 0.0001 0.0118 0.0006 0.0012 0.0005 0.0090 0.0023 0.0056 
P30 0.000 0.000 0.0001 0.0015 0.0016 0.0008 0.0006 0.0025 0.0030 0.0073 
P20 0.000 0.004 0.0003 0.0001 0.0026 0.0001 0.0009 0.0005 0.0027 0.0027 
P10 0.001 0.042 0.0018 0.0000 0.0070 0.0005 0.0035 0.0004 0.0044 0.0028 
Dn1 0.252 0.039 0.3628 0.2067 0.6376 0.1533 0.4070 0.4587 0.5773 0.0923 
Dn2 0.914 0.992 0.9436 0.7556 0.4631 0.7347 0.7893 0.6468 0.4643 0.3726 
Dn3 0.471 0.420 0.5245 0.8092 0.1957 0.9261 0.6039 0.8191 0.1738 0.6936 
Dn4 0.083 0.128 0.1381 0.7528 0.0875 0.7822 0.2733 0.7361 0.1192 0.5150 
Dn5 0.084 0.065 0.0214 0.3085 0.0495 0.9043 0.0515 0.7992 0.1166 0.3245 
Dn6 0.233 0.169 0.0236 0.1791 0.0288 0.7361 0.0139 0.3085 0.0637 0.8263 
Dn7 0.264 0.263 0.1888 0.0337 0.2669 0.2484 0.0604 0.3755 0.1864 0.8536 
Dn8 0.978 0.799 0.7417 0.2134 0.6521 0.2484 0.3987 0.8134 0.4498 0.9232 
Dn9 0.937 0.742 0.2839 0.1476 0.4443 0.3542 0.6284 0.8092 0.4498 0.7766 
Shrub 0.470 0.843 0.8651 0.6855 0.4133 0.9509 0.6337 0.8941 0.1876 0.7389 
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Table 3. The three logistic regression models for swamp-forest presence, obtained by best-subset 
selection of variables on each of the three spatial scales (25 m2, 225 m2 and 625 m2). Explanation for 
all coefficients are found in the “ALS derived metrics section”.  
Scale Coefficient Echo category Operator Estimate p-value Nagelkerke R2 
25m2 Intercept   1.39 0.0021 0.22 
 Hmean First  -1.21 0.0001  
 Hmean Last  1.09 0.0005  
 Dn6 First  11.38 0.0005  
 Dn6 Last  -11.26 0.0012  
225m2 Intercept   2.10 0.0001 0.20 
 Hmean First sd -2.19 0.0001  
 90th percentile First mean -0.70 0.0006  
 60th percentile First sd 1.97 0.0001  
 70th percentile Last mean 0.66 0.0029  
625m2 Intercept   11.13 0.0000 0.16 
 Hkurt First mean 1.01 0.0030  
 Hsd Last mean -0.58 0.0001  
 Dn5 First mean -9.36 0.0010  
 Dn5 Last sd -12.24 0.0009  
 

12



Figure 2. Proportion of grid cells for which swamp-forest presence is predicted by the three logistic 
regression models (covering three spatial scales: 25m2, 225m2 and 625m2), in each of three data sets: 
the training data set (242 observations), and two evaluation data sets with 206 observations each (the 
Close and Random data sets are explained in the text).  
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Training 25m2 Close 25m2 Random 25m2

66 % 0 1 58 % 0 1 55 % 0 1
0 82 39 121 0 65 38 103 0 58 45 103
1 44 77 121 1 48 55 103 1 48 55 103

126 117 159 113 94 120 106 101 113

Training 225m2 Close 225m2 Random 225m2

62 % 0 1 59 % 0 1 60 % 0 1
0 74 47 121 0 54 49 103 0 57 46 103
1 46 75 121 1 36 67 103 1 36 67 103

120 123 149 90 117 121 93 114 124

Training 625m2 Close 625m2 Random 625m2

63 % 0 1 54 % 0 1 62 % 0 1
0 81 40 121 0 51 52 103 0 66 37 103
1 50 71 121 1 42 61 103 1 42 61 103

131 112 152 93 114 112 108 99 127

Figure 3. Confusion matrixes for the three regression models (covering three spatial scales: 25m2, 
225m2 and 625m2) evaluated on the training data (242 observations) and two independent evaluation 
data sets with 206 observations each. A confusion matrix contains information about actual and 
predicted classifications (Kohavi and Provst 1998). Description for the Close and Random evaluation 
data sets can be found in the “Statistical analysis, modeling and model evaluation” section. 
 

Discussion 

 

Results from the 240 Kruskal-Wallis single-variable tests reveal structural differences 

between swamp forests and non-paludified forests in the study area. All percentiles, mean 

height and standard deviation of height variables showed highly significant differences 

between swamp forests and non-paludified forest on each of the three spatial scales covering 

25m2, 225m2 and 625m2 (Table 2). The mean difference between these significant variables 

when measured within the swamp forests and non-paludified forest indicates that the 

vegetation is lower in swamp forests than in non-paludified forests. These results support the 

hypothesis that the vegetation of swamp forests is lower than that of non-paludified forests. 

Only six out of 100 tests of density variables were significant at the  = 0.05 level. The 

hypothesis that the vegetation of swamp forests is less dense than the vegetation of non-

paludified forest was therefore not supported.  Even though it was hypothesized that the 
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density of the shrub layer (echoes from structures between 0.5 and 2 m above ground) would 

differ between swamp forests and non-paludified forest, our results did not support this 

hypothesis.  Failure of ALS-derived variables to distinguish between a well-developed 

understory, and lack of an understory, also contrasts results of recent studies (Bollandsås et 

al. 2008, Martinuzzi et al. 2009, Korpela et al. 2012, Wing et al. 2012). Since deciduous 

shrub is found within most of the swamp forests and not in the non-paludified forest, we 

argue that some structures within the non-paludified forest, which resembles the echoes 

reflected from the deciduous shrub, probably obscure our results. Issues which are important 

to take into consideration when trying to detect understory, is openness of the old-growth 

forest we have studied, which mostly contains well-spaced trees, and the fact that ALS data 

are just sets of points in three dimensions. An open forest will on one hand enhance the 

probability of detecting understory shrubs in open swamp forests using ALS-derived 

variables, whereas openness in a non-paludified forest results in trees which tend to have 

branches situated close to the ground. Since ALS data is just points situated in a three 

dimensional coordinate system, it is difficult to distinguish between echoes reflected from 

actual shrub or from low hanging branches (mainly from Norway spruce). This confusion is 

thought to be the most likely reason for our inability to detect differences in understory 

development between swamp forests and non-paludified forests.  

