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Abstract 

Alpine and arctic tree lines are expected to advance to higher altitudes and further north 

due to global warming. The forest-tundra ecotone in particular, is highly sensitive to climatic 

changes since many of the species found there are at their tolerance limits. Thus, the 

development of suitable methods for monitoring these changes is of great importance and 

interest. For the monitoring of such vast areas as the forest-tundra ecotone, airborne laser 

scanning (ALS) may provide a well-suited tool because of its capability to estimate 

biophysical parameters on single tree level at different geographical scales. The main 

objective of this thesis was to investigate the potential of using high-density ALS data for 

detection of small individual trees located in the forest-tundra ecotone. The specific parts of 

the thesis focus on (1) single tree detection using ALS height values in combination with 

variables describing tree characteristics and the site, (2) laser echo classification using laser 

height and intensity, geospatial and terrain variables, as well as geostatistics and statistical 

measures. Furthermore, (3) the potential of an unsupervised classification of raster cells for 

automated monitoring programs of small single trees was assessed. Along a 1,500 km long 

transect stretching from northern Norway (66°19’ N) to the southern part of the country 

(58°3’ N) field measurements of 744 small individual trees as well as ALS data were 

collected. Generalised linear models (GLM), a generalised linear mixed model (GLMM), 

support vector machines (SVM), and a raster-based algorithm concept were employed for the 

detection and classification of both trees as well as tree and non-tree laser echoes using 

different variables. Successful single tree detection using laser height values in combination 

with tree characteristics and spatial influences as latitude and region was verified for trees 

exceeding a height of 1 m using GLM and GLMM models. The results form a solid basis for 

generalisation and inference that goes far beyond previous research because of the huge 

geographical extension of the dataset. Secondly, the capability of the ALS data for 

classification into tree and non-tree echoes using laser measurements, geospatial and terrain 

variables was confirmed using the two different modelling techniques GLM and SVM. 

Furthermore, an extension of the classification models with geostatistical and statistical 

measures employing GLM and SVM revealed a significant improvement. Finally, the 

suitability of an unsupervised classification approach for the automatic detection of small 

single trees was verified for parameter values ensuring a justifiable trade-off between rates of 

successful detection and commission errors. 
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Sammendrag 

De alpine og arktiske tregrensene er forventet å flytte seg høyere opp i fjellet og lengre 

mot nord som følge av global oppvarming. Trærne i disse områdene lever nær sin 

toleransegrense og er derfor følsomme for klimatiske endringer. Utvikling av egnede metoder 

for overvåking av disse endringene er av stor betydning og interesse. For overvåking av slike 

utstrakte områder som tregrensa, kan flybåren laserscanning (ALS) være et godt egnet 

redskap for å samle data som kan benyttes til å estimere biofysiske parametre på enkelttrenivå 

på ulike geografiske skalaer. Hovedmålet for denne avhandlingen var å undersøke potensialet 

av bruk av ALS-data med høy punkttetthet for detektering av små enkelttrær i tregrensa. De 

spesifikke delene av avhandlingen fokuserer på (1) deteksjon av enkelttrær ved hjelp av 

høydeverdier fra ALS-data i kombinasjon med variabler som beskriver tre-egenskaper og 

geografiske områder, (2) klassifikasjon av de enkelte ALS-registreringene (laserekko) ved 

hjelp av laserhøyde og -intensitet, informasjon om ALS-registreringenes romlige fordeling, 

terrengvariabler, samt geostatistiske og statistiske mål. Videre ble (3) potensialet av en ikke-

styrt klassifikasjon av rasterceller for automatiserte overvåkingsprogrammer av små 

enkelltrær vurdert. Langs et 1500 km langt transekt, som strekker seg fra Nord-Norge 

(66°19’ N) til den sørlige delen av landet (58°3’ N), ble det samlet inn feltobservasjoner av 

744 små enkelttrær og ALS-data. Både generaliserte lineære modeller (GLM), en generalisert 

blanded lineær modell (GLMM), support vector machines (SVM) og en rasterbasert 

algoritme ble brukt for deteksjon av trærne og for å klassifisere laserekkoene ut fra om de var 

returnert fra trær eller ikke-trær. Deteksjonen av enkelttrær ved hjelp av verdier fra ALS i 

kombinasjon med treegenskaper og romlige påvirkninger som breddegrad og region ble 

verifisert for trær over en høyde på 1 m ved hjelp av GLM og GLMM modeller. Resultatene 

danner et solid grunnlag for generalisering og slutning som går langt utover tidligere 

forskning på grunn av den betydelige geografiske utbredelsen av datasettet. Dernest ble 

evnen til å klassifisere de ulike ekko, hvorvidt de var returnert fra trær eller ikke-trær, ved 

hjelp av variable som beskriver terrenget og laserekkoenes romlige fordeling, bekreftet ved 

hjelp av de to ulike modelleringsteknikkene GLM og SVM. Videre ble det påvist en 

betydelig forbedring av GLM og SVM modellene når de ble utvidet med geostatistiske og 

andre statistiske mål. Avslutningsvis ble egnetheten til en ikke-styrt klassifikasjon for en 

automatisk deteksjon av små enkelttrær verifisert for parameterverdier som sikrer en 

forsvarlig avveining mellom vellykket deteksjon og inkluderingsfeil. �
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1. Introduction 

Shifts of the climatic treelines to higher altitudinal and latitudinal areas have been 

observed since the end of the Little Ice Age in the late 1880s (Holtmeier and Broll, 2007). 

Besides the favourable climatic period from 1925 to 1945, the annual average temperature in 

arctic regions increased at almost twice the global rate over the past decades albeit regional 

variations (ACIA, 2004; IPCC, 2007). Such a temperature increase may influence the 

prevailing tree limit not just by advancing into greater altitudes and higher latitudes (ACIA, 

2004; Kullman and Öberg, 2009), but also by a densification (Danby and Hik, 2007; Batllori 

and Gutiérrez, 2008) and increased height growth (Kullman, 2002) of the current sparsely 

distributed pioneer trees.  

The United Nations Framework Convention on Climate Change and the Kyoto protocol 

involve reports on land use change in respect of deforestation, afforestation and reforestation 

(UNFCCC, 2008) implying an important need for data collection in low biomass areas by 

means of carbon accounting. Since National Forest Inventories (NFI) or other monitoring 

systems commonly do not prioritise field plots in areas where the shifts in the climatic 

treeline may occur because of the high costs for data acquisition, efficient monitoring systems 

with the capability to cover vast areas with a high degree of detail at small scales are 

required. 

 

1.1 Ecological aspects of the forest-tundra ecotone 

Alpine and arctic treelines are seldom distinct demarcation lines, but are rather 

represented by transition zones (Callaghan et al., 2002; Holtmeier and Broll, 2005) covering 

the area between the mountain forest and the alpine and arctic zones. Clements (1905) 

referred to such transitions as ecotones and Harper et al. (2011) define the forest-tundra 

ecotone as “the transition between forest and tundra at high elevation or latitude”. Its location 

involves high sensitivity to climatic changes, and an advance of the alpine and arctic treelines 

to higher altitudes and northwards is expected caused by an increase in mean temperature and 

changes in precipitation as well as snow coverage affecting the length of the growing season 

(Callaghan, 2002; ACIA, 2004). Furthermore, an increased temperature may result in a 

densification, increased height growth as well as migration further north and to greater 

altitudes of the current tree limit (Kullman, 2002; ACIA, 2004; Danby and Hik, 2007; 

Batllori and Gutiérrez, 2008; Kullman and Öberg, 2009). However, a successful colonisation 

of formerly treeless areas require long-term survival of seedlings and saplings into trees 
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(Aune et al., 2011) as well as an increment in height growth of the present tree layer 

(Kullman, 2002). For this purpose, the production, dispersal, and germination of seeds but 

also the interplay of abiotic and biotic drivers are essential (Cairns and Moen, 2004; 

Holtmeier and Broll, 2005; Sturm et al., 2005; Aune et al., 2011). In addition, anthropogenic 

factors as herbivore activity by domestic animal and pastoral economy have an effect on the 

tree limit and may inhibit the climatic responses (Callaghan et al., 2002; Holtmeier and Broll, 

2005; Post and Pedersen, 2008; Olofsson et al., 2009; Hofgaard et al, 2010; Aune et al., 

2011). Furthermore, the changed properties of the forest-tundra ecotone will affect the 

biodiversity, biomass and carbon pools of the vegetation zones adjacent to the forest-tundra 

ecotone, i.e., the mountain forest and the tundra. This may for example be reflected in 

improved growth conditions in the forest-tundra ecotone caused by a denser mountain forest 

as a result of an increased occurrence of biomass in the forest-tundra ecotone that provided 

better protection for the mountain forest. 

 

1.2 Airborne laser scanning in the forest-tundra ecotone 

In Norway, the forest-tundra ecotone covers a large proportion of the total land area. For 

monitoring such vast areas, different remote sensing techniques could provide objective wall-

to-wall data for land cover assessment. However, air- or spaceborne optical instruments are 

limited by their spatial resolutions which are not sufficient enough for the detection of small-

sized trees and therewith the changes in their biophysical properties and spatial distribution. 

Assuming a height growth of 1 to 10 cm per year depending on locality and the prevailing 

microclimate, a remote sensing technique capable to observe subtle changes in growth and 

migration patterns is required. Airborne laser scanning (ALS) is a well suited data source as 

documented by several studies on the precise estimation of biophysical parameters on a 

single-tree level (e.g. Hyyppä et al., 2001; Persson et al., 2002; Solberg et al., 2006; Næsset 

and Nelson, 2007). Furthermore, ALS has proven its ability to discriminate small individual 

trees in the forest-tundra ecotone in several studies using different laser point densities (e.g. 

Næsset and Nelson, 2007; Rees, 2007). Employing ALS data with a point density of 

approximately 0.25 m-2, Rees (2007) discriminated individual trees provided a minimum tree 

height of 2 m over vast areas covering hundreds of square kilometres. Næsset and Nelson 

(2007), however, used high-density ALS data with a point density of 7.7 m-2 to detect small 

single trees irrespective of their tree height. In this study, positive laser height values inside 

field-measured tree crown polygons were used as criterion for successful tree detection. 

Thereby, success rates of over 90% were reported for trees with tree heights exceeding 1 m 
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(Næsset and Nelson, 2007) implying an adequate reliability of the method used for trees 

larger than 1 m in height. The success rates for trees lower than 1 m were significantly lower 

when utilising positive laser height values as criterion for the successful discrimination of a 

tree caused by severe commission errors (Næsset and Nelson, 2007; Næsset, 2009b). The 

magnitude of positive laser height values emerging from non-tree objects is not just 

dependent on the occurrence of for instance rocks, hummocks, and other terrain structures, 

but also on the properties related to the terrain model, the sensor, and the flight settings 

(Næsset, 2009b). Commission errors of up to 490% were observed by Næsset and Nelson 

(2007) using a dataset based on a terrain model computed with commonly adopted smoothing 

criteria. Thus, the reliability of tree detection solely employing positive laser height values is 

to a high degree affected by these commission errors, especially for trees lower than 1 m in 

height. However, for monitoring purposes, high rates of commission errors are negligible 

because of the multi-temporal context involving a change in size and number of trees whereas 

terrain and terrain objects remain stable. 

Furthermore, in a monitoring context but also for data acquisitions over vast areas, 

different sensors and acquisitions settings may be used over time and areas. For larger trees, 

it has been reported that variations in the vegetations returns and the properties of the laser 

point clouds may influence on estimated biophysical properties (Næsset, 2005, 2009a; 

Chasmer et al., 2006). However, previous research on small individual trees indicated that the 

utilisation of different instruments and configurations were equally well suited for single tree 

detection, provided a tree height exceeding 1 m (Næsset, 2009b). 

 

1.3 Potential discriminators for single tree detection in the forest-tundra ecotone 

Typically, studies utilising ALS data for forest inventory purposes solely employ the 

height information of the laser echoes rather than the full suite of available information as for 

instance spectral data, i.e., the backscatter intensity of the laser echoes. Intensity is an often 

neglected laser metric albeit it may be useful for the discrimination of tree and non-tree 

objects or laser echoes. Schreier et al. (1985) employed laser intensity for tree species 

classification already in 1985, but during the following years there was little focus on the 

usage of this laser metric because of the lack of radiometric calibration methods (Kaasalainen 

et al., 2005). During the last decade, however, several studies were conducted to classify tree 

species (e.g. Brandtberg et al., 2003; Holmgren et al., 2008; Ørka et al., 2009), age (Farid et 

al., 2006a,b), and land-cover (Brennan and Webster, 2006). Furthermore, an experimental 

study by Thieme et al. (2011) used normalised intensity values to investigate the spatial 
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pattern of tree and non-tree objects based on laser height and intensity. They found 

normalised intensity values and height information useful to separate between tree and non-

tree objects in a forest-tundra ecotone environment when combined with the spatial point 

pattern of the individual laser echoes with positive height values.  

Hence, the spatial point pattern, i.e., the spatial structure and distribution of the 

individual laser echoes may be conducive for the discrimination between different types of 

objects located on the terrain surface. The spatial variation of individual laser echoes may 

differ around tree and non-tree objects since a variety of biological phenomena demonstrate 

spatial correlation or dependency (Rossi et al., 1992) and often emerging in patches (Fry and 

Stephens, 2010). Voronoi polygons are a commonly used technique in point pattern analysis 

to investigate the spatial distribution of point data in numerous disciplines (Boots and Getis, 

1988) and Thieme et al. (2011) showed promising results employing small-sized Voronoi 

polygons to recognise field-measured trees and non-tree objects selected from aerial imagery. 

Furthermore, Thieme et al. (2011) also employed experimental variograms and cross-

variograms based on laser height and intensity values in a geostatistical analysis investigating 

differences in the pattern between tree and non-tree objects. Geostatistics are a common 

image processing technique in optical remote sensing where standard statistical measures 

such as mean and standard variation or the variogram-derived mean semivariance are 

calculated for each pixel using a moving window for image classification purposes (Wulder 

et al., 1998; Jakomulska and Clarke, 2001). Wulder et al. (1998) used first- and second-order 

texture as well as semivariance moment texture for textural image classification to increase 

the accuracy of leaf area index estimation. Thus, we hypothesize that Voronoi polygons 

representing the spatial point pattern of the ALS data, as well as standard statistical measures 

and a geostatistical component may be suitable co-discriminators for the classification of 

trees and non-trees in the forest-tundra ecotone. 

Furthermore, several studies state that different terrain characteristics such as aspect and 

slope influence the potential presence and height growth of small pioneer trees (Mast et al., 

1997; Boisvenue et al., 2004; Danby and Hik, 2007). Danby and Hik (2007), for instance, 

reported a difference in tree invasion patterns for north and south-facing slopes in a forest-

tundra ecotone environment, primarily caused by the differential presence of permafrost. 

They further demonstrated the partial dependency of regional, landscape and local scale 

variability in the tree population on variations in the terrain, landscape setting and existing 

vegetation (Danby and Hik, 2007). Thus, the terrain parameters aspect and slope may be 

contributing to the discrimination between trees and non-trees. 
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1.4 Supervised and unsupervised classification 

In general, statistical classification is separated into supervised and unsupervised 

classification methods. In supervised classification techniques, classes are built by using 

training data for the parametric or non-parametric characterisation of these classes and 

elements are assigned based on their characteristics. Such decision rules are not provided in 

unsupervised classification techniques where classes are built without any usage of training 

data and without any previous knowledge of the thematic content. Unsupervised 

classification methods generally embody cluster analysis by aggregating elements into 

clusters where each cluster represents a homogeneous class.  

For the classification of trees and non-trees, both supervised and unsupervised 

classification methods are still a little utilised approach. However, these methods may 

represent a useful tool with a yet unknown potential for inventory and monitoring of small 

individual trees in vegetation zones as the forest-tundra ecotone. 

 

1.5 Research objectives 

The main objective of the thesis was to investigate the potential of high-density ALS data 

to detect small individual trees located in the forest-tundra ecotone using different methods 

and approaches. The specific parts of the thesis and the relationship of the research papers 

included are illustrated in Figure 1 and described as follows: 

� Paper I – “Detection of small single trees in the forest-tundra ecotone using height 

values from airborne laser scanning” – studied the effects of sensor influences on small 

tree detection, the probability of small tree detection using ALS height values in 

combination with tree characteristics and site and further assessed the accuracy of laser-

derived tree height estimation. 

� Paper II – “Classifying tree and non-tree echoes from airborne laser scanning in the 

forest-tundra ecotone” – the analysis from Paper I was brought a step further and 

supervised laser echo classifications using laser measurements, geospatial, and terrain 

variables were tested. 

� Paper III – “Improving classification of airborne laser scanning echoes in the forest-

tundra ecotone using geostatistical and statistical measures” – employed the best 

classification models from Paper II and tested geostatistics and statistical measures 

derived from laser height and intensity values to improve the classification of tree and 

non-tree echoes. 
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� Paper IV – “Automatic detection of small single trees in the forest-tundra ecotone using 

airborne laser scanning” – took the results from Paper I a step further and assessed, 

contrary to Paper II and III, the potential of an unsupervised classification for automated 

monitoring programs of small single trees. 

 

 

 
 

 

Figure 1 – Specific parts and relationship of the research papers included in the thesis. 
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2. Study area and materials 

2.1 Study area 

The study area is located along a 1,500 km long and approximately 180 m wide 

longitudinal transect and encompasses hundreds of mountain forest and alpine elevation 

gradients. The transect stretches from Tromsø in northern Norway  (69°3’ N 17°5’ E) to 

Tvedestrand in the southern part of the country (58°3’ N 9°0’ E) (Figure 2) and covers 

sample plots in the forest-tundra ecotone at elevations between 350 and 1200 m a.s.l. In these 

transitions between the mountain forest and the alpine zone, the terrain is often characterised 

by rounded forms with occurrences of hummocks, rocks and boulders, and steep slopes. The 

prevalent tree species are Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus 

sylvestris L.), and mountain birch (Betula pubescens ssp czerepanovii). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Overview of the study area with the 35 specific field sites (black and white points). The 1,500 km 

long transect (black line) stretches from to 69°3’ N 17°5’ E to 58°3’ N 9°0’ E. Three field sites are located in the 

overlap zone between ALS acquisitions conducted with two different instruments (white points). (Reproduced 

with kind permission from CASI) 
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2.2 Field data 

The field work was conducted in summer 2008 at 35 different field sites selected along 

the transect to provide in situ tree data for analyses. For this purpose, 56 evenly distributed 

sites were initially identified for the potential establishment of sample plots prior to field 

work. These sites were chosen based on aerial images and maps from the official Economic 

Map Series of the Norwegian Mapping Authority. The proximity to roads and the existence 

of sample plots of the NFI nearby for potential comparison were taken into account. The final 

selection of the specific sites, however, was made in field. 

A field site typically consisted of two to four sample plots with a radius of 25 m to cover 

the entire width of the forest-tundra ecotone, i.e., the area between the mountain forest and 

the treeless alpine zone. The number of sample plots in a field site was determined in field 

based on visual judgement because of the variation in width of the forest-tundra ecotone 

between the different locations. Furthermore, the sample plots were laid out with an 

interdistance of 50 m within a field site to avoid overlap. In total, 111 sample plots were 

established at 35 different field sites located along the entire transect. 

For precise navigation and positioning, real-time kinematic differential Global 

Navigation Satellite System (dGNSS) was utilised. Two Topcon Legacy E+ 20-channel dual-

frequency receivers were employed as base and rover receivers observing pseudo range and 

carrier phase of both Global Positioning System and Global Navigation Satellite System 

satellites. A base station was established for each field site using the closest suitable reference 

point of the Norwegian Mapping Authority. The expected accuracy of the sample plot centre 

points was 3–4 cm provided an expected horizontal accuracy of about 2 cm for the field 

recordings relative to the base station and an expected accuracy of 3 cm for the reference 

points.   

Individual trees were selected for measurement on each plot. The individual sample trees 

were selected using a modified version of the point-centred quarter sampling method (PCQ) 

(Cottam and Curtis, 1956; Warde and Petranka, 1981) with a maximum search distance of 

25 m. For this purpose, the sample plot was divided into four quadrants defined by the 

cardinal directions from the sample plot centre using a Suunto compass. In each quadrant, 

trees that were closest to the plot centre in a respective tree height class were sampled 

independent of tree species. Three tree heights classes were defined as: (1) lower than 1 m, 

(2) between 1 and 2 m, and (3) taller than 2 m, resulting in a maximum of potentially 12 trees 

in a sample plot. In cases of doubt, the maximum search limit and the closest tree were 

determined using a surveyor’s tape measure. 
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For each sample tree, the precise position was determined using dGNSS and several tree 

parameters were recorded individually. Tree height was measured using a steel tape measure 

or a Vertex III hypsometer for tall trees and stem diameter was callipered at root collar. Tree 

species was determined and crown diameters were measured in the cardinal directions using a 

steel tape measure. 

In total, 744 trees were measured including 623 mountain birch, 68 Norway spruce, and 

53 Scots pine. Tree heights ranged from 0.02 to 7.80 m, and crown areas from 0.001 to 

19.54 m2, computed as the ellipse defined by the crown diameters as the major and minor 

axes. 

In Paper I, the entire dataset was used. In Paper IV, however, ten trees had to be 

discarded from the dataset because of their tree crowns being completely overlapped by tree 

crowns of taller trees which was regarded as invalid for the analyses in this study. 

Furthermore, a subset of the dataset with 524 trees, i.e. 404 mountain birch, 67 Norway 

spruce and 53 Scots pine, was used in Papers II and III. Summaries of the tree parameters for 

the dataset and the two subsets are given in Table 1. 

 

2.3 Laser data 

Airborne laser scanner data were acquired on 23 and 24 July 2006 with an Optech 

ALTM 3100C laser scanner system covering southern and central Norway and on 1 July 

2007 with a Gemini upgraded version of the Optech ALTM 3100C laser scanner system, 

denoted as ALTM Gemini, in northern Norway. The laser data collection had to be separated 

in two acquisitions because of the large geographical extent of the study area and difficult 

weather conditions. An overlap zone of approximately 80 km was scanned in the county of 

Nordland (65°53’ N 13°27’ E) with both systems to facilitate sensor comparisons and thus 

control for any potential sensor effects. 

Both laser scanner systems were carried by a Piper PA-31 Navajo aircraft with a flight 

speed of approximately 75 ms-1 at an average flying altitude of 800 m above ground level. 

Furthermore, the scan frequency was 70 Hz and the maximum half scan angle was 7° in both 

acquisitions resulting in an estimated average footprint diameter of 20 cm. For the ALTM 

3100C laser scanner system, pulse repetition frequency (PRF) was 100 kHz resulting in a 

mean pulse density of 6.8 m-2. A test flight in May 2007 conducted in another area suggested 

a PRF of 125 kHz for the ALTM Gemini laser scanner system to obtain laser point clouds as 

similar as possible for the two data acquisitions. Thus, the laser data in northern Norway was 

collected with a mean pulse density of 8.5 m-2 in 2007 using the ALTM Gemini system. The 
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1,500 km long transect was split into 147 individual flight lines to keep the flying altitude 

above the terrain and hence the pulse density as constant as possible. 

Pre-processing of the laser data was accomplished by the contractor (Blom Geomatics, 

Norway). For all laser echoes, planimetric coordinates (x and y) and the ellipsoidal height 

values were computed. 

For the derivation of the terrain model, laser echoes labelled as “last-of-many” and 

“single” (LAST) were used, whereas laser echoes labelled as “first-of-many” and “single” 

(FIRST) were used for the analyses in the current thesis. The planimetric coordinates and the 

corresponding height values of the LAST echoes were used to classify ground echoes based 

on an iteration distance of 1.0 m with the TerraScan software (Terrasolid, 2011) and a 

triangulated irregular network (TIN) was computed with an iteration angle of 9°. 

Furthermore, the FIRST echoes were projected onto the TIN surface to interpolate the 

corresponding terrain height values on these locations. For the analyses, the height 

differences between the height values of the FIRST echoes and the corresponding 

interpolated terrain height values were computed and stored. For the analysis of tree detection 

in Paper I all FIRST echoes were included, whereas only FIRST echoes with height values 

greater than zero were included in the classification analyses of Papers II, III and IV since 

this criterion represents the sole indicator for the presence of objects on the terrain surface. 

Both the ALTM 3100C and the ALTM Gemini systems may record up to four echoes per 

laser pulses with a minimum vertical distance of 2.1 m between two subsequent echoes for 

the ALTM 3100C. The minimum vertical distance is assumed to be larger for the ALTM 

Gemini because the vertical resolution is a function of pulse width (cf. Baltsavias, 1999). In 

combination with low vegetation, this instrument property may result in potentially very few 

pulses with more than a single echo. Hence, the LAST and FIRST datasets were almost 

identical for many of the sample plots. 

In addition to the field data involving the 111 sample plots allocated along the transect, 

54 sample plots were established in the overlap zone for an area-based analysis of potential 

sensor effects in Paper I. Based on the visual inspection of digital aerial imagery, the 54 

sample plots were purposefully selected, each with an area of 1,000 m2. Three different 

categories were used, i.e., (1) solitary distributed small-sized trees, (2) sparsely distributed 

medium-sized trees, and (3) large trees in dense forest stands, to provide are more detailed 

assessment that is comparable to the dataset of the entire transect. 
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3. Methods 

3.1 Computations 

For addressing the different research objectives in the four papers, a sequence of 

computations had to be conducted prior to analyses. Table 2 gives an overview over the 

different parameters computed and used in the different papers. 

