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Abstract 

The increasing awareness on the importance of forests and forest management practices to 

modern society requires accurate and cost-effective methods for monitoring and assessment 

of forest ecosystems. The four studies included in the thesis are addressing a variety of 

aspects related to the estimation of forest resources using auxiliary information, considering 

both the design- and model-based inferential frameworks. More precisely, the case studies 

described in the present work are focusing on above ground biomass estimation using 

auxiliary information consisting of airborne laser scanning (ALS) measurements, satellite 

imagery, and other various cartographical products like elevation data from digital terrain 

models and land-use maps. The methods discussed in the thesis have a wide applicability, and 

can be used in relation to forest inventories conducted at national and regional scales, and 

down to small areas and individual tree level. 

Large-scale inventories using ALS as sampling tool have the potential to provide 

timely and reliable estimates of forest characteristics. Such inventories rely on complex 

sampling designs for acquiring ground measurements and ALS data, thus assessing the 

validity of the inference cannot always be performed using analytical approaches. A possible 

solution in such cases is to rely on simulated sampling for assessing the behaviour of various 

estimators. A sampling simulator was created using empirical datasets, copula modelling and 

nearest neighbor imputations. The studies demonstrated that ignoring the underlying 

assumptions required by the estimators can seriously affect the precision of the estimates 

(e.g., nearly five times overestimation of standard errors). Besides, simulated sampling can 

provide the means for choosing the appropriate estimator (and even the right sampling 

strategy) to be used in a real application. Furthermore, the simulation results demonstrated 
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that using ALS as sampling tool can be a cost-efficient inventory method for large-area 

applications.  

Estimation of forest resources at local scales is often difficult when the sample sizes 

are very small or missing entirely. Such situations were address within a model-based 

framework, where the superpopulation model was replaced by a canonical vine (C-vine) 

copula. Using simulated sampling from the copula function followed by nearest neighbor 

predictions, the approach demonstrated a higher accuracy compared to bootstrap resampling, 

the main improvement consisting in a significant bias reduction. 

To meet the demand for detailed information at tree level required by intensive forest 

management activities, a novel method for tree top detection and extraction of individual tree 

attributes was developed. Using the stem number estimates provided by area-based 

inventories and under mild assumptions regarding the spatial process generating the spatial 

stem distribution, the algorithm demonstrated a robust behaviour by favourably balancing the 

omission and commission errors in a heterogeneous boreal forest. An important asset of the 

method is the potential to be seemingly integrated with area-based, ALS-aided operational 

forest inventories. 

The strengths and drawbacks of the methods, as well as further improvements to be 

considered are also discussed. 
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Sammendrag 

Den økende bevisstheten om betydningen av skogen og ulike forvaltningsmetoder for det 

moderne samfunnet krever nøyaktige og kostnadseffektive metoder for overvåking og 

vurdering av skogøkosystemer. De fire studier som inngår i avhandlingen, tar opp en rekke 

aspekter knyttet til estimering av skogressursene ved hjelp av tilleggsinformasjon, og 

vurderer både design- og modellbasert rammeverk. Mer presist, er de studiene beskrevet i 

dette arbeidet fokuserte på biomasseberegning ved hjelp av tilleggsinformasjon som består i 

målinger ved hjelp av flybåren laserskanning (ALS), satellittbilder og diverse kartografiske 

produkter, som for eksempel høydedata fra digitale terrengmodeller og 

arealbrukskart. Metodene som diskuteres i avhandlingen dekker et stort bruksområde, og de 

kan brukes i forhold til nasjonal og regional skogtaksering, og ned til estimering på små 

områder og for enkelttrær. 

Storskala taksering av skog med ALS som potensial til å gi presise og pålitelige 

anslag over skogegenskaper. Slike takster krever komplekse samplingsmetoder for å skaffe 

feltmålinger og ALS data, og dermed kan gyldighetsvurderingen ikke alltid utføres med 

analytiske tilnærminger. En mulig løsning i slike tilfeller er å bruke simulert sampling for å 

vurdere oppførselen til ulike estimatorer. En samplingsimulator ble utviklet ved hjelp av 

empiriske data, copula modellering og nærmeste-nabo prediksjoner. Studiene viste at 

ignorering av underliggende forutsetninger som estimatorene bygger på, kan ha store effekter 

for presisjonen i anslagene (f. eks nesten fem ganger overvurdering av 

middelfeilen). Dessuten kan bruk av simulert sampling bidra til riktig valg av estimatorer (og 

til og med en riktig samplingstrategi) for anvendelse i reelle applikasjoner. 

Simuleringsresultatene viste at bruk av ALS som samplingsverktøy kan være en 

kostnadseffektiv metode for taksering av store skogområder. 
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Beregning av skogressursene på lokalt nivå er ofte vanskelig når utvalget av 

feltobservasjoner er svært lite eller fraværnde. Slike situasjoner kan adresseres innen et 

modellbasert rammeverk, der superpopulasjonsmodellen erstatts av en C-vine copula. Ved å 

bruke simulert sampling fra copula-funksjonen etterfulgt av nærmeste-nabo prediksjoner, ble 

det demonstrert en høyere nøyaktighet i forhold til bootstrap resampling, og at den største 

forbedring består i en signifikant reduksjon av systematisk feil. 

For å møte etterspørselen etter detaljert informasjon på trenivå som kreves ved 

intensiv skogforvaltning, ble en ny metode for tretopp identifisering og ekstrahering av 

individuelle treattributter utviklet. Ved å bruke estimert stammeantall fra arealbaserte 

metoder og under milde antagelser om prosessen som genererer den romlige 

stammefordelingen, viste algoritmen en robust adferd som balanserte utelatelses- og 

inkluderingsfeilene som oppstod ved bruk i en inhomogen boreal skog. En viktig fordel med 

metoden er potensialet til integrasjon med arealbasert skogstaksering basert på ALS. 

Styrker og ulemper ved metodene, samt ytterligere forbedringer som kan 

implementeres, er også omtalt. 
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1. Introduction 

The demands for timely and accurately information regarding forest ecosystems have 

increased steadily during the past decades, moving from timber supply information towards 

multi-purpose assessment of forest and non-forest resources at various spatial scales (Kleinn, 

2002; Köhl et al., 2006; Corona & Marchetti, 2007; Corona, 2010). National Forest Inventory 

(NFI) systems can provide information at national, regional and sub-regional level for 

strategic and tactical forest management and planning, while the operational stand-based 

forest inventories cover regions at small and intermediate scales. International collaborative 

efforts like the United Nations Food and Agriculture Organization Global Forest Resource 

Assessment, United Nations Framework Convention on Climate Change (UNFCCC) and the 

Kyoto Protocol are aiming towards compiling global scale information regarding the state of 

world’s forests. 

At either level, forest inventories rely on sampling techniques for collecting the 

ground observations necessary for estimation and inference for the underlying area of interest 

(Köhl et al., 2006). Using cartographical representations of forest resources (or forest 

mapping- Corona, 2010) makes possible to obtain spatially localized descriptions of the 

forest cover, which can serve operational, tactical and strategic forest planning goals. The 

synergy of traditional, ground based forest inventories and modern forest mapping 

technologies can result into enhanced estimation accuracies of forest resources required at 

different levels of decision making (Corona, 2010). 

 

1.1 Remote sensing support for forest inventories 

The purpose of a forest inventory is to provide quantitative and qualitative descriptions of the 

forest resources from a defined area required for forest planning and forest policy making 
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(Köhl et al., 2006; Corona, 2010). In most situations, forest inventories are sample surveys 

where the parameter estimates are obtained from a small amount of data collected using 

various sampling strategies (the combination of a sampling design and an estimator; Gregoire 

& Valentine (2008)). Two main approaches are commonly used for inferring values of target 

population parameters from the sampled data: probability-based inference and model-based 

inference. The probability-based inference (called also design-based inference) relies upon 

the probabilistic sampling design, the attributes of the population elements being considered 

fixed quantities. In the case of design-based, model-assisted inference, auxiliary information 

is used for increasing the precision of the estimates, but the validity of the inference is still 

ensured by the probabilistic design. Under model-based inference, all the elements and 

parameters of the population are considered random variables generated from a model (a 

superpopulation model; Cochran (1977)). Hence, the inference relies on the model without 

explicitly requiring probabilistic sampling, all the elements and parameters of the population 

are considered random variables generated from a model (a superpopulation model; Cochran 

(1977)). More detailed discussions regarding the design- and model-based inferences can be 

found in Gregoire (1998), Kangas (2006), and McRoberts et al. (2010ab). 