Even though the results from the Kruskal-Wallis test showed promising results in 

regard of structural differences between swamp forests and non-paludified forests, the multi-

variable prediction models were unable to assign grid cells to swamp forest or non-paludified 

forest with higher accuracy than around 60 % (Fig 3). Furthermore, the sets of variables 

included in these models varied among spatial scales and model performance varied in an 

inconsistent manner among spatial scales and evaluation data sets so that no overall best 

model could be identified. A possible reason for the much poorer predictions by the broad-

scale (625 m2) model in the close-cell evaluation data set than in the random-cell set is that 

the moving window in the former case extends over the swamp forest border, thereby also 

including signals from within swamp forests when variables were calculated 

We think that there are two main reasons for why it is difficult to separate between 

swamp forest sites and non-paludified forests by forest structural characteristics measured by 

ALS-derived metrics: Firstly, the size of the swamp forests matters. Most of the swamp 

forests found in the study area are relatively small, with considerable variation in shape. 
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Several swamp forests contain parts that are less than five meters wide, causing strong edge 

effects. It is likely that trees which are actually growing outside the swamp forests have a 

proportion of their crown projected into the swamp forest and therefore echoes from these 

trees will erroneously be recorded as belonging to the swamp forest and vice versa. The edge 

effect could perhaps have been reduced somewhat by use of a larger basic grid-cell size than 

5 × 5 m grid cells, even though the grid cell size accorded to the minimum legible delination 

area (MLD)        mmMLDPixelsize 5
4

100
4

 (formula presented by Hengl 2006). 

Secondly, there were major structural differences among and within individual swamp forests 

in the study area. Typically, two swamp forest patches could have very different forest 

structures: one swamp forest could be dominated by small spruce and birch trees, whereas 

another could be entirely dominated by large spruce trees. This difference in structure could 

also be pronounced within individual swamp forests, e.g. with large trees in one end and an 

almost treeless area in the other end of the swamp forest patch, only a few meters apart. 

These differences in structure between different swamp forests and within the same swamp 

forest corroborate the results in Hörnberg et al. (1995) and Økland et al. (2001). If we had 

performed a stratification of the non-paludified forest and split the forest into spruce and pine 

forest it might have improved the predictions, since pine forest are thought to have a lower 

average height than spruce forests. 

The results of this study complements the results of a parallel study conducted in the 

same study area (Dirksen et al., submitted ms), showing that ALS-derived terrain variables 

can be used to develop good models for the distribution of swamp forests. Nevertheless a 

challenge when predicting the location of swamp forests using only terrain variables is to 

distinguish between swamp forests and areas with open mires. Although the models from this 

study were not very good at predicting the location of swamp forests, we believe that 

including ALS derived variables which describe forests structure may improve the 

performance of the models developed with terrain variables only, since structure variables 

will help distinguish between swamp forests and tree-less open mires.   

Although the predictive power of the prediction models was only moderate, it is 

important to remember that this kind of models can also play an important role in prediction 

modelling through field validation of prediction maps and successive improvement of the 

models (Guisan et al. 2006). Even from average prediction maps it will be possible to locate 
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areas that have a higher or lower probability of containing the object in focus e.g. swamp 

forests. These maps are of value for field workers since they can use them as guidelines for 

where to search for swamp forest and thereby save time. If new areas with swamp forests are 

encountered through the field registrations it will be possible to improve the initial prediction 

model by including these new observations into the group of predictor variables and create a 

new and improved prediction model.   
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Abstract 

 

During the last decade airborne laser scanning (ALS) has showed its potential for modelling 

environmental variables that determine forest structure. Thus, distribution models for forest 

dwelling birds may potentially be improved by access to three-dimensional structural 

information obtainable from ALS data. This is the first study in Scandinavia that addresses 

bird habitats in an old-growth boreal forest using ALS data. We build explanatory GLM 

models and prediction models by GLM and Random Forest (RF) for species richness and the 

eight most abundant species within the study area. Vertical distribution of the canopy was the 

most important variable for both species richness and single-species. The best explanatory 

model explained 27% of the variation in occurrence. Prediction models were evaluated by 

cross validation, and both the area under the curve (AUC) and Cohen’s kappa were 

computed. AUC values for the different species ranged between 0.48-0.80 for GLM and 

0.57-0.77 for RF. Kappa values ranged between 0-0.22 for GLM and 0-0.36 for RF. 

Prediction models developed with both ALS and spectral images made better predictions than 

models based on only one of these data sources, indicating that access to ALS data adds 

significantly to predictability of bird distributions in boreal forests. 

 

2



Introduction  

 

Informed management actions aimed at preventing biodiversity loss depend on knowledge 

about how species are related to their habitats, both in human-modified habitats, and in 

habitats modulated by natural disturbance dynamics (Whittaker 2005, Elith et al. 2006). 

During the last decade an increasing number of scientists have developed species distribution 

models that aim at explaining and predicting species occurrence patterns, by combining 

observations of species presence and abundance with estimates of habitat characteristics 

(Guisan and Zimmermann 2000, Whittaker et al. 2005, Pearson et al. 2007, Elith and 

Leathwick 2009; Gogol-Prokurat 2011). Field-based studies of birds on fine spatial scales 

have revealed that the three-dimensional arrangement of the habitat strongly influences bird 

habitat use (e.g. MacArthur and MacArthur 1961, Brokaw and Lent 1999).  For forest-

dwelling birds, the three-dimensional structural complexity of the forest, including canopy 

height and tree species composition, influences the presence of single bird species as well as 

bird richness (MacArthur and MacArthur 1961, Willson 1974 , Sutherland et al. 2004). 

However, there is still no general agreement as to how results obtained in fine-scale studies 

scale up to the population and landscape levels (Vierling et al. 2008). This problem of 

predicting broad-scale responses by up-scaling from fine-scale data has been a recurring 

theme in ecology (Miller et al. 2004) because traditional field work techniques are often 

labour-intensive and detailed information cannot be sampled over population-wide areas 

(Johnson and Gillingham 2008).  

Remote sensing increasingly provides an effective tool for mapping and quantifying 

selected habitat characteristics over large areas (Horning et al. 2010).  In order to expand the 

scale of their studies, ecologists have commonly used spectral data that provide two-

dimensional representations of the forest. Such spectral images makes it possible to 

distinguish between several landscape structures, but vegetation types and horizontal 

information about the forest structure can only be vaguely inferred from spectral images 

(Turner et al. 2003, Bergen et al. 2009, Horning et al. 2010). In contrast, airborne laser 

scanning (ALS) technology provides an accurate and objective three-dimensional 

representation of the Earth’s surface and notably, the vegetation on and above it (Lefsky et al. 