Field-measured crown diameters were used for the computation of elliptical tree crown 

polygons that were involved in the analyses of all four papers. For trees with crown diameter 

values less than 1.0 m in at least one cardinal direction, tree crown polygons with a fixed 

radius of 0.5 m were assigned because of a positioning error of the laser data of up to 0.5 m 

as reported by the contractor. 

Furthermore, non-tree polygons were generated for the analyses in Papers II, III and IV 

utilising the basic properties of the PCQ method, which implicitly provide us with full control 

of some of the areas without any trees. The sampling design of the PCQ method resulted in a 

maximum of three sample trees per quadrant and the tree closest to the respective plot centre 

was selected irrespective of tree height class. Thus, the area defined by the distance between 

the closest tree in a quadrant and the plot centre was used to compute the non-tree polygons. 

Finally, the tree crown polygons of the selected trees were erased from the non-tree polygons 

to ensure full control over the treeless areas.  

For Papers II and III, FIRST echoes with laser height values larger than zero were 

overlaid with the tree and non-tree polygons and the echoes falling inside the particular 

polygons were classified as tree and non-tree echoes, respectively. This procedure resulted in 

2,323 tree and 27,487 non-tree echoes for the supervised classifications.  

In Papers II and III, laser intensity values were used as discriminator for the 

classification analyses. For this purpose, the raw intensity (IRaw) had to be normalised for the 

range R according to a formula suggested by Korpela et al. (2010). 

Moreover, a digital elevation model (DEM) was generated using LP360 (QCoherent 

Software, 2010) with a cell size of 0.25 m for Papers II and III using LAST echoes classified 

as ground returns. The terrain-related variables (1) aspect (Paper II) which was divided into 

eight categories because of computational reasons, and (2) slope (Papers II and III) were 

derived from the DEM raster surface (Burrough and McDonald, 1998) and their values were 

assigned to the corresponding FIRST echoes.  

To include a geospatial facet in the classification analysis of Paper II, Voronoi polygons 

were computed using FIRST echoes. For this purpose, adequate areas were defined for the 
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respective field sites to avoid edge effects at the sample plot borders and the Voronoi 

polygons were generated individually. The calculated area of each Voronoi polygon was 

assigned to the corresponding FIRST echo. 

For the classification analysis in Paper III, semivariograms were employed as a 

geostatistical discriminator. By using the mean value of the semivariances of an experimental 

variogram the differences in the behaviour of spatial correlation of laser height and intensity 

values for tree and non-tree echoes were characterised. 

Furthermore, statistical summary measures were derived for the classification study of 

Paper III. For this purpose, the arithmetic mean, the standard deviation, as well as the 

coefficient of variation were derived from both laser height and intensity values, respectively. 

 

Table 2 – Overview of parameters computed and used in the different papers. 

Parameter Used in Paper 

Tree crown polygons I, II, III, IV 

Non-tree polygons II, III, IV 

Intensity II, III 

DEM II, III 

Voronoi polygons II 

Mean semivariance from laser height and intensity III 

Arithmetic mean from laser height and intensity III 

Standard deviation from laser height and intensity III 

Coefficient of variation from laser height and intensity III 

 

 

3.2 Single tree detection 

To investigate the detection success of small individual trees and the effects of different 

factors influencing the single tree detection, generalised linear models (GLM) and 

generalised linear mixed models (GLMM) were employed in Paper I. Because of the 

utilisation of two different laser scanner instruments during data acquisition, the potential 

sensor effects on detection of small individual trees were assessed prior to analysis 

employing data from the 80 km overlap zone. Both the tree crown polygons derived from the 

field-measured crown diameters of the trees located in the overlap zone and the 54 sample 

plots established in the overlap zone were used to calculate maximum laser-derived tree 

heights for the single-tree and the area-based approaches, respectively, from both data 
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acquisitions. Equivalence tests were applied for detected trees with maximum laser heights 

greater than zero and trees with maximum laser heights greater than or equal to zero. The 

maximum tree height was calculated for each of the 54 plots of the three different categories 

and equivalence test were applied for the respective categories testing the null hypothesis for 

a significant difference between the two data acquisitions.  

In the first step of the detection analysis, FIRST echoes were overlaid with the tree 

crown polygons for evaluation of the echoes located inside the individual polygons. Tree 

crown polygons with at least one FIRST echo with a maximum laser height greater than zero 

were classified as being successfully detected. Furthermore, tree crown polygons including 

FIRST echoes with a maximum laser height equal to zero or no FIRST echo at all were 

regarded as not detected. 

Different independent variables were included in the GLM models representing effects 

of (1) size of the tree as expressed by tree height and tree crown area, (2) tree species, and (3) 

geographic location according to latitude and region. Different GLM models were fitted and a 

likelihood-ratio test was performed to test the null hypothesis that tree species does not 

significantly contribute to the model. Moreover, another likelihood-ratio test was employed 

for an additional indicator variable representing the 35 different field sites. The GLM models 

were evaluated by leave-one-out cross validation and the Hosmer-Lemeshow test statistics 

(Hosmer and Lemeshow, 2000). Because of a potential contribution of regional effects found 

for the GLM model, a GLMM model was estimated including the variables used in the GLM 

analysis as fixed effects and the region parameter representing the 35 field sites as a random 

effect. 

Finally, the accuracy of tree height estimation using laser data was assessed by 

comparing tree heights estimated from the laser data with the corresponding field-measured 

tree heights from the detected trees. The differences between the laser-derived and the field-

measured tree heights were calculated and assessed by estimating the standard deviation for 

these differences for the three tree species and the three tree height classes individually. 

 

3.3 Laser echo classification 

In Papers II and III, individual FIRST echoes were classified into tree and non-tree 

echoes using GLM and support vector machines (SVM). Instead of using the maximum laser 

height in a tree crown polygon as criterion for successful tree detection as in Paper I, the 

potential of classifying individual FIRST echoes for further usage in a detection analysis was 

assessed. Different discriminators were tested for their contribution to the classification into 
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tree and non-tree echoes in Paper II and the best models were expanded with a new suite of 

discriminators in Paper III to potentially improve the classification in Paper II. 

The approach from Paper I employing GLM to assess successful tree detection was 

pursued by using GLM as a classification method. For this purpose, the models consisting of 

different combinations of the discriminators were fitted and the probabilities of the FIRST 

echoes being non-tree echoes were predicted resulting in a classification of tree and non-tree 

echoes. Furthermore, SVM were introduced to the problem of FIRST echo classification to 

assess the potential of a relatively new classification method, at least in this research area. 

The different models were fitted and the FIRST echoes were classified into tree and non-tree 

echoes. 

Leave-one-out cross-validation was employed for the assessment of classification 

performance of modelling with GLM and SVM. For both classification methods, the Cohen’s 

kappa coefficient (Cohen, 1960) was estimated for each model to assess the classification 

performance.  

In Paper II, kappa coefficients were compared both for the different models using the 

respective classification method and for the analogue models using the two classification 

methods (GLM versus SVM). Kappa coefficients were evaluated quantitatively according to 

the grading suggested by Landis and Koch (1977) and the comparison was conducted using 

test statistics suggested by Cohen (1960) that evaluates the normal curve deviate to assess the 

significance of the difference between two independent kappa coefficients. The models 

consisted of different combinations of laser height and intensity variables, a geospatial 

variable represented by the area of the Voronoi polygons and the terrain-related variables 

aspect and slope. The laser height and intensity values were included in all models because of 

their direct relation to the FIRST echoes. 

For a potential improvement of classification performance compared to what was 

obtained in Paper II, the respective best model of the GLM and SVM classifications was 

extended in Paper III with the geostatistical parameter represented by the mean semivariance, 

and statistical measures, i.e., the arithmetic mean, the standard deviation and the coefficient 

of variation. Thereby, discriminators that revealed a significant improvement when included 

individually were subsequently combined in a new extended model with all possible 

combinations to asses a further potential contribution to the discrimination between tree and 

non-tree echoes. Furthermore, the differences between the independent kappa coefficients 

were estimated to investigate a superior performance of the models from Paper III in 

comparison to the simple models from Paper II. 
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3.4 Automatic detection of small single trees  

Originating from the studies conducted in the three previous papers, Paper IV 

investigated the suitability of an unsupervised classification for automatic detection of small 

single trees for a potential further utilisation in a monitoring programme. In this context, a 

concept for a raster-based algorithm was developed using different raster grids with 

decreasing cell sizes as provided by a region quadtree approach for the classification of tree 

and non-tree raster cells. To assess the capability of this concept, binary raster grids with 

different cell sizes adapted to the sample plot size were computed and overlaid with FIRST 

echoes using six different laser height thresholds for the laser echoes included (0 cm, 10 cm, 

20 cm, 30 cm, 40 cm, and 50 cm). Table 3 gives an overview over the different raster cell 

sizes used with the radius of the sample plot as the initial raster cell side length. Raster cells 

containing at least one FIRST echo were assigned the value 1 and empty cells the value 0. 

The grids were intersected with the tree crown polygons in three different categories for 

assessing the classification performance for tree pixels: (1) all tree crown polygons 

irrespective of tree height (I), (2) tree crown polygons with a tree height equal to or higher 

than the laser height threshold (II), and (3) tree crown polygons with tree heights exceeding 

1 m (III). For the two laser height thresholds of 20 cm and 30 cm, additional classifications 

(IV and V) with different tree heights for the tree crown polygons were conducted because of 

an underestimation of laser-derived tree heights compared to the corresponding field-

measured heights as reported by Næsset and Nelson (2007), Næsset (2009b), and Paper I. 

Furthermore, the different grids were intersected with the non-tree polygons to obtain the rate 

of non-tree pixels classified as tree pixels, i.e., commission errors. Finally, commission errors 

were investigated by intersecting the different grids with the non-tree polygons. 

 

Table 3 - Summary of grid cell sizes. 

Number of cells Cell side length (m) Cell size (m2) Labelling 
4 25 625.000 1 

16 12.5 156.250 2 
64 6.25 39.063 3 

256 3.125 9.766 4 
1024 1.5625 2.441 5 
4096 0.78125 0.610 6 

16384 0.390625 0.153 7 
�
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4. Results and discussion 

4.1 Single tree detection 

The study reported in Paper I demonstrated the suitability of high-density ALS data to 

successfully detect small individual trees in the forest-tundra ecotone and confirmed the 

findings from previous studies (Næsset and Nelson, 2007; Næsset, 2009b). The analyses of 

potential sensor effects revealed no significant differences between the two laser scanner 

systems using the laser scanner data from the 80 km overlap zone in the county of Nordland. 

The equivalence tests for the small individual tree analysis based on the field-measured tree 

heights indicated no significant difference in maximum tree height between the two data 

acquisitions. Furthermore, the equivalence tests for the area-based analysis using the 54 

established sample plots confirmed that there is no significant difference between the two 

sensors for the small and medium-sized trees. Albeit a significant difference was found for 

the large trees, a potential sensor effect caused by the utilisation of two different laser scanner 

systems could be neglected in this case because the small individual trees of the dataset are 

comparable to the trees of the small and medium-sized categories of the area-based analysis. 

This result was also in line with previous studies using different flight and sensor 

configurations (Næsset, 2009b). Hence, no data adjustment was performed to calibrate the 

laser data from the two different sensors in Papers I and IV which employed data from both 

acquisitions. 

For the single tree detection in Paper I, an overall tree detection success rate of 71% was 

found irrespective of tree height class and tree species (Table 4). Of the 29% of the trees that 

were not successfully detected, 3% were not hit by any laser pulse at all. Furthermore, the 

tree species with highest success rate irrespective of tree height class was represented by 

spruce (81%) and over 90% of the trees exceeding a tree height of 1 m were successfully 

detected. Less than 11% of all trees >1 m were hit by at least one laser pulse with a laser 

height equal to zero and the tree species with the lowest amount irrespective of tree height 

was represented by spruce with 18%. Moreover, only spruce (1%) and birch trees (4%) were 

not hit by any laser pulse at all, i.e. all pine trees were hit by at least one laser pulse.  
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Table 4 - Success in tree detection for different trees species and tree height classes. (Reproduced with 

kind permission from CASI) 

Tree species Height 
class 

n Detected  
 

n (%) 

hmax = 0 
 

n (%) 

No hits 
 

n (%) 
Mountain birch < 1 m 293 147 (50) 134 (46) 12 (4) 

 1-2 m 199 167 (84) 21 (11) 11 (5) 
 > 2m 131 127 (97) 3 (2) 1 (1) 
 total 623 441 (71) 158 (25) 24 (4) 

Norway spruce < 1 m 20 9 (45) 11 (55) 0 (0) 
 1-2 m 24 22 (92) 1 (4) 1 (4) 
 > 2m 24 24 (100) 0 (0) 0 (0) 
 total 68 55 (81) 12 (18) 1 (1) 

Scots pine < 1 m 30 11 (37) 19 (63) 0 (0) 
 1-2 m 12 12 (100) 0 (0) 0 (0) 
 > 2m 11 10 (91) 1 (9) 0 (0) 
 total 53 33 (62) 20 (38) 0 (0) 

Total total 744 529 (71) 190 (26) 25 (3) 
 

 

The GLM analyses indicated that the probability of a tree being successfully detected 

increased with an increase in tree height and tree crown area in particular. Although being 

highly correlated, those two independent variables showed high significance in all models. A 

slightly higher probability for successful tree detection was found for increasing latitude 

accompanied by a slight inter-correlation with tree species involving a potential mixed effect 

of those two. This potential mixed-effect of latitude and tree species might result from the 

lack of spruce and pine trees north of 66° N as reflected in the field data. This together with 

the assumption that local terrain might influence the terrain model and therewith the success 

in tree detection, led to the creation of a subset of the field and laser data. Only areas covered 

by the ALTM 3100C sensor were included to obtain a more balanced dataset for the 

classification of tree and non-tree echoes in Papers II and III. Furthermore, spruce and pine 

trees revealed slightly higher probabilities of being detected than birch. Employing the 

predicted probabilities of being successfully detected, almost all conifer trees were found 

provided a minimum tree height of 1.3–1.4 m, whereas a birch tree had to reach a tree height 

of at least 1.9 m. For tree crown areas, almost all pine trees were detected when reaching a 

size of 0.5 m2, and almost all spruce and birch trees were found provided a tree crown area of 

1.1 m2. Figure 3 illustrates the predicted probabilities of a tree for being hit by at least one 

laser pulse for tree height and tree crown area for the three tree species. This result from the 
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GLM analysis that almost every tree exceeding a height of 1 m was successfully detected 

could be integrated in the raster-based detection concept of Paper IV for verification.  

 

Figure 3 - Predicted probability of a tree being hit by at least one laser pulse as a function of tree height (left) 

and tree crown area (right) for birch, spruce, and pine. (Reproduced with kind permission from CASI) 

 

 

Furthermore, a likelihood-ratio test indicated no significant difference in successful tree 

detection between pine and spruce trees, however, no simplification of the model was 

conducted because all indicator variables representing tree species were statistically 

significant. Another likelihood-ratio test revealed a significant difference for the probability 

of tree detection between the 35 field sites leading to an extension of the basic model. The 

Hosmer-Lemeshow test statistics showed no lack of fit for any of the  models and the leave-

one-out cross validation indicated an overall agreement of over 80% between observed and 

predicted values for both models as well. 

The GLMM analysis revealed the same results for the fixed effects as in the GLM 

analysis with only minor changes in the levels of significance for most of the independent 

variables. Furthermore, the random effect indicated some variations in the models that were 
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caused by locality of the respective field sites. The presence of this regional effect also 

corroborated a reduction of the dataset for the analyses conducted in Papers II and III.  

The accuracy assessment of the laser-derived tree heights revealed a general trend of 

greater underestimations for larger trees with a concurrent lower precision. The greatest 

underestimation errors were found for pine trees, however, coinciding with the lowest 

variation in the estimated heights. These underestimations found for the laser-derived tree 

heights were concordant with previous studies using small pioneer trees (Næsset and Nelson, 

2007; Næsset, 2009b), and were accounted for in the analyses in Paper IV. Overestimations 

were found for few individual trees and may be traced back to the special characteristics of 

small birch and spruce trees that tend to grow in groups with several trees of different 

heights. 

 

4.2 Laser echo classification 

Papers II and III verified the capability of high-density ALS data to classify tree and non-

tree echoes directly from the laser point cloud using different variables and classification 

methods. In both studies, tree and non-tree echoes were classified with a total accuracy of at 

least 93% and a moderate fit irrespective of the classification method or the model used. This 

overall result is in accordance with other studies detecting small trees on an individual tree 

basis in a forest-tundra environment, albeit using individual laser echoes in Papers II and III. 

Paper I, as well as the studies conducted by Næsset and Nelson (2007) and Næsset (2009b) 

reported success rates of at least 90% for trees exceeding 1 m in height.  

The classification in Paper II of the FIRST echoes into tree and non-tree echoes using 

GLM and SVM with variables represented by laser height and intensity, the area of Voronoi 

polygons, and the terrain variables aspect and slope revealed total accuracies of at least 

93.6% and 94.8%, respectively (Table 5). Kappa coefficients of at least 0.515 for GLM and 

0.560 for SVM indicated moderate fits for the estimated models (Table 5).  

For the GLM classification in Paper II, a maximum difference of 1.3 percentage points 

was found for the eight different models, of which models not including the terrain variable 

slope had slightly higher accuracies. The model with the highest accuracy (94.9%) included 

only laser height and intensity. The corresponding kappa coefficient was 0.573, which was 

the highest as well. Furthermore, no significant effect on the classification performance could 

be found for the geospatial variable and the terrain variables.  

The classification of the FIRST echoes using SVM had a maximum difference of 0.5 

percentage points between the eight models. Models not including the terrain variable slope 
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had slightly lower accuracies, however, with no serious inferior performance. The model 

consisting of laser height and intensity as well as the terrain variable slope was the model 

with the highest accuracy of 95.3% accompanied by the highest kappa coefficient of 0.600. 

Significantly higher accuracies were found for models including the slope variable, whereas 

the geospatial variable and the terrain variable aspect had no significant influence on the 

classification performance. 

Laser height and intensity values were found to be important discriminators for the 

classification of tree and non-tree echoes in Paper II, especially when included as the two sole 

discriminators using GLM. The geospatial variable represented by the Voronoi polygons, 

however, did not contribute significantly to classification performances both with regard to 

GLM and SVM. Therewith, this variable can be disregarded as discriminator for FIRST echo 

classification, albeit Thieme et al. (2011) reported promising results for this geospatial 

variable in combination with laser height and intensity values for the detection of tree and 

non-tree objects in a forest-tundra ecotone environment. For the terrain variables aspect and 

slope, no significant contribution was found using GLM. In other studies, the terrain variable 

aspect was found to have an important influence on tree invasion (Mast et al., 1997; Danby 

and Hik, 2007), however, using the variable on a coarser scale compared to Paper II. 

Furthermore, the terrain variables aspect and slope have a similar ecological meaning 

describing amongst others the solar radiation and moisture (Bader and Ruijten, 2008). These 

essential factors for the occurrence of trees may already be covered by the aspect variable in 

this linear classification method. 

When comparing the classification performances of GLM and SVM for the different 

models in Paper II, no significant differences were found between models including different 

combinations of laser height and intensity, the geospatial variables and the terrain variable 

aspect (Table 5). However, the p-values for all models comprising the terrain variable slope 

indicated a significantly better classification performance for SVM. Thus, slope represented a 

significant discriminator for the classification of tree and non-tree echoes using SVM and 

might be a significant contributor to FIRST echo classification when utilising a nonlinear 

kernel to construct hyperplanes during SVM classification. Furthermore, it is reasonable to 

assume that a nonlinear classification is sensitive to the slope variable. 
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Table 5 – Performance and comparison of the different models used for laser echo classification with GLM and 

SVM. (Reproduced with kind permission from CASI) 

Modela GLM 
Accuracy 

 
Kappa 

SVM 
Accuracy 

 
Kappa 

GLM versus SVM 
Zb 

HI 0.949 0.573 0.949 0.568 0.428 
HIP 0.948 0.569 0.949 0.569 0.004 
HIA 0.948 0.568 0.948 0.560 0.570 
HIS 0.942 0.550 0.953 0.600 3.719  ** 
HIPA 0.946 0.559 0.948 0.563 0.268 
HIPS 0.943 0.546 0.952 0.594 3.514  ** 
HIAS 0.939 0.523 0.952 0.594 5.165  ** 
HIPAS 0.936 0.515 0.952 0.596 5.930  ** 
Note: Level of significance: *<.05. **<.005 
a H=Laser height, I=Laser intensity, P=Voronoi polygons, A=Aspect, S=Slope. 
b As received by the comparison between two independent kappa coefficients. 

 

 

The results of Paper III revealed significant improvements by extending the best simple 

GLM and SVM models from Paper II with geostatistical and statistical measures. For the 

classification of FIRST echoes into tree and non-tree echoes using GLM and SVM models 

consisting of geostatistical and statistical measures in Paper III, total accuracies of at least 

93.6% and 94.7% were found, respectively. Compared to the classification performances in 

Paper II, the kappa coefficients were improved in Paper III by at least 0.032 and 0.034 using 

GLM and SVM, respectively (Table 6).  

Using GLM, a maximum difference of 1.3 percentage points was found between the total 

accuracies of the different models consisting of geostatistical and statistical measures derived 

from the laser height and intensity values. However, models including the geostatistical 

and/or the statistical measures represented by the arithmetic mean and the standard deviation 

derived from laser height values revealed higher classification performances as expressed by 

the kappa coefficients. The highest kappa coefficient of 0.606 was revealed by the two 

models consisting of the arithmetic mean, and the mean semivariance and the arithmetic 

mean, respectively, indicating a moderate fit. Furthermore, no significant contribution was 

found for the geostatistical and statistical measures derived from laser intensity values when 

compared to the simple model of Paper II that involved laser height and intensity values. For 

the geostatistical and statistical measures derived from laser height values, however, a 

significant improvement was found for all models that included the mean semivariance and 

the arithmetic mean individually and in combination compared to the simple model from 

Paper II using the Cohen’s test statistics (Table 6). 
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For SVM, the total accuracies differed by 1.0 percentage points between the twelve 

models. Most models including geostatistical and statistical measures derived from the laser 

height values revealed slightly higher accuracies. Kappa coefficients for models consisting of 

the mean semivariance, the arithmetic mean, and the standard deviation derived from the 

laser height values were higher than for the other models, both when included individually or 

in combination with one another. The model merely consisting of the mean semivariance in 

addition to the simple model from Paper II revealed the highest kappa coefficient of 0.666 

indicating a substantial fit. By comparing the kappa coefficients of the models to the simple 

model from Paper II, no significant contribution was found for any of the models with 

geostatistical and statistical measures derived from the laser intensity values. Using the laser-

derived geostatistical and statistical measures, six models including the mean semivariance, 

the arithmetic mean, and the standard deviation individually or in combination with one 

another, the simple model of Paper II was improved (Table 6). The classification 

performance was improved by at least 0.034. 

Geostatistical and statistical measures derived from laser intensity values revealed no 

significantly contribution to any model using GLM or SVM. This can be traced back to the 

respective distributions of the different measures that were similar for tree and non-tree 

echoes resulting in no or a very weak discriminating effect. Furthermore, standard deviations 

and coefficient of variations derived from laser height values revealed similar distributions 

and did therewith not suggest a discriminating effect. A positive effect of the nonlinear 

classification method SVM was found for the laser height-derived standard deviation when 

used individually or in combination with the mean semivariance or the arithmetic mean from 

laser height values. Moreover, obvious differences in the value distributions of the arithmetic 

mean and the mean semivariance derived from laser height values were found for tree and 

non-tree echoes. This was reflected in the significant improvements of the simple models 

from Paper II both using GLM and SVM when extended with these two discriminators 

individually or in combination with one another. The superior performance of the mean 

semivariance both using GLM and SVM is in line with Thieme et al. (2011) who employed 

experimental variograms to characterise and distinguish between tree and non-tree objects in 

the forest-tundra ecotone. Furthermore, variogram-based measures were found to be 

beneficial for the classification of vegetation classes including grassland, rocks and 

woodland, however, using optical airborne imagery (Jakomulska and Clarke, 2001).    
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Table 6 – GLM and SVM models from Paper III that significantly improved the simple GLM and SVM models 

from Paper II. 

Modela  Accuracy Kappa Zb 
GLM HI_HSV 0.947 0.605 2.333  * 

 HI_HAM 0.946 0.606 2.482  * 
 HI_HSV_HAM 0.946 0.606 2.480  * 

SVM HIS_HSV 0.957 0.666 4.995  ** 
 HIS_HAM 0.956 0.655 4.183  ** 

 HIS_HSD 0.957 0.660 4.539  ** 
 HIS_HSV_HAM 0.955 0.643 3.186  ** 
 HIS_HSV_HSD 0.957 0.664 4.875  ** 
 HIS_HAM_HSD 0.954 0.634 2.556  * 

Note: Level of significance: *<.05. **<.005. 
a H=Laser height, I=Laser intensity, S=Slope, HSV=Mean semivariance derived from laser 
height, HAM=Arithmetic mean derived from laser height, HIS=Laser height and intensity and 
slope, HSD=Standard deviation derived from laser height. 
b As received by the comparison between two independent kappa coefficients. 
 