Due to the technological and theoretical developments during the last decades, remote 

sensing (either active or passive) is nowadays accepted as a cost-effective auxiliary source of 

information for monitoring and mapping of natural resources (FAO, 2010). Passive remote 

sensing measures the backscattered sunlight using airborne or satellite platforms, the final 

product being an imagery product with various spatial and spectral resolutions. Airborne 

imagery and photo interpretation techniques have been used to support operational forest 

inventory for decades (Köhl et al., 2006; Corona, 2010). The emergence of easily accessible 

satellite imagery products (e.g. the Landsat program; Woodcock et al. (2008)) provided the 
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means for creating ‘wall-to-wall’ maps of forest attributes and for obtaining estimates at 

different spatial scales. 

Active remote sensing like LIght Detection And Ranging (LiDAR) or Radio 

Detection And Ranging (RADAR) measures the elapsed time between the emission of a 

signal (a laser pulse for LiDAR and a radio signal in the case of RADAR) and the returned 

signal reflected by a target object, providing highly accurate determination of the sensor-to-

target distance. Although promising results have been reported (Solberg et al., 2010), forestry 

applications using RADAR are still subject of intensive research. The capability of LiDAR 

technology for monitoring and mapping of natural resources at various geographical scales 

has been investigated using terrestrial, airborne and spaceborne systems, and nowadays the 

airborne laser scanning (ALS) technology is currently migrating from research to commercial 

applications (Hudak et al., 2009; Wulder et al., 2012). The strength of the ALS technology 

consists in the ability of laser pulses to penetrate through dense vegetation layers, thus 

providing accurate three-dimensional characterization of the vegetation structure. For natural 

resources applications, small-footprint (0.1-2.0m), discrete returns LiDAR systems are the 

most common, due to their versatility for uses in topographic mapping (Hyyppä et al., 2008; 

McRoberts et al., 2010b). 

 

1.1.1 ALS-aided forest inventories 

According to Hyyppä (2008), the main approaches for estimating forest attributes using ALS 

measurements are (1) individual tree detection and (2) using metrics derived from the 3D 

cloud of laser echo heights. 

Individual tree detection and tree crown delineation methods - also called individual 

tree crown (ITC) methods – use the 3D information provided by the clouds of laser 

measurements for tree identification and variable extraction. Use of ITC methods does not 
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guarantee the detection of all the trees within the study area, the results depending heavily on 

the forest conditions (Hyyppä et al., 2008; Vauhkonen et al., 2011). However, quantitative 

and qualitative attributes can be estimated for the detected trees, making the ITC methods 

attractive in forest management and timber procurement planning (Hyyppä et al., 2008; 

Maltamo et al., 2009a). For instance, the ITC methods can provide tree lists containing direct 

estimates of tree heights, crown diameters, stem locations and help indentifying the presence 

of rare tree species (Hyyppä et al., 2008; Maltamo et al., 2007). Also, stand-level estimates 

can be derived by aggregating the individual trees. Still, spatial information provided by the 

estimated stem locations may be used together with height and crown diameter information 

for estimating the diameters of the identified trees (Salas et al., 2010), or to derive 

competition indices (Maltamo et al., 2007; Pedersen et al., submitted). However, simply 

scaling up individual tree estimates does not guarantee unbiased estimation of stand 

attributes, especially due to the underestimation of the stem densities as a result of the 

inability of ITC methods to detect all the small and suppressed trees. A probability-based 

forest inventory approach using the segmented tree crowns and the associated ground 

measurements allowing for unbiased estimation of selected stand attributes (stem number, 

basal area, and the basal area - height product) was developed by Flewelling (2008). 

With area-based ALS estimation, various metrics are extracted from the height 

distributions of the laser echoes recorded on the field plots, and the relationships between 

ALS metrics and plot-level forest variables the are usually described using regression models 

(Næsset, 2002; Næsset, 2004). Hence, the prediction of forest variables is possible on all 

locations where the ALS metrics are available. Area-based, ‘wall-to-wall’ ALS-aided surveys 

are nowadays commercially used in operational forest inventories in Nordic countries 

(Næsset, 2004; Maltamo et al., 2007a; Hyyppä et al., 2008), targeting forest planning 
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activities at small to medium geographical scales (e.g. 50-2000 km2; Næsset, 2007; Næsset et 

al., 2009). 

For surveys targeting large regions (e.g. districts, counties or countries), full-coverage 

with ALS data can become economically prohibitive (Wulder et al., 2012). A possible 

solution is using ALS as a strip-sampling tool, surveying only a subset of the target area 

(Næsset et al., 2009). Efforts to develop large-area forest inventories using ALS as a 

sampling tool have been addressed using both design-based and model-based inferential 

frameworks. Design-based approaches in the form of double-sampling surveys (Parker & 

Evans, 2004; Stephen et al., 2012) or using two-stage designs (Andersen et al., 2009; 

Gregoire et al., 2011; Gobakken et al., in press) have been proposed, and a novel theoretical 

contribution for design-based variance estimation for two-stage inventories was introduced 

by Gregoire et al. (2011). The properties of several regression estimators have been assessed 

by Andersen & Breidenbach (2007), and model-based approaches for large-area surveys were 

described by Andersen et al. (2011) and Asner et al. (2011). In the context of model-based 

inference, a two-phase variance estimator was developed by Ståhl et al. (2011). Recently, 

Gobakken et al. (in press) describes a comparative study including both the design- and 

model-based estimation and inference for large-area biomass estimation using a systematic 

sample of ALS strips and NFI data. A comprehensive overview of LiDAR applications for 

large-area forest surveys is given by Wulder et al. (2012). 

 

1.1.2 Mapping and estimation of forest resources using satellite imagery 

A widely used technique for coupling auxiliary information (e.g., remotely sensed data, DTM 

elevations, and land-use maps) is the k near-neighbours imputations (Tomppo, 1991; Tomppo 

et al., 2008, 2009; McRoberts, 2008). With k near-neighbour (k-NN) methods, the unknown 

attributes in a target data set are predicted as weighted means of the attributes from the k-
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nearest reference observations found in a reference data set, the distances between the target 

and reference observations being calculated in the feature space spanned by the auxiliary 

variables. Due to their non-parametrical nature, the near-neighbours imputations do not 

require distributional assumptions about the data. Moreover, they permit simultaneous 

multivariate predictions of both continuous and categorical variables. 

Coupling medium spatial resolution satellite (e.g. Landsat imagery) and k-NN 

methods are considered to be cost-efficient solutions for supporting NFI programs (Tomppo, 

1991; Tomppo et al., 2008), either by mapping the forest attributes of regional and national 

scales, or for providing local estimates (LeMay & Temesgen, 2005; LeMay et al., 2008; 

Maltamo et al., 2009; McRoberts, 2008, 2011). Reviews of the nearest neighbor methods 

with applications in forestry are given by Tomppo et al. (2008), Eskelson et al. (2009), 

McRoberts et al. (2010a). 

The estimation following k-NN imputations have been addressed under the design-

based inferential framework for large-area surveys (Baffetta et al., 2009, 2011), the model-

based inference being considered most appropriate for small-area estimation (Kim & 

Tomppo, 2006; McRoberts, 2006; McRoberts et al., 2007, 2011; Magnussen et al., 2009, 

2010ab; McRoberts, 2011). 

 

1.2 Research objectives 

The main focus of the thesis is assessing the accuracy of forest attributes obtained from 

surveys performed at different spatial scales. The research considered design- and model-

based inferential approaches related to large-area forest inventories covering regions and sub-

regions (papers I-II), as well as model-based methods applicable for small-area estimation 

(paper III). At the finest scale, the studies were focusing on estimating quantitative single-tree 

variables (paper IV). A common topic of the analyses was usage of auxiliary information 
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providing either partial or full coverage of the target areas. The assessment methods were 

based on simulated sampling (papers I-III), and a novel single-tree detection algorithm 

combining area-based and single-tree methods was introduced in paper IV. The succession of 

the research papers included in the thesis is the following: 

� Paper I - ”Assessing the accuracy of regional LiDAR-based biomass estimation using 

a simulation approach”- introduces the set up of the simulation approach for assessing 

estimators for design- and model-based sampling strategies, and illustrates the use of the 

method through a case study resembling a real sample survey. 