2002, Næsset et al. 2004). During the last decade the number of ecologists that have used 

ALS-derived variables to describe the three dimensional structure of forests has increased 
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considerably (Turner et al. 2003, Aplin 2005, McDermid et al. 2005, Bässler et al. 2011).  

ALS is an active remote sensing technique, which provides measurements of forest structure 

or terrain forms in three dimensions. The operating principle of ALS is to measure the time 

span from a laser pulse is emitted from an aircraft mounted laser until its echo is received by 

the instrument after having been reflected from an object near the ground or by the ground 

surface itself. The time span recorded between emission and reflection of the laser pulse is 

used to estimate the distance between the sensor and the object on which the laser pulse was 

reflected. Because the exact position and orientation of the sensor is provided by use of 

global satellite navigation systems and internal navigation systems, the spatial location of the 

echoes can be accurately determined. The result from an ALS acquisition is a three 

dimensional point cloud, each point being an echo with its own unique position in an x, y, 

and z coordinate system. Echoes returned from the ground are used to derive a terrain model, 

and a measure for vegetation height is derived by subtracting the terrain model from non-

ground echoes.  

Since 2004 ALS has been fully operational for forest inventories in Scandinavia 

(Næsset 2004) and important forest characteristics like mean tree height (Næsset 1997a), 

timber volume (Næsset 1997b) and canopy height (Næsset and Bjerknes 2001) are now easily 

derived from ALS data. ALS has also been utilized in a range of ecological applications; e.g. 

for classification of forest successional stages (Falkowski et al. 2009), detection of understory 

scrubs (Hill and Broughton 2009, Martinuzzi et al. 2009, Wing et al. 2012), quantifying 

properties of canopy gaps (Koukoulas and Blackburn 2004) and estimation of standing dead 

trees (Bater et al. 2009, Kim et al. 2009). As birds in particular are exploiting the three 

dimensional ‘landscape’ of the forest canopy (e.g. Karr and Roth 1971, Holmes et al. 1979), 

it is not surprising that bird ecology is the sub-discipline within ecology where ALS has been 

used the most. For example, ALS data have been used to detect forest structures important for 

single bird species (Hill et al. 2004, Broughton et al. 2006, Hinsley et al. 2006, Graf et al. 

2009, Smart et al. 2012), whole bird communities (Goetz et al. 2007, Clawges et al. 2008, 

Müller et al. 2009, Seavy et al. 2009) or different types of bird guilds (Goetz et al. 2007, 

Lesak et al. 2011).  

Previous studies that have investigated the relationship between forest-dwelling birds 

and ALS-data have been conducted in many different types of forests e.g. broadleaf forests in 

England (Hinsley et al. 2002, Broughton et al. 2006, Bellamy et al. 2009). Spruce (Picea 
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abies L.), fir (Abies alba Mill) and beech (Fagus sylvatica L.) forests in Germany (Müller et 

al. 2009, Müller et al. 2010). Pine (Pinus sylvestris L.) and aspen (Populus tremula L.) forests 

in USA (Clawges et al. 2008). Spruce forests in Italy (Tattoni et al. 2012) and pine forests in 

the USA (Smart et al. 2012). Yet, despite the fact that ALS is increasingly used for scientific 

and commercial purposes within forest inventory in Fennoscandia (Næsset et al. 2004, 

Vehmas et al. 2009, Ørka et al. 2010), no studies have been performed in Fennoscandia in 

which relationships between bird data and habitat characteristics estimated by ALS have been 

modelled. Moreover, to our knowledge, no previous studies have explored potential 

relationships between ALS metrics and bird data in boreal forest reserves.  

Regardless of forest type and bird species, previous studies which have used ALS data 

to build distribution models for forest dwelling birds have shown that measures of the 

vegetation height are important ALS variables that should be included in such models 

(Bellamy et al. 2009, Hinsley et al. 2009, Broughton et al. 2006). Our study was conducted in 

a boreal forest reserve, consisting largely of old-growth forest, and thus there was less 

variation in successional stages and vegetation height than usually found in managed forests. 

Therefore, we expected that canopy density variables would be relatively more important 

than pure height variables for predicting species richness and presence of single bird species.  

In this paper, we explored the utility of ALS metrics to explain and predict bird 

species richness and presence of single bird species in a boreal forest reserve in southeast 

Norway. Our primary objectives were: (1) to assess the utility of ALS metrics for explaining 

bird species richness and single-species presence; (2) to assess the utility of ALS metrics for 

predicting bird species richness and single-species presence; (3) to compare the ability of 

ALS-derived metrics with metrics derived from more traditional remote sensing imagery for 

predicting bird species richness and single-species presence. A secondary objective was to 

assess the relative merits of two different statistical techniques for prediction modelling, i.e. 

Generalized Linear Models (GLM) and Random Forest (RF).  

5



Material and methods 

 

Study area 

The study was carried out in the Østmarka Nature Reserve (59º50´ N, 11º 02´E, 190–368 m 

above sea level), which is located in the southern boreal zone of Southeast Norway (Moen 

1999).  

The study area covers approximately 6 km2 and is located within the core of the 

reserve. One part of the reserve was protected in 1990 while the reserve was expanded in 

2002 to comprise approximately 12.5 km2. Until around 1940 selective logging was 

performed in some areas, but no clear-cutting has been performed in the reserve. The reserve 

is dominated by old-growth spruce forest, whereas pine forests occur on drought-exposed 

ridges and deciduous trees, mainly birch (Betula sp.) occur scattered throughout the study 

area. Mean annual precipitation and temperature (1961–1990 normals) for the nearest 

meteorological stations (Enebakk, ca. 10 km SE of the area, and Hakadal–Bliksrudhagan, ca. 

30 km N of the area) were 816 mm and 3.9 °C, respectively (Aune 1993, Førland 1993). The 

bedrock is of proterozoic age and quartz diorite, tonalite and gneisses of diverse origins 

dominate (Sigmond et al. 1984). The topography of the study area is dominated by 

north/south facing ridges and valleys. On a fine scale, the landscape is dissected by minor 

ridges and valleys, stream beds, large boulders, steep cliffs and more gentle slopes, resulting 

in a broken topography. The area is relatively species poor, a total of 28 bird species were 

recorded in this study, table 3 gives a summary of the most important habitat characteristics 

for the eight most common species. 