 
4.3 Automatic single tree detection 

In Paper IV, the suitability of the unsupervised classification for automatic detection of 

small individual trees revealed promising results for the classification into tree and non-tree 

raster cells. The different raster cell sizes demonstrated different usages and suitability in an 

algorithmic context based on the detection success rates of the tree raster cells. In all 

classifications, the three largest raster cell sizes (Table 3) were found to be well suited for the 

exclusion of areas without any trees, however, being too large in size for reliable tree raster 

cell detection because of the very imprecise description of positioning for the small trees. 

Raster cell size 6 (Table 3) that corresponds to approximately half the size of the mean tree 

crown area, however, represented an optimal raster cell size in terms of a relatively precise 

tree positioning and a still satisfying detection success rate (Figure 4). Furthermore, raster 

cell size 7 revealed a significant decrease in the rate of successfully detected tree raster cells 

(Figure 4) indicating the inadequacy of raster cell sizes considerably smaller than half of the 

mean tree crown area for tree raster cell detection. For the classifications I, II, and III, large 

raster cell sizes generally resulted in high detection success rates for the tree raster cells 

which decreased with decreasing raster cell size. The success rates were further inversely 

proportional to the laser height thresholds and a decrease in raster cell size was accompanied 

by a decrease in differences of the success rates between the different laser height thresholds 

(Figure 3). Also the classifications accounting for the underestimation of laser-derived tree 

heights (IV and V) revealed a decrease in success rate when decreasing the raster cell size. 
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Rates for non-tree raster cells classified as tree raster cells for the optimal raster cell size 

6 ranged between 0.01% and 37.3% depending on the laser height threshold (Figure 4). 

Higher rates of commission error were found for the lower laser height thresholds and 

decreased with an increase in laser height threshold. For the laser heights thresholds of 20 cm 

and 30 cm, the sudden decrease in commission errors for the respective raster cell sizes 3 to 6 

(Figure 4) suggested a diminution in the laser data noise. Together with almost non-existent 

decrease in the rate of commission errors for higher laser thresholds, this result confirmed the 

assumption of such an upper limit that was observed during data processing. 

Depending on the laser height threshold and using the optimal raster cell size 6, at least 

24.1% and up to 62.6% of the tree pixels were detected including all tree crown polygons 

irrespective of tree height (classification I) and 32.3% up to 62.6% when tree crown polygons 

with tree heights equal to or higher than the laser threshold (classification II) were employed 

(Figure 3). The rates of successful tree detection ranged between 36.3% and 72.9% for tree 

crown polygons with tree heights exceeding 1 m (classification III) using different thresholds 

based on the optimal raster cell size 6. These results revealed slightly lower detection rates 

than in Paper I or other studies on small single tree detection in such an environment as the 

forest-tundra ecotone (Næsset and Nelson, 2007; Næsset, 2009b). For the classifications IV 

and V that were taking into account the underestimation of laser-derived tree heights, at least 

39.0% of the tree pixels were successfully classified using the optimal raster cell size 6 and 

higher success rates were found for higher tree height thresholds. The differences between the 

success rates for the different tree height thresholds were small or almost equal to zero for the 

classifications, albeit a decrease in raster cell size resulted in a decreasing success rate. 

Moreover, the influence of potential underestimation of field-measured tree height using ALS 

data as demonstrated in Paper I and in other studies (Næsset and Nelson, 2007; Næsset, 

2009b) was reflected in an increase of successful tree raster cell detection when increasing 

the height of trees included in the classification. 

For monitoring purposes, parameters values for raster cell sizes, laser height thresholds, 

and a potential lower tree limit are critical with regard to a justifiable trade-off between rates 

of successful detection and commission errors as reflected by the results of the different 

classifications. Also the usage of different sensors and acquisition settings over time is 

challenging from a monitoring perspective (Næsset, 2009b) and may result in varying laser 

point densities. Since the probability of a tree being hit by at least one laser pulse generally is 

a function of laser point density, low densities may not be suitable for single tree detection in 

the forest-tundra ecotone, whereas almost all trees �1 m in height were hit by at least one 
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laser pulse in the studies conducted in Paper I and by Næsset and Nelson (2007) using ALS 

data with high laser point densities (6.8-8.5 m2). In the analysis in Paper IV, the sudden 

decrease of commission errors for the laser height thresholds of 20 cm and 30 cm suggested a 

relatively large proportion of data noise for laser echoes lower than these thresholds. This 

may result in severe commission errors for unsupervised classifications only using laser 

height values because of the limited capability to distinguish between the smallest trees and 

other types of vegetation equal in height, such as for example shrubs. Furthermore, the 

detection of regeneration and mortality of small individual trees is strongly dependent on a 

sufficient time span between data acquisitions. The limited height growth of such trees, i.e., 

for example between 1 and 10 cm depending on locality and the prevailing microclimate, 

may require longer time spans for a raster-based automatic detection algorithm, especially 

with regard to tree establishment. 

 

5. Conclusion 

To conclude, this thesis provides an in-depth investigation of the potential of high-

density ALS data to assist in detection of small individual trees in the forest-tundra ecotone. 

First, successful single tree detection using laser height values in combination with tree 

characteristics and spatial influences was verified for trees exceeding a height of 1 m in Paper 

I. The results form a solid basis for generalisation and inference that goes far beyond previous 

research because of the huge geographical extension of the dataset. Secondly, the capability 

of the ALS data for classification into tree and non-tree echoes using laser measurements, 

geospatial and terrain variables was confirmed using two different modelling techniques in 

Paper II. Furthermore, an extension of the classification models with geostatistical and 

statistical measure revealed a significant improvement in Paper III. Concerning the automatic 

detection of small single trees using unsupervised classification in Paper IV, suitable initial 

values for raster cell sizes resulting in the exclusion of large treeless areas as well as an 

optimal raster cell size with a still satisfying detection success rate were determined and a 

laser height threshold revealing a significant decrease in the rate of commission error was 

identified. 

For the utilisation of the supervised and unsupervised classifications presented in Papers 

II, III and IV for monitoring purposes, different challenges have to be met and investigated in 

future research. Depending on the time span, the usage of different sensors and acquisition 

settings resulting in varying laser point densities has to be analysed involving field surveys 
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that have to be obtained for all ALS acquisitions (Næsset, 2009b). Employing the methods 

suggested in Paper IV, raster grids can be applied as map products presenting the variation in 

tree occurrence and distribution over time provided a sufficient time span. Furthermore, the 

selection of a sufficient time span between the different inventories is entailed by tree growth, 

regeneration and mortality as well as positional accuracy of individual echoes with regard to 

the methods used in Papers II and III. The aggregation of the individual classified echoes to 

another scale, e.g. individual tree level or a raster in different scales, is depending on the 

specific needs of a monitoring programme. Finally it should be mentioned that the basic 

techniques used in this study may be implemented in a sampling framework as in Falkowski 

et al. (2009) and Gobakken et al. (2012) using the laser as a sampling device to provide a 

time- and cost-efficient monitoring tool for regional estimates of changes in the tree line and 

abundance of small trees in the forest-tundra ecotone or to provide map products as in Ørka et 

al. (2012).�
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Detection of small single trees in the
forest�tundra ecotone using height values

from airborne laser scanning

Nadja Thieme, Ole Martin Bollandsås, Terje Gobakken, and Erik Næsset

Abstract. Because of global warming, it is assumed that the arctic and alpine tree lines will advance northwards into the

tundra and upwards into mountainous regions. Methods are needed to monitor these advances. Airborne laser scanning

has recently been introduced for detection of small pioneer trees that form the advanced alpine tree line. The objective of

this study was to analyze the capability of high-density airborne laser scanning data used for detecting such individual

small trees in the transition between the mountain forest and the alpine zone, the forest�tundra ecotone. The study used

field and laser data collected along a 1500 km transect stretching from northern Norway (6983? N) down to the southern

part of the country (5883? N). In the field, 744 trees of mountain birch, Norway spruce, and Scots pine were geolocated

with centimetre accuracy, and they were measured for height, root collar diameter, and crown diameter. Tree heights

ranged between 0.02 and 7.80 m. The laser data were acquired in two separate acquisitions with mean pulse densities of

6.8 m�2 and 8.5 m�2, respectively. Laser echoes with relative height values greater than zero within the individual tree

crown polygons were used as a criterion for a successful tree detection. The detection success for trees taller than 1 m was

90%; however, for trees shorter than 1 m, the corresponding value was 49%. The highest detection success was found for

spruce. Generalized linear models and a generalized linear mixed model with binary responses (detected/not detected)

were applied to evaluate the effects of tree height, tree crown area, tree species, geographic location along the latitude

gradient, and region on successful detection. Although they were highly correlated, tree height and tree crown area turned

out to be the variables showing high significance (p 5 0.001) in all of these models.

Resume. En raison du réchauffement climatique, les limites forestières arctique et alpine devraient progresser vers le nord

dans la toundra et en plus haute altitude dans les régions montagneuses. Il est donc nécessaire de développer des méthodes

afin de pouvoir faire le suivi de ces avancées. La technique de balayage laser aéroporté a été introduite récemment pour

détecter ces petits arbres pionniers qui forment la frange avancée de la limite forestière alpine. L’objectif de cette étude était

d’analyser la capacité des données laser aéroporté haute densité utilisées pour détecter de tels petits arbres individuels dans

la zone de transition entre la forêt de montagne et la zone alpine appelée l’écotone forêt�toundra. Dans cette étude, on a

utilisé des données de terrain ainsi que des données laser acquises le long d’un transect de 1500 kmde longueur s’étendant du

nord de la Norvège (6983’ N) jusqu’au sud du pays (5883’ N). Sur le terrain, 744 bouleaux montagne épinettes de Norvège et

pins sylvestres ont été géolocalisés avec une précision au centimètre et mesurés pour la hauteur, le diamètre du collet et le

diamètre de la couronne. Les hauteurs d’arbres variaient de 0,02 à 7,80 m. Les données laser ont été acquises au cours de

deux campagnes d’acquisition avec des densités d’impulsion moyennes respectivement de 6,8 m�2 et de 8,5 m�2. Les échos

laser avec des valeurs relatives de hauteur plus grands que zéro à l’intérieur des polygones individuels de couronnes d’arbre

ont été utilisés comme critère pour assurer le succès de la détection d’arbres. Le taux de succès pour la détection d’arbres

d’une taille supérieure à unmètre était de 90% tandis que pour les arbres demoins d’unmètre, lavaleur correspondante était

de 49%. Le taux de succès de détection le plus élevé était observé pour l’épinette. Des modèles linéaires généralisés et un

modèle linéaire généralisé mixte avec des réponses binaires (détecté/non détecté) ont été appliqués afin d’évaluer les effets de

la hauteur des arbres, de la surface de la couronne, des espèces d’arbres, de la localisation géographique le long du gradient

de latitude ainsi que de la région sur le taux de succès de détection. Quoique fortement corrélées, la hauteur des arbres et la

surface de la couronne se sont avérées les variables montrant la plus forte signification (p 5 0,001) dans tous ces modèles.

[Traduit par la Rédaction]

Introduction

Alpine and arctic tree lines are expected to advance to

higher altitudes and further north because of global warm-

ing, which involves changes in temperature, precipitation,

and snow coverage (ACIA, 2004). Several studies show that

there have been upward, or at least stationary, trends of tree

limits in both latitude and elevation over the past century as

a result of climate change (Kullman, 2001, 2002; Grace
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et al., 2002; ACIA, 2004; Harsch et al., 2009). Particularly,

boreal regions are expected to be highly affected by global

warming (Kirschbaum and Fischlin, 1996), and northern

Scandinavia has already experienced large changes in forest

coverage as a result of warming events (ACIA, 2004). In

addition to these natural causes, tree lines are also respond-

ing to anthropogenic factors such as grazing and pastoral

economy (Callaghan et al., 2002; Holtmeier and Broll,

2005).

Tree lines are often not represented by definite demar-

cation lines, but rather a transition zone (Callaghan et al.,

2002; Holtmeier and Broll, 2005) that can be labelled as the

forest�tundra ecotone. Harper et al. (2011) defined the

forest�tundra ecotone as ‘‘the transition zone between forest

and tundra at high elevation or latitude’’. Its location

between the mountain forest and the treeless alpine zone

involves a high sensitivity to climatic changes and implies

an important need for monitoring (Callaghan et al., 2002).

For trees located in such areas, Aune et al. (2011) reported

significant differences for tree parameters among multiple

study sites, such as crown area and basal stem diameter.

A declining trend in tree height from southern to northern

sampling areas was found by Hofgaard et al. (2009).

Therefore, the geographic region plays an important role

in the monitoring of small trees in the forest�tundra ecotone

as local patterns of tree migration and tree height growth

caused by climate warming can be expected (Næsset and

Nelson, 2007).
Many remote sensing techniques provide wall-to-wall

coverage for vast areas. However, the spatial resolutions of

optical remote sensing instruments limit monitoring studies

in areas like the forest�tundra ecotone considerably, espe-

cially when it comes to small trees with a height growth of

0�5 cm per year (Næsset and Nelson, 2007). To monitor

climatic changes in the growth of such small trees and the

colonization of areas both further north and to higher

altitudes, airborne laser scanning may be a well-suited tool,

as shown in studies where biophysical parameters on single

tree levels at different scales have been predicted from laser

data (e.g., Hyyppä et al., 2001; Persson et al., 2002; Solberg

et al., 2006; Næsset and Nelson, 2007). Tree height growth

over relatively short time spans, between 2 and 5 years, is

detectable using both high- and low-density airborne laser

scanning data (Næsset and Gobakken, 2005; Yu et al., 2006).

Covering a 5-year period using high-density airborne laser

scanning data with a point density of approximately 10 m�2

in an individual tree approach, Yu et al. (2006) reported a

root-mean square error (RMSE) of 0.43 m for the estimation

of tree height growth on pine trees having reached a height of

about 4.14 m in a boreal forest. Næsset and Gobakken (2005)

found that even low-density airborne laser scanning data

(1 m�2) was applicable for detecting a significant mean tree

height growth for spruce and pine trees in young and mature

forest stands over a 2-year period (RMSE of 0.53 m).

Furthermore, empirical studies conducted by Næsset and

Nelson (2007) and Rees (2007) verified the suitability of

airborne laser scanning using different densities of laser

scanning data for the discrimination of small trees located in

the forest�tundra ecotone. Concerning low-density data with
a laser point density of approximately 0.25 m�2, airborne

laser scanning has proven to be a useful tool to distinguish

individual trees over large areas that cover hundreds of

square kilometres (Rees, 2007). However, Rees (2007)

defined a tree by heights greater than 2 m, whereas in their

study, Næsset and Nelson (2007) used a positive laser height

value inside a tree polygon as a criterion for tree detection

using high-density airborne laser scanning data (7.7 m�2).

This approach seems to be applicable for trees with heights

greater than or equal to 1 m as there are generally few other

objects in a forest�tundra ecotone environment that are

expected to exceed an elevation of 1 m above ground surface.

Næsset and Nelson (2007) also reported a detection success

rate of over 90% for trees with heights greater than or equal

to 1 m compared with significantly lower numbers for trees

below 1 m. Thus, an adequate reliability of height values for

tree detection is assumable, given a tree height exceeding 1 m.

Using laser height values as the sole criterion for tree

detection may introduce severe commission errors (Næsset

and Nelson, 2007; Næsset, 2009b), especially for laser echoes

received from the ground surface or objects close to it.

Moreover, laser echoes close to the ground are highly

sensitive to terrain modelling. Dependent on the properties

of the terrain model, the sensor, and flight settings a large

number of positive height values are actually representing

nontree objects such as rocks, hummocks, and other terrain

structures. For example, Næsset and Nelson (2007) found a

commission error of 490% using a dataset where the terrain

model was derived with commonly adopted smoothing

criteria. Such commission errors have a significant influence

on the reliability of tree detection analysis using laser height

values. However, in multitemporal analysis terrain and

terrain objects will not change, whereas when provided a

sufficient time span, trees will increase in height and will

change in number.
Moreover, different sensors with different properties may

be used during data acquisition because of the vast areas

involved. Variations in the vegetation returns and properties

of the laser point clouds influencing the estimated biophy-

sical properties from these data are reported for larger trees

(Næsset, 2005, 2009a; Chasmer et al., 2006). For small single

trees, previous research seems to indicate that different

instruments and configurations are equally suited for

detection, provided that the tree height is greater than 1 m

(Næsset, 2009b).

The main objective of this study was to assess the

capability of high-density airborne laser scanner data to

detect small single trees located in the forest�tundra ecotone.
For this purpose, sensor influences, tree characteristics, and

spatial influences were studied to determine their effects on

the probability of small tree detection. Finally, the accuracy

of laser-derived tree height estimation was assessed.
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Study area and data

Study area

The study area comprises a 1500 km long and approxi-

mately 180 m wide north�south transect stretching from

Tromsø in northern Norway (6983? N 1785? E) to Tvedes-

trand in the southern part of the country (5883? N 980? E)
(Figure 1). The transect encompasses hundreds of mountain
forest and alpine elevation gradients and covers sample plots

in the forest�tundra ecotone at elevations ranging from 350

to 1200 m above sea level. In many of these localities the

terrain surface is often characterized by rounded forms with

occurrences of hummocks, rocks and boulders, and steep

slopes. The prevalent tree species are Norway spruce (Picea

abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and

mountain birch (Betula pubescens ssp czerepanovii).

Field data

The field work in the transect was carried out during

summer 2008 to provide in situ tree data for the detection

analysis.

Anterior to field work, 56 potential field sites evenly

distributed along the transect were selected for the establish-

ment of sample plots. Based on aerial images and maps from

the official Economic Map Series of the Norwegian

Mapping Authority, these sites were chosen depending on

their proximity to roads and the existence of nearby sample

plots of the National Forest Inventory (NFI) for potential

comparison. However, the final selection of specific field

sites was taken in field which resulted in a total of 36 field

sites allocated along the transect. One field site typically

consisted of two to four sample plots covering the entire

transition zone. Because this extent, from the mountain

forest to the alpine zone, varies for different locations, the

number of sample plots was visually adjusted at each field

site depending on the altitudinal dimension of the transition

zone. This yielded a total of 114 sample plots. Furthermore,

sample plots within field sites were laid out with a 50 m

interdistance to avoid overlap. However, one field site and

therefore three sample plots had to be discarded because

of erroneous coordinates resulting in a total number of

111 sample plots located at 35 field sites.

For precise navigation and positioning, real-time kine-

matic differential Global Navigation Satellite Systems
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Figure 1. Overview of the study area with the 35 specific field sites (black

and white points). The 1500 km long transect (black line) stretches from to

6983? N 1785? E to 5883? N 980? E. Three field sites are located in the

overlap zone (white points).
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(dGNSS) were used with two Topcon Legacy E� 20-

channel dual-frequency receivers observing the pseudo

range and carrier phase of both the Global Positioning

System and Global Navigation Satellite System satellites.
The horizontal positioning accuracy of this system is about

2 cm, provided that the reference point is without error.

For each field site, the closest suitable reference point of the

Norwegian Mapping Authority was used to establish the

base station. The reference points used had an accuracy of

3 cm. The expected precision for the centres of sample plots

measured in the field sites was 3�4 cm.

The small individual trees were selected according to a
modified version of the point-centred quarter sampling

method (PCQ) (Cottam and Curtis, 1956; Warde and

Petranka, 1981). Emanating from the sample point as the

centre, the surrounding areawas divided into four quadrants,

defined by the cardinal directions using a Suunto compass.

In each quadrant one tree from three different tree height

classes was sampled independent of tree species. The height

classes were (i) lower than 1 m, (ii) between 1 m and 2 m, and
(iii) taller than 2 m. Following the scheme of the PCQ

sampling, each tree that was closest to the plot centre in their

respective height class in each quadrant was sampled. This

design led to a selection of a maximum of 12 trees per plot.

Contrary to the original version of the PCQ method where

an object is recorded irrespective of its distance to the centre,

a maximum search limit was set to 25 m. A surveyor’s tape

measure was used to determine the closest tree and the
maximum search distance in cases of doubt.

In the field, tree height, stem diameter at root collar,

crown diameter, and tree species were recorded individually

for each of the sample trees. Tree heights were measured

using a steel tape measure for smaller trees and a Vertex III

hypsometer for taller trees. Stem diameters were callipered

and crown diameters were measured in the cardinal direc-

tions using a steel tape measure. For each tree, the precise
position was determined using dGNSS according to the

procedure outlined previously.

The original dataset included 771 measured trees. How-

ever, 26 trees had to be discarded because of missing or

erroneous coordinates. Another tree had to be excluded from

the dataset as well, because its distance to the centre of the

sample plot exceeded the set limit of 25 m. This led to a total

number of 744 trees that included 623 mountain birch, 68
Norway spruce, and 53 Scots pine trees used for subsequent

analysis. However, no Norway spruce or Scots pine trees

were recorded north of 668 N. Tree heights ranged from

0.02 m to 7.80 m (Table 1). Furthermore, the crown area of

each tree was computed as the ellipse enfolding the tree

defined by the crown diameters as the major and minor axes.

Laser data

Airborne laser scanner data were acquired in two separate

acquisitions because of the large longitudinal extension of

the study area and difficult weather conditions. The first

acquisition was conducted in Southern and Central Norway

on 23 and 24 July 2006 with an Optech ALTM 3100C laser

scanning system. The remaining part of the transect in

Northern Norway was scanned on 1 July 2007 with a

Gemini upgraded version of the Optech ALTM 3100C laser

scanner, denoted as ALTM Gemini. For comparison

reasons, an overlap zone of approximately 80 km was

flown in the county of Nordland (65853? N 13827? E) with
both systems.
For both acquisitions, a Piper PA-31 Navajo aircraft with

an average flying altitude of 800 m above ground level

carried the laser scanning systems. Furthermore, in both

acquisitions the scan frequency was 70 Hz, maximum half

scan angle was 78, and the flight speed was approximately

75 ms�1. The average footprint diameter was 20 cm in both

cases. However, pulse repetition frequency (PRF) was

100 kHz in 2006 and 125 kHz in 2007, which resulted in

mean pulse densities of 6.8 m�2 and 8.5 m�2 for the two

acquisitions, respectively. The unequal PRFs were chosen to

obtain laser point clouds of trees as similar as possible for

the two acquisitions. A test flight in May 2007, with several

different PRFs in another study area where laser data

with the same system had been acquired prior to a system

upgrade, indicated that a PRF of 125 kHz after the system

upgrade produced similar data to the 100 kHz prior to the

upgrade. Different energy output levels of the laser pulses of

the sensor prior to and after the system upgrade were the

most likely reason for the somewhat different properties of

the point clouds over vegetated areas for a given PRF.

The routing and configuration of the transect were

planned in accordance with the fixed 3 km�3 km grid

used by the NFI for its permanent field sample plots.

Thereby, 50 NFI plots located close to the mountain forest

were covered. Furthermore, the 1500 km long transect was

split up into 147 individual flight lines to keep the flying

altitude above ground level as constant as possible.

Preprocessing of the laser data was conducted by a

contractor (Blom Geomatics, Norway). For all laser points,

planimetric coordinates (x and y) and ellipsoidal height

values were computed.

Laser echoes labelled ‘‘last-of-many’’ and ‘‘single’’

(LAST), and laser echoes labelled ‘‘first-of-many’’ and

‘‘single’’ (FIRST), were used for the derivation of the terrain

model and the analysis of tree detection, respectively.

Table 1. Summary of field measurements of trees.

Tree species Characteristics n Mean Min. Max.

Mountain birch Height (m) 623 1.28 0.02 7.80

Diameter (cm) 622 3.65 0.10 34.00

Crown area (m2) 623 0.90 0.001 19.54

Norway spruce Height (m) 68 1.66 0.07 7.00

Diameter (cm) 66 6.53 0.20 19.10

Crown area (m2) 68 1.43 0.006 5.69

Scots pine Height (m) 53 1.33 0.10 5.10

Diameter (cm) 53 5.00 0.30 18.90

Crown area (m2) 53 0.81 0.002 7.28
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Both the ALTM 3100C and the ALTM Gemini are

instruments recording up to four echoes per pulse with a

minimum vertical distance of 2.1 m between echoes for the

ALTM 3100C. For the ALTM Gemini, the minimum

vertical distance is assumed to be larger because of the

pulse width’s influence on the vertical resolution (Baltsavias,

1999; Næsset, 2009b). Unfortunately, the system producer

was unwilling to release such instrument-specific informa-

tion. Based on these instrument properties, potentially very

few pulses have more than one echo because of the low

vegetation. From the planimetric coordinates and the

corresponding height data of the LAST returns, ground

points were classified based on an iteration distance of 1.0 m

with the TerraScan software (Terrasolid, 2010). A triangu-

lated irregular network (TIN) was derived with an iteration

angle of 98 representing a typical value for the generation of

terrain models using airborne laser scanning data.

For the analysis of tree detection, returns labelled as FIRST

were projected onto the TIN surface and the corresponding

terrain height values of these locationswere interpolated. The

differences between the FIRST return echo heights and the

corresponding interpolated terrain height values were com-

puted and stored for the tree detection analysis.