� Paper II -” A simulation approach for accuracy assessment of two-phase post-

stratified estimation in large-area LiDAR biomass surveys”- takes the analysis from paper I a 

step further, focusing on post-stratified estimation and considering also the variance 

estimation under two-phase systematic sampling. Moreover, a cost-efficiency analysis is 

performed to assess the gains of using auxiliary ALS data in the estimation. 

� Paper III -”Model-based inference for k-nearest neighbour predictions using a 

canonical vine copula” shifts the focus from large-area inventories to small-domain 

estimation. A model-based approach using copulas is introduced and assessed against 

bootstrap resampling. 

� Paper IV -” Single tree detection in heterogeneous boreal forests using airborne laser 

scanning and area based stem number estimates”-describes a single-tree detection algorithm 

to be used for enhancing area-based, ALS-aided forest inventories with single-tree level 

information. 

The specific objectives of the thesis can be summarized as follows: 

1. Aspects related to ALS-aided surveys covering large geographical regions and sub-

regions: 
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1.1. to develop a framework for assessing the properties of the estimators used in surveys 

involving complex designs, and 

1.2.  to demonstrate the functionality of the platform by validating existing estimators, 

and assessing the estimation and cost-efficiency of various sampling strategies; 

2. To introduce and to assess a true model-based inferential approach based on simulated 

sampling from a superpopulation model, which can be suitable for small-area estimation; 

3. To develop a method for estimating attributes at the scale of individual trees, using 

empirical datasets as the large-area ALS-aided inventories. 

A general description of the datasets used in the studies is provided in section 2, and 

the main methods employed by each paper are detailed in section 3. Section 4 presents and 

discusses the main results of the analyses. Finally, conclusions and future research 

opportunities related to the present work are given in section 5. 

 

2. Materials 

The material used for in the studies consists in field plots and auxiliary information consisting 

in remotely sensed data, a digital terrain model (DTM) and land-use maps. Paper I-III are 

based on field data, ALS and satellite datasets acquired in Hedmark County (HC), while the 

material for paper 4 was collected independently of the HC datasets in Aurskog-Høland 

municipality (AH) and consists in plot measurements and ALS data. Both study areas were 

located in south eastern Norway (Figure 1), whithin the boreal forest vegetation zone (Olson 

et al., 2001). The material used in papers I, II and III was collected to support area-based 

forest inventory methods, while the material used in paper IV targeted the development of 

ITC. 
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Figure 1 Geographical locations of the study area- Hedmark County and Aurskog Høland 
 

2.1 Study areas 

The AH study area covers 890 km2 and the forested part consists of coniferous and mixed 

forest stands. Considering the local scale of the measurements, the forest structure is rather 

heterogeneous and the terrain steepness varies considerably among the plots. 

The total area of HC is 27340 km2, of which 53.7 % is covered by forests (Anon., 

2004). The HC forests are spread over a broad range of growth conditions, being dominated 

by Norway spruce (Picea abies (L.) Karst.), and Scots pine (Pinus sylvestris L.) and with 

birch as the main deciduous species. The topography across HC displays large altitudinal 

variations, with a decreasing altitudinal trend from the mountain areas in the north towards 

the south. 
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2.1 Field data 

In AH, the field measurements were collected from 40 circular plots during fall 2007 and 

winter of 2008. Four plots located in dense young forests were establish using a radius of 

12.62 m (500 m2 area), the remaining 36 plots having a radius of 17.84 m (1000 m2 area). The 

field measurements in HC were provided by the Norwegian National Forest Inventory 

(Tomter et al., 2010) and were collected between the years 2005 and 2007 from circular plots 

of 8.92 m radius (250 m2 area). 

On each location, the (x, y) plot centre coordinates were determined using differential 

post-processing of dual-frequency Global Positioning System (GPS) and Global Navigation 

Satellite System (GLONASS) measurements acquired by Topcon dual-frequency receivers, 

with reported average plot centre positioning error <0.12 m. 

On each plot, tree species and stem diameter at breast height (dbh) were recorded for 

all trees with dbh ��� cm, and height measurements were acquired from sample trees. In 

addition crown measurements were performed for sample trees on the AH plots. Different 

strategies for sample tree selection were followed on the AH and NFI plots, as the data served 

two different purposes. On all plots, the tree stem locations were also mapped. 

In addition to the individual tree variables, area-based variables like plot basal area, 

mean height, Lorey’s height and mean crown diameter were derived for the AH plots. For the 

NFI plots across HC, the above ground biomass (AGB) of living trees was obtained by 

summing up individual biomass estimates obtained using tree-species specific allometric 

equations (Marklund, 1988) for all living trees with h ���������	
�
�
�������
��	��
����
�
��

showed a trend of increasing values from north to south, following the altitudinal trend 

present on HC. 
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2.2 Auxiliary data 

2.2.1 Laser scanning data 

Small-footprint airborne laser scanning (ALS) measurements were acquired in summer 2006. 

For both areas, the acquisition of ALS data was performed on east-west oriented parallel 

corridors containing the field plots. An overview of the ALS data is presented in Table 1. 

 

Table 1 Airborne laser scanning data 

Study area Hedmark Aurskog-Høland 

Paper I,II,III IV 

Acquisition settings 

acquisition date 2006 

platform PA31 Piper Navajo fixed wing 

canopy conditions leaf-on 

flying altitude (m) 800 

flying speed (m s-1) 75 

Sensor settings 

sensor Optech ALTM 3100 

no. of echoes 1-4 

echo category for analysis first and single 

pulse repetition frequency (kHz) 100 

scan frequency (Hz) 55 70 

echo density (echoes m-2) 2.8 7.4 

footprint (m) 0.21 0.25 

 

The ALS measurements were used to obtain canopy metrics for AGB prediction in 

papers I and II, and for individual tree identification and estimation of tree-level variables in 

paper IV. 
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2.1.2 Satellite imagery data 

The satellite imagery consisting of three nearly cloud-free Landsat 5 TM images (Table 2) 

was required for the analysis in papers I, II and III. The Landsat images were delivered with a 

georeferencing error of �������������of the pixels. The imagery data was converted to at-

satellite reflectance and atmospherically corrected. Only six of the seven TM bands (bands 1 

to 5 and band 7) were used in the analysis. 

In order to obtain full coverage with imagery data of the HC area required by the 

analysis in papers I and II, an image mosaic with 15.81 m pixel resolution was created using 

nearest neighbour resampling such that the pixel area (approximately 250 m2) matched the 

area of NFI plots in HC. 

 

Table 2 Satellite imagery data 

Satellite 
Image 

Date Path/row 
Sun 

elevation (deg) 
Sun 

azimuth (deg) 
Spatial 

resolution (m) 

1 03-June-2007 197/16 49.64 162.17 25 

2 03-June-2007 197/17 50.00 162.00 30 

3 10-June-2007 198/16 50.07 161.93 25 

 

2.2.3 Cartographical data 

Cartographical data was used for performing the analysis in papers I, II and III. A 25 m 

spatial resolution DTM produced by the Norwegian Mapping Authority from the official 

topographic map series and AR5 land use maps (Bjørdal & Bjørkelo, 2006) were used to 

obtain a forest mask for HC at the same spatial resolution as the Landsat mosaic. In addition, 

the DTM elevations recorded at locations corresponding to the NFI plots in HC were used for 

the analysis in paper III. 
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3. Methods 

3.1 Assessing sampling strategies for large-area forest inventories 

The assessment of sampling strategies for large area forest inventories is addressed in papers 

I and II. The studies consider ALS-aided inventories using sampling strategies involving two-

phase designs with generalized regression estimators, which are also compared with the 

ground-based surveys traditionally employed by the NFI program. The core of the studies 

consists in using a sampling simulation approach, where simulated sampling from an 

artificial population with known parameters is used for deriving the sampling distribution of 

the estimators. 