 

Placement of bird counting stations 

To obtain measures of bird species richness and presence of single bird species in the study 

area, we used a stratified random point transect sampling technique (Bibby 2000). 

Stratification was used to ensure that a range of habitat conditions within the study area was 

represented and to capture the variation in vegetation structure (height) and composition (tree 

species), which are known to be important factors influencing bird-habitat associations (e.g. 

Sutherland et al. 2004). Five different strata were defined based on prior information about 

bird species presences in the study area, and assumptions about the species-habitat 

associations of the bird species within the area. The strata were: 1 – ‘tall’; 2 – ‘middle’; and 3 
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– ‘low’ spruce forest; 4 – ‘pine’ forest and 5 – ‘deciduous’ forest (Table 1). The three spruce 

forest canopy height strata: ‘tall’, ‘middle’ and ‘low’ were derived from a wall-to-wall 

acquisition of ALS data from the study area (see details below). We calculated the mean 

return height of all echoes above 0.5 m within 5 × 5 m grid cells covering the whole study 

area and used this information to create polygons for areas dominated (> 50) by cells with 

low (0–10 m), middle (10–20 m) and tall (20–40 m) vegetation. Thereafter, we identified 

areas dominated by Scots pine or deciduous trees (in this case mainly birch Betula ssp).  

Within the study area, pine forest is typically located on ridges. A digital elevation model was 

used to locate ridges that made up the ‘pine’ stratum. No continuous large areas dominated by 

deciduous trees were identified in the study area, but swamp forests typically hold a high 

proportion of deciduous trees compared to the surrounding forest and accordingly we used 

121 swamp forests mapped for a separate research project in 2010 as a ‘deciduous’ stratum. 

Since the ‘low’, ‘middle’ and ‘tall’ height strata were dominated by spruce we did not define 

a separate spruce stratum. Areas with open water and open mires were excluded from this 

study. 

  A standardized procedure was used to allocate observation units (center points for 

counting stations) to the five different strata.  For each of the five strata we randomly selected 

up to 50 counting stations. If a location was located so close to the border of a stratum that 

more than 50 % of the counting station was located outside of the strata or closer than 150 m 

to a counting station already picked, it was manually moved towards the interior of the 

polygon so approximately 70% of the counting station was within the strata if possible, if not, 

a replacement location was selected at random. This procedure was used to minimize edge 

effects and to ensure that counting stations were located at minimum 150 m apart. Since 

many of the deciduous and pine-dominated polygons were small, parts of counting stations 

(of 50 m radius) sometimes fell outside the stratum boundary. From the 50 random locations 

obtained for each stratum, a sample of counting stations was obtained by first selecting 10 

counting stations at random from the ‘deciduous’ stratum, which covered the smallest area, 

followed by selecting 10 counting stations from  the other strata in the order ‘pine’, ‘low’, 

‘tall’ and ‘middle’, respectively. Then, 10 more counting stations from each stratum were 

added to the sample, in the same order: ‘deciduous’, ‘pine’, ‘low’, ‘tall’ and ‘middle’. When 

20 counting stations had been located within each stratum it was not possible to locate 

‘deciduous’ stratum polygons which were large enough to contain an additional counting 
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station. Additional counting stations were located in the ‘pine’, ‘low’, ‘middle’ and ‘tall’ 

stratum (Table 1) according to the defined criteria. The positions for center points of counting 

stations were located with a handheld GPS (Garmin 60CSx) in the field.  

 
Table 1. Distribution of the 157 selected counting stations on five strata and characteristics of the strata 
according to vegetation height and tree species. 

Stratum 
name Tree species Percent cover 

of total study area 
Number of 

counting stations 
tall spruce 25 38 
middle spruce 58 43 
low spruce 11 30 
pine pine 4 26 
deciduous mixture of spruce and deciduous 2 20 
 

Bird counting procedures 

The bird counting on the 157 counting stations was carried out between May 8th and June 

10th, 2012. Each counting station was visited twice by the same, experienced, observer. Bird 

counting was carried out between sunrise and 10:00 AM (local summer time). At the center 

of each counting station, the observer recorded birds for five minutes at each visit. Each 

counting station had an ideal radius of 50 m, which was determined by visual assessment. 

Only birds recorded by visual and audio observations within the 50 m radius were registered. 

The observer practiced distance estimation before data collection started in order to increase 

the precision of the distance assessments. Moreover, the observer had experience from 

previous bird surveys using the same sampling and distance estimation technique. Singing 

males were registered as couples, and if one male and one female bird were observed, they 

were counted as one couple. Non-territorial birds (e.g. overflying birds) and flocks were not 

counted. Bird counting was only performed when it was not raining and/or the wind-speed 

was above 8 meters/second. 

 

Airborne laser scanning 

Airborne laser scanning data covering the entire study area were acquired on July 2nd, 2010. 

Flight and acquisition parameters are shown in Table 2. For all echoes x and y coordinates 

and ellipsoidal height values were computed. Ground echoes were classified using the 

progressive Triangular Irregular Network (TIN) densification algorithm (Axelsson 2000) of 

the TerraScan software (Terrasolid LTD., 2004). 
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Table 2. Technical details for the ALS acquisition.  
 Technical specifications 
Platform PA31 Piper Navajo fixed-wing aircraft 
Sensor Optech ALTM-Gemini 
Mean flying speed (m s-1)  80  
Flying altitude above ground (m) 900 
Side overlap (%) 55 
Scan frequency (Hz) 55 
Swath width (m) 440 
Max. number of echoes per pulse 4  
Pulse density (m-2) 5 
Half-scan angle (degrees) 13.8 
Footprint diameter (cm) a 19 
Pulse repetition frequency (kHz) 100 
Contractor Blom Geomatics AS, Norway 
a 

A TIN was created from the x and y coordinates and corresponding heights of the laser 

echoes classified as ground echoes points. The relative height of each echo was computed as 

the difference between the height of the individual return and the TIN.  

Results of preliminary analyses revealed that splitting the data into first and last 

echoes which are treated separately in the analysis did not improve the predictions. We 

therefore analyzed all echoes together. Echoes below 0.5 m were considered as ground hits 

and echoes above 0.5 were considered as vegetation hits. We used a threshold of 0.5 m for 

the following reasons (1) the ellipsoidal height accuracy of the TIN model was expected to be 

around 20–30 cm (Kraus and Pfeifer 1998, Reutebuch 2003); (2) a small measurement error 

(the z-error) will always be present in the individual echoes (z < 10 cm; Baltsavias 1999); and 

(3) large stones and logs that occurred scattered throughout the study area could be confused 

with shrubs.  