Methods

Sensor analysis

Because two different laser scanning systems were

employed during data acquisition, data from the 80 km

overlap zonewere used to assess the potential sensor effects on

the small individual tree detection. For this purpose, the

maximum laser-derived tree height from both data acquisi-

tions was estimated for each tree located in the overlap zone.

In this individual tree approach, equivalence tests were

performed using the tost procedure of the equivalencepackage

(Robinson, 2010) in the statistical computing software R

(RDevelopment Core Team, 2007) for the detected treeswith

hmax � 0, and all trees with hmax ] 0, respectively, where

hmax is the maximum laser height. To test if the difference

between the mean values of the two data acquisitions is larger

than a negligible upper and lower limit, equivalence tests are

more appropriate to use than one-sample t tests (Kaminski

et al., 2010).

In addition to the 111 sample plots along the transect,

54 sample plots were established in the overlap zone for an

area-based analysis. With an area of 1000 m2 each, they

were purposefully selected by visual inspection of digital

aerial imagery and divided into three different categories:

(i) solitary distributed small-sized trees, (ii) sparsely distri-

buted medium-sized trees, and (iii) large trees in dense forest

stands. Maximum tree height was calculated for each plot

and equivalence tests were applied for the respective

categories testing the null hypothesis for a significant

difference between the two data acquisitions.

Tree detection

In this study, the detection of small individual trees in the

forest�tundra ecotone was based on laser echoes with height

values greater than the classified ground surface. These laser

echoes represent the only indicators for the presence of

objects on the terrain surface and are therefore the sole

candidates for tree detection. Instead of detecting trees
automatically from laser point clouds in individual tree

detection for larger trees as introduced by Hyyppä et al.

(2001), Persson et al. (2002), and Solberg et al. (2006), the

small trees were defined by the field measurements of the

vertical projection of their tree crowns. For this purpose,

the field-measured crown diameters were used to compute

elliptical tree crown polygons. Trees with a crown diameter

value less than1.0 m in at least one of the cardinal directions
were assigned a tree crown polygon with a constant radius of

0.5 m. This procedure was implemented to compensate for a

positioning error of the laser data of up to 0.5 m as reported

by the contractor. The FIRST return laser data were

subsequently overlaid with the tree crown polygons for the

evaluation of laser echoes falling inside the individual crown

polygons. A tree hit by at least one FIRST return laser echo

with hmax � 0 was regarded as successfully detected. How-
ever, trees hit by at least one laser echo with hmax�0 and

trees that were not hit by any laser echo at all were classified

as not having been detected.

Generalized linear models (GLM) were employed for

analyzing the effects of different factors influencing the

probability of a tree being successfully detected. A GLM

consists of three elements: the random component identi-

fying the dependent variable Y, the systematic component
specifying the independent variables {xj}, and the link

function relating those two components (Agresti, 2007).

In this case, a logit link function connects the binary

response Y (detected/not detected) to the independent

variables {xj} representing the effects of (i) the size of the

tree as expressed by tree height and tree crown area, (ii) the

tree species, and (iii) the geographic location concerning

latitude (GLM 1) and region (GLM 2) (Table 2). Thus, the
following model was estimated:

log
p detectedð Þ

1� p detectedð Þ

" #
¼ aþ b1x1 þ � � � þ bkxk (1)

The GLM models were fitted using the glm (Dalgaard,

2008) procedure of the stats package (R Development Core

Team, 2007) in R. Likelihood-ratio tests were employed to

compare the fit of the respective model with a more complex

model (Agresti, 2007).

To test the null hypothesis that tree species does not

significantly contribute to the model, a likelihood-ratio test

was performed. Another likelihood-ratio test was performed
for an additional indicator variable representing the

35 different sample sites. Thus, a potential contribution of

regional effects to the model was investigated. Both GLM

models were evaluated by leave-one-out cross validation and
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the Hosmer�Lemeshow test statistics (Hosmer and Leme-

show, 2000) testing the goodness-of-fit by comparing

observed and fitted event rates (Agresti, 2007).

A generalized linear mixed model (GLMM) was applied

to further investigate a potential regional effect. Contrary to
classical statistics, where all observations are assumed to be

independent, mixed-effects models are based on the

assumption that observations within a cluster are actually

dependent, preserving the independency between clusters

(Demidenko, 2004). Such variables are included as random

effects Z whereas the remaining variables X are used as

fixed-effects parameters (Bates, 2010). The following

GLMM was therefore estimated:

log
p detectedð Þ

1� p detectedð Þ

" #
¼ Xbþ Zv (2)

The GLMM model was estimated with the variables used

in the GLM analysis employing the region parameter

representing the 35 field sites as a random effect. A Laplace

approximation was performed for fitting the GLMM using

the glmer procedure provided by the lme4 package (Bates

and Maechler, 2010) in R.

Assessment of laser tree height estimation

Tree growth is an essential factor contributing to change
and is thus also essential for change detection. The ability to

estimate tree growth with laser data will depend on the

accuracy of tree height estimation with the same data. It is

therefore appropriate to compare tree heights estimated

from laser data with in situ observations. For this purpose,

the mean differences between the hmax and the correspond-

ing field-measured tree heights were calculated for the

detected trees. The precision of the tree heights derived
from the laser data was assessed for the three tree species

and three tree height classes individually by estimating the

standard deviation for the differences.

Results and discussion

Sensor analysis

The analyses of potential sensor effects using the laser

scanner data from the 80 km overlap zone indicated no

significant differences between the two laser scanning

systems. Both the individual tree analysis using the field-

measured trees and the area-based analysis using the 54

established sample plots confirmed this finding.
For the individual trees located in the overlap zone, no

significant difference in maximum tree height could be found

between the two sensors. The equivalence tests resulted

in pB0.001 both for trees with hmax�0 and hmax ] 0.

The mean differences were�0.042 m and 0.020 m for trees

with hmax�0 and hmax ] 0, respectively.

For the small and medium-sized trees used in the area-

based analysis, the equivalence test revealed p B 0.001 and
mean differences of 0.073 m and 0.004 m, respectively.

For the large trees class, the equivalence tests resulted in

p�0.122 and a mean difference of�0.390 m. Thus, the null

hypothesis that there is a significant difference between the

two data acquisitions within an upper and lower limit could

be rejected for small and medium-sized trees, but not for

large trees. However, all individual trees measured in the

field are comparable with the small and medium-sized tree
class in the area-based analysis. It was therefore considered

unnecessary to perform any data adjustment to calibrate the

laser data from the two acquisitions against each other prior

to the subsequent analysis.

The probability of being hit by at least one laser pulse also

is related to the laser pulse density and not solely dependent

on tree size as used in these analyses. However, Næsset

(2009b) noted that the configuration of the ALTM 3100C at
100 kHz and the ALTM Gemini at 125 kHz (as used in the

current study) revealed the best corresponding canopy

height distributions in a preliminary investigation with

old-growth forest. Using the two laser pulse densities in

this study, the majority of trees taller than 1 m and almost

all trees taller than 2 m were hit by at least one laser pulse

(Table 3). Previous studies on small single tree detection that

also included different flight and sensor configurations
(Næsset, 2009b), showed corresponding results concerning

the suitability of different instruments provided laser pulse

densities were higher than 7 m�2.

Tree detection

The overall tree detection success rate was 71% irrespec-

tive of tree height classes and tree species (Table 3).
With regard to the different tree height classes, success rates

for different tree species ranged between 37% and 50% for

trees smaller than 1 m. For trees between 1 m and 2 m and

trees taller than 2 m the success rates were �84% and

� 91%, respectively, for all three tree species. The best

overall success rate irrespective of height class was found for

spruce (81%), whereas the corresponding values for moun-

tain birch and pine were 71% and 62%, respectively.
Trees that were not successfully detected by the airborne

laser scanner were divided into trees that were hit by at least

one laser pulse with hmax� 0 and trees that were not hit by

any laser pulse at all. In total, 29% of the trees were not

Table 2. Independent variables included in the generalized linear

models (GLM 1 and GLM 2) and the generalized linear mixed

model (GLMM 1).

Characteristic Model

Tree height measured in field (m) (H) GLM 1, GLM 2, GLMM 1

Estimated tree crown area (m2) (CA) GLM 1, GLM 2, GLMM 1

Latitude (m) (LAT) GLM 1, GLM 2, GLMM 1

Indicator variable for tree species (TS) GLM 1, GLM 2, GLMM 1

Indicator variable for region (R) GLM 2, GLMM 1

Canadian Journal of Remote Sensing / Journal canadien de télédétection
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detected irrespective of tree height class and tree species, and

3% of those were not hit by any laser pulse (Table 3).

For trees smaller than 1 m, between 46% and 63% had

hmax � 0, whereas the amount was less than 11% for all trees

greater than or equal to 1 m. Regarding the different tree

species, there are major differences in tree detection rates for

the smallest trees in particular (Table 3). Spruce had the

lowest amount of hmax � 0 (18%), followed by birch (25%),

and pine (38%). Further, pine was the tree species where all

trees measured in the field were hit by at least one laser

pulse, and merely 1% of the spruce trees and 4% of the birch

trees were not hit by any laser pulse at all.
Multiple logistic regression analysis using GLM 1 showed

that an increase in tree height and crown area in particular

resulted in an increasing probability of a tree being success-

fully detected. This result fits well with the fact that an

increase in tree size, especially in the area of the vertical tree

crown projection, results in an increasing probability of

being hit by at least one laser pulse (Næsset and Nelson,

2007). Figure 2 illustrates the predicted probability of a tree

being hit by at least one laser pulse for the three different

tree species as a function of tree height and tree crown area.

Furthermore, tree height and crown area were highly

significant explanatory variables with z values of 5.34

(p B 0.001) and 3.41 (p � 0.001), respectively (Table 4).

A z value represents the respective regression coefficient

divided by the estimated standard error (R Development

Core Team, 2007). However, a strong intercorrelation

(r � 0.76) was found between those two variables including

all tree species.

The positive regression coefficient for latitude (p B 0.001)

indicated a slightly higher probability of a successful

detection with increasing latitude. A slight intercorrelation

(r � 0.35) was found between the latitude and the tree

species variable that might result in a mixed effect of those

two. This would be reasonable because of a lack of spruce

and pine trees north of 668 N, which is also reflected in the

field data. Another facet is attributed to the terrain model

and its parameters as it may be the determining factor for

detecting small individual trees in the forest�tundra ecotone

(Næsset, 2009b; Næsset and Nelson, 2007). A 1500 km long

transect involves changes in topography in the mountainous

areas along the latitude gradient, which are reflected in the

varying suitability of the used terrain model.

There was a tendency of slightly higher probabilities of

more successful detection of spruce (p�0.085) and pine

(p�0.097) trees than birch trees (Table 4) as indicated by

the positive regression coefficients of the two indicator

variables TSspruce and TSpine for tree species (TS). Conifer

trees had a higher probability of being detected than birch,

which may be due to the low foliage density of small birch

trees compared with the more compact and dense conifers.

The highest probability of being hit by at least one laser

pulse was found for spruce trees, closely followed by pine

trees (Table 4), given the same tree crown area. According to

the predicted probabilities of being successfully detected

(Figure 2), almost all trees can be found using an airborne

Table 3. Success in tree detection for different species and height classes.

Tree species Height class n Detected n (%) hmax�0 n (%) No hits n (%)

Mountain birch B1 m 293 147 (50) 134 (46) 12 (4)

1�2 m 199 167 (84) 21 (11) 11 (5)

�2 m 131 127 (97) 3 (2) 1 (1)

Total 623 441 (71) 158 (25) 24 (4)

Norway spruce B1 m 20 9 (45) 11 (55) 0 (0)

1�2 m 24 22 (92) 1 (4) 1 (4)

�2 m 24 24 (100) 0 (0) 0 (0)

Total 68 55 (81) 12 (18) 1 (1)

Scots pine B1 m 30 11 (37) 19 (63) 0 (0)

1�2 m 12 12 (100) 0 (0) 0 (0)

�2 m 11 10 (91) 1 (9) 0 (0)

Total 53 33 (62) 20 (38) 0 (0)

Total (all trees) 744 529 (71) 190 (26) 25 (3)
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Figure 2. Predicted probability of a tree being hit by at least one

laser pulse as a function of tree height (left) and tree crown area

(right) for birch, spruce, and pine.
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laser scanner with a laser pulse density greater than 7 m�2

when they have reached heights of 1.3�1.4 m and 1.9 m for

conifer and birch trees, respectively. Regarding tree crown

area, almost all trees were detected after reaching a size of

0.5 m2 for pine trees, and 1.1 m2 for spruce and birch trees,

respectively. Moreover, a likelihood-ratio test revealed no

significant detection difference between pine and spruce

trees (p � 0.844) (Table 5), that could justify a simplification

of the model by merging the coniferous tree species to a

common class. However, because all indicator variables

representing tree species were close to being statistically

significant in the original model at a 5% level, we decided to

keep all tree species in the model.

A likelihood-ratio test indicated that the probability of

tree detection differed significantly between the 35 field sites

(p B 0.001) (Table 5). Therefore, it seemed reasonable to

extend the GLM 1 model with an indicator variable

representing the 35 different field sites (GLM 2).

For the GLM 1 model, the Hosmer�Lemeshow test

statistics (Hosmer and Lemeshow, 2000) revealed no lack

of fit (p�0.108) (Table 5). The p value for the Hosmer�
Lemeshow test for the model fitted, including the indicator

variable for field site (GLM 2), revealed a good fit as well

(p�0.310) (Table 5). Leave-one-out cross validation indi-

cated an overall agreement of 80.9% and 80.1% between

observed and predicted values by the original model GLM 1

and the GLM 2 model including regional effects, respec-

tively.

The GLMM 1 revealed the same results for the fixed

effects as in the GLM analysis (Table 6). The z values were

marginally lower for the coefficients of the GLMM 1.

However, the levels of significance did not change for most

of the explanatory variables. The p value for the indicator

variable for pine was somewhat lower. The random effect

represented by the field site indicator variable had a

variation of 0.125 and a standard deviation of 0.35,

indicating some variations in the model caused by locality

of the respective sample sites. However, there is no clear

interpretation and quantification of the proportion of the

regional factor having influence on the GLMM (D. Bates,

pers. comm.).

Assessment of laser tree height estimation

The assessment of laser-derived tree heights was based on

the corresponding tree heights measured in the field for

those trees that were successfully detected (hmax � 0).

A general trend of greater underestimations for larger trees

was found with a concurrent lower precision in these laser-

derived tree heights. The greatest underestimation errors

were observed for pine trees, however, which coincided with

the lowest variation in the estimated heights.

Underestimations of the field-measured tree heights

(p B 0.01) were revealed in the interval between 0.20 m

and 1.08 m with a standard deviation of 0.22�0.76 m

(Table 7). For the coniferous tree species, the underestima-

tion was largest for trees between 1 m and 2 m tall, whereas

the largest underestimation for mountain birch was found

for trees taller than 2 m. Including all tree species, the

smallest trees (B1 m) were underestimated by 0.20�0.47 m,

and trees taller than 1 m were underestimated by 0.69�1.08
m. Furthermore, the standard deviation for the differences

between tree heights derived from airborne laser scanning

and field measurements ranged between 0.22 m and 0.35 m

for trees smaller than 1 m and from 0.27 m to 0.76 m for the

taller trees (]1 m). However, heights of a few individual

trees were greatly overestimated in the laser data. Such

overestimations were found for trees in all height classes of

mountain birch, but only for the smallest and the largest

Norway spruce trees (Figure 3). Great overestimations of

heights may be traced back to special characteristics of how

the trees appear in their natural environment and to specific

features of the applied sampling method. At certain loca-

tions, small birch and spruce trees tend to grow in groups

consisting of several individual trees with different heights.

Table 5. Likelihood-ratio test and Hosmer�
Lemeshow tests for GLM 1 and GLM 2.

Likelihood-ratio Deviance p value
H0: TSpine�TSsprucea 0.04 0.844

H0: R1�R2�. . .R35b 79.42 B0.001

Homser�Lemeshow Wald chi-square p value

GLM 1 13.11 0.108

GLM 2 9.39 0.310

aIndicator variable for tree species pine and spruce.
bIndicator variable for the 35 field sites R1 to R35.

Table 6. Fitted generalized linear mixed model (GLMM 1).

Random effects Variance SD
R (Intercept) 1.25E�01 0.35

Fixed effects

Coefficient Estimate z value p value

Intercept �2.05E�01 �6.92 B0.001

H 1.21E�02 5.28 B0.001

CA 1.15E�00 3.41 0.001

LAT 2.74E�06 6.78 B0.001

TSpinea 6.31E�01 1.61 0.107

TSspruceb 7.34E�01 1.66 0.096

aIndicator variable for pine.
bIndicator variable for spruce.

Table 4. Fitted generalized linear model (GLM 1).

Coefficient Estimate z value p value

Intercept �2.05E�01 �7.84 B0.001

H 1.21E�02 5.34 0.001

CA 1.15E�00 3.41 B0.001

LAT 2.74E�06 7.73 B0.001

TSpinea 6.31E�01 1.66 0.097

TSspruceb 7.34E�01 1.72 0.085

aIndicator variable for pine.
bIndicator variable for spruce.
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In such cases, there is a high potential of sampling trees in

different tree height classes with small distances in between.
This situation may lead to a false interpretation of laser

pulses because branches belonging to the larger tree are

misleadingly assigned to the smaller tree resulting in an

overestimation.

These results revealed findings that are concordant with

results from previous analyses, both related to small pioneer

trees advancing the tree line further up and northwards

(Næsset and Nelson, 2007; Næsset, 2009b) and larger trees
(Hyyppä et al., 2001; Persson et al., 2002; Solberg et al.,

2006).

Conclusion

This study has demonstrated that high-density airborne

laser scanner data are useful for the detection of small

individual trees located in the forest�tundra ecotone. Thus,

it confirms findings from previous studies conducted in

small individual study sites (Næsset and Nelson, 2007;

Næsset, 2009b). The current study, with its huge geographi-

cal extension, forms a solid basis for generalization and

inference that goes far beyond previous research. Almost

every tree exceeding a height of 1 m was successfully

detected by using laser pulse densities greater than

6.8 m�2. No significant differences in the probability of a

tree being hit by at least one laser pulse for laser point

densities ranging from 6.8 m�2 to 8.5 m�2 were found.

Therewith, the variation caused by differing instruments

during data acquisition could be disregarded based on the

definition that a tree is successfully detected if it was hit by

at least one laser pulse with hmax � 0. For trees smaller than

1 m in height, a decrease in the success rate of tree detection

was found. For these small trees, tree species was an

important explanatory variable for the probability of being

detected. However, only very few pine trees were included in

the study which should be borne in mind by transferring the

findings of this study to similar problems. Furthermore, the

probability of detecting small individual trees in the forest�
tundra ecotone revealed a latitude effect. This might be

influenced by the occurrence of the different tree species

along the latitude gradient that is highly dominated by birch

in the northern part. Also the local topography might have

a certain influence on the terrain model resulting in a

significant difference in successful tree detection along a

latitude gradient. The precision of the terrain model

depends on the structure of the terrain and the applied

algorithm (Reutebuch et al., 2003; Hodgson and Bresnahan,

2004; Peng and Shih, 2006; Su and Bork, 2006). Misclassi-

fication of trees occurs because they cannot be separated

from terrain objects with positive laser height values without

additional information. The probability of a laser pulse

hitting a tree decreases with decreasing crown width.

Furthermore, the probability of a laser pulse being returned

with a positive height value decreases with decreasing

tree height. Laser echoes from small trees also have a higher

probability of being misclassified as ground returns.

Table 7. Mean of field-measured tree height, differences (D) between field-measured and laser-derived tree

height, and standard deviation of differences (SD).

D (m)

Tree species Height class n

Observed

mean (m) Range Mean SD

Mountain birch B1m 147 0.38 �0.85 to 2.85 �0.20* 0.35

1�2m 167 1.34 �1.68 to 2.00 �0.85* 0.56

�2m 127 3.22 �3.40 to 1.29 �1.03* 0.74

Norway spruce B1m 9 0.48 �0.62 to 0.04 �0.29$ 0.24

1�2m 22 1.33 �1.53 to�0.34 �0.79* 0.30

�2m 24 3.01 �1.56 to 1.37 �0.69* 0.76

Scots pine B1m 11 0.67 �0.72 to�0.06 �0.47* 0.22

1�2m 12 1.33 �1.61 to�0.68 �1.08* 0.27

�2m 10 3.83 �1.41 to�0.44 �0.97* 0.33

Note: Level of significance: *B.001; $B.01
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Figure 3. Field-measured tree height plotted against laser-

derived tree height.
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Thus, the procedures used for classification of laser echoes

and modelling of the terrain are essential for distinguishing

between small terrain objects and small trees. Therefore, to

enhance the success rate, future research on small individual

tree detection should involve more aspects of local trends

both concerning topography and the composition of tree

species.

According to Næsset and Nelson (2007), significant

changes in mean height should be detectable over short

time periods such as one year for small areas, assuming an

annual height growth of 5 cm in conjunction with a bias

control across laser data acquisitions. However, for regions

such as the forest�tundra ecotone, longer time spans for

change detection are expected to be required because of the

low and varying rates in growth in these areas. High-density

airborne laser scanner data is capable of detecting small

individual trees over large areas and time periods on the

order of a few years. It is therefore a useful tool for

monitoring tree migration changes in the forest tundra

ecotone.
During the last five years, airborne laser scanning has

become more and more important in regard to change

detection and monitoring in areas like the forest�tundra
ecotone. Campaigns in Canada (Boudreau et al., 2008) and

Norway (Næsset and Nelson, 2007) focused on biomass

estimation in remote areas not covered by the NFI plots and

change detection in the forest�tundra ecotone, respectively.

Furthermore, the Canadian Forest Service initiated a

campaign of wide-area airborne laser data collection cover-

ing Canada’s northern boreal forests to investigate ecosys-

tem risks related to climate change (M. Wulder, pers.

comm.). Such initiatives emphasize the expanding use of

airborne laser scanning in remote areas and the increasing

demand for well-suited methods for such areas.
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Abstract 

Temperature-sensitive ecosystems such as the forest-tundra ecotone are expected to be 

particularly affected by changing climate. A large proportion of the total land area in Norway 

is represented by the forest-tundra ecotone requiring effective monitoring techniques for 

these areas. Airborne laser scanning (ALS) has been proposed for detection of small pioneer 

trees and its height and intensity data may hold potentials for monitoring tasks. The main 

objective of the present study was to assess the capability of high-density ALS data to 

classify tree and non-tree echoes directly from the laser point cloud. For this purpose, the 

laser height and intensity, a geospatial variable represented by the area of Voronoi polygons, 

and the terrain variables aspect and slope were used in order to distinguish between tree and 

non-tree laser echoes along a 1,000 km long transect stretching from northern Norway 

(66°19’ N) to the southern part of the country (58°3’ N). Generalised linear models (GLM) 

and support vector machines (SVM) were employed for the classification using different 

combinations of the aforementioned variables. Total accuracy and the Cohen’s kappa 

coefficient were used for performance assessment for the different models. A total accuracy 

of at least 93% was found irrespective of classification method or model and Cohen’s kappa 

coefficients indicated moderate fits for all models using both classification methods. 

Comparisons of Cohen’s kappa coefficients revealed equivalent performances for the GLM 

and SVM classification methods for models consisting of different combinations of the laser 

height, intensity, the geospatial variable, and aspect. However, SVM was superior when laser 

height and intensity were used together with slope. In summary, the capability of high-

density ALS data for the classification of tree and non-tree echoes directly from the laser 

point cloud could be verified irrespective of the classification method. 
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1. Introduction 

Arctic and alpine tree lines are expected to advance further north and to higher altitudes 

due to changing climate (ACIA, 2004). Changes in temperature, precipitation, and snow 

coverage will affect numerous ecosystems and their interaction (Stenseth et al., 2002; ACIA, 

2004; Woodall et al., 2009) and forest ecosystems are expected to be highly affected by 

increasing temperatures, particularly in boreal regions (Kirschbaum and Fischlin, 1996). The 

forest-tundra ecotone as “the transition zone between forest and tundra at high elevation or 

latitude” (Harper et al., 2011) involves a high sensitivity to climatic changes.  Therewith, the 

development of suitable methods for monitoring these changes is of great importance and 

interest (Callaghan et al., 2002). 

In Norway, the forest-tundra ecotone represents a large proportion of the total land area, 

which implies that remote sensing techniques have to be employed for monitoring. However, 

monitoring studies in such areas are limited by the spatial resolutions of optical remote 

sensing instruments because of the small-sized and sparsely distributed objects of interest. 