Both papers addressed a general case resembling the large-area biomass survey 

performed in HC (Gregoire et al., 2011; Ståhl et al., 2011; Gobakken et al., in press), where 

the NFI field data was supplemented with a systematic sample of ALS measurements 

acquired in corridors overlapping every second NFI grid line (approximately 8% of the HC 

land area). Paper I introduces the simulation platform and demonstrates the utility of the 

simulated sampling for unstratified AGB estimation under design- and model-based 

inference. Paper II takes the analysis a step further, focusing on post-stratified estimation and 

considering also another class of variance estimators (successive difference estimators) for 

two-phase systematic sampling. Moreover, a cost-efficiency analysis is preformed to assess 

the gains of using the ALS-aided estimation. 

 

3.1.1 Creating the artificial population 

In order to obtain valid simulation results, the artificial population has to resemble the 

original population targeted by the survey. Considering the scale of the simulated survey, the 

empirical dataset (ALS metrics, spectral information corresponding to the satellite bands and 
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AGB data) was rather scarce. Instead of acquiring more observations (a hopeless endeavour, 

however), a Gaussian copula (Nelsen, 2009) was used for modelling the joint multivariate 

distribution between the empirical variables. Hence, a much large sample of ALS metrics, 

spectral information and AGB data could be generated from the fitted copula function. Using 

the similarities between the spectral information in the Landsat TM mosaic and copula 

sample, the ALS metrics and the AGB were imputed on each of the mosaic pixels using the 

nearest neighbor technique. The result was a map of the HC forest area, where the population 

elements were represented by the pixels. Thus, the parameters of the artificial population (the 

total and the average AGB) could be calculated without error. The analyses also indicated 

that, due to the nearest neighbor imputations, the main trends in the empirical data were 

reasonably well preserved in the artificial population. 

 

3.1.2 Sampling strategy assessment 

Using the simulation platform, various designs like simple random sampling without 

replacement (SRSwoR) and systematic sampling (SYS) were implemented for both the ALS 

and the ground sample. The per-hectare AGB was estimated using design-based estimators 

like Horvitz-Thompson and generalized regression estimators, and by using the synthetic 

regression estimator under the model-based inferential framework. 

Using simulated sampling, the bias and the true standard errors of the AGB estimators 

were obtained under SRSwoR and SYS. Moreover, the estimated (analytical) standard errors 

(Gregoire et al., 2011; Ståhl et al., 2011; Gobakken et al., in press) could be compared with 

the true standard errors obtained from the randomization distributions of the estimators. 

Hence, it was possible to obtain the estimation accuracies in terms of root mean squared 

errors, and to compare the relative efficiencies of SRSwoR and SYS. Moreover, the validity 
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of the inference was expressed by building 95% confidence intervals around the AGB 

estimates. 

The assessment of sampling strategies included cost-efficiency analyses, where the 

relationships between the precision and the costs of simulated surveys have been estimated 

using various sampling intensities. The sampling intensities were defined using different 

settings for the design parameters like the spacing between the parallel ALS corridors and the 

distances between the field plots. 

 

3.2 Model-based estimation for small domains 

The analyses described in paper III focus on non-parametrical AGB estimation using nearest-

neighbor imputations, under the model-based inferential framework. The model-based 

approach proposed in the paper assumes that the superpopulation model can be represented as 

a joint multivariate distribution of the auxiliary data and the ground-based AGB estimates. 

The multivariate dependencies among the variables were modelled using the hierarchical 

pair-copula decomposition approach, which allows building high-dimensional copula models 

from bivariate copula models and conditional marginal distributions, the copula-pairs being 

identified by the means of graphical representation called vines (Bedford & Cooke, 2001, 

2002; Aas et al., 2009). The superpopulation model was constructed using a canonical vine-

copula (called also C-vine copula, Bedford & Cooke, 2001; Aas et al., 2009), and it included 

auxiliary information from both reference and target observations. 

The study was conducted using a simulation approach, where the empirical dataset 

containing auxiliary information (satellite imagery and elevation data) and ground-based 

AGB estimates was randomly split into reference and target observations, the C-vine copula 

being fitted each time new reference and target observations were created. Considering the C-

vine copula as the superpopulation model, new samples of the same size as the reference 
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dataset were iteratively generated from the copula function and used with nearest neighbor 

imputations for predicting the average AGB of the target dataset. The number of neighbours 

(k) used for imputations was determined using a bias-minimizing criterion (McRoberts et al., 

2011; McRoberts, 2011), and the results were compared to the case of using k=1. Hence, the 

sampling distribution of the nearest neighbor estimators could be constructed for determining 

the biases and the standard errors produced for each data split. 

Finally, the accuracy and the validity of the inference for the nearest neighbor 

predictions using the copula-based approach was assessed against bootstrap resampling 

(McRoberts et al., 2011; McRoberts, 2011). 

 

3.3 Estimation of tree-level attributes  

A novel method for identification and delineation of individual trees using ALS 

measurements is described in paper IV. The method was developed assuming that the tree 

stems positions at plot level is the result of a spatial random process. Having the hypothesis 

of a random process confirmed by the L̂ estimator (Ripley 1979) on most of the plots in AH 

study area, the expected nearest neighbor distance (Clark & Evans, 1954) between trees was 

estimated using stem number predictions and the known plot areas. For each plot, the stem 

number was predicted using a regression model having selected ALS metrics as covariates. 

The identification and delineation of individual tree crowns was performed using 

canopy height models (CHM) obtained for each plot by rasterizing the laser echo height 

measurements. The estimated nearest neighbor distances among trees obtained on each plot 

were used for (1) building up smoothing kernels for the CHMs, and (2) obtaining appropriate 

spatial resolutions for creating the CHMs. Image processing techniques could be applied 

individually on each smoothed CHM for detecting tree tops, extracting individual tree 

attributes (e.g. tree height and crown width) from ALS height measurements, and estimating 
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plot-level forest characteristics (e.g. mean height) by aggregating the individual tree 

estimates. 

The performance of the new method was assessed against an established algorithm 

(Hyyppä & Inkinen, 1999; Hyyppä et al., 2001). 

 

4. Results and discussion 

4.1 Assessing sampling strategies for large-area forest inventories 

The results obtained from the simulation studies (e.g. the estimated AGB per hectare and its 

standard error) cannot replace the estimates from a real survey. On the other hand, the 

simulation exercises demonstrated the use of simulated sampling for validating estimators for 

complex designs, and how the relative efficiency of various estimators can be assessed. 

Moreover, the simulation approach makes possible to assess the design effect when using 

complex multi-phase sampling designs. 

The studies describe in detail a novel approach for constructing a sampling simulation 

platform, where empirical observations acquired from different sources are combined into a 

multivariate distribution using copulas and then generalized across a geographical area by the 

means of nearest neighbor imputations. 

The case studies presented in papers I and II demonstrated that using systematic 

sampling designs can dramatically inflate the estimated (analytical) precision of the ALS-

aided surveys compared to the empirical (true) precision. For instance, the simulation results 

suggested that the estimated standard errors of the per-hectare AGB under two-phase SYS 

can be approximately 5 times higher compared to the true errors. Although the variance 

inflation was expected from the general sampling theory, the magnitude of the design effect 

cannot be derived analytically when complex designs are involved (Gregoire et al., 2011). 
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Moreover, it can be expected that the variance inflation under the real survey to be even 

higher, given that the artificial population used during the simulations is expected to have less 

variability compared to the real target population (e.g., the forested areas in HC). 

When the theoretical assumptions used for developing the estimators are fulfilled (e.g. 

SRSwoR, independence and invariance for subsampling, Särndal et al., 1992, p. 134-135), 

the variance estimators performed generally well, the differences between true and analytical 

values varying between 1 and 10%. The simulation exercise described in paper II indicated 

also the ability of the MB estimator to account for post-stratification and to provide very 

precise estimates. However, the simulation results indicated that the best standard error 

estimates under SYS were provided by the successive difference estimator. 

According to the cost-efficiency analysis performed in paper II, ALS-aided surveys 

are in general preferable compared to ground-based surveys, which means that they have a 

better precision at comparable costs. However, due to the large variance inflation under SYS, 

this advantage cannot be accounted for when using most of the analytical estimators. 