A total of 66 variables were computed from the ALS echoes within the 50 m circular 

buffer around the 157 counting stations. Both traditional field-based studies, and studies 

which have used ALS derived variables, have shown that vegetation height is one of the most 

important variables influencing bird distribution (Seavy et al. 2009, Smart et al. 2012, Tattoni 

et al. 2012). From the height distribution we computed maximum height (Hmax), mean 

height (Hmean), standard deviation (Hsd), coefficient of variation (Hcv), kurtosis (Hkurt), 

and skewness (Hskew). The nine deciles (10th percentile, 20th percentile,..,90th percentile) 

were computed for all echoes above 0.5 m. Furthermore, two different sets of variables 

describing canopy density were derived: (1) canopy density; and (2) density layers. Canopy 

density variables were calculated as the proportion of echoes above a certain height bin to 
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total number of echoes. The height bins were defined by dividing the height for the 95th 

percentile minus 0.5 m into ten equally high vertical height bins (D1, D2,..,D9). Density 

layers measure the proportion of echoes registered within certain one-meter sections of the 

canopy to the total amount of echoes for each individual counting station. Since the highest 

echo was situated 40 m above ground, we decided to use 40 m as an overall maximum height 

measure, and divided the canopy into 40 equally vertical height bins. Thus, each bin (density 

layer) covers one meter of the canopy following the notation LD1, LD2, ..., LD40 of which 

the LD1 corresponds to the layer between 0 and 1 meter, LD2 the layer between 1 and 2 

meter, and so on. The motivation for including both canopy density and density layers as 

variables in the analyses of bird distributions, was that vegetation architecture (height, 

structure and density of vegetation) often affects birds by providing perches, song posts and 

cover, and by limiting the bird’s field of view and ability to fly and to find and capture prey 

(e.g., Sutherland et al. 2004). Moreover, different bird species relate differently to different 

parts of the tree, and therefore may be affected by the density of branches in the particular 

layers (e.g. Alatalo 1982). We hypothesized that density-layer variables describe the 

distribution of birds better than canopy density variables, since density-layer variables are 

independent of the height distribution of the echoes in each of the 157 counting stations, i.e., 

that one will get one value for a certain layer which is comparable with exactly the same 

layer at all other stations. On the other hand, canopy variables are dependent on the 95th 

percentile within each counting station and can therefore not be compared exactly among 

counting stations. Finally, two variables describing the density of the shrub layer (SD2 and 

SD3), important for certain bird species, were computed. SD2 was computed as the 

proportion of pulses between 0.5 and 2 m to the total amount of vegetation hits and SD3 was 

computed as the proportion of pulses between 0.5 and 3 m to total amount of vegetation hits. 

All variables were zero-skewness standardized (Økland et al. 2001) before analyses and 

ranged to a common 0–1 scale to enhance comparability of effect sizes for variables with 

different units of measurement. 

 

Spectral images  

Fourteen spectral images were taken with a Vexcel UltraCam XP camera on August 8th 2010.  

The Vexcel sensor acquired both panchromatic and four multispectral bands (red, green, blue, 

and infrared). In the current study only multispectral imagery was used. Acquired from a 
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mean flight height 2850 meters above ground the Ground Sampling Distance (GSD) was 51 

cm for the multispectral bands, and they were delivered according to the processing level 2 

defined by Vexvel Imaging GmbH.  

To co-register the ALS and image data, each laser echo coordinate where mapped to 

the image planes of the Vexcel UltraCam digital images using a rotation matrix (Mikhail et 

al. 2001). The digital numbers from all bands of the pixel position of the laser echo were 

assigned to the respective laser echo in the original scale. If the laser echo pixel position 

occurred on more than one image, the mean band value of the pixels from all images was 

assigned to the respective laser echo. Furthermore, since only first returns (first of many and 

single echoes) will be reflected close to the canopy surface, and all other subsequent echoes 

will penetrate into the canopy, image pixel values were only assigned to the first returns.  

The rationale behind including image data in the analysis was to add information that 

better describes differences in species composition than ALS data. Therefore, variables which 

have been used in other studies to combine laser and imagery for species estimation and 

classification were used (Packalèn et al. 2009; Waser et al. 2011, Ørka et al. 2012).  From 

each of the four bands of the UltraCam imagery descriptive features (mean, standard 

deviation, coefficient of variation, skewness, kurtosis and percentiles (10th, 30th, . . ., 90th) 

were used to compute the relative band values (the individual band divided by the sum of all 

bands), and the band ratios (one band divided by another band). Thus, a total of 240 image 

features were computed for each counting station. 

 

Statistical analyses 

 

Modelling 

Response variables used in the modelling were species richness (y = number of species) and 

binary presence y of each of the eight most abundant bird species (y = 1 means that the 

species was observed while y = 0 means not observed). For each response variable, we used 

GLM (e.g., Venables & Ripley 2002) to create both an explanatory model and a prediction 

model. In addition we developed a Random Forest (RF; Breiman 2001) prediction model for 

each species, in order to compare the predictive abilities and performance of two different 

prediction modelling techniques. 
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Explanatory models 

For each of the eight species we fitted logistic regression models (GLM models with binary 

response and binomial distribution of errors; Venables and Ripley 2002). For species richness 

we fitted a GLM model with positive integer values for the response, assuming a Poisson 

distribution of errors. Model reduction was done by best-subset selection, as implemented in 

the R-package glmulti. As explanatory variables in these models we only included ALS-

derived variables. Since these models were to be used as explanatory models, they should be 

simple in terms of number of parameters (e.g., Halvorsen 2012), and thus a maximum of four 

variables were included in each model. The modified version of R2 proposed by Nagelkerke 

(1991) was used to evaluate the explanatory models.  

 

Prediction models 

Two kinds of prediction models were created in parallel: GLM10 and Random Forest (RF) 

models. GLM10 models were developed in the same manner as the explanatory models, but 

with the specification that each GLM10 model was allowed to include 10 variables.  

Random Forest models were created using the random forest algorithm (Breiman 

2001). To account for imbalanced data, i.e., due to rare species, a balanced Random Forest 

procedure was used (Chen et al. 2004). Random Forest uses randomly selected subsets of the 

observations and explanatory variables to create multiple regression trees, and an average of 

these trees are used for making predictions of, e.g., single bird species. The RandomForest 

package in R (Liaw and Wiener 2002) was used to build the models for regression (species 

richness) and classification (presence or absence of single species). For each of the eight most 

abundant species, the ten most important variables ranked from the out-of-bag accuracy using 

all variables, i.e., by mean decrease in classification accuracy from a classification for each 

species and mean increase in mean square error for the species richness.  