Assuming that trees located in the forest-tundra ecotone have a height growth of 0–5 cm per 

year (Næsset and Nelson, 2007), a remote sensing technique is required that is capable of 

detecting subtle changes in growth and colonisation patterns both further north and to higher 

elevations. In this context, airborne laser scanning (ALS) may provide a well-suited tool due 

to its capability of predicting biophysical parameters on single tree level at different scales 

(e.g. Hyyppä et al., 2001; Persson et al., 2002; Solberg et al., 2006; Næsset and Nelson, 

2007). Concerning the discrimination of small pioneer trees in the forest-tundra ecotone, 

studies by Næsset and Nelson (2007), Rees (2007), and Thieme et al. (2011b) verified the 

suitability of ALS using different laser point densities. Provided a minimum height of 2 m, 

Rees (2007) found low-density laser data with a point density of ~0.25 m-2 useful to discern 

individual trees over large areas covering hundreds of square kilometres. Næsset and Nelson 

(2007) and Thieme et al. (2011b), however, used positive laser height values inside a field-

measured tree crown polygon as criterion for successful tree detection irrespective of height 

employing high-density laser data (6.8–8.5 m-2). Both studies report detection success rates of 

over 90% and at least 84% for coniferous and mountain birch trees with heights �1 m, 

respectively (Næsset and Nelson, 2007; Thieme et al., 2011b). For trees lower than 1 m, the 

numbers were significantly lower due to the fact that there are generally few other objects in 

such environments that are expected to be higher than 1 m above the ground surface. This 

implies an adequate reliability of successful tree detection when tree heights exceed 1 m. 
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However, severe commission errors may be introduced using laser height values as the sole 

criterion for tree detection (Næsset and Nelson, 2007; Næsset, 2009). A large number of laser 

echoes above the ground surface will often be reflections from non-tree objects such as rocks, 

hummocks, and other terrain structures. Thereby, the proportion of pulses reflecting off of 

tree and non-tree objects will be highly dependent on the structure of terrain, i.e. the more 

rugged the terrain the larger the number of non-tree laser echoes. Furthermore, properties of 

the terrain model, the sensor, and various flight settings will affect the magnitude of echoes 

from non-tree objects with positive height values (Næsset, 2009). Næsset and Nelson (2007) 

reported a commission error of 490% for a dataset with a terrain model derived with an 

iteration angle of 9°.  Therefore, the reliability of tree detection analysis based on laser height 

values is highly influenced by such commission errors. In a multi-temporal context, however, 

trees may change in height and number, whereas terrain and terrain objects will remain 

stable. Thus, the reliability of statistical estimates of change for a given area (e.g. change in 

mean tree height or change in tree numbers) may not be compromised by commission errors.  

Most studies applying ALS data for forest inventory have merely utilised the height 

information of the individual echoes of the laser point cloud rather than the full suite of 

available information, including spectral data, i.e., the intensity value of each echo. However, 

intensity may be a useful parameter in order to distinguish between tree and non-tree echoes. 

The usage of laser intensity has rarely been investigated since a study on tree species 

classifications in 1985 (Schreier et al., 1985) because of the lack of radiometric calibration 

methods (Kaasalainen et al., 2005). During the last decade, however, several studies were 

conducted to classify tree species (e.g. Brandtberg et al., 2003; Holmgren et al., 2008; Ørka et 

al., 2009), age (Farid et al., 2006a,b) and land-cover (Brennan and Webster, 2006). Thieme et 

al. (2011a) used normalised intensity values in an experimental study investigating the spatial 

pattern of tree and non-tree objects both related to laser height and intensity. Thieme et al. 

(2011a) showed promising results regarding the use of normalised intensity values and height 

information to separate between tree and non-tree objects.  

Thieme et al. (2011a) also suggested that the spatial point pattern of the ALS data may 

be a potential co-discriminator for tree and non-tree objects by employing Voronoi polygons. 

In point pattern analysis, Voronoi polygons are commonly used to analyse the spatial 

distribution of point data in numerous disciplines (Boots and Getis, 1988). Furthermore, a 

variety of biological phenomena demonstrate spatial correlation or dependency (Rossi et al., 

1992), often emerging in patches (Fry and Stephens, 2010). Thus, the spatial variation around 

tree and non-tree objects may differ for laser echoes classified as vegetation. 
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Different terrain characteristics as represented by aspect and slope have an influence on 

the potential presence and height growth of small pioneer trees (Mast et al., 1997; Boisvenue 

et al., 2004; Danby and Hik, 2007). Concerning a forest-tundra ecotone environment, Danby 

and Hik (2007) reported differing tree invasion patterns for north- and south-facing slopes 

that were primarily caused by the differential presence of permafrost. Furthermore, their 

study demonstrated that regional, landscape and local scale variability in tree population was 

partially depending on variations in the terrain, landscape setting and existing vegetation 

(Danby and Hik, 2007). Thus, aspect and slope parameters may give a contribution to 

discriminate between tree and non-tree laser echoes.      

The main objective of this study was to assess the capability of high-density ALS data to 

classify tree and non-tree echoes directly from the laser point cloud using different ALS-

derived variables individually and in combination. For this purpose, the following 

classification model variables were tested as discriminators: (1) laser height and intensity, (2) 

a geospatial facet represented by the respective areas of Voronoi polygons, and (3) the terrain 

variables aspect and slope. Finally, the accuracy and performance of the different models 

were assessed based on two different classification methods.  

 

2. Study area and data 

2.1 Study area 

The study was carried out along a 1,000 km long and approximately 180 m wide 

longitudinal transect encompassing hundreds of mountain forest/alpine elevation gradients. 

The transect stretches from Mo i Rana in northern Norway (66°19’ N 14°9’ E) to 

Tvedestrand in the southern part of the country (58°3’ N 9°0’ E) (Figure 1) and covers 

sample plots in the transitions between mountain forest and the alpine zone, the forest-tundra 

ecotone. The terrain in such localities is often characterised by rounded forms with 

occurrences of hummocks, rocks and boulders, but also steep slopes. The prevalent tree 

species are Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and 

mountain birch (Betula pubescens ssp czerepanovii). 
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Figure 1 - Overview of the study area with the 25 specific field sites (black points). The 1,000 km long transect 

(black line) stretches from 66°19’ N 14°9’ E to 58°3’ N 9°0’ E. 

 

 

2.2 Field data 

The field work was conducted during summer 2008 in order to provide in situ tree data 

for analysis. Field data were collected at 25 different field sites allocated along the transect. 

Each field site covers the entire ecotone with two to four sample plots laid out and spaced 

50 m apart in order to avoid overlap. The geographical extent of the area between the 

mountain forest and the alpine zone varies between the different locations and thus the 

number of plots in each site was determined in field according to a visual and practical 

judgement of the altitudinal range of the forest-tundra ecotone in each case. This resulted in a 

total number of 77 sample plots.  
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Real-time kinematic differential Global Navigation Satellite Systems (dGNSS) was used 

for precise navigation and positioning. This involved two Topcon Legacy E+ 20-channel 

dual-frequency receivers that observe pseudo range and carrier phase of both GPS (Global 

Positioning System) and GLONASS (Global Navigation Satellite System) satellites with an 

expected horizontal position accuracy of about 2 cm. For each field site, a base station was 

established at the closest suitable reference point of the Norwegian Mapping Authority. 

These reference points have an accuracy of ~3 cm and the expected accuracy of the centre 

points of the sample plots is 3-4 cm. 

In the field, a modified version of the point-centred quarter sampling method (PCQ) 

(Cottam and Curtis, 1956; Warde and Petranka, 1981) was used to select the individual 

sample trees. For this purpose, each sample plot was divided into four quadrants by defining 

the cardinal directions from the sample plot’s centre using a Suunto compass. Furthermore, 

three tree height classes were used during sampling: (1) lower than 1 m, (2) between 1 and 

2 m, and (3) taller than 2 m. According to the scheme of PCQ sampling, in each quadrant the 

trees that were closest to the plot centre in their respective tree height classes were sampled. 

This procedure was implemented independent of tree species and with a maximum search 

distance of 25 m. For determining the maximum search limit as well as the closest tree a 

surveyor’s tape measure was used in cases of doubt. 

Several tree parameters were recorded individually for each tree. Tree height was 

measured using a steel tape measure or a Vertex III hypsometer for tall trees. Stem diameter 

was callipered at the root collar and crown diameters were measured in the cardinal directions 

with a steel tape measure. Furthermore, the precise tree position was determined using 

dGNSS. 

In total, 533 trees were measured in this study. However, nine trees had tree crown areas 

that were completely overlapped by tree crown areas of taller trees. These nine trees were 

regarded as non-beneficial for the analyses and therewith discarded from the dataset. This 

resulted in a total number of 524 trees, i.e., 404 mountain birch, 67 Norway spruce, and 53 

Scots pine. For these trees, tree heights ranged from 0.04 to 7.80 m, and crown areas from 

0.001 to 19.54 m2, computed as the ellipse defined by the crown diameters as the major and 

minor axes. A summary of the biophysical properties of the measured trees is given in 

Table 1. 
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Table 1 - Summary of field measurements of trees. 

Tree species Characteristics n Mean Min. Max. 
Mountain birch Height (m) 404 1.41 0.04 7.80 
 Diameter (cm) 404 4.24 0.10 34.00 
 Crown area (m²) 404 1.13 0.001 19.54 
Norway spruce Height (m) 67 1.67 0.07 7.00 
 Diameter (cm) 65 6.54 0.20 19.10 
 Crown area (m²) 67 1.45 0.006 5.69 
Scots pine Height (m) 53 1.33 0.10 5.10 
 Diameter (cm) 53 5.00 0.30 18.90 
 Crown area (m²) 53 0.81 0.002 7.28 
 

 

2.3 Laser data 

Airborne laser data were acquired on 23 and 24 July 2006 with an Optech ALTM 3100C 

laser scanning system carried by a Piper PA-31 Navajo aircraft. Average flying altitude was 

800 m above ground level, and the flight speed was approximately 75 ms-1. Furthermore, 

scan frequency was 70 Hz, maximum half scan angle was 7°, and the average footprint 

diameter was estimated to 20 cm. Pulse repetition frequency was 100 kHz resulting in a mean 

pulse density of 6.8 m-2. In order to keep the flying altitude and therewith the pulse density as 

constant as possible, the 1,000 km long transect was split up into 98 individual flight lines. 

Pre-processing of the laser data was conducted by a contractor (Blom Geomatics, 

Norway) computing planimetric coordinates (x and y) and ellipsoidal height values for all 

laser points.  

Laser echoes labelled “last-of-many” and “single”, hereafter denoted as LAST, were 

used for the derivation of the terrain model, whereas laser echoes labelled as “first-of-many” 

and “single”, hereafter denoted as FIRST, were used in the analyses of the current study. The 

ALTM 3100C records up to four echoes per laser pulse with a minimum vertical distance of 

2.1 m between these echoes. This instrument property in combination with low vegetation 

results in potentially very few pulses having more than a single echo. Therefore the LAST 

and FIRST datasets will for many of the sample plots be identical. Based on an iteration 

distance of 1.0 m and an iteration angle of 9°, ground echoes were classified from the 

planimetric coordinates and the corresponding height data of the LAST echoes using the 

TerraScan software (Terrasolid, 2011), and a triangulated irregular network (TIN) was 

derived. Echoes labelled as FIRST were projected onto the TIN surface in order to interpolate 

the corresponding terrain height on these locations. The differences between the FIRST echo 



Paper II 
�

9 
�

heights and the corresponding interpolated terrain height values were computed and stored. 

However, merely FIRST echoes with height values greater than zero were included in the 

subsequent analyses since this criterion is the sole indicator for the presence of objects on the 

terrain surface. 

 

3. Methods 

3.1 Computations 

In order to assess the ability to classify FIRST laser echoes into tree and non-tree echoes 

a broad suite of variables were considered. Variables related to the direct laser measurements, 

a geospatial variable, and terrain variables were employed.  

Prior to the computation, areas were defined for the extraction of tree and non-tree 

FIRST echoes. Concerning tree echoes, elliptical tree crown polygons were estimated from 

the field-measured crown diameters and all FIRST echoes falling inside the individual tree 

crown polygons were classified as tree echoes. Due to a positioning error of the laser data of 

up to 0.5 m as reported by the contractor, trees with a crown diameter value less than 1.0 m in 

at least one of the cardinal directions were assigned a tree crown circle with a diameter of 

1.0 m. 

Non-tree echoes were classified using full control areas without any trees as received by 

the sampling design of the PCQ method. Using the PCQ method, the trees closest to the 

respective plot centre were sampled for the different height classes in each quadrant resulting 

in a maximum of three sampled trees per quadrant. In order to receive full control areas 

merely consisting of FIRST echoes emerging from non-tree objects, only the distance to the 

closest tree in each quadrant irrespective of tree height class was used for the computation of 

polygons without any trees. Since the distance includes parts of the tree crown, the tree crown 

polygons were erased from the computed non-tree polygons. FIRST echoes falling inside 

these full control polygons were classified as non-tree echoes. This procedure resulted in 

2,323 tree and 27,487 non-tree echoes. 

From all FIRST echoes, the laser height and intensity values were used as variables for 

the classification. Laser height could be extracted directly, whereas the raw intensity (IRaw) 

had to be normalised for the range R according to the following formula suggested by 

Korpela et al. (2010): 

�

���� � � �
��	


��
� � ����                                                                                                            (1) 
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where RRef is an average reference range that was set to 800 m in this study. 

 In order to include a geospatial facet into the classification analysis, Voronoi polygons 

were employed using the FIRST echoes. The computation of Voronoi polygons is based on a 

continuous space that is divided into regions ensuring that any other location in the space is 

concatenated with the closest point of the point pattern (Okabe et al., 2000). This means “that 

each Voronoi polygon consists of an area that is closer to a given point than any other point” 

(Wulder et al., 2006).  

As mentioned earlier, Voronoi polygons are a commonly used technique in point pattern 

analysis and are applied to problems in numerous disciplines (Boots and Getis, 1988). The 

spatial distribution and correlation of a point pattern is reflected in the area of the respective 

Voronoi polygons, i.e. the smaller the Voronoi polygons the denser the point pattern. In the 

present study, small-sized polygons are expected to indicate trees, whereas larger polygons 

are assumed to merely represent noise in the ALS data (Thieme et al., 2011a). Although 

small-sized polygons also might suggest the presence of non-tree objects such as rocks and 

hummocks of a certain size, the combination with laser height and intensity values is 

expected discern between tree and non-tree echoes. 

For the computation of the Voronoi polygons, an adequate area was defined for each 

field site in order to avoid edge effects at the sample plot borders. Voronoi polygons were 

then computed for the FIRST echoes and the area of each polygon was calculated. The 

FIRST echoes were subsequently overlaid with the Voronoi polygons and the estimated area 

of each polygon was assigned to the corresponding FIRST echo. 

Concerning the terrain-related variables, a digital elevation model (DEM) was computed 

(QCoherent Software, 2010) using LAST echoes classified as ground returns in order to 

compute aspect and slope values (Burrough and McDonald, 1998). The DEM had a cell size 

of 0.25 m due to the small size of the objects in question, i.e., the small pioneer trees. Aspect 

and slope were derived from the DEM raster surface (Burrough and McDonald, 1998) and 

the values assigned to the corresponding FIRST echoes. Furthermore, aspect was divided into 

eight categories because of computational reasons (Table 2). 

A summary of the used variables is given in Table 2.  For tree echoes, the prevalent 

aspects were northeast and southwest-facing slopes, whereas for non-tree echoes they were 

facing northeast and north. 
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Table 2 - Summary of the discriminator variables. 

Class Variable Mean Min. Max. 
Tree Height (m) 1.59 0.04 6.49 
 Intensity 51.62 4.24 90.95 
 Voronoi Polygon (m2) 0.61 0.02 19.81 
 Aspect - - - 
 Slope (°) 16.49 1.05 49.89 
Non-tree Height (m) 0.17 0.01 4.72 
 Intensity 56.22 0.51 110.82 
 Voronoi Polygon (m2) 1.50 0.03 62.67 
 Aspect - - - 
 Slope (°) 16.54 0.005 79.68 
Note: Aspect was divided into eight categories: N (North), NE (Northeast), E 
(East), SE (Southeast), S (South), SW (Southwest), W (West), and NW 
(Northwest). 

 

 

3.2 Analyses 

Generalised linear models (GLM) and support vector machines (SVM) were employed 

for the classification of FIRST echoes into tree and non-tree echoes.  

Besides regression analysis, GLM is also used for binary classification by prediction of 

probabilities on a transformed scale (Dalgaard, 2008). SVM were developed by Cortes and 

Vapnik (1995) based on statistical learning theory and represent a tool for classification, 

regression, and novelty detection (Karatzoglou et al., 2006; Meyer, 2011). For both 

classification methods, a leave-one-out cross-validation procedure was implemented 

separating the dataset into a training set and a testing set. That is, the classes of the FIRST 

echoes for a field site were predicted using a model calculated from the FIRST echoes of the 

other remaining field sites.  

The models consisted of different combinations of the laser height and intensity 

variables, the geospatial variable represented by the area of the Voronoi polygons and the 

terrain-related variables aspect and slope in order to find the best suited predictors for both 

classification methods of tree and non-tree echoes. We decided to include the laser height and 

intensity variables in all possible combinations due to their direct relation to the FIRST 

echoes. Table 3 gives an overview of the variable combinations tested. 
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Table 3 - Combinations of laser metrics, geospatial and terrain variables used for classification. 

Model Variables 
HI Laser Height + Intensity 
HIP Laser Height + Intensity + Voronoi Polygons 
HIA Laser Height + Intensity + Aspect 
HIS Laser Height + Intensity + Slope 
HIPA Laser Height + Intensity + Voronoi Polygons + Aspect 
HIPS Laser Height + Intensity + Voronoi Polygons + Slope 
HIAS Laser Height + Intensity + Aspect + Slope 
HIPAS Laser Height + Intensity + Voronoi Polygons + Aspect + Slope 

 

 

3.3 GLM 

GLM are characterised by three elements: the random component identifying the 

response variable Y and its probability distribution, the systematic component specifying the 

independent variables X, and the link function connecting those two components (Agresti, 

2007; Dalgaard, 2008). In this study, the binomial random component (tree/non-tree) was 

related to the different combinations of the independent variables X using a logit link 

function. Thus, the following model was estimated: 

                                                                                                                                                       

��� � �������
���������� � � �  !�"� � # � !$"$                                                                               (2)                         

 

The GLM model was fitted using the glm function of the stats package (R Development 

Core Team, 2007) for the eight different models (Table 3) in the statistical computing 

software R (R Development Core Team, 2007). Furthermore, from the fitted models the 

probabilities of the FIRST echoes being a non-tree echo were predicted. For each model, 

different thresholds (from p=0.05 to p=0.95 in 0.05 steps) for these probabilities were used to 

classify the FIRST echoes into tree and non-tree echoes. The Cohen’s kappa coefficient 

(Cohen, 1960) was estimated for each threshold used and the classification with the highest 

Cohen’s kappa coefficient for each model was selected. 

 

3.4 SVM 

In essence, SVM finds the hyperplane with the maximal margin of separation between 

the two classes using the training set by solving a quadratic optimisation problem. Thereby, 

the so called support vectors contain the relevant information used for the classification and 

are represented by the points located on the margin boundaries. Concerning overlapping 
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classes, points lying on the opposite side of the margin are reduced in influence by weighting. 

C represents a cost or penalty parameter controlling the error term. Furthermore, the 

hyperplane is defined by a kernel function which allows for a nonlinear separator. In this 

study, the C-support vector classification was used with the radial basis function as the 

kernel, where � represents a parameter regulating the radial basis function. 

The svm function of the e1071 package (Dimitriadou et al., 2011) was used for fitting the 

eight different models (Table 3). From the fitted models prediction of the FIRST echoes 

being a tree or non-tree echo was performed. Prior to classification and outside the leave-one-

out cross-validation procedure, the best hyperparameters C and � were found using a grid 

search implemented in the tune.svm function of the e1071 package (Dimitriadou et al., 2011; 

Karatzoglou et al., 2006).   

 

3.5 Accuracy assessment and classification performance  

For the assessment of the classification performances, the total percentage of correct 

prediction and the Cohen’s kappa coefficient (Cohen, 1960) for each combination of 

prediction parameters were estimated for both classification methods. Furthermore, the kappa 

coefficients of the different models and classification methods (GLM versus SVM) were 

compared using a formula suggested by Cohen (1960) that evaluates the normal curve deviate 

to assess the significance of the difference between two independent kappa coefficients: 

 

 % � &'�&(
)*+'( ,*+((                                                                                                                            (3) 

 

Kappa coefficients were evaluated according to the grading suggested by Landis and Koch 

(1977). 

 

4. Results and discussion 

The classification of the FIRST echoes into tree and non-tree echoes using GLM and 

SVM revealed total accuracies of at least 93.6% (Table 4) and 94.8% (Table 6), respectively. 

These accuracies are in line with other studies on detection of small single trees in the forest-

tundra ecotone by taking into account that the present study is based on the individual echoes 

and not on an individual tree basis. Success rates of at least 90% for trees taller than 1 m are 

reported by Næsset (2009), Næsset and Nelson (2007), and Thieme et al. (2011b) which are 

consistent with the results of this study. Kappa coefficients of at least 0.515 (Table 4) and 
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0.560 (Table 6) for the estimated models indicated moderate fits using the GLM and SVM 

classifications, respectively. 

 

4.1 GLM 

For the GLM classification, total accuracies ranged between 93.6% and 94.9% (Table 4) 

for the eight different models. Furthermore, kappa coefficients ranged from 0.515 to 0.573 

indicating moderate fits for all the estimated models (Table 4). 

With regard to the total accuracies, a maximum difference of 1.3 percentage points was 

found for the eight models (Table 4). In this case, models not including the terrain variable 

slope (HI, HIP, HIA and HIPA) had slightly higher accuracies, and the model with the highest 

accuracy of 94.9% was represented by the basic model HI merely including the laser height 

and intensity variables. Concerning the corresponding kappa coefficients, models not 

including the terrain variable slope (HI, HIP, HIA and HIPA) featured a generally higher 

performance and model fit. The basic model HI with the highest accuracy also revealed the 

highest kappa coefficient. 

 

Table 4 - Performance of the different models used for classification with GLM. 

Model p Accuracy Kappa 
HI 0.75 0.949 0.573 
HIP 0.75 0.948 0.569 
HIA 0.75 0.948 0.568 
HIS 0.80 0.942 0.550 
HIPA 0.75 0.946 0.559 
HIPS 0.75 0.943 0.546 
HIAS 0.75 0.939 0.523 
HIPAS 0.75 0.936 0.515 

 

 

Comparing the kappa coefficients of the eight models, no significant contribution of the 

geospatial variable or the terrain variables on the classification performance could be found 

(Table 5 and Figure 2). Albeit the kappa coefficients of models including Voronoi polygons 

and/or aspect (HIP, HIA and HIPA) implied similar classification performances as the basic 

model HI, no improvement in classification was gained from the inclusion of the additional 

prediction variables. Concerning the terrain variable aspect, this result is different from 

findings reported in other studies on the potential presence of small pioneer trees, where 

especially aspect had an important influence on tree invasion (Mast et al. 1997; Danby and 
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Hik, 2007). However, both studies used aspect on a coarser scale detecting a more 

generalised trend than in the present study. Moreover, the geospatial variable based on 

Voronoi polygon sizes in combination with the laser height and intensity variables did not 

contribute significantly, even though Thieme et al. (2011a) showed promising results in 

regard to the indication of objects located above the terrain surface.  

 

Table 5 - Test of significance between independent kappa indices for GLM. 

Model 1 Model 2 Z  
HI HIP 0.322  
 HIA 0.388  
 HIS 1.731 ' 
 HIPA 1.044  
 HIPS 1.974 * 
 HIAS 3.647 ** 
 HIPAS 4.265 ** 
    
HIP HIA 0.066  
 HIS 1.407  
 HIPA 0.721  
 HIPS 1.652 ' 
 HIAS 3.324 ** 
 HIPAS 3.941 ** 
    
HIA HIS 1.340  
 HIPA 0.655  
 HIPS 1.586  
 HIAS 3.258 ** 
 HIPAS 3.874 ** 
    
HIS HIPA 0.681  
 HIPS 0.256  
 HIAS 1.938 ' 
 HIPAS 2.554 * 
    
HIPA HIPS 0.931  
 HIAS 2.604 * 
 HIPAS 3.218 ** 
    
HIPS HIAS 1.672 ' 
 HIPAS 2.283 * 
    
HIAS HIPAS 0.605  
Note: Level of significance: '<.1. *<.05. **<.005 
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Furthermore, three of the models including the terrain variable slope (HIPS, HIAS and 

HIPAS) had significantly worse performances than the basic model HI, and equally or 

significantly worse performances than all other remaining models (HIP, HIA and HIPA) 

(Table 5 and Figure 2). This result may be attributed to the similar ecological meaning of the 

terrain variables aspect and slope. Both variables describe amongst others the solar radiation 

and moisture (Bader and Ruijten, 2008), which are essential factors for the occurrence of 

trees. In regard to the classification performances of the three aforementioned models, the 

terrain variable aspect may already cover these characteristics in this linear classification 

method. 

 

Figure 2 - Classification performances for the eight different models using GLM and SVM. The dark-grey areas 

indicate a significant difference in performance between two models at a p<0.005 level, medium grey areas at a 

p<0.05 level, and light grey areas at a p<0.1 level. White areas indicate no difference in performance. Models 

highlighted in bold indicate the superior models in the respective classification method. NOTE: For each 

classification method, the performances of the models on the vertical axes were compared to the performance of 

the models on the horizontal axes. 
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4.2 SVM 

The classification of the FIRST echoes into tree and non-tree echoes using SVM 

revealed total accuracies ranging from 94.8% to 95.3% (Table 6) for the eight different 

models. Kappa coefficients ranged between 0.560 and 0.600 indicating moderate fits for all 

the models (Table 6). 