 

4.2 Small-domain estimation 
Overall, the copula-based approach provided nearest neighbor estimates having 

approximately 15-20% higher accuracy (in terms of root mean squared errors) compared to 

bootstrap resampling. The accuracy improvements of the copula method were mainly due to a 

significant bias reduction (30-34%), while the standard errors were higher (6-39%) compared 

to bootstrap. Furthermore, using the copula method allowed constructing confidence intervals 

with coverages much closer to their nominal values. 
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4.3 Estimation of tree-level attributes 

Using the method introduced in paper IV, the creation of CHMs and the estimation of 

individual tree attributes could be tailored at plot-level. The individual tree delineation results 

outperformed the benchmark method when applied appropriately, and the estimation 

accuracies obtained at tree- and plot level were in line with other studies performed in 

Scandinavia (approximately 50% detection rate and 5% commission errors). Furthermore, the 

robustness of the method has been tested in a exhaustive comparison study (Vauhkonen et al., 

2011), and it was found to be the most stable algorithm (in terms of balancing the omission 

and commission errors) under various data sets and forest types analyzed. 

Since the method is tuned using area-based stem number estimates, two immediate 

advantages can be mentioned. First, the method can be seemingly integrated into operational 

ALS-aided forest management inventories for extracting individual tree data. For instance, 

with two-stage ALS-aided forest inventory (Næsset, 2002) the prediction of forest variables 

(including stem numbers) is performed in a grid covering the entire study area. Hence, the 

CHM creation and the extraction of individual tree variables can be performed at grid cell 

level within each forest stand. However, for practical purposes, it can be reasonable to 

consider implementing the method at a larger spatial scale (e.g. directly at the stand level). 

Secondly, using the appropriate spatial resolution for creating the CHM avoids the need for 

accurate georeferencing of tree stem positions. However, stem coordinates might still be 

necessary for sample trees subjectively selected across the study area in order to perform e.g. 

tree-species classification (Dalponte et al., 2009). 
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5. Conclusions and future research 

Overall, the results reported in the thesis responded to the main research objectives. 

Papers I and II succeeded to integrate the joint efforts for developing a theoretical 

framework for uncertainty estimation of large-area, ALS-aided forest inventories. The newly 

developed simulation platform demonstrates that erroneous inference is prone to occur when 

the basic underlying assumptions required by the estimators are ignored. The simulation 

approach discussed here offers a solution to avoid making wrong inference by allowing the 

exploration of different sampling strategies, and thus making possible the comparison of 

various estimators. It was demonstrated that sophisticated estimators are not necessary 

performing better that simple ones when complex surveys are involved. Moreover, the 

sampling simulator allows assessing the risks of using biased estimators (e.g., successive 

variance estimators).  

A drawback of the method consists in the way the artificial population was created. 

Using nearest neighbor imputations for mapping the reference observations does not 

guarantees the preservation of the short-range autocorrelation, making difficult for instance to 

perform simulations using cluster sampling or analyses considering various plot size and 

shapes. 

Despite these problems, the functionality of the sampling simulator (papers I and II) 

should be expanded to become a decision support tool at the design-stage of an inventory 

(Tomppo, 2009; Tomppo et al., 2010). For doing so, the artificial population has to be 

constructed prior to sampling the empirical data, thus the possibility of calibrating other 

datasets acquired from similar forest conditions should be investigated. This would require, 

for instance, a data base of empirical data sets of field- and ALS measurements from which 

multivariate observations for constructing the artificial population can be selected using 



Synopsis 

24 
 

various similarity criteria. Alternatively, the artificial population can be built at individual 

tree level from empirical crown segments produced by the algorithm introduced in paper IV 

and using a forest stand generator for creating tree lists and mapping the tree position. The 

method can be further improved by considering vine-copulas (as used in paper III) instead of 

using multivariate elliptical copulas for modeling the joint dependencies between the 

covariates. An accurate representation of the target population would allow for assessing 

stratification schemes following other criteria than administrative regions (e.g. by forest type 

or land-use category). Another issue which has not been considered in papers I and II, but 

which definitely deserves consideration, is using the simulating approach for change 

detection and estimation issues. 

The model-based inference using the copula-based approach has been proven to be a 

viable alternative to bootstrap resampling, although more computationally intensive. This 

result is not surprising considering that sampling from the copula function provides reference 

datasets containing new observations, thus filling the gaps in the feature space and reducing 

the edge-biases characteristic for near-neighbor imputations. However, the copula-based 

approach deserves further research mainly for (1) prediction of multivariate responses, 

including categorical variables, (2) assessing bias-reduction methods for k-NN estimators 

(Magnussen et al., 2010), (3) comparison against parametric variance estimators, and (4) 

combining auxiliary data from different platforms (e.g. imagery and ALS data) for small-area 

estimation in the context of biomass and carbon sequestration. 

The individual tree study presented in paper IV has successfully answered the 3rd 

research objective by integrated area-based and individual tree methods for estimating forest 

attributes. At this stage, the individual tree method is not mature yet for being considered as a 

individual tree inventory approach. Further development is required, such as sensor 

integration combining ALS and imagery data to improve the crown delineation and for tree 
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species classification (Hyyppä, 2008). Thus, the algorithm presented in paper IV can become 

useful in combination with area-based estimates to produce tree lists at stand level (Lindberg 

et al., 2010), which may be used for growth and yield modelling. 

With minimal improvements, all the methods described in this thesis have the 

potential to be integrated in a GIS-based decision-support system for forest management and 

planning. 
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Abstract 

To meet the increasing need for reliable and timely timber resources and carbon stock 

estimates at intermediate and local decision levels, a sampling approach using airborne laser 

scanning (ALS) as a strip sampling tool has been proposed as a supplement to the 

conventional field-based National Forest Inventory system. This idea led to a large-scale 

biomass survey project undertaken in Hedmark County, Norway, an area encompassing 

27390km2. The field biomass estimates were provided by the Norwegian NFI, and the ALS 

measurements were acquired in parallel strips using a systematic (SYS) design. The ALS-

based biomass estimation was performed using regression estimators under design-based and 

the model-based inferential frameworks. Assessing the validity of inference is not 

straightforward when complex designs are involved, a possible approach being using a 

sampling simulator where an artificial population represents the ‘ground truth’ and the 

properties of the estimators are investigated via simulated sampling. To create the artificial 

population, a large multivariate dataset containing NFI field observations and ALS metrics 

was generated using a copula function fitted to the empirical observations, and then it was 

generalized over the study area using satellite imagery and nearest-neighbor imputations. The 

properties of several design-based model-assisted and model-based variance estimators were 

investigated using simulated sampling and the accuracy of ALS-based and ground-based 

estimates under simple random sampling without replacement (SRSwoR) and SYS designs 

were compared. The simulation results indicated that the ALS-based survey produced valid 

inference under design-based and model-based frameworks. The variance estimators 

performed well under two-phase SRSwoR, but the real standard errors were overestimated 

approximately 4.7 times under two-phase SYS. Compared to the pure ground-based 

inventories, the estimated standard errors of the ALS-based estimates were approximately 1.8 

times larger, while the real accuracy improved with 59%. 
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1. Introduction 

As one of the countries ratifying the Kyoto Protocol to the United Nations Framework 

Convention on Climate Change (UNFCCC 2008), Norway must quantify and report the 

greenhouse gas (GHG) inventories for the period 2008-2012. Large amounts of the principal 

GHG- carbon dioxide (CO2)- are removed from the atmosphere and stored by forest 

ecosystems (IPCC, 2000), thus mitigating the magnitude of the global climate change 

(Gonzales et al., 2010; Fahey et al., 2010). In Norway, reporting of GHG from the Land Use, 

Land Use Change and Forestry (LULUCF) activities (IPCC 2006) has been using the 

estimates provided by Norwegian National Forest Inventory (NFI), which is the main source 

of information regarding carbon pool changes (Tomter et al., 2010). One of the most dynamic 

and largest carbon pools in forest ecosystems is the aboveground biomass (AGB) stored by 

living trees (Fahey et al., 2010). In general, carbon inventory systems relying exclusively on 

ground observations alone may not be feasible for large area surveys due to expense 

associated with installation and remeasurment of an exhaustive ground network. In addition, 

regional arrays of ground plots cannot always provide accurate local estimates, for instance at 

sub-regional and administrative unit level, or by land-use or cover classes (Fahey et al.,2010; 

Gonzales et al., 2010). 