We compared GLM10 and RF models built from three different sets of explanatory 

variables: (1) all ALS-derived variables; 2) all spectral image-derived variables; and (3) all 

ALS-derived variables and spectral image-derived variables pooled (denoted ALS+spectral).  

Prediction models were evaluated by use of a 10-fold cross validation procedure. As 

measures of model performance we used Cohen’s kappa ( ) and AUC [the area under the 

receiver operating characteristic (ROC) curve (Pearce and Ferrier 2000)] in parallel. No AUC 
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and kappa values could be computed for GLM and RF models describing species richness 

since species richness is a count response variable. 

 
Table 3 is a summary of the most important habitat characteristics for eight of the most common birds found in 
the reserve (extracted from Cramp 1988, 1992, 1993 and 1994).  
Species Habitat 
  
Chaffinch  
Fringilla coelebs 

In Fennoscandia, with density highest in deciduous forests, also occurs in spruce 
and pine forests.  
 

Robin      
Erithacus rubecula 

Preferred habitat includes cool shade, moisture, cover of at least medium height 
and not more than medium density; prefers patches or fringes of open ground and 
song posts that give adequate view without undue exposure. In Fennoscandia 
occupies mixed and coniferous forests, especially with moist moss-rich forest 
floor and ample dead wood.  

Goldcrest  
Regulus regulus 

In the breeding season strictly arboreal, occurring in more or less dense stands of 
well-grown conifers. Prefers spruce forest; pine forests are less attractive. 
Character and height of undergrowth is irrelevant. Inhabits broad-leaved forests 
only when at least some spruce trees occur intermixed. 

Willow warbler 
Phylloscopus trochilus 

Less dependent of mature woodland than of shrub, typical of secondary-growth 
forests, and of transitions to more open habitats. Readily settles on shrubby, 
bushy, or cleared ground in early phases of regrowth, and thus typical of fringe 
areas such as forest clearings. Although resorting to woods of many different tree 
species, both deciduous and coniferous, prefers sites which provide the most 
accessible insect food, birch in particular. Also found in younger conifer stands 
and in moist places with alder (Alnus ssp) and willow (Salix ssp), as well as forest 
glades. Rare in pure spruce forest. 

Great tit       
Parus major 

Dislikes pure coniferous forest, prefers mixed forest types and open stands or 
even sites with fragmented and scattered trees to dense, pure deciduous forest. 
High tree cover may be less important than the structure and density of the 
undergrowth; opportunities for ground feeding are particularly important. 

Tree pipit 
Anthus trivialis 

Ground-nester and ground feeder, typical of trees and shrubs that serve as look-
outs and song-posts. Avoids both open treeless and shrubless habitats and sites 
where the density of woody vegetation leaves insufficient access to open, low 
herbage 

Wren 
Troglodytes 
troglodytes 

Suitable habitat offered by a wide variety of forests with low cover and good 
foraging opportunities. Among the most favourable habitats are moist deciduous 
or mixed forests with much undergrowth and thick cover. In the northern parts of 
its range, breeds in taiga and mixed forests or open woodland provided these 
contain dense clusters of shrubs, nettles, or other undergrowth, and heaps of dead 
vegetation and dry branches. 

Siskin 
Carduelis spinus 

Mainly occupies spruce but also pine forest, especially in areas with tall trees that 
are not growing too close to each other, sometimes occurs in mixed coniferous 
and broad-leaved forests.  
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Results 

 

A total of 28 bird species were observed within the 50 m radii of the 157 counting stations. 

Species richness varied from 0 to 5 with a median of 3 within each counting station, which 

was too low to allow for analyses of changes in species composition (e.g., by ordination 

methods). The eight most abundant species were recorded in 23 to 99 of the counting stations 

while each of the remaining species was observed in  9 counting stations. The distribution of 

observations on the five strata differed widely among species (Table 4). 

 

Bird-habitat associations - explanatory models 

Of the explanatory GLM models for species richness and the eight most abundant bird 

species, two models contained no variables (Table 5). The R2 values of these models range 

between 0.06 and 0.27 (Table 5). LD variables were included in all the models, two 

percentile variables and D variables were included in one model each (models for Goldcrest 

and Wren, respectively) (Table 5). 

 
Table 4. Number of times each of the eight most abundant bird species were recorded in the each of the five 
strata: pine = areas dominated by pine; tall = areas dominated by spruce trees with a height between 20 and 40 
m; middle = areas dominated by spruce trees with a height between 10 and 20 m; and low = areas dominated by 
spruce trees with a height below 10 m. deciduous = swamp forests, typically with a tall proportion of deciduous 
trees. Note that the number of counting stations within each stratum ranged from 20-43.   
Strata
name

No.
stations

Species
richness

Chaf
finch Robin Gold

crest
Willow
warbler

Great
tit

Tree
pipit Wren Siskin

pine 26 67 17 7 5 10 11 7 3 6
tall 38 108 30 19 21 4 14 3 13 4

middle 43 135 29 23 25 22 17 7 3 9
low 30 65 13 8 7 15 7 12 0 3
deci
duous 20 46 10 12 6 5 6 2 4 1

 

Bird-habitat associations – prediction models  

For six of the species, GLM10 models were obtained that included ALS variables (Figure 1), 

whereas only four models were developed using spectral and ALS+spectral variables (Figure 

2). No GLM10 models were developed for Great tit and Siskin (Figure 2), resulting in a total 

of 14 GLM10 models. When GLM10 models were developed for single-species using ALS, 

spectral and ALS+spectral variables the number of variables included in the models were 1–

4, 1–7 and 2–7, respectively. For species richness no GLM models were obtained for the 
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spectral and the ALS+spectral variables. RF models were created for all single bird species 

using variables from all three groups, resulting in a total of 27 RF models (Figure 2). 