Concerning the total accuracies for SVM, the eight models had a maximum difference of 

0.5 percentage points (Table 6). Thereby, models not including the terrain parameter slope 

(HI, HIP, HIA, and HIPA) had slightly lower accuracies. However, a serious inferior 

performance of these models could not be found. The model with the highest accuracy of 

95.3% was represented by the model including the variables laser height and intensity as well 

as the terrain variable slope (HIS). With regard to the corresponding kappa coefficients, 

models including the terrain parameter slope (HIS, HIPS, HIAS, and HIPAS) revealed a 

generally better performance for the classification of tree and non-tree echoes. The best kappa 

coefficient was found for the model HIS which featured the best total accuracy as well.  

 

Table 6 - Performance of the different models used for classification with SVM. 

Model C � Accuracy Kappa 
HI 1000 0.1 0.949 0.568 
HIP 1000 0.1 0.949 0.569 
HIA 1000 0.1 0.948 0.560 
HIS 1000 0.1 0.953 0.600 
HIPA 1000 0.1 0.948 0.563 
HIPS 1000 0.1 0.952 0.594 
HIAS 100 0.1 0.952 0.594 
HIPAS 100 0.1 0.952 0.596 

 

  

Furthermore, a significantly higher accuracy for classifications including the slope 

variable was obtained, whereas Voronoi polygons and aspect did not have a significant 

influence on the classification performance (Table 7 and Figure 2). For instance, for the basic 

model HI merely consisting of the laser height and intensity variables, the error matrices were 

not significantly different from models including Voronoi polygons and/or aspect in addition 

(HIP, HIA and HIPA) (Table 7 and Figure 2). As mentioned before, this finding contrasts to 

the studies conducted by Danby and Hik (2007) and Mast et al. (1997), who are both 

reporting an importance of terrain aspect on the potential presence of small pioneer trees, 

though at a coarser scale. However, all models including the terrain variable slope (HIS, 
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HIPS, HIAS, and HIPAS) revealed significantly better performances than the basic model HI 

(Table 7 and Figure 2). This fact implies the assumption, that slope is significantly 

contributing to the classification performances when utilizing a nonlinear kernel to construct 

the hyperplanes. 

 

Table 7 - Test of significance between independent kappa indices for SVM. 

Model 1 Model 2 Z  
HI HIP 0.111  
 HIA 0.526  
 HIS 2.387 * 
 HIPA 0.341  
 HIPS 1.953 ' 
 HIAS 1.927 ' 
 HIPAS 2.058 * 
    
HIP HIA 0.638  
 HIS 2.279 * 
 HIPA 0.453  
 HIPS 1.845 ' 
 HIAS 1.819 ' 
 HIPAS 1.950 ' 
    
HIA HIS 2.910 ** 
 HIPA 0.187  
 HIPS 2.478 * 
 HIAS 2.451 * 
 HIPAS 2.582 * 
    
HIS HIPA 2.731 * 
 HIPS 0.438  
 HIAS 0.458  
 HIPAS 0.330  
    
HIPA HIPS 2.297 * 
 HIAS 2.271 * 
 HIPAS 2.402 * 
    
HIPS HIAS 0.022  
 HIPAS 0.107  
    
HIAS HIPAS 0.128  
Note: Level of significance: '<.1. *<.05. **<.005 
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4.3 GLM versus SVM 

Concerning the comparison of the classification performances of SVM and GLM for the 

eight different models, both significant and non-significant differences were found (Table 8). 

For all models consisting of combinations of the laser height and intensity variables, the 

geospatial variable and the terrain variable aspect (HI, HIP, HIA and HIPA) p-values ranged 

between 0.569 and 0.997 when comparing the respective kappa coefficients (Table 8). This 

implies no significant difference between the two different classification methods. However, 

for all models including the terrain variable slope (HIS, HIPS, HIAS and HIPAS), all p-values 

were smaller than 0.001 indicating significantly better classification performances for SVM 

in all the four cases (Table 8). These results correspond well with the findings made for the 

respective classification methods, where the terrain variable slope did not improve the GLM 

classification but had a significant positive influence on the SVM classification. The basic 

model including the laser height and intensity variables and models consisting of the 

geospatial and/or the terrain variable aspect in addition, revealed similar classification 

performances for the two classification methods. Therewith, the terrain variable slope is 

discriminating the linear (GLM) and the nonlinear (SVM) classification.  

Both the similarity in performance between the two classification methods and the 

dissimilarity seem reasonable due to the fact that SVM is similar to logistic regression under 

certain constrains, however, extending it to the nonlinear case (Venables and Ripley, 2002). 

Based on the results from the comparisons of classification performances within and between 

the classification methods, it is reasonable to assume that a nonlinear classification is 

sensitive to the slope variable. 

 

Table 8 - Test of significance between independent kappa indices for SVM versus GLM. 

SVM GLM Z  
HI HI 0.428  
HIP HIP 0.004  
HIA HIA 0.570  
HIS HIS 3.719 ** 
HIPA HIPA 0.268  
HIPS HIPS 3.514 ** 
HIAS HIAS 5.165 ** 
HIPAS HIPAS 5.930 ** 
Note: Level of significance: '<.1. *<.05. **<.005 
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5. Conclusion 

To conclude, the capability of high-density ALS data to classify tree and non-tree echoes 

directly from the laser point cloud be verified. The classification of tree and non-tree echoes 

both employing GLM and SVM using different combinations of variables representing laser 

height and intensity, spatial pattern and terrain characteristics revealed promising results in 

this study. Tree and non-tree echoes could be classified with a total accuracy of at least 93% 

and a moderate fit irrespective of the classification method or model used.  

With regard to laser height and intensity, these two variables represented important 

discriminators for the classification of tree and non-tree echoes. Using GLM, the basic model 

merely including height and intensity revealed both the best accuracy and the highest kappa 

coefficient.  

Concerning the spatial variable represented by Voronoi polygons, this discriminator did 

not have a significant influence on the classification performances both in regard to the GLM 

and the SVM classification method. 

Pertaining to the terrain variables aspect and slope, no significant contribution could be 

found using GLM. However, with regard to the SVM classification method, slope revealed as 

a significant discriminator for the classification performances.  

Total accuracies were highest for models consisting of combinations of the laser height 

and intensity, the spatial variable as well as aspect using the GLM classification method, 

whereas models including the terrain variable slope had slightly higher accuracies using 

SVM. 

Kappa coefficient analysis indicated moderate fits for all models using GLM, however, 

three of the models including the terrain variable slope had significantly worse kappa 

coefficients compared to the basic model. Concerning SVM, all models performed with a 

moderate fit as indicated by the kappa coefficient with significantly better values for models 

including the slope variable, reflecting the same tendency as observed for the total accuracies. 

Comparing GLM and SVM classification performances, the two classification methods 

do not significantly differ for models consisting of different combinations of the laser height 

and intensity variables, the geospatial variable and the terrain variable aspect. However, 

concerning models including the terrain variable slope, SVM revealed a superior performance 

for the classification of tree and non-tree echoes using high-density airborne laser scanning 

data. 
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In summary, high-density ALS data is well-suited for the classification of tree and non-

tree echoes in the forest-tundra ecotone. Depending on the classification method, satisfying 

results can be obtained employing relatively few and straightforward variables derived from 

the ALS data. However, to utilise such a classification for monitoring purposes, additional 

challenges using different sensors and acquisition settings is present (Næsset, 2009). Thus, 

field surveys are necessary to obtained for all ALS acquisitions. Furthermore, the time 

between individual inventories are limited by the tree growth, regeneration and mortality, 

together with the positional accuracy of individual echoes. Then, this technique provides a 

time- and cost-efficient monitoring tool to detect small single trees in the forest-tundra 

ecotone. Another question is aggregating the individual classified echoes to another scale e.g. 

individual tree level, a raster in different scale, depending on the monitoring needs. 

Furthermore, the technique may be utilized in a sampling frame work providing regional 

estimates (Falkowski et al., 2009; Gobakken et al., 2012) or map products (Ørka et al., 2012).  
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Abstract 

The forest-tundra ecotone occupies a large proportion of the land area of Norway. 

Because of its temperature sensitivity, the vegetation in this transition between the mountain 

forest and the alpine zone is expected to be highly affected by climate change and requires 

effective monitoring techniques. Airborne laser scanning (ALS) has been proposed as a tool 

for the detection of small pioneer trees for such vast areas using laser height and intensity 

data. The main objective of the present study was to assess a possible improvement in the 

performance of classifying laser echoes into tree and non-tree echoes from high-density ALS 

data. The data were collected along a 1,000 km long transect stretching from southern 

Norway (58°3’ N) to the northern part of the country (66°19’ N). Different geostatistical and 

statistical measures derived from laser height and intensity values, i.e. the mean 

semivariance, the arithmetic mean, the standard deviation, and the coefficient of variation, 

were used to extent and potentially improve more simple models ignoring the spatial context. 

Generalised linear models (GLM) and support vector machines (SVM) were employed as 

classification methods. Total accuracies and Cohen’s kappa coefficients were calculated and 

compared to those of simpler models from a previous study. For both classification methods, 

all models revealed total accuracies similar to the results of the simpler models. Concerning 

classification performance, however, the comparison of the kappa coefficients indicated a 

significant improvement for some models both using GLM and SVM. The highest kappa 

coefficient was found for SVM models including the mean semivariance derived from the 

laser height values. This implied a high potential as discriminator for tree and non-tree laser 

echoes, which was further supported by the results of the GLM classification. 

 

Keywords: ALS, classification, forest-tundra ecotone, GLM, SVM. 
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1. Introduction 

Particularly in the boreal regions, forest ecosystems are expected to be highly affected by 

increasing temperatures caused by climatic changes (Kirschbaum and Fischlin, 1996). As 

“the transition zone between forest and tundra at high elevation or latitude” (Harper et al., 

2011), the forest-tundra ecotone entails a high sensitivity to these climatic changes, and 

alpine and arctic tree lines are expected to advance both to higher altitudinal and latitudinal 

areas because of changes in temperature, precipitation, and snow coverage (ACIA, 2004). 

Furthermore, anthropogenic factors in terms of herbivore activity and pastoral economy 

affect the tree limit beside the natural causes (Callaghan et al., 2002; Holtmeier & Broll, 

2005). To monitor these abiotic and biotic changes, the development of suitable methods is 

essential (Callaghan et al., 2002).  

A large proportion of the total land area in Norway is constituted by the forest-tundra 

ecotone. For such vast areas, cost-efficient motoring will most likely have to involve remote 

sensing techniques. However, the small size and sparse distribution of the objects of interest 

limit the monitoring capabilities of most optical remote sensing instruments because of their 

limited spatial resolutions. Trees located in the forest-tundra ecotone have an assumed height 

growth of 0–5 cm per year (Næsset and Nelson, 2007) and a remote sensing technique with 

the capability to detect subtle changes in growth and colonisation patterns in the forest-tundra 

ecotone is therefore needed. In this context, airborne laser scanning (ALS) may be a well-

suited tool for monitoring changes regarding tree migration both further north and to higher 

altitudes. Several studies on the prediction of biophysical parameters have documented the 

suitability of ALS on a single-tree level at different scales (e.g. Hyyppä et al., 2001; Persson 

et al., 2002; Solberg et al., 2006; Næsset and Nelson, 2007). Furthermore, Næsset and Nelson 

(2007), Rees (2007), and Thieme et al. (2011b) verified the capability of ALS to discriminate 

small pioneer trees in the forest-tundra ecotone using different laser point densities. Rees 

(2007) demonstrated the utility of low-density laser data over hundreds of square kilometres 

with a point density of ~0.25 m-2 for the discrimination of individual trees with a minimum 

tree height of 2 m. Based on positive laser height values as a criterion for successful tree 

detection inside field-measured tree crown polygons, Næsset and Nelson (2007) and Thieme 

et al. (2011b) verified the suitability of high-density laser data (6.8–8.5 m-2) for the detection 

of small pioneer trees irrespective of tree height. Detection success rates of over 90% for 

coniferous and at least 84% for mountain birch trees were reported for trees with tree heights 

�1 m (Næsset and Nelson, 2007; Thieme et al., 2011b), implying an adequate reliability of 
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successful tree detection for tree heights exceeding 1 m. However, severe commission errors 

may occur using laser height values as the sole criterion for tree detection (Næsset and 

Nelson, 2007; Næsset, 2009), which is reflected in the significantly lower detection success 

rates for trees lower than 1 m (Næsset and Nelson, 2007; Thieme et al., 2011b). Non-tree 

objects such as rocks, hummocks, and other terrain structures account for a large number of 

laser echoes above the ground surface, but the magnitude of non-tree echoes with positive 

laser height values also depends on the properties of the terrain model, the sensor, and flight 

settings (Næsset, 2009). For a dataset with a terrain model that was derived with commonly 

adopted smoothing criteria, Næsset and Nelson (2007) reported a commission error of 490%. 

Thus, the reliability of tree detection analysis using laser height values is highly dependent on 

these commission errors. However, in a multi-temporal context, terrain and terrain objects 

will remain stable while trees may increase in height and number over a sufficient time span. 

Thus, for monitoring the high rates of commission errors may not necessarily undermine the 

potentials of the technology.   

With regard to forest inventory utilising ALS data, it is more common to merely employ 

the height information of the laser echoes instead of using the full suite of available 

information. Spectral data, i.e., the intensity values of the laser echoes, are often neglected, 

however, this additional information may be useful to discriminate between tree and non-tree 

echoes. Furthermore, the spatial structure and distribution of the individual laser echoes may 

be conducive to distinguish between different types of objects located on the terrain surface. 

Rossi et al. (1992) stated that a variety of biological phenomena demonstrate spatial 

correlation or dependency, often emerging in patches (Fry and Stephens, 2010). Hence, the 

spatial variation of laser echoes classified as vegetation may differ around tree and non-tree 

objects. For example, Thieme et al. (2011a) were able to recognise field-measured trees and 

non-tree objects identified using aerial imagery by investigating the spatial pattern of laser 

height and intensity values for small-sized Voronoi polygons and their neighbourhood in an 

empirical study. Also a geostatistical analysis employing experimental variograms and cross-

variograms revealed differences in the pattern for tree and non-tree objects in that study 

(Thieme et al., 2011a). In optical remote sensing, geostatistics are a common image 

processing technique. For instance, standard statistical measures such as mean and standard 

deviation, and the variogram-derived mean semivariance are calculated for each pixel based 

on a moving window and further used for image classification purposes (Wulder et al., 1998; 

Jakomulska and Clarke, 2001). Wulder et al. (1998) used first- and second-order texture as 

well as semivariance moment texture for textural image classification to increase leaf area 
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index estimation. Thus, we hypothesize that standard statistical measures as well as a 

geostatistical component may have the potential to improve the classification of tree and non-

tree laser echoes in the forest-tundra ecotone.  

The main objective of this study was to assess the capability of geostatistical and 

standard statistical measures derived directly from high-density ALS data to improve the 

classification of tree and non-tree echoes. For this purpose, the following variables were 

derived from laser height and intensity values using a moving window and tested as 

discriminators in different classification models: (1) a geostatistical measure represented by 

the variogram-derived mean semivariance, and (2) standard statistical measures represented 

by the arithmetic mean, the standard deviation and the coefficient of variation. Based on two 

different classification methods, the accuracy and performance of the diverse models were 

assessed and finally compared to simpler models from a previous study (Thieme et al., 2012). 

 

2. Study area and data 

2.1 Study area 

The study area covered a 1,000 km long and approximately 180 m wide longitudinal 

transect encompassing hundreds of mountain forest and alpine elevation gradients. The 

transect stretches from Mo i Rana in northern Norway (66°19’ N 14°9’ E) to Tvedestrand in 

the southern part of the country (58°3’ N 9°0’ E) (Figure 1). Sample plots were established in 

the forest-tundra ecotone, that is the transition between the mountain forest and the alpine 

zone. In most of the localities along the transect, the terrain was characterised by rounded 

forms with occurrences of hummocks, rocks and boulders, but also some steep slopes. The 

prevalent tree species were Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus 

sylvestris L.), and mountain birch (Betula pubescens ssp czerepanovii). 

 

2.2 Field data 

The field work in the transect was carried out at 26 different field sites allocated along 

the transect during summer 2008 in order to provide in situ tree data for analysis. 

Each field site consists of two to four sample plots to cover the width of the forest-tundra 

ecotone. Because the width of the forest-tundra ecotone varies between different locations, 

the number of sample plots in each site was determined in field based on both visual and 

practical judgement of the altitudinal range of the ecotone in each case. Furthermore, sample 

plots within field sites were laid out with 50 m interdistance to avoid overlap. These 
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procedures resulted in a total number of 80 sample plots. However, one field site and 

therefore three sample plots had to be discarded from the dataset because of erroneous 

coordinates. This resulted in a total number of 77 sample plots located at 25 different field 

sites. 

 
Figure 1 - Overview of the study area with the 25 specific field sites (black points). The 1,000 km long transect 

(black line) stretches from to 66°19’ N 14°9’ E to 58°3’ N 9°0’ E. 

 

 

Two Topcon Legacy E+ 20-channel dual-frequency receivers observing pseudo range 

and carrier phase of both Global Positioning System and Global Navigation Satellite System 

satellites were used as base and rover receivers for real-time kinematic differential Global 

Navigation Satellite Systems (dGNSS) navigation and positioning. For each field site, the 

closest suitable reference point of the Norwegian Mapping Authority was selected to 

establish the base station. With an expected accuracy of the reference points of 3 cm and an 
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expected horizontal accuracy of the field recordings relative to the base station of about 2 cm, 

the expected accuracy of the centre points of the sample plots was 3-4 cm. 

For the selection of the sample trees in the field, a modified version of the point-centred 

quarter sampling method (PCQ) (Cottam and Curtis, 1956; Warde and Petranka, 1981) was 

used with a maximum search distance of 25 m. This sampling method involves the division 

of a sample plot into four quadrants defined by the cardinal directions from the centre of the 

sample plot. In each quadrant the tree that was closest to the plot centre in a specific tree 

height class was sampled independent of tree species. The tree height classes were defined as: 

(1) less than 1 m, (2) between 1 m and 2 m, and (3) taller than 2 m. Thus, a maximum of 12 

trees could potentially be sampled in each plot. The cardinal directions were defined by using 

a Suunto compass, and both the closest tree and the maximum search limit were determined 

by using a surveyor’s tape measure in cases of doubt. 

For each sample tree, several tree metrics were recorded individually. Tree species was 

determined and tree height was measured using a steel tape measure for smaller trees and a 

Vertex III hypsometer for tall trees. Stem diameter was callipered at root collar and crown 

diameters were measured in the cardinal directions with a steel tape measure. Finally, the 

precise position for each tree was determined using the dGNSS-based procedure described 

above. 

In this study, a total of 524 trees were used, i.e., 404 mountain birch, 67 Norway spruce 

and 53 Scots pine. Tree heights ranged from 0.04 m to 7.80 m, and crown areas, computed as 

the ellipse defined by the crown diameters as the major and minor axes, from 0.001 m2 to 

19.54 m2. A summary of the tree metrics is given in Table 1. 

 

2.3 Laser data 

Airborne laser scanner data were acquired on 23 and 24 July 2006 with an Optech 

ALTM 3100C laser scanning system. 

A Piper PA-31 Navajo aircraft carried the laser scanning system at an average flying 

altitude of 800 m above ground level. The flight speed was approximately 75 ms-1. The scan 

frequency was 70 Hz, the maximum half angle was 7°, and the average footprint diameter 

was estimated to 20 cm. Furthermore, the pulse repetition frequency was 100 kHz and 

resulted in a mean pulse density of 6.8 m-2. The 1,000 km long transect was split into 98 

individual flight lines to keep the flying altitude across the mountains and hence the pulse 

density as constant as possible. 
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Table 1 - Summary of field measurements of trees. 

Tree species Characteristics n Mean Min. Max. 

Mountain birch Height (m) 404 1.41 0.04 7.80 

 Diameter (cm) 404 4.24 0.10 34.00 

 Crown area (m²) 404 1.13 0.001 19.54 

Norway spruce Height (m) 67 1.67 0.07 7.00 

 Diameter (cm) 65a 6.54 0.20 19.10 

 Crown area (m²) 67 1.45 0.006 5.69 

Scots pine Height (m) 53 1.33 0.10 5.10 

 Diameter (cm) 53 5.00 0.30 18.90 

 Crown area (m²) 53 0.81 0.002 7.28 

Note: a Missing values due to tree properties.  

 

 

Pre-processing of the laser scanning data was conducted by the contractor (Blom 

Geomatics, Norway). For all laser points, planimetric coordinates (x and y) and ellipsoidal 

height values were computed. 

For the derivation of the terrain model, laser echoes labelled as “last-of-many” and 

“single” (LAST) were used. Ground echoes were classified from the planimetric coordinates 

and the corresponding height values of the LAST echoes, and based on an iteration distance 

of 1.0 m and an iteration angle of 9°, a triangulated irregular network (TIN) was derived 

using the TerraScan software (Terrasolid, 2011). Moreover, a digital elevation model (DEM) 

was computed (QCoherent Software, 2010) using the LAST echoes classified as ground 

returns to compute the terrain-related variable slope (Burrough and McDonald, 1998). 

Because of the small-sized objects in question, the DEM was derived with a cell size of 

0.25 m. 

Laser echoes labelled as “first-of-many” and “single” (FIRST) were used for the 

analyses. For this purpose, FIRST echoes were projected onto the TIN surface to interpolate 

the corresponding terrain height values on these locations. Furthermore, the differences 

between the FIRST echo height values and the corresponding interpolated terrain heights 

were computed and stored. In this study, merely the FIRST echoes, hereafter referred to as 

laser echoes, with height values greater zero were included because this criterion represents 

the sole indicator for the presence of objects on the terrain surface. 
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The ALTM 3100C instrument may record up to four echoes per laser pulse with a 

minimum vertical distance of 2.1 m between two subsequent echoes of an individual pulse. 

However, this instrument property in combination with low vegetation in the present study 

resulted in very few pulses with more than a single echo. Hence, the LAST and FIRST 

datasets were almost identical for most of the sample plots. 

 

2.4 Computations 

For assessing the capability of discriminators represented by geostatistical and standard 

statistical measures derived from the laser echoes to improve the classification of tree and 

non-tree echoes, a sequence of computations had to be conducted prior to analysis. 

First, the field-measured crown diameters were used to compute elliptical tree crown 

polygons to select the tree echoes. Trees with a crown diameter value less than 1.0 m in at 

least one cardinal direction were assigned a tree crown polygon with a constant radius of 

0.5 m because of a positioning error of the laser data of up to 0.5 m as reported by the 

contractor. 

Furthermore, areas within the sample plots where it was ensured that there were no trees 

because of the basic properties of the PCQ sampling method were identified in order to find 

and select non-tree laser echoes. These areas were those sectors of the four quadrants that 

were closer to the plot center than the closest recorded tree irrespective of tree size class. In 

this process, the crown polygon of the closest tree was erased from the non-tree sector to 

ensure that only laser echoes emerging from non-tree objects were included.  

The laser height and intensity values from the laser echoes were used for the computation 

of discriminators for the classification analyses. Concerning the laser height, the numerical 

height values were used directly. For laser intensity, the raw intensity values (����) had to be 

normalised for the range R according to the following formula suggested by Korpela et al. 

(2010): 

 

���� � � �
��	


��
� � ����                                                                                                            (1) 

 

where -��. is an average reference range that was set to 800 m in this study. 
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For the computation of the geostatistical and statistical measures, each of the 77 sample 

plots was overlaid with equally spaced grid points with an interdistance of 1 m. A moving 

window consisting of a circular buffer with a radius of 3 m was employed to select laser 

echoes for the estimation of the different geostatistical and statistical measures at each grid 

point both based on the laser height and intensity values. Thereafter, each laser echo was 

assigned the computed measures of its closest grid point (Figure 2). 

 

 
Figure 2 - Illustration of a PCQ sample plot (left) and a detailed demonstration of the computation of the 

geostatistical and statistical measures (right). Tree locations and the respective crown areas are represent in the 

three tree height classes: < 1 m (black ellipses), 1–2 m (dark grey ellipses), and >2 m (light grey ellipses). Using 

a 3 m moving window (black dashed circle), laser echoes (black points) were selected for the computation of the 

geostatistical and statistical measures for each grid point (white points). The geostatistical measure was 

estimated using different lags (light grey dashed circles). 

 

 

Semivariograms were employed as the geostatistical discriminator. Semivariograms were 

used in the analyses as a mean to characterise differences in the behaviour of spatial 

correlation of laser height and intensity values for those tree and non-tree echoes with 

positive height values. 

A measure for the spatial correlation of a variable is derived from the calculation of the 

semivariances of multiple pairs of observations as a function of their separation distance 

(Isaaks and Srivastava, 1989) and is referred to as an experimental variogram. The separation 
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distances used for estimation are represented by various distance classes which are referred to 

as lags. The semivariances of a dataset are computed as 

 

/0�1� � �
���2� 3 4%�"5� 6 %�"5 � 1�7���2�

58�                                                                                  (2) 

 

where /0�1�  is the estimated semivariance for lag 1 and 9�1� is the number of data points 

separated by 1 (Rossi et al., 1992). Furthermore, the semivariances and hence the spatial 

variability of a variable can be illustrated by a semivariogram, which is usually referred to as 

a variogram. In case of spatial dependence, a univariate experimental variogram is 

characterised by an increase in semivariance with distance 1 which may level off at the so 

called sill or increase ad infinitum. Furthermore, the so called nugget effect may occur in the 

univariate experimental variogram. This is characterised by a semivariance value greater/less 

than zero at the origin and represents spatial variability that is caused by measurement errors 

or distances shorter than the sample spacing. In this study, the mean value of the 

semivariances of an experimental variogram was used in the analyses. This mean value was 

denoted SV (Table 2). 