Auxiliary information provided by remote sensing systems has the potential to 

enhance the terrestrial surveys for forest carbon estimation (Streck & Scholz, 2006; Gonzales 

et al., 2010). Airborne Light Detection and Ranging (LiDAR) remote sensing has been 

successfully tested for biomass estimation in various forest types and for different sensors 

and platforms (Lefsky et al., 2002; Drake et al., 2003; Nelson et al., 2004, 2007; Boudreau et 

al., 2008; Næsset & Gobakken, 2008; Asner et al., 2009; Næsset, 2011). Airborne laser 

scanning (ALS) systems were deemed feasible for ‘wall-to-wall’ operational forest 

management for areas between 20-2000 km2 (Næsset, 2009) based on results showing 
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marked improvements in precision relative to conventional surveys (Næsset 2002, 2004, 

2007; Corona & Fattorini, 2008). 

Because national-scale projects using ‘wall-to-wall’ ALS coverage might not be 

feasible, LiDAR measurements have to be integrated within a sampling framework for AGB 

and carbon stock estimation. Double-sampling applications using ALS measurements on sub-

sampled field plots were discussed by Parker & Evans (2004), Andersen & Breidenbach 

(2007), Corona & Fattorini (2008) and Stephens et al. (in press). Profiling airborne lasers like 

the Portable Airborne Laser System (PALS; Nelson et al., 2003) have been used within a 

line-intersect sampling framework for areas up to 5000 km2 for AGB and forest volume 

estimation (Nelson et al., 2004; Nelson et al., 2008), and a three-phase survey involving 

space borne lasers and PALS has been tested by Boudreau et al. (2008) and Nelson et al. 

(2009). Using ALS as strip sampling tool where the LiDAR measurements are collected 

along corridors several hundred meters wide has been suggested by Næsset (2005) and 

Gobakken et al. (2006). This approach has been applied by Andersen et al. (2009) in a two-

stage survey for biomass estimation in Kenai Peninsula of Alaska, USA. 

Demonstrations of the utility of airborne scanning and profiling lasers within a 

sampling framework for regional and sub-regional AGB estimation have been undertaken 

also in Norway, and a large-scale project covering approximately 30,000 km2 was conducted 

in Hedmark County (HC) in the period 2005-2010, where both types of instruments were 

used as sampling tools along parallel flight lines following the NFI grid (Næsset et al., 2009). 

The complex inferential challenges posed by the HC sample survey were addressed from a 

two-stage, design-based model-assisted (DBMA) perspective by Gregoire et al. (2011) and 

using a two-phase, model-based (MB) approach by Ståhl et al. (2011). Under both 

approaches, the AGB was estimated using linear regression models. The DBMA inference 

relies on the randomization distribution of the estimator under a predefined design, wherein 
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auxiliary data (e.g. LiDAR metrics) are incorporated in the estimation using a sample-driven 

model. DBMA inference has the attractive feature of being approximately design-unbiased, 

the randomness being brought by the probabilistic design which validates the inference even 

when the model fits poorly (Särndal et al., 1992, p. 239). Under the MB framework, the 

inference relies on a trusted model without explicitly requiring probabilistic sampling, 

because the random component needed for statistical inference is introduced by the model 

itself. Further insights into design- and model-based inference can be found in Gregoire 

(1998), Schreuder et al. (2001), and Kangas (2006). 

The endeavours of Gregoire et al. (2011) and Ståhl et al. (2011) succeeded in 

developing estimators and variance estimators tailored for forest sample surveys where 

partial coverage with auxiliary information is available. Their results corroborated findings 

reported by Andersen et al. (2009) and Gobakken et al. (in submission) which indicated that 

sampling strategies (sensu Hájek, 1981; Särndal et al.,1992; Gregoire & Valentine, 2008) 

involving LiDAR auxiliary data might be less precise compared to the conventional field-

based surveys when using an equal number of sample plots. However, the inference in all 

these projects was based on simplifying assumptions which could influence the estimation 

unexpectedly. For instance, the variance estimators cannot account unbiasedly for the 

systematic design of both the ALS and the field samples, which would probably result in 

overestimating the variances (Gregoire at al., 2011; Ståhl et al., 2011; Gobakken et al., in 

submission). Moreover, the DBMA variance estimator can produce negative variance 

estimates and in such cases the inference becomes impossible (Gregoire et al., 2011; 

Gobakken et al., in submission). This problem compelled us to consider an alternative design-

based variance estimator adapted from Särndal et al. (1992, p. 154), which guarantees 

positive variance estimates. 
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A direct comparison of strategies involving sampling plans with different structures is 

difficult (Gregoire at al., 2011), and not knowing the ground truth AGB further complicates 

the accuracy assessment. Thus, it has been suggested that the statistical properties of the 

DBMA and MB variance estimators ought to be explored via simulations (Gregoire at al., 

2011; Gobakken et al., in submission). Using simulated sampling from a completely known 

finite population one can closely approximate (and in some cases fully describe) the sampling 

distribution of complex estimators, which otherwise would be difficult, or even impossible, to 

obtain analytically. The empirical sampling distribution of an estimator can be used to assess 

the bias and variance relative to the population parameter subject to estimation (Särndal et al., 

1992, p. 277; Gregoire & Valentine, 2008, p. 32). Monte Carlo simulations are useful not 

only for exploring the properties of design-based estimators, but also for investigating the 

model-based estimators when the inference is directed toward quantifying finite population 

parameters (so-called descriptive inference by Särndal et al., 1992, p. 514; Kangas, 2006, p. 

40). The use of simulations for assessing the properties of LiDAR-based estimators has been 

previously considered. Using small-scale empirical simulators, design-based strategies were 

investigated by Ene et al. (2007) and Marcell et al. (2009). The properties of several 

regression estimators have been assessed by Andersen & Breidenbach (2007) by repeatedly 

extracting small samples from a population consisting of a large set of field plots and 

associated LiDAR measurements. Andersen et al. (2011) considered resampling methods for 

estimating the influence of sampling and model errors on biomass estimates in a two-phase 

model-based sampling strategy. 

This study introduces a sampling simulator created using empirical data (field 

measurements, ALS data, and satellite imagery). The use of the simulator is exemplified 

through a case study mimicking a simplified version of the HC survey, focusing on two main 
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objectives: (1) to assess the performance of variance estimators for ALS-aided inventories, 

and (2) to assess the relative gain in accuracy obtained using auxiliary ALS data. 

 

2. Material 

The study area incorporates all of Hedmark County, a 27340 km2 area located in south-

eastern Norway (Figure 1). The topography across HC displays large altitudinal variations, 

from 119 m to 2178 m a.s.l. The northern part of HC consists of mountain areas, with the 

highest altitudes occurring in the north-western region. The altitude decreases nearly linearly 

towards the south, while the east-west altitudinal differences are less pronounced. 

Approximately 53.7 % of HC’s land area is covered by forests (Anon., 2004). The dominant 

tree species present in HC are Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus 

sylvestris L.). 

The general sources of data were used to quantitatively describe and characterize the 

County: (1) field inventory data from the Norwegian NFI, (2) remote sensing data (ALS and 

satellite imagery), and (3) cartographical products in the form of a digital terrain model 

(DTM) as raster data and land-use maps (vector data). All datasets were georeferenced to the 

WGS84 reference frame, using the UTM (zone 32N) projection model. 
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Figure 1 Spatial location of NFI plots and ALS strips in Hedmark County. 

 

2.1 Satellite imagery data 

The satellite data consists in three nearly cloud-free Landsat 5 TM images (bands 1 to 5 and 

7) acquired in June 2007 (Table 1). The three Landsat images have a georeferencing error of 

���� for 95% of the pixels. The images were atmospherically corrected using the COST 

model (Chavez, 1996).  
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Table 1 Satellite imagery metadata 

 Satellite 
 image 

Date  Path/row 
Sun 

elevation   (deg) 
Sun 

azimuth (deg) 
Spatial 

resolution (m) 
1 03.06.2007 197/16 49.6 162.2 25 
2 03.06.2007 197/17 50.0 162.00 30 
3 10.06.2007 198/16 50.1 161.9 25 

 

Since none of the three satellite images entirely coverage the HC, an image mosaic was 

created at 25 m spatial resolution and then resampled to 15.81 m resolution using nearest 

neighbour resampling, such that the pixel area matched the size of the field plots (250 m2). 