 

Evaluation of prediction models by cross-validation 

Generally RF models performed better than GLM models (Figure 2). The RF models created 

with ALS+spectral variables had the highest AUC and kappa values for Chaffinch, Robin and 

Tree pipit (Figures 2a, 2b and 2f, respectively) whereas for Willow warbler and Goldcrest the 

best models, also RF models, only included spectral variables and ALS variables, 

respectively (Figure 2d). For Wren, the best model was created by GLM, using ALS 

variables only (Figures 2c and 2g, respectively). For Great tit no GLM models were created 

and the three different RF models performed equally well. The model which had the highest 

AUC value (0.80) was the GLM10 model for Wren, using ALS variables only. The highest 

kappa value (0.36) was obtained for the RF models developed for Wren and Goldcrest.  
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Table 5. Results of GLM explanatory models for bird-habitat associations (Poisson regression for species 
richness and logistic regression for binary presence/absence data for of each of the eight most abundant bird 
species). Data consists of recordings in 157 counting stations in a boreal forest reserve. LD variables convey 
information about the density within a certain 1-m vertical section of the canopy; D variables describe canopy 
density; and percentile variables describe the height distribution of the canopy. # significant variables = Number 
of explanatory variables, which were significantly associated with the response when tested individually.. R2 = 
the modified version of R2 proposed by Nagelkerke (1991). Estimate = beta. SE = standard error. Z = students z-
value. df= degrees of freedom. p = p-value.  
Response # significant 

variables 
R2 Explanatory  

variable 
Estimate SE Z df p 

         
Species 
richness 

4 0.09 LD18 0.4 0.50 2.72 1,155 0.0065 

         
Chaffinch   32 0.11 LD18 2.4 0.69 3.47 1,155 0.0005 
         
Robin  4 0.09 LD16 2.7 0.84 3.18 1,155 0.0015 
         
Goldcrest  54 0.27 70th percentile 26.4 5.97 4.43 3,153 <0.0001 
   90th percentile -31.4 7.33 -4.30 3,153 <0.0001 
   LD28 5.9 1.77 3.36 3,153 0.0008 
         
Willow 
warbler  

32 0.06 LD29 3.0 2.20 1.38 2,154 0.1692 

   LD30 -1.8 2.09 -0.87 2.154 0.3872 
         
Great tit+ 0 - - - - - - - 
         
Tree pipit  49 0.13 LD6 2.6 4.90 0.53 4,152 0.5950 
   LD7 -6.7 5.07 -1.31 4,152 0.1870 
   LD11 2.5 1.87 1.35 4,152 0.1760 
   LD15 0.2 1.34 0.19 4,152 0.8530 
         
Wren  39 0.21 D5 16.6 6.11 2.71 3,153 0.0067 
   D7 -15.6 5.63 -2.77 3,153 0.0057 
   LD9 -4.5 1.82 -2.50 3,153 0.0125 
         
Siskin* 1 - - - - - - - 
+No model was created for Great tit; no one of the explanatory variables were significantly related to the 
response. 
* No model with explanatory variables was built in the best subset selection, model with intercept only. 
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Figure 1. Importance of individual ALS variables in the Random Forest models developed for each of the eight 
most abundant species. Red bars indicate the 10 most important variables for each species. It has not been 
accounted for correlation or interactions among the most important variables for each species. The black dots 
represent variables which were included in the corresponding GLM10 model for each species (but note that 
GLM10 models were not developed for Great tit and Siskin) . Variables in the H group (with names starting 
with a capital H) describe canopy height; variables in the percentile group describe the height distribution of the 
canopy; variables in the D group describe canopy density; variables in the LD group describe density layers; and 
variables in the SD group describe shrub density. 
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Figure 2. Evaluation of prediction models for the presence of bird species in boreal forest reserve. Models were 
constructed by use of three main groups of predictor variables derived from remote sensing data: (1) airborne 
laser scanning (ALS) variables; (2) variables derived from spectral images (spectral); and (3) ALS and spectral 
variables pooled (ALS+spectral). For each species and predictor-variable group, two types of prediction models 
were constructed: a generalized linear model (GLM, obtained by best subset selection of maximum 10 
variables), and random forest (RF). Each model was evaluated by 10-fold cross-validation, with AUC and kappa 
as measures of predictive capability. 
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Discussion  

 

Value of ALS-derived variables for explaining bird species richness and single-species 

presence 

Species richness and presence of six of the eight single bird species were significantly related 

to ALS variables. The best explanatory model was developed for Goldcrest (27% of the 

variation in occurrence explained), the second-best model for Wren (21%), whereas 6–13% 

of the variation was explained for the other four species, and 9% for species richness. In our 

study, 72% of the registrations of Goldcrest were from the two strata ‘middle’ and ‘tall’ 

spruce forest, whereas only five registrations were from the ‘pine’ forest stratum (Table 4). 

The variables included in the model were the 70 and 90th height percentiles and LD28. The 

percentiles and LD28 indicate that presence of tall trees is important, while LD28 indicates 

that the crown density high above the ground is important as well. These findings fit well 

with previous knowledge from field-based studies, in which Goldcrest is mainly reported to 

prefer well-grown, more or less dense spruce forest stands (Table 3). In contrast to our results 

Müller et al. (2009) had low predictive power for the Goldcrest, in their study the most 

important ALS variable was standard deviation of mean tree height. In our study, 56% of the 

registrations of Wren were from ‘tall’ spruce forest. Previous field-based studies have found 

that Wren prefers mixed forests (Table 3), which are sparse in the study area. Our results 

indicate that old-growth spruce forest may also, at least under some circumstances, fulfill the 

requirements important for the Wren. Within the study area, areas with tall spruce trees are 

old-growth forests, which provide shade (a moist climate) and, typically, also dead wood. 

Moreover, these old trees often have living and dead branches relatively near the ground, 

creating cover near the ground, which is considered as another important habitat attribute for 

the Wren (Table 3). This is in accordance with the ALS variables included in the model: all 

of D5, D7 and LD9 describe the lower portion of the canopy. For the other single-species, 

and richness, only a small proportion of variation was explained (Table 5). Nevertheless, the 

ALS variables included in the models apparently accord fairly well with previous information 

about habitat requirements in Table 3. For Tree pipit, density of the lower canopy is 

important (Table 3), and LD6 and LD7 are included in the model. Robins prefer vegetation of 

at least medium height and not more than medium density (Table 3), and LD16 is included in 

the model. For the remaining species and species richness, we found no clear correspondence 

19



between ALS variables included in the explanatory models (Table 5) and important habitat 

characteristics identified in field-based studies (Table 3). Although many studies have used 

ALS data to find important structural variables which describe the distribution of forest 

dwelling birds (e.g. Clawges et al. 2007, Lesak et al. 2011 Müller et al 2009, Broughton et al. 

2007), only a few studies include the species analysed in our study. Among these, the study 

by Müller et al. (2009) included Chaffinch and found that tall and dense forests were 

important, as we did. Our result that neither height nor density variables were significant for 

Great tit contrasts results of other studies, which found that vegetation height was important 

for the distribution of this species (Hinsley et al. 2002, Müller et al. 2009). 