For computation of the experimental variograms specifically, variograms were calculated 

individually for each grid point of the 77 sample plots using the gstat spatial package 

(Pebesma, 2004) in the statistical computing software R (R Development Core Team, 2007). 

The distance classes used for computation were defined to reflect the fact that lags closer to 

zero are expected to provide more information than lags further away. These lags were used: 

0 m, 0.25 m, 0.5 m, 0.75 m, 1 m, 1.5 m, 2 m, 2.5 m, and 3 m. Furthermore, second-order 

stationarity was assumed which implies a constant mean, variance and covariances depending 

on separation only (Webster and Oliver, 2001). Isotropy was assumed for the spatial 

distributions of the laser height and intensity. 

In addition to the geostatistical discriminator, statistical summary measures were 

employed. The arithmetic mean (AM) as the sum of values of a set of observations divided by 

the number of observations, the standard deviation (SD) as the square root of the averaged 

squares of the observations’ deviations from their mean, and the coefficient of variation (CV) 

as the ratio between the arithmetic mean and the standard deviation were derived both from 

laser height and intensity values respectively (Table 2). 
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Table 2 - Geostatistical and statistical measures used for classification. 

Based on Discriminator Abbreviation 
Laser Height Mean Semivariance HSV 
 Arithmetic Mean HAM 
 Standard Deviation HSD 
 Coefficient of Variation HCV 
Laser Intensity Mean Semivariance ISV 
 Arithmetic Mean IAM 
 Standard Deviation ISD 
 Coefficient of Variation ICV 

 

 

3. Methods 

3.1 Analyses 

Generalised linear models (GLM) and support vector machines (SVM) were employed 

as classification methods in the analyses. Simple models (Table 3) from a study conducted by 

Thieme et al. (2012) were extended with the geostatistical and statistical measures to evaluate 

their potential for an improved classification performance. The two simple models included 

the laser height and intensity values for the GLM and the additional terrain variable slope for 

the SVM. A summary of the different discriminating geostatistical and statistical variables is 

given in Table 4. 

Geostatistical and statistical measures that revealed a significant improvement of the 

model compared to the simple model when used individually were subsequently combined in 

extended models using all possible combinations (Table 3) to assess a potential contribution 

of these combinations for the discrimination between tree and non-tree echoes. 

 

Table 3 - Models used classification with GLM and SVM. 

Classification Modelsa 
Basic models GLM HI_HSV, HI_HAM, HI_HSD, HI_HCV, HI_ISV, 

HI_IAM, HI_ISD, HI_ICV 
Additional models GLM HI_HSV_HAM 
Basic models SVM HIS_HSV, HIS_HAM, HIS_HSD, HIS_HCV, 

HIS_ISV, HIS_IAM, HIS_ISD, HIS_ICV 
Additional models SVM HIS_HSV_HAM, HIS_HSV_HSD, HIS_HAM_HSD, 

HIS_HSV_HAM_HSD 
a HI and HIS indicate the simple models for GLM and SVM, respectively. 
Further abbreviations see Table 2. 
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3.2 GLM 

GLM are commonly used in regression analysis, however, GLM also represent a suitable 

tool for binary classification problems predicting probabilities on a transformed scale 

(Dalgaard, 2008). GLM are defined by three elements consisting of the random component 

identifying the response variable Y and its probability distribution, the link function 

connecting the random component to the systematic component that is again specifying the 

independent variables X (Agresti, 2007; Dalgaard, 2008). In the present study, a logit link 

function was employed to relate the different combinations of the independent variables X to 

the binary response variable Y (tree/non-tree). Thus, the following model was fitted:  

 

��� � �������
���������� � � �  !�"� � # � !$"$                                                                               (3) 

 

In the statistical computing software R (R Development Core Team, 2007), the different 

GLM models (Table 3) were fitted using the glm function of the stats package (R 

Development Core Team, 2007). In the next step, the probabilities of the laser echoes for 

being a non-tree echo were predicted from the fitted models. Finally, different thresholds 

(from p=0.05 to p=0.95 in 0.05 steps) for these probabilities were employed to classify the 

laser echoes into tree and non-tree echoes for each model. For each threshold used during 

classification, the Cohen’s kappa coefficient (Cohen, 1960) was estimated to identify the 

classification with the highest kappa coefficient. 

 

3.3 SVM 

SVM, which were developed by Cortes and Vapnik (1995), are a suitable tool for 

classification, regression, and novelty detection (Karatzoglou et al., 2006; Meyer, 2011). By 

solving a quadratic optimisation problem using a training set, SVM determine the hyperplane 

with the maximal margin of separation between two classes. In the process, the relevant 

information used during classification is comprised by the support vectors representing points 

located on the margin boundaries. Points located on the opposite side of the margin indicate 

overlapping classes and are reduced in influence by weighting. The error term is controlled 

by a so called cost or penalty parameter C and a kernel function allowing for a nonlinear 

separator defines the hyperplane. In the present study, the C-support vector classification was 

used with the radial basis function as the kernel, where � represents a parameter regulating the 

radial basis function. 
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Table 4 - Summary of the discriminator variables. 

Class Variable Mean Min. Max. 
Tree Height (m) 1.59 0.04 6.49 
    Mean semivariance 0.95 0.00 6.28 
    Mean 1.25 0.08 4.24 
    Standard deviation 0.91 0.00 2.58 
    Coefficient of variation 0.80 0.00 2.24 
 Intensity 51.62 4.24 90.95 
    Mean semivariance 114.36 0.00 603.08 
    Mean 53.80 34.21 76.58 
    Standard deviation 10.86 0.00 22.80 
    Coefficient of variation 0.21 0.00 0.48 
 Slope (°) 16.49 1.05 49.89 
Non-tree Height (m) 0.17 0.01 4.72 
    Mean semivariance 0.04 0.00 4.02 
    Mean 0.19 0.04 4.17 
    Standard deviation 0.12 0.00 2.46 
    Coefficient of variation 0.51 0.00 2.64 
 Intensity 56.22 0.51 110.82 
    Mean semivariance 60.14 0.00 1462.73 
    Mean 56.10 10.65 94.01 
    Standard deviation 7.56 0.00 38.26 
    Coefficient of variation 0.14 0.00 1.04 
 Slope (°) 16.54 0.005 79.68 
 

 

The different models (Table 3) were fitted with the svm function of the e1071 package 

(Dimitriadou et al., 2011) and a prediction of the laser echoes being a tree or non-tree echo 

was performed for each. Using the tune.svm function of the e1071 package (Karatzoglou et 

al., 2006; Dimitriadou et al., 2011), the best hyperparameters C and � were determined prior 

to classification and outside the leave-one-out cross-validation procedure. 

 

3.4 Accuracy assessment and classification performance 

A leave-one-out cross-validation was used to assess the classification performance of the 

modelling with GLM and SVM. In the validation, each entire field site (i.e. several individual 

plots) was treated as either being part of the training dataset or the validation dataset. Thus, in 

each sequence of the cross-validation, models were fit with data from all sites apart from one 

of the sites, and the fitted models were used for classification on the single site that was 

excluded from the model fitting. 
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For each model fitted for prediction irrespective of the classification method, the total 

percentage of correct prediction and the Cohen’s kappa coefficient (Cohen, 1960) were 

estimated to assess the classification performances. In the comparison between the simple 

models, i.e., HI for the GLM and HIS for the SVM (Table 3), and the respective extended 

models, the difference between two independent kappa coefficients was estimated using a 

statistics suggested by Cohen (1960) that evaluates the normal curve deviate to assess the 

significance of such a difference: 

 

% � &'�&(
)*+'( ,*+((                                                                                                                             (4) 

 

where :� and  :� are the two independent kappa coefficients, and ;&' and ;&( represent the 

respective standard errors. Kappa coefficients were evaluated quantitatively according to the 

grading suggested by Landis and Koch (1977). 
 

4. Results 

Classifications of the laser echoes into tree and non-tree echoes using GLM and SVM 

models including geostatistical and statistical measures revealed total accuracies of at least 

93.6% (Table 5) and 94.7% (Table 6), respectively. 

Furthermore, kappa coefficients were improved by at least 0.032 (Table 5) and 0.034 

(Table 6) using GLM and SVM, respectively, compared to the results of the precedent 

classification study conducted by Thieme et al. (2012). 

 

4.1 GLM 

The classifications of the laser echoes using GLM revealed total accuracies between 93.6% 

and 94.9% (Table 5). The corresponding kappa coefficients ranged from 0.526 to 0.606 

indicating moderate fits for all the estimated models (Table 5). 

The total accuracies differed with 1.3 percentage points between models (Table 5). 

Models including geostatistical or statistical measures derived from the laser intensity values 

(HI_ISV, HI_IAM, HI_ISD, and HI_ICV) had slightly higher accuracies, of which the models 

including the standard deviation or the coefficient of variation (HI_ISD and HI_ICV) had the 

highest accuracies of 94.9%.  

Assessing the corresponding kappa coefficients, higher kappa coefficients were found for 

models including the geostatistical measure and/or the statistical measures represented by the 
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arithmetic mean and the standard deviation derived from the laser height values (HI_HSV, 

HI_HAM, HI_HSD, and HI_HSV_HAM). The two models including the arithmetic mean, 

(HI_HAM) and  the mean semivariance and the arithmetic mean (HI_HSV_HAM), respectively,  

revealed the highest kappa coefficient of 0.606 (Table 5). 

Comparing the kappa coefficients of the nine estimated models to the simple model (HI) 

that revealed the best classification performance using GLM in the study conducted by 

Thieme et al. (2012), no significant contribution was found for the geostatistical and 

statistical measures derived from the laser intensity values (Table 5). All kappa coefficients 

indicated equivalent classification performances for these models, however, neither 

suggesting significantly worse performances.  

Using the geostatistical and statistical measures derived from the laser height values, a 

significant contribution could be found for the mean semivariance and the arithmetic mean 

(Table 5). All three models including these two discriminators individually or in combination 

(HI_HSV, HI_HAM, and HI_HSV_HAM) revealed significantly improved classification 

performances compared to the simple model HI. Furthermore, the inclusion of the standard 

deviation or the coefficient of variation, respectively, showed a similar or significantly worse 

classification performance than the simple model HI (Table 5).  

 

Table 5 - Performance of the different models used for classification with GLM. 

Modela p Accuracy Kappa Zb  
HI_HSV 0.85 0.947 0.605 2.333 * 
HI_HAM 0.85 0.946 0.606 2.482 * 
HI_HSD 0.80 0.943 0.590 1.255  
HI_HCV 0.75 0.936 0.526 3.469 ** 
HI_ISV 0.75 0.948 0.570 0.285  
HI_IAM 0.70 0.948 0.565 0.626  
HI_ISD 0.65 0.949 0.573 0.029  
HI_ICV 0.70 0.949 0.565 0.577  
HI_HSV_HAM 0.85 0.946 0.606 2.480 * 
      
HI 0.75 0.949 0.573   
Note: Level of significance: '<.1. *<.05. **<.005. 
a HI indicates the simple model. Further abbreviations see Table 2.  
b As received by the comparison between two independent kappa coefficients, 
i.e. the simple model HI and the respective extended model. 
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4.2 SVM 

For the SVM classification method, the twelve different models revealed total accuracies 

ranging from 94.7% to 95.7% (Table 6). Furthermore, the kappa coefficients ranged between 

0.576 and 0.666, indicating moderate fits for four models and substantial fits for eight 

models, respectively (Table 6).   

The twelve models had a maximum difference in total accuracy of 1.0 percentage points 

(Table 6), where most models consisting of geostatistical or statistical measures derived from 

the laser height values (HIS_HSV, HIS_HAM, HIS_HSD, HIS_HSV_HAM, HIS_HSV_HSD, and 

HIS_HAM_HSD) revealed slightly higher accuracies. The highest accuracy of 95.7% was found 

for models including the mean semivariance and/or the standard deviation (HIS_HSV, 

HIS_HSD, and HIS_HSV_HSD).  

Furthermore, the corresponding kappa coefficients were higher for models including the 

mean semivariance, the arithmetic mean, and the standard deviation derived from the laser 

height values, both individually and in combination with one another (HIS_HSV, HIS_HAM, 

HIS_HSD, HIS_HSV_HAM, HIS_HSV_HSD, and HIS_HAM_HSD). The highest kappa coefficient of 

0.666 was found for the model only including the mean semivariance, indicating a substantial 

fit (Table 6). 

The comparison between the kappa coefficients the simple model HIS revealing the best 

classification performance in the study carried out by Thieme et al. (2012) and the twelve 

different models was used to assess the capability of the different geostatistical and statistical 

measures to improve previous classification. 

No significant contribution could be found for any of the models consisting of the 

geostatistical and statistical measures derived from the laser intensity values (Table 6). The 

kappa coefficients for the models consisting of the mean semivariance, the standard deviation 

or the coefficient of variation (HIS_ISV, HIS_ISD, and HIS_ICV) indicated equivalent 

classification performances for the models. However, the kappa coefficient of the model 

including the arithmetic mean (HIS_IAM) suggested a significantly worse performance 

compared to the simple model HIS.  

For the laser height derived geostatistical and statistical measure, a significant 

contribution was found for six models including the mean semivariance, the arithmetic mean, 

and the standard deviation individually or in combination with one another (Table 6). All 

these models (HIS_HSV, HIS_HAM, HIS_HSD, HIS_HSV_HAM, HIS_HSV_HSD, and 

HIS_HAM_HSD) had kappa coefficients of at least 0.634 improving the simple model HIS by at 

least 0.034 and ameliorating the moderate fit into a substantial fit. Merely the two models 
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including the coefficient of variation or the combination of the mean semivariance, the 

arithmetic mean, and the standard deviation revealed no significant contribution to the basic 

model HIS, however, neither indicating a significantly worse classification performance. 

Furthermore, the mean semivariance represented the discriminator with the highest 

significant contribution to the basic model HIS.  

 

Table 6 - Performance of the different models used for classification with SVM. 

Modela Cb �c Accuracy Kappa Zd  
HIS_HSV 100 0.1 0.957 0.666 4.995 ** 
HIS_HAM 1000 0.1 0.956 0.655 4.183 ** 
HIS_HSD 100 0.1 0.957 0.660 4.539 ** 
HIS_HCV 100 0.1 0.951 0.605 0.352  
HIS_ISV 1000 0.1 0.953 0.613 0.901  
HIS_IAM 1000 0.1 0.947 0.576 1.772 ' 
HIS_ISD 100 0.1 0.953 0.608 0.570  
HIS_ICV 1000 0.1 0.950 0.605 0.353  
HIS_HSV_HAM 100 0.1 0.955 0.643 3.186 ** 
HIS_HSV_HSD 100 0.1 0.957 0.664 4.875 ** 
HIS_HAM_HSD 100 0.1 0.954 0.634 2.556 * 
HIS_HSV_HAM_HSD 1000 0.1 0.952 0.621 1.552  
       
HIS 1000 0.1 0.953 0.600   
Note: Level of significance: '<.1. *<.05. **<.005. 
a HIS indicates the simple model. Further abbreviations see Table 2. 
b Cost or penalty parameter  
c Parameter regulating the radial basis function 
d As received by the comparison between two independent kappa coefficients, i.e. the 
simple model HIS and the respective extended model. 

 

 

5. Discussion and conclusion 

The classification into tree and non-tree echoes including geostatistical and statistical 

measures revealed total accuracies that are equivalent to the results obtained by Thieme et al. 

(2012) for both GLM and SVM. Furthermore, the accuracies of the GLM and SVM 

classifications are in accordance with other studies on the discrimination of small individual 

trees in an environment as the forest-tundra ecotone. On an individual tree basis, these studies 

reported success rates of at least 90% for trees exceeding a height of 1 m (Næsset and Nelson, 

2007; Næsset, 2009; Thieme et al., 2011b). These rates are comparable to the results of the 

present study even though individual laser echoes were used in this case.  
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Kappa coefficients indicated a significant improvement when including geostatistical and 

statistical measures for some models in comparison to the classification performances 

reported by Thieme et al. (2012) both using GLM and SVM. However, geostatistical and 

statistical measures derived from laser intensity values revealed no significant contribution to 

any GLM or SVM model and actually a significantly worse performance for the SVM model 

including the arithmetic mean was obtained. By investigating the respective distributions of 

values of the different measures for tree and non-tree echoes (Table 4), these results seem 

reasonable. Particularly the summary values of the arithmetic mean and the coefficient of 

variation based on laser intensity values do not differ considerably, suggesting a relatively 

similar behaviour for both tree and non tree-echoes or even indicating an unprofitable effect 

of this discriminator on the classification performance. Also, for the laser height derived 

standard deviation and coefficient of variation, similar distributions of values of the different 

measures were found for tree and non-tree echoes, thus suggesting almost no discriminating 

effect for the coefficient of variation in particular (Table 4). These findings are reflected in 

the similar or significantly worse classification performances of both GLM and SVM models 

including these discriminators. However, regarding the standard deviation in context with 

SVM, this measure reveals a significant contribution individually or in combination with the 

mean semivariance or the arithmetic mean indicating a positive effect of a nonlinear 

classification method on this specific measure. The values distributions for the arithmetic 

mean and the mean semivariance (Table 4) show obvious differences for tree and non-tree 

echoes. This behaviour supports the significant improvement of the simple models extended 

with these discriminators individually or in combination with each other for both 

classification methods. Furthermore, the superior performance of the geostatistical measure 

represented by the mean semivariance for both the GLM and SVM classification methods is 

in line with results obtained by Thieme et al. (2011a). They found experimental variograms 

helpful to characterise and distinguish between tree and non-tree object in a forest-tundra 

ecotone environment. Also Jakomulska and Clarke (2001) reported a beneficial contribution 

of variogram-based measures for the classification of vegetation classes including grassland, 

rocks and woodland, however, based on optical airborne imagery. 

To conclude, the classification of tree and non-tree echoes based on previous models 

from the study conducted by Thieme et al. (2012) that were extended with geostatistical and 

statistical measures using both GLM and SVM revealed a significant contribution of the 

majority of the laser height-derived measures.  
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Adding geostatistical measure represented by the mean semivariance derived from the 

laser height values significantly improved the results compared to the basic model of both the 

GLM and the SVM classification methods, respectively. For this discriminator, total 

accuracies of at least 94.6% could be obtained irrespective of the classification method or 

being used individually or in combination with other statistical measures. The mean 

semivariance estimated from the laser intensity values, however, did not reveal a significant 

contribution to the classification performances. 

With regard to the statistical measures, the arithmetic mean derived from the laser height 

had a significantly positive effect on the classification performances for both classification 

methods when being used individually and in most combinations with other measures. The 

laser intensity-derived arithmetic mean, however, revealed an equivalent performance for 

GLM and a worse performance using SVM. Concerning the standard deviation, no significant 

contribution could be found using GLM for neither the laser height nor intensity-derived 

values. Employing SVM, a significant improvement was merely obtained for the 

discriminator derived from the laser height. The coefficient of variation revealed no 

significant contribution to neither of the basic models HI and HIS. With regard to the laser 

height-derived coefficient of variation used in GLM, the classification performance was 

worse than the basic model HI. 

In general, the highest improvement of a basic model was found for the HIS model using 

SVM extended by the mean semivariance. This result in combination with the supporting 

outcome of the GLM classification suggests a high potential of the mean semivariance as a 

geostatistical discriminator for tree and non-tree echoes. However, further investigation into 

the characteristics the geostatistical measure as well as its capability is needed for being able 

to fully understand and utilise the power of this discriminator. 
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Abstract 

A large proportion of Norway’s land area is occupied by mountains and tree-less areas 

above the alpine treeline. Thus, the forest-tundra ecotone, i.e., the transition zone between the 

mountain forest and the alpine zone constitute a significant part of the land surface. The 

vegetation of this temperatur-sensitive ecosystem is expected to be highly affected by climate 

change and effective monitoring techniques are required to detect potential changes. For the 

detection of small pionees trees in such an environment, airborne laser scanning (ALS) has 

been proposed as a useful tool for inventory tasks employing laser height data. The main 

objective of the present study was to assess the capability of an unsupervised classification 

for automated monitoring programs of small individual trees using high-density ALS data. 

For this purpose, field and ALS data were collected along a 1,500 km long transect stretching 

from northern Norway (69°3’ N) to the southern part of the country (58°3’ N). A concept for 

a raster-based algorithm was developed for automatic detection of small single trees. 

Different height thresholds for the laser echoes included (0 cm, 10 cm, 20 cm, 30 cm, 40 cm 

and 50 cm) were tested in various combinations in an unsupervised classification using 

different raster cell sizes (625 m2, 156 m2, 39.1 m2, 9.77 m2, 2.44 m2, 0.61 m2 and 0.15 m2) 

for the classification of raster cells where trees were present, i.e. tree raster cells. Suitable 

initial values for the exclusion of large treeless areas were determined by employing the 

different raster cell sizes and an optimal raster cell size was recognised representing a lower 

limit with a still satisfying rate of successfully detected tree raster cells. Furthermore, a high 

rate of successful detection involved a high level of commission errors for the lower 

thresholds. At a threshold of 20 cm, however, the rate of non-tree raster cells classified as tree 

raster cells decreased significantly accompanied by a still satisfying rate of successfully 

detected tree raster cells. 
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1. Introduction 

Alpine and arctic treelines are seldom distinctly demarcated, but rather represented by 

transition zones (Callaghan et al., 2002; Holtmeier and Broll, 2005) between the mountain 

forest and the alpine and arctic zones. Such transitions are referred to as ecotones (Clements, 

1905) and the forest-tundra ecotone can be defined as “the transition between forest and 

tundra at high elevation or latitude” (Harper et al., 2011). Its location entails high sensitivity 

to climatic changes, notably to increasing temperatures and changes in precipitation as well 

as changes in snow coverage that affect the length of the growing season (Callaghan, 2004; 

ACIA, 2004).  

Increased temperature in particular may influence the prevailing tree limit by a 

densification (Danby and Hik, 2007; Batllori and Gutiérrez, 2008) and increased height 

growth (Kullman, 2002) of the current sparsely distributed pioneer trees, and by an advance 

of trees into higher altitudinal and latitudinal areas (ACIA, 2004; Kullmann and Öberg, 

2009). Beside the increment in height growth of the existing tree layer (Kullman, 2002), a 

successful colonisation of previous treeless areas involving a long-term survival of seedlings 

and saplings into trees is required (Aune et al., 2011). Thereby, factors as the production, 

dispersal, and germination of seeds (Aune et al., 2011) as well as the interplay of abiotic and 

biotic drivers are essential (Cairns and Moen, 2004; Holtmeier and Broll, 2005; Sturm et al., 

2005; Aune et al., 2011). Furthermore, tree limits are also affected by anthropogenic factors 

such as herbivore activity by domestic animals and pastoral economy which may inhibit the 

climatic responses (Callaghan et al., 2002; Holtmeier & Broll, 2005; Post and Pedersen, 

2008; Olofsson et al., 2009; Hofgaard et al., 2010; Aune et al., 2011). Changes in the tree 

layer of the forest-tundra ecotone may also be expected to influence the biodiversity, 

landscape characteristics, biomass, and carbon pools of vegetation zones adjacent to the 

forest-tundra ecotone, i.e., mountain forest and tundra. For example, more biomass in the 

forest-tundra ecotone provides better protection for the mountain forest which may improve 

growth conditions. 

The United Nations Framework Convention on Climate Change and the Kyoto protocol 

involve reporting on greenhouse gas emission and amongst others land use change in respect 

of deforestation, afforestation and reforestation (UNFCCC, 2008). Hence, there is an 

important need for data acquisition in low biomass areas with regard to carbon accounting. 

However, the National Forest Inventory (NFI) in Norway or other monitoring systems do 

commonly not prioritise the forest-tundra ecotone and sample plots are established on a 
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sparser grid than in forested areas. In forest-tundra ecotone areas, the measurement costs are 

often high relative to the importance of these areas for timber resource assessment which has 

been the main motivation for the Norwegian NFI. However, as carbon reporting and 

monitoring of the extent of forests areas under climate change become important, 

assessments of the current state and monitoring of changes in the forest-tundra ecotone 

become important (Callaghan et al., 2002). In conjunction with climate change, land use 

change and carbon accounting, the focus in monitoring the forest-tundra ecotone is on tree 

establishment, i.e., regeneration, growth, mortality, and colonisation of former treeless areas. 

This requires efficient monitoring systems that have the capability to both cover vast areas 

and to detect changes at small scales. 

Different remote sensing techniques can provide objective wall-to-wall data for large 

areas. Air- or spaceborne optical sensors have frequently been used for assessments of land 

cover. However, the limited spatial resolutions of optical remote sensing instruments are not 

sufficient to detect small-sized trees or changes in their biophysical properties and spatial 

distribution. With an assumed height growth of 1 to 10 cm per year for such small trees 

depending on locality and the prevailing microclimate, a remote sensing technique as 

airborne laser scanning (ALS) is required that has the capability to observe subtle changes in 

growth and colonisation patterns. The ability of ALS to detect small single trees in the forest 

tundra ecotone was verified by Næsset and Nelson (2007), Rees (2007), and Thieme et al. 