Although the images were acquired from the same contractor within a one week time 

interval, differences in surface reflectance due to rapid phenological changes were observed, 

especially at higher altitudes. Hence, we did not apply relative radiometric calibration or 

colour-balancing techniques when the Landsat mosaic was built (Koukal et al., 2007). 

 

2.2 Map data 

In addition to field and remote sensing data, a 25 m spatial resolution DTM produced by the 

Norwegian Mapping Authority using the official topographic map series, and AR5 land use 

maps (Bjørdal & Bjørkelo, 2006) were used to create a forest mask. The DTM provided full 

coverage for HC, but the land use map data did not. Land-use categories as water and 

developed areas were well represented, which was considered sufficient for the objectives of 

this study. Vector data were converted to raster format using a 25 m pixel resolution. The 

Landsat mosaic and the DTM were aligned with the rasterized land-use maps to obtain 

congruent raster layers. The manipulation of map data (raster and vector) was performed 

using ArcGIS 9.3 software from the Environmental Systems Research Institute (Anon., 

2011b). 
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2.3 Field data 

The field measurements were obtained from the permanent Norwegian National Forest 

Inventory (NFI) grid. The Norwegian NFI is a continuous forest inventory system where the 

sampling units are fixed-area circular plots of 250m2, located on a 3x3 km grid covering the 

entire country, except for mountain areas above the coniferous tree line, where the plots are 

located in a 3x9 km grid. The grid axes are oriented to the north-south and east-west 

directions. HC contains 2309 permanent NFI plots, and the plots are revisited every 5th year 

following the ordering provided by a country-level Latin square design with 45 x 45 km 

blocks (Tomter et al., 2010). Between 2005 and 2007, 1483 plots (including NFI and 

additional plots) were measured. Due to the Latin-square design, the 1483 field plots were not 

uniformly spread over the HC, nonetheless they cover the main north-south 

geomorphologic/altitudinal gradients. 

For this study, only the plots from every second east-west oriented NFI grid line were 

used because they were located along the corridors designed for ALS data acquisition, 

resulting in 662 plots (Table 1) located 6 km apart along those parallel grid lines included in 

the analysis. More details regarding the field plot selection are given in Gobakken et al. (in 

submission). 

On each plot, all trees having a breast height diameter (dbh) �� cm were callipered, 

and tree height measurements (h) were taken for approximately ten sample trees selected 

proportional to stem basal area, using an adjustable basal area factor (Tomter et al., 2010). A 

more detailed description regarding the NFI estimation methods is given by Tomter et al. 

(2010) and Gobakken et al. (in submission). The total above ground dry biomass was 

predicted for each tree having h � 1.3 m using tree-species specific allometric models with 

dbh and h as predictor variables (Marklund, 1988). The tree level biomass estimates were 
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summed to obtain plot predictions of above ground biomass (AGB), which then were 

considered to be equivalent to actual AGB of live trees on the plot. 

The plot centre coordinates were determined using differential post-processing of 

dual-frequency Global Positioning System (GPS) and Global Navigation Satellite System 

(GLONASS) measurements acquired using Topcon LegacyE receivers. The observation time 

was at least 15 minutes on each plot, at a 2 seconds logging rate. Six base stations were 

established at different locations across HC, such that the vector ranges between base stations 

and plots were less than 50 km. Vector differential corrections were calculated for each plot 

using the nearest base station as reference. The precision of plot centre positioning reported 

by the Pinnacle 1.0 post-processing software (Anon., 1999) varied between 0 and 2 m, with 

an average of 0.05 m. 

The correlation between the altitudinal gradient in HC and plot biomass expressed 

using a robust surface fit � � yxyxBGA 2782.001.0053.1,ˆ ��� (RMSE = 42.4 Mg ha-1, R2
adj = 0.38) 

indicated a dominant trend along the y-axis (north-south direction). Generally, the plot 

biomass seemed to be inversely correlated with the topographic trend, being lower on higher 

altitudes (in the northern part of HC) and increasing towards South. 
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Table 2 Biomass distribution by field plots 

Cover class category 
Plots by 
strata 

 

Above ground biomass 
(Mg ha-1) 

 
Altitude (m a.s.l.) 

No % mean SD
(1)

 CV
 (1)

 mean SD CV 

Productive forest: 

 

Low 138 21 

 

50.9 38.99 76.6 611.9 207.39 0.3 

Medium 105 16 96.7 57.53 59.5 445.7 146.1 0.3 

High 46 7 129.3 77.06 59.6 335.1 108.7 0.3 

Young forest 151 23 34.9 40.67 116 454.6 190.4 0.4 

All 440 66 - - - - - - 

Nonproductive forest and non-forest: 

 

Nonproductive forest
(2) 

107 16 

  

28.6 28.65 100 645.7 207.4 0.3 

Mountain areas 85 13 22.8 20.85 887.2 69.5 0.1 
Developed areas 30 5 27.7 34.64 125 211.5 99.9 0.5 

All     222 34 - - - - - - 

Total      662 100   51.7 53.66 104   553.1 232.73 0.42 
(1) standard deviation (Mg ha-1);  (2) variation coefficient (%);  (2) annual growth < 1m3 year-1 ha-1 

2.4 ALS data 

The ALS data acquisition was carried out during leaf-on conditions, between July and 

September 2006, using two Optech ALTM 3100 laser scanning systems (Optech, Canada) 

mounted on two PA31 Piper Navajo aircrafts. Approximately 8.4 % of the county’s land area 

was sampled from fifty-three parallel flight lines equally spaced at a distance of 6 km in the 

north-south direction, and covering approximately 50% of the plots. The average flying 

height was at approximately 800 m above ground, at an average speed of 75 ms-1. The laser 

scanners operated at a pulse repetition frequency of 100 kHz and a scan frequency of 55 Hz, 

which translated to an average density of 2.8 pulses m-2. The echoes recorded at scanning 

angles greater than 17° were removed, obtaining an average strip width of approximately 500 

m. The 3D adjustment, the classification (canopy and ground) of laser echoes and the digital 

terrain surface were performed using TerraSolid software (TerraSolid Ltd, Finland). After 

height normalization relative to the digital terrain surface, only the echoes having relative 

heights above 1.3 m were classified as canopy hits. Further in this analysis, we used only the 

laser echoes recorded as ‘single’ and ‘first of many’ by the ALTM 3100 sensors. 



13 
 

3. Methods 

It was assumed that the design parameters are fixed, because they are related to the NFI 

system. We also assumed that that the general form of the regression model for predicting the 

biomass as a function of ALS measurements is not known before sampling the data, which is 

a reasonable assumption for ALS-based surveys where the ALS measurements can be 

strongly influenced by a variety of factors (Næsset, 2009; Ørka et al., 2010). 

Practically, the approach employed to construct the simulator requires that the 

empirical data (e.g. field data and auxiliary information) are first sampled from the original 

population following a stipulated sampling design. Then, an artificial population is created 

using the empirical data, following the steps presented in this section. Using the artificial 

population as ground-truth, sampling is then simulated following a design which resembles 

closely the original one, and the properties of several estimators are assessed. Simulation 

results, then, help to identify those sampling strategies that provide the most accurate and 

precise estimates. As important, the results can also help identify those assumptions that must 

be met in order to generate reliable, robust estimates of biomass. 

The remainder of the section proceeds as follows: we start with building predictive 

regression models for AGB using the LiDAR metrics. Then, we describe the creation of the 

artificial population and the mechanisms for generating the samples. Finally, the accuracy 

assessment for several strategies is demonstrated through a case study. 

 

3.1 Predictive LiDAR models for AGB 

The relationship between plot-level AGB and LiDAR measurements was investigated using 

multiple linear regression. Twenty two LiDAR metrics were derived from the height 
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distributions of laser echoes (first returns only) covering each plot: the maximum height 

(Hmax), the mean height (Hmean), the deciles (Hd, d=0-9) of the echo height distributions, and the 

canopy densities (Dd, d=0-9) obtained as described by Næsset (2004) and Gobakken et al. (in 

submission). Although we found an altitudinal gradient across HC, the height above sea level 

was not included among predictors because it produced many influential outliers. 