Notably, all the explanatory models included one or more LD variables, i.e., variables 

that combine information about tree height and density. Our results thus show that the 

proportion of the echoes reflected from a certain vertical layer, and the density of the canopy 

in this particular layer, is important for the distribution of single-species.  

 

Value of ALS-derived variables for predicting bird species richness and single-species 

presence   

The best prediction models were developed for the Wren, and these models were quite good 

(Figure 2). The second best prediction models were developed for Goldcrest (Figure 2). 

Moreover, although evaluation criteria indicated poor to fair fit according to criteria for 

goodness of fit given by Landis and Koch (1977) and Araújo et al (2006) [see, however, 

Halvorsen (2013) for a critical view of generalising goodness of fit based on these statistics], 

we find that useful prediction models could be constructed for Chaffinch, Robin, Willow 

warbler, Tree pipit and for species richness while attempts to construct prediction models for 

Great tit and Siskin failed. The most important variables for predicting species richness in our 

study were the LD variables which provide information about vegetation height and canopy 

density. Vegetation height was the most important variable, regardless of forest type, also in 

other studies in which ALS data are used to predict overall species richness of forest-dwelling 

birds (Clawges et al. 2007, Goetz et al. 2007, Lesak et al. 2011). 

It is important to note that even relatively poor prediction models may, to some 

extent, assist detection of parts within a study area in which the occurrence probability of the 

modelled target is higher (or lower) than average. However, it is also important to note that 

bias in the data may make prediction models seem better than they really are. Evaluation of 

20



prediction models by field data collected independently of the data used to build the models, 

is therefore important as an ultimate test of a model's predictive ability (Austin 2007, 

Halvorsen 2012).  

 

Prediction models obtained by use of ALS-derived data compared to other models  

Only minor differences in AUC or kappa values were found between corresponding models 

built with ALS-derived variables, with variables derived from spectral data, and with 

ALS+spectral variables. However, for Chaffinch, Robin and Tree pipit models based upon a 

combination of ALS and spectral variables performed slightly better than pure ALS models 

and for Willow warbler the best model used spectral variables only. Even though Willow 

warbler is considered a generalist, it often prefers areas with deciduous trees, especially 

birches, which enhance insect availability (Table 3). The spectral image-derived variables 

were included in this study because they are known to be useful for determination of tree 

species (Hill & Thomson 2005). Our results may indicate that image-derived variables do in 

fact capture some of the variation in tree-species composition which is of importance for this 

species. The best model for Goldcrest and Wren were obtained using ALS variables only. 

Goetz et al. (2009) also built models for bird species richness with these three variable groups 

and concluded that models built with ALS were significantly better at predicting species 

richness than were models build from optical images alone whereas only small differences 

were detected between models build with ALS alone and models build with ALS and optical 

images pooled. A study by Müller et al. (2009), in which ALS, optical and traditional field 

data were compared, concluded that ALS data were more useful for modelling the potential 

abundance of single bird species than were field measurements and optical images. Although 

the differences among models obtained from the three groups of variables in our study (ALS, 

spectral, ALS+spectral) were not very large, prediction models developed with a combination 

of ALS and spectral images tended to make better predictions than models based on only one 

of these data sources.  

 

Relative performance of different prediction modelling techniques 

Of the fourteen comparable GLM10 and RF models (for given combinations of response 

variable and predictor variable group), better performance based upon AUC was obtained for 

ten RF models and three GLM10 models, respectively.  The corresponding values for 
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evaluation based upon kappa were 12 and one, respectively. Our results therefore indicate 

that RF models tend to have slightly better predictive ability than GLM models. This result 

accords with the result by Cutler et al. (2007) for comparison of GLM and RF models for nest 

sites for cavity nesting birds. It should, however, be noted that the RF method applies to 

classification and prediction and not to creation of explanatory models (Cutler et al. 2007).  

Moreover, although random forest models performed better than generalized linear models in 

our study, this was not invariably the case, and thus we recommend using more than one 

technique for prediction modelling. 

 

Factors influencing the models’ predictive ability 

The overall predictive ability of most prediction models obtained for bird species in this study 

was relatively low, as indicated by AUC values < 0.7 and kappa values < 0.3 (considered as 

poor to slight fit according to Araújo et al. (2005) and Landis and Koch (1977), respectively.  

Two factors which may contribute to lower the predictive ability of our models are: (1) 

‘Detectability noise’ in response variables (bird presence) data. A typical feature of animal 

presence data is that single animals, populations or even entire species, fail to be observed 

and pass undetected in surveys (MacKenzie 2006). Lack of detection results in false absences 

in the dataset, i.e. that the modelled species fails to be recorded when actually present. The 

degree of elusiveness differs between species, and other factors can also influence the 

probability that a certain species is recorded, e.g., the time of the year, the time during the day 

that recordings are made, weather conditions, and the experience of the observer. Although 

we tried to counteract or minimise these factors in our study design, detectability is likely to 

be less than 100 % and to vary among species since variation in detectability is unavoidable. 

(2) The size of the counting stations was relatively large (7850 m2), at least compared to the 

plot size used in other ALS studies in Norway (typically ca. 200 m2; Næsset and Bjerknes 

2001, Næsset 2002). Increased station size also reduces explanatory power because not all 

parts of a large site will be equally suitable for a species, e.g., because forest structural 

heterogeneity increase with increasing plot size. At least in our study area, high within 

counting-station variation in important habitat characteristics is expected to be an important 

reason for suboptimal prediction models.  

Single-tree variables represent an alternative to the area-based approach for acquiring 

ALS-derived variables used in the present study. However, the random stratified point 
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transect sampling technique (Bibby 2000) used in this study, which is a widely used method 

for estimating bird presence, provides data which are more directly compatible with the area-

based approach. It is however, possible that single-species bird studies based on data 

collected by use of other sampling techniques (e.g. territory mapping), may benefit from 

using the single-tree approach.  

 

Conclusion 

Our results suggest that the utility of ALS variables may be better for predicting than for 

explaining bird occurrence in boreal forests dominated by natural disturbance dynamics. 

Prediction models developed with a combination of ALS and spectral images tended to make 

better predictions than models based on only one of these data sources, indicating that access 

to ALS data adds significantly to predictability of bird distributions in boreal forests. To our 

knowledge, this is the first study from unmanaged (i.e. not dominated by human 

disturbances) boreal forest, in an area of limited spatial extent, and more studies are needed 

before any general conclusions can be drawn. In particular, we recommend that future studies 

evaluate prediction models by use of bird data collected independently of the data used to 

construct the prediction models, in order to get an ultimate test of the models’ predictive 

abilities.  
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