(2011) using different laser point densities. Rees (2007) discriminated individual trees with a 

minimum tree height of 2 m over vast areas covering hundreds of square kilometres using 

ALS data with a point density of ~ 0.25 m-2. By employing high-density ALS data with point 

densities ranging between 6.8 m-2 and 8.5 m-2, Næsset and Nelson (2007) and Thieme et al. 

(2011) successfully detected small trees irrespective of tree height. Both studies used positive 

laser height values inside field-measured tree crown polygons as criterion for successful tree 

detection, reporting success rates of over 90% for coniferous and at least 84% for mountain 

birch trees, provided a tree height exceeding 1 m (Næsset and Nelson, 2007; Thieme et al., 

2011). This indicated an adequate reliability of the detection method for trees with heights 

greater than 1 m. The success rates for trees lower than 1 m when merely utilising positive 

laser height values as criterion for tree detection were significantly lower because of severe 

commission errors (Næsset and Nelson, 2007; Næsset, 2009). Næsset and Nelson (2007) 

observed commission errors up to 490% in their study employing a dataset based on a terrain 

model that was computed with commonly adopted smoothing criteria. The magnitude of 

positive laser height values emerging from non-tree objects is not just depending on the 
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occurrence of for instance rocks, hummocks, and other terrain structures, but also on the 

properties of the terrain model, the sensor, and the flight settings (Næsset, 2009). Thus, the 

reliability of tree detection solely using positive laser height values is highly affected by such 

commission errors, especially with regard to tree heights lower than 1 m. In terms of 

monitoring, however, high rates of commission errors may not be considered a serious 

concern because of the multi-temporal context in which only trees will change in size and 

number over time while terrain and terrain objects will remain stable. 

Other approaches using different types of ALS-derived variables have also been used to 

identify small trees in the forest-tundra ecotone. By employing generalised linear models and 

support vector machines, individual laser echoes were classified into two classes (tree/non-

tree) based on preset decision rules as received by the utilisation of training data to 

characterise the respective classes. These supervised classification techniques employed 

various types of discriminators such as laser height and intensity values as well as the terrain 

variable slope (Thieme et al., 2012a), and geostatistical and statistical measures such as the 

mean semivariances, the arithmetic means, and the standard deviations derived from laser 

height and intensity values (Thieme et al., 2012b). Such parametric decision rules in linear 

and nonlinear modelling techniques are not provided in unsupervised classification methods 

that generally embody a cluster analysis. Classes are built without the usage of training data 

and without any previous knowledge of the thematic content, but by an aggregation of 

elements into clusters where each cluster represents a homogeneous class. An unsupervised 

classification technique utilising the presence and height information of individual laser 

echoes on different scales may be useful for automatic detection of trees since ALS datasets 

involve a huge amount of data depending on the laser point density. A dataset covering vast 

areas such as the forest-tundra ecotone may consist of millions of laser echoes that are 

challenging to handle and require effective data processing techniques that are able to handle 

a huge amount of data without the support of field data for calibration. With regard to the 

classification of laser echoes into tree and non-tree echoes and thus the potential detection of 

trees, this method represents a yet unutilised approach with an unknown potential for 

inventory and monitoring purposes in vegetation zones such as the forest-tundra ecotone.  

The main objective of this study was to assess the potential of an unsupervised 

classification for the automatic detection of small single trees in the forest-tundra ecotone 

using high-density ALS data. For this purpose, a concept for a raster-based algorithm was 

developed for the classification into tree and non-tree raster. Different raster cell sizes as well 

as varying laser height thresholds for the laser echoes included were employed in a modified 
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region quadtree approach. Finally, the accuracy of the classification as well as its suitability 

for monitoring purposes in a forest-tundra ecotone environment was assessed by evaluating 

the rate of detection and commission error. 

 

2. Study area and data 

2.1 Study area 

The study was conducted along a 1,500 km long and approximately 180 m wide north-

south transect that encompasses hundreds of mountain forest and alpine elevation gradients. 

The transect stretches from Tromsø in the northern part of Norway (69°3’ N 17°5’ E) to 

Tvedestrand in the southern part of the country (58°3’ N 9°0’ E) (Figure 1). It covers sample 

plots in the transition between the mountain forest and the alpine zone, where the terrain is 

often characterised by rounded forms, but also occurrences of hummocks, rocks and 

boulders, and steep slopes. The prevalent tree species were Norway spruce (Picea abies (L.) 

Karst.), Scots pine (Pinus sylvestris L.), and mountain birch (Betula pubescens ssp 

czerepanovii).  

 

2.2 Field data 

The field work was carried out in summer 2008 to provide in situ tree data from 35 

different field sites allocated along the transect. At each field site, two to four sample plots 

with a radius of 25 m were laid out to cover the range of the forest-tundra ecotone. The width 

of the forest-tundra ecotone varies for different locations and therewith the number of sample 

plots was adapted visually according to the altitudinal range of the ecotone at the specific site. 

To avoid overlap, sample plots were established with an interdistance of 50 m within field 

sites. In total, 111 sample plots were laid out at the 35 sites. 

For the precise navigation and positioning with real-time kinematic differential Global 

Navigation Satellite Systems (dGNSS), two Topcon Legacy E+ 20-channel dual-frequency 

receivers observing pseudo range and carrier phase of both Global Positioning System and 

Global Navigation Satellite System satellites were used as base and rover receivers. A base 

station was established at the closest suitable reference point of the Norwegian Mapping 

Authority for each field site. The expected accuracy of the reference points was 3 cm, 

whereas the expected horizontal accuracy of the field recordings relative to the base station 

was about 2 cm. Thus, the expected accuracy of the sample plots centre points was 3–4 cm. 
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Figure 1 - Overview of the study area with the 35 specific field sites (black dots). The 1,500 km long transect 

(black line) stretches from to 69°3’ N 17°5’ E to 58°3’ N 9°0’ E. 

 

 

Individual sample trees were selected for measurement within each plot. Three mutually 

exclusive tree height classes were used for the tree selection: (1) lower than 1 m, (2) between 

1 m and 2 m, and (3) taller than 2 m. A modified version of the point-centred quarter 

sampling method (PCQ) (Cottam and Curtis, 1956; Warde and Petranka, 1981) was used for 

selection. In the process, each sample plot was divided into four quadrants defined by the 

cardinal directions from the sample plot centre using a Suunto compass. In each quadrant the 

trees that were closest to the sample plot centre in the respective tree height classes were 

sampled independent of tree species and with a maximum search distance of 25 m. In cases 
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Several tree parameters were recorded individually for each sample tree. Stem diameter 

was callipered at root collar and tree height was measured with a steel tape measure or a 

Vertex III hypsometer for tall trees. Crown diameters were measured in the cardinal 

directions using a steel tape measure and tree species was determined. For each sample tree, 

the precise position was captured using dGNSS. 

In this study, a total of 744 trees were measured. However, ten trees were regarded as 

invalid for the analyses because of their tree crown areas being completely overlapped by tree 

crown areas of taller trees. These ten trees were discarded from the dataset which resulted in 

a total number of 734, i.e. 614 mountain birch, 67 Norway spruce, and 53 Scots pine, 

included in this study. Tree heights ranged between 0.02 m and 7.80 m. Tree crown areas 

were computed as the ellipse defined by the crown diameters as major and minor axes and 

ranged from 0.001 to 19.54 m2. A summary of the tree parameters is given in Table 1. 

 

Table 1 - Summary of field measurements of trees. 

Tree species Characteristics n Mean Min. Max. 
Mountain birch Height (m) 614 1.27 0.02 7.80 
 Diameter (cm) 613a 3.65 0.10 34.00 
 Crown area (m²) 614 0.91 0.001 19.54 
Norway spruce Height (m) 67 1.67 0.07 7.00 
 Diameter (cm) 65a 6.54 0.20 19.10 
 Crown area (m²) 67 1.45 0.006 5.69 
Scots pine Height (m) 53 1.33 0.10 5.10 
 Diameter (cm) 53 5.00 0.30 18.90 
 Crown area (m²) 53 0.81 0.002 7.28 
Note: a Missing diameter measurements due to field conditions. 
 

 

2.3 Laser data 

Airborne laser scanner data were collected in two separate acquisitions because of the 

large geographical extent of the study area and difficult weather conditions. The first 

acquisition was carried out in southern and central Norway on 23 and 24 July 2006 using an 

Optech ALTM 3100C laser scanning system. The second acquisition in northern Norway was 

conducted on 1 July 2007 with a Gemini upgraded version of the Optech ALTM 3100C laser 

scanner system, denoted as ALTM Gemini. An overlap zone in the county of Nordland 

(65°53’ N 13°27’ E) was scanned with both systems to provide approximately 80 km ALS 

data for comparison of the two systems. A Piper PA-31 Navajo aircraft carried both laser 

scanning systems at an average flying altitude of 800 m a.g.l. with a flight speed of 
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approximately 75 ms-1. The scan frequency was 70 Hz, maximum half scan angle was 7°, and 

the average footprint diameter was estimated to 20 cm in both acquisitions. Pulse repetition 

frequency (PRF) was 100 kHz for the ALTM 3100C laser scanner system resulting in a mean 

pulse density of 6.8 m-2. To obtain laser point clouds as similar as possible for the two 

acquisitions, the PRF was set to 125 kHz for the ALTM Gemini system, as suggested by a 

test flight in May 2007 conducted in another area. This resulted in a mean pulse density of 

8.5 m-2 for the acquisition in northern Norway in 2007. To keep the flying altitude above the 

terrain and hence the pulse density as constant as possible, the 1,500 km long transect was 

split into 147 individual flight lines. 

Pre-processing of the laser data was accomplished by a contractor (Blom Geomatics 

Norway), computing planimetric coordinates (x and y) and ellipsoidal height values for all 

laser echoes. 

Laser echoes labelled “last-of-many” and “single”, hereafter denoted as LAST, were 

used for the derivation of the terrain model. Ground echoes were classified from the 

planimetric coordinates and the corresponding height values of the LAST echoes to derive a 

triangulated irregular network (TIN) based on an iteration distance of 1.0 m and an iteration 

angle of 9° using the TerraScan software (Terrasolid, 2011). Furthermore, laser echoes 

labelled as “first-of-many” and “single”, hereafter denoted as FIRST, were used for the 

analysis in the current study. For this purpose, the FIRST echoes were projected onto the TIN 

surface and corresponding terrain height on these locations was interpolated. The height 

differences between the FIRST echo heights and the corresponding interpolated terrain height 

values were computed and stored. For the present analysis, only FIRST echoes with height 

values greater than zero were used because this criterion represents the sole indicator for the 

presence of objects on the terrain surface.   

Both the ALTM 3100C and the ALTM Gemini instrument record up to four echoes per 

laser pulse with a minimum vertical distance of 2.1 m between two subsequent echoes of an 

individual laser pulse for the ALTM 3100C. Because of the pulse width influencing the 

vertical resolution, the minimum vertical distance is assumed to be larger for the ALTM 

Gemini (cf. Baltsavias, 1999). However, in combination with low vegetation, this instrument 

property involves that very few pulses have more than a single echo. Therefore, the LAST 

and FIRST datasets will be identical for many of the sample plots. 
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3. Methods 

3.1 Concept 

The background of the present study was the development of an algorithm for automatic 

detection of small single trees in the forest-tundra ecotone using high-density ALS data based 

on an unsupervised classification approach classifying tree and non-tree raster cells. In 

general, unsupervised classification methods involve cluster analysis where elements are 

aggregated to homogeneous classes without any reference or training data. Based on 

statistical parameters, each element is assigned to a specific class without any information on 

the thematic content or affiliation of the respective element. 

For this purpose, a concept for a raster-based algorithm was developed employing grids 

with decreasing raster cell sizes as provided by a region quadtree approach (Figure 2). In 

general, region quadtrees are used as a systematic procedure to display homogeneous parts of 

an image (Samet, 1984). Based on a chosen criterion, an “image array is successively 

subdivided into quadrant, subquadrants, etc. until homogeneous blocks are obtained” (Samet, 

1984) and a regular decomposition of the image is obtained. Here, the main idea was to 

overlay the ALS data with the different grids in order to receive a binary raster where raster 

cells containing at least one laser echo are assigned the value 1 and empty raster cells the 

value 0. In an algorithmic context, the classification would start using a grid with a relatively 

large raster cell size that would be intersected with the ALS data and in case of a positive 

response, i.e. the presence of at least one laser echo, the raster cell would be quartered and 

again overlaid with the laser data. This procedure would be repeated until the raster cell is 

assigned the value 0 or until the minimum cell size is reached. Finally, using the raster with 

the minimum raster cell size, all cells with value 1 would be aggregated to tree clusters using 

a commonly adopted clustering analysis. Figure 2 illustrates the entire process. 

 

3.2 Computations 

In order to assess the accuracy of an unsupervised classification for automatic detection 

of small single trees in the forest-tundra ecotone, tree and non-tree polygons had to be 

computed. 

For this purpose, the field-measured crown diameters were used to estimate elliptical tree 

crown polygons. The contractor reported a positioning error of the laser data of up to 0.5 m. 

Therefore, trees with a crown diameter value less than 1.0 m in at least one cardinal direction 

were assigned a tree crown polygon with a constant radius of 0.5 m.  
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Figure 2 - Concept for a raster-based algorithm using a modified region quadtree. The white dots indicate laser 

echoes. 

 

 

Furthermore, non-tree polygons were generated utilising the basic properties of the PCQ 

method resulting in full control of some of the areas without any trees. For each plot, the 

sampling design of the PCQ method led to a maximum of three sampled trees per quadrant. 

The tree closest to the respective plot centre was selected irrespective of tree height class in 

each of the four quadrants. Using the areas between the selected tree in a quadrant and the 

respective plot centres, non-tree polygons were computed. In this process, the tree crown 

polygons of the selected trees were erased from the non-tree polygons to obtain full control 

over the treeless areas. 

 

3.3 Analysis 

To assess the capability of an unsupervised classification to distinguish between tree and 

non-tree raster cells, parts of the raster-based algorithm concerning the utilisation of grids 

with different raster cell sizes were tested. For this purpose, different raster cell sizes were 

adapted to the size of the sample plots starting with the radius of the sample plot as the initial 

raster cell side length. Raster cell side lengths ranged from 25 m to 39 cm which resulted in 

raster cell sizes of 625 m2 and down to 0.153 m2. Table 2 gives an overview over the different 

raster cell sizes used in the current analysis. Furthermore, the suitability of different height 

thresholds for the laser echoes included to detect tree raster cells in an unsupervised 
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classification approach was assessed: 0 cm, 10 cm, 20 cm, 30 cm, 40 cm, and 50 cm. Albeit 

different ALS-derived variables have been employed for the supervised classification of tree 

and non-tree laser echoes, laser height represents the strongest indicator for the presence of 

trees. Thus, only laser height was used in the current analysis to assess the capability of an 

unsupervised classification method for the classification of tree and non-tree raster cells. 

 

Table 2 - Summary of raster cell sizes at each location. 

Label for cell size Number of cells Cell side length (m) Cell size (m2) 
1 4 25 625.000 
2 16 12.5 156.250 
3 64 6.25 39.063 
4 256 3.125 9.766 
5 1024 1.5625 2.441 
6 4096 0.78125 0.610 
7 16384 0.390625 0.153 

 

 

For all classifications, grids were computed with the seven different raster cell sizes. 

Each grid was overlaid with ALS data using the six different laser height thresholds. Raster 

cells containing at least one laser echo were assigned the value 1, and empty raster cells the 

value 0. These grids were subsequently intersected with the tree crown polygons in order to 

assess the classification performance. In the first classification (I), all tree crown polygons 

were included irrespective of their tree height. For the second classification (II), only tree 

crown polygons with a tree height equal to or higher than the laser height thresholds were 

used. Furthermore, results of studies conducted by Næsset and Nelson (2007) and Thieme et 

al. (2011) suggested that when trees reach a height taller than 1 m they have a large potential 

for successful detection by an unsupervised raster-based classification, given a high laser 

point density. Therefore, a third classification (III) was assessed using only tree crown 

polygons with tree heights exceeding 1 m. Previous studies on the detection of small 

individual trees reported an underestimation of laser-derived tree heights compared to the 

corresponding tree heights measured in field (Næsset and Nelson, 2007; Næsset, 2009; 

Thieme et al., 2011). To investigate a potential effect of the underestimation of the laser-

derived tree heights, classifications for the laser height thresholds of 20 cm and 30 cm were 

evaluated for tree crown polygons with field-measured tree heights larger than the respective 

thresholds. For the present dataset, Thieme et al. (2011) reported mean underestimations of 

20 cm for mountain birch, 29 cm for Norway spruce, and 47 cm for Scots pine, respectively. 
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Because of the unbalanced tree species composition in the dataset, classifications were 

evaluated for tree crown polygons with tree heights of 30 cm, 40 cm and 50 cm for the laser 

height threshold of 20 cm (classification IV), and 40 cm and 50 cm for the laser height 

thresholds 30 cm (classification V). Commission errors were investigated by the intersection 

of the different grids with the non-tree polygons. 

 

4. Results and discussion 

4.1 Raster cell sizes 

The detection success rates for the different raster cell sizes demonstrated their different 

usages and suitability in an algorithmic context. Starting with an initial value of 625 m2, 

which corresponds to approximately a quarter of the sample plot size in this study, the three 

largest raster cell sizes 1 with 625 m2, 2 with 156 m2, and 3 with 39.1 m2 (Table 2) were well 

suited for the exclusion of areas without any trees in all classifications. However, these raster 

cell sizes were too large for reliable tree raster cell detection since the description of the 

positioning of the small trees is very imprecise using such large raster cell sizes. 

 
Figure 3 - Detection rate for different raster cell sizes for classifications I. 
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Figure 4 - Detection rate for different raster cell sizes for classifications II. 

 
Figure 5 - Detection rate for different raster cell sizes for classifications III. 
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Raster cell size 6 with 0.61 m2 (Table 2), that is approximately half the size of the mean 

tree crown area, was identified as the optimal raster cell size in terms of a small raster cell 

size providing a relatively precise positioning of the small trees and still satisfying detection 

success rates. In all classifications for raster cell size 6, 24.1 to 72.9% of the tree raster cells 

were classified correctly depending on the laser height threshold (Figures 3-7). For raster cell 

size 7 with 0.15 m2 (Table 2), however, a significant decrease in the success rate of the tree 

raster cell detection was found (Figures 3-7). Therewith, raster cell sizes that are considerably 

smaller than half of the mean tree crown area seem to be too small and hence inapplicable for 

the detection of tree raster cells. 

The three classifications I, II, and III revealed that large raster cell sizes involved high 

success rates for the detection of tree raster cells and that a decrease in raster cell size was 

accompanied by a decreasing success rate (Figures 3-5). The success rates were also 

inversely proportional to the laser height thresholds, i.e. the lower the threshold, the higher 

the success rate (Figures 3-5). Furthermore, a decrease in raster cell size resulted in a 

decrease in differences of the success rates between the laser height thresholds. Also for 

classifications IV and V, a decrease in raster cell size was accompanied by a decreasing 

success rate (Figures 6 and 7). 

 
Figure 6 - Detection rate for different raster cell sizes for classifications IV. 
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Figure 7 - Detection rate for different raster cell sizes for classifications V. 

 

 

4.2 Laser height thresholds 

For non-tree raster cells classified as tree raster cells, rates ranged between 0.01% and 

37.3% depending on the laser height threshold (Figure 8). Lower laser height thresholds 

resulted in higher rates of commission errors, for some raster cell sizes up to 100% 
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Figure 8 - Commission errors for different laser height thresholds. 

 

 

4.3 Classification for grid cell size 6 

Because of its identification as the optimal raster cell size the following subsection 

presenting and discussing the results of the different classifications refers to raster cell size 6. 

For classification I where the accuracy of the classification was assessed using all field-

measured tree data without any restriction of the tree height to the laser height thresholds, at 

least 24.1% and up to 62.6% of the tree raster cells were found depending on the laser height 

threshold (Figure 3). By restricting the tree heights to the laser height threshold for the echoes 

included in the classification (classification II), the accuracy of the classification ranged 

between 32.3% and 62.6% depending on the laser height threshold (Figure 4). For tree 

heights exceeding a height of 1 m (classification III), the rates of successful detection ranged 

between 36.3% and 72.9% for the different thresholds (Figure 5).  

Results from classification III where the accuracy was assessed using trees with tree 

heights larger than 1 m revealed slightly lower detection rates than found by previous studies 

on small individual tree detection in the forest-tundra ecotone (Næsset and Nelson, 2007; 

Næsset, 2009; Thieme et al., 2011). However, in this raster-based approach, the detection 

1 2 3 4 5 6 7

0
2

0
4

0
6

0
8

0
1

0
0

Raster cell size

C
o

m
m

is
s

io
n

 e
rr

o
r 

in
 %

Laser height threshold

0 cm

10 cm

20 cm

30 cm

40 cm

50 cm



Paper IV 

18�
�

rates apply to the tree raster cells and not the individual trees themselves which may have an 

influence on the detection rates in the present study. 

For the classifications with laser height thresholds of 20 cm (IV) and 30 cm (V), success 

rates for the detection of tree raster cells ranged between 42.9% and 47.6% (Figure 6), and 

39.0% and 40.8% (Figure 7), respectively. Both classifications revealed higher success rates 

for higher tree height thresholds. However, the differences between the success rates for the 

different tree height thresholds were low for classification IV and almost equal to zero for 

classification V (Figures 6 and 7). These results revealed an increase in successful detection 

of tree pixels by increasing the height of trees included in the classification. This behaviour 

reflects the influence of a potential underestimation of real tree height using ALS data as 

demonstrated by Næsset and Nelson (2007), Næsset (2009), and Thieme et al. (2011).   

 

4.4 Suitability for monitoring purposes 

The results from the different classifications revealed that the parameters for raster cell 

sizes, laser height threshold of the echoes included, as well as a potential lower tree height 

limit, have to be chosen carefully ensuring a justifiable trade-off between detection success 

rates and commission errors. For monitoring purposes also additional challenges represented 

by the usage of different sensors and acquisition settings over time (Næsset, 2009) have to be 

met.  

Varying laser point densities caused by the usage of different instruments have to be 

tested for their comparability. In general, the probability of a tree for being hit by at least one 

laser pulse is a function of the laser point density. Low point densities may therewith not be 

capable to detect trees with sizes that are typical in the forest-tundra ecotone. Næsset and 

Nelson (2007), as well as Thieme et al. (2011) reported that almost all trees exceeding 1 m in 

height were hit by at least one laser pulse using high-density ALS data with point densities 

ranging from 6.8-8.5 m-2. However, in this dataset high point densities involved a relatively 

large proportion of data noise for laser echoes with heights lower than 20-30 cm as revealed 

by the sudden decrease of commission errors for these thresholds in the present analysis. In 

the forest-tundra ecotone, the smallest trees and other typical vegetation such as shrubs are 

often equal in height which limits their distinguishability considerably. Thus, severe 

commission errors may occur using an unsupervised classification technique only employing 

laser height values. 

Furthermore, data acquisitions with a sufficient time span are essential to detect 

regeneration and mortality of small individual trees. Tree height growth is detectable over 
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relatively short time spans as 2 to 5 years both using high- and low-density ALS data (Næsset 

and Gobakken, 2005; Yu et al., 2006). However, for small individual trees located in the 

forest-tundra ecotone, tree height growth is strongly depending on local climatic and 

topographic conditions. Based on an assumed height growth of 1 to 10 cm per year for small 

trees, longer time spans may be required for such a raster-based automatic detection 

algorithm, especially with regard to tree establishment. 

 

5. Conclusion 

To conclude, the present study demonstrated the potential of an unsupervised 

classification approach for the automatic detection of small individual trees in the forest-

tundra ecotone based on high-density ALS data. By employing different raster cell sizes, 

suitable initial values for the exclusion of large areas without any laser echoes reflected from 

trees could be recognised providing an efficient tool for data processing. Furthermore, a 

lower limit for raster cell sizes was determined providing a relatively precise positioning of 

the small trees and still ensuring a satisfying rate of successfully detected tree raster cells. 

With regard to the laser height thresholds for the laser echoes included in the respective 

classifications, the thresholds of 20 cm and 30 cm turned out to be the turning points where 

the rate of non-tree raster cells classified as tree raster cells decreased significantly 

accompanied by a still satisfying rate of successfully detected tree raster cells. 

ALS has already been adopted for NFI and monitoring programmes, e.g. the Land Use 

and Carbon Analysis System in New Zealand (Beets et al., 2010). In context of a national 

monitoring program covering such vast areas as the forest-tundra ecotone in Norway, it is 

advisable to identify a laser point density that both is high enough to detect the small objects 

of interest and low enough to keep data noise emerging from other vegetation as low as 

possible. Then, provided a sufficient time span and an adequate selection of raster cell sizes 

and laser height threshold of the echoes included, an unsupervised classification technique 

may be useful to detect regeneration and mortality of small individual trees. The raster grid 

cells may further build the basis for map products presenting variation of tree presence over 

time.  
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