We considered that AGB during the simulated sampling should be predicted using a 

fixed set of covariates obtained from the original AGB and LiDAR metrics, however the 

model parameters would be estimated from each simulated sample. For building the 

predictive model, we adopted a two-step strategy (Draper and Smith, 1998, p. 343-344). First, 

we selected a subset of first-order regressors among the LiDAR metrics using a backward 

stepwise variable selection based on Akaike Information Criterion (AIC) as stopping rule. In 

the second step, we build candidate models from the variables selected at the first step, 

adding also interaction and higher order terms following the hierarchy principle. The 

relationship between forest variables and LiDAR metrics is usually linearized via nonlinear 

transformations using logarithmic transformation of both the regressors and the response 

variable (Næsset 2002, 2004; Næsset & Gobakken, 2008; Li et al. 2008), or by the square 

root transformation of the response (Andersen & Breidenbach, 2007; Boudreau et al. 2008; 

Næsset, 2011). In order to avoid non-linear transformation of the response variable, Gregoire 

et al. (2008) advocates using generalized linear models (McCulloch & Nelder, 1989) instead 

of ordinary least square regression, thus eliminating the need for back-transforming the 

response which is prone to biases. We subscribed to this advice and we used a generalized 

regression model assuming normal distribution of errors and square-root link function. The 

model estimation was performed by iteratively re-weighted least square (McCulloch & 

Nelder, 1989)) using MATLAB® (Anon., 2011a). The model considered to the most 

appropriate was formulated as: 
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where �tX is the linear predictor including the Hmax, D10 and the interaction term Hmax×D10, 

and )(�g is the square-root link function (RMSE = 17.40 Mg ha-1(36.12%), r2 = 0.90, where r 

is the linear correlation coefficient between original and predicted AGB values (Zheng & 

Agresti, 2000)). During simulations, the model parameters � of the linear predictor were 

estimated from each sample.  

 

3.2 Creating the sampling simulator 

The sampling simulator consists of an artificial population and a sample selection 

mechanism. 

The artificial population should represent realistically the forested areas across HC. 

For simulating the ALS-based inventory, it is also necessary to generate a full coverage of 

LiDAR metrics which are consistent with the artificial forest. Although there is no 

straightforward way for modelling the population, two main approaches can be of interest: an 

individual tree level representation and an area-based approach. A simple, individual tree 

approach was used by Ene et al. (2007) to generate an artificial population using a forest 

stand generator, individual tree measurements and laser echoes delineated for individual trees 

using stem and crown locations. Marcell et al. (2009) built a ‘LiDAR-forest’ at tree level 

using the methodology of Popescu & Wynne (2004). The latter approach is not applicable in 

our case, since we only had partial coverage with ALS data for HC. It is not clear whether the 

individual tree modelling approach would result in a more accurate description of the forest 

across large areas like HC. Instead, we constructed the ‘LiDAR-forest’ considering a fully 
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tessellated representation of the HC area congruent to the satellite imagery raster, and 

distributing the plot-level AGB and LiDAR metrics via nearest neighbour imputations using 

the satellite imagery mosaic (Tomppo et al., 2008). The area-based approach also permits an 

easier integration and manipulation of different data sets. At this stage it should be noted 

though that the aim was not to re-create the true forest of HC, but to create an artificial 

population comprising the major geographical trends in HC while maintaining a fairly 

realistic overall variability. 

When using nearest neighbor imputations, the 662 empirical plot-level observations 

(AGB and LiDAR metrics) would be replicated across the entire study area. Given the small 

sample size relative to the population size (approximately 107 elements), this would cause a 

small population variability, and large samples would have many duplicate observations. 

Since it was not possible to increase the number of observations by acquiring more data, we 

used copula functions for generating a large multivariate set of joint AGB, LiDAR, and 

multispectral observations. 

The creation of the artificial population follows three main steps: (1) data preparation, 

(2) stochastic data generation using copulae, and (3) generalization of copula sample using 

nearest neighbour (NN) imputations. An overview of the process is presented in Figure 2. 
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Figure 2 The main steps for generating the artificial population. 

 

3.2.1 Step 1: Data preparation 

Construction of the population requires that a set of LiDAR metrics, satellite multi-spectral 

records and field-based estimates of AGB can be assigned to each of the 250m2 grid cells. 

The empirical plot-level data set used for creating the artificial population comprised the 
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AGB estimates, the LiDAR metrics, and spectral information extracted from the satellite 

imagery mosaic pixels covering the plots. When extracting the plot-level spectral data, the 

possible registration errors between field plots and satellite imagery pixels were ignored. 

 

3.2.2 Step 2: Generating the copula sample 

Copulae are mathematical functions which are useful for modelling dependencies between 

random variables (Nelsen, 2006). According to Sklar’s theorem (Nelsen 2006, p. 21), copulae 

link the joint probability distribution functions to their marginal distributions. The rank 

correlations between variables are preserved by their cumulative distribution functions (cdf), 

and copula functions are used to model these dependencies, making it possible to preserve 

non-linear relationships existing in the empirical observations. Thus, a joint probability 

distribution can be expressed using the marginal distributions and the dependency structure 

between marginals captured by the copula function. 

The process of fitting copula functions and generating copula samples consists of 

several steps (Anon., 2011a): 

- identify the univariate cdfs of the variables and independently transform each of these cdfs to 

uniform (0, 1) distributions; 

- fit the appropriate copula function to the uniforms; 

- generate uniform random numbers using the copula function, and 

- retransform the uniform copula sample using the appropriate inverse cdfs. 

The derivation of the cdfs and the retransformation steps were performed using a non-

parametric density estimator with a Gaussian kernel function. 
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Although the copulae are used for stochastic simulations, copulae functions describe 

the correlation pattern between uniforms in a deterministic fashion. The stochasticity of the 

copula samples is obtained by evaluating the copula function using uniform pseudo-random 

numbers. For an in-depth treatment of copulae see Bouyé et al. (2000), Nelsen (2006), 

Kojadinovic & Yan (2010) and Schepsmeier & Brechmann (2011). 

Copulae are popular modelling tools in many fields (e.g. econometrics), but have been 

little used in forestry applications. The Gaussian copula were found to perform well for 

bivariate modelling of tree diameters and height (Wang et al., 2008), and for trivariate 

modelling of tree diameter, height and volume (Wang et al., 2010). A seven dimensional 

normal copula was used by Miina and Heinonen (2008) in a multilevel multivariate stochastic 

modelling study of the regeneration establishment. Kershaw et al. (2010) used Gaussian 

copula for generating spatially correlated forest stand structures, and recently Gaussian 

copula were used by Eskelson et al. (2011) in a simulation study for estimating shrub cover in 

riparian forests. 

For applications focusing on estimating the dependence structure, it is important to 

use the copula which best captures the dependence between variables. Although many copula 

functions have been documented for the bivariate case, only a few can cope with high 

dimensional datasets (Genest et al., 2009). New approaches for building multivariate copulae 

have been recently proposed (Aas et al., 2009; Schepsmeier & Brechmann, 2011), but for this 

study we used the Gaussian copula, with which it is easy to fit to high-dimensional data 

(Anon., 2011a). The Gaussian copula is derived from the multivariate normal distribution, 

thus it fully defines the dependence structure using the correlation matrix. Regardless of the 

correlation matrix, the Gaussian copula has zero tail dependence. 
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3.2.3 Step 3: Generalizing the copula sample by nearest neighbour 

imputations 

Using the Gaussian copula, a large sample of 100,000 observations was generated from the 

AGB-LiDAR-Spectral dataset. Figure 3 illustrates the similarity between the copula-

generated simulation pool and the actual ground observations for the combinations of ALS 

predictors and biomass.  

 
Figure 3 Dependencies between AGB (Mg ha-1) and LiDAR metrics in original data and in the copula sample. 
See text for description of LiDAR metrics. 
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Compared to original data, the linear correlations between AGB and LiDAR height 

metrics in the copula sample (Figure 4) were slightly lesser, especially for the upper LiDAR 

deciles, while the correlation between AGB and canopy density metrics related to the upper 

canopy fractions was slightly greater. Also, the dependencies between AGB and the LiDAR 

included in the regression model were little altered. 

 
Figure 4 Linear correlations between AGB and LiDAR metrics in the original observations and copula-
generated data. The LiDAR metrics derived from first returns consist of maximum echo height (Hmax), mean 
echo height (Hmean), echo height deciles (Hd, p=0-9), and the canopy densities (Dd, d=0-9). 

 

The copula-generated AGB-LiDAR-Spectral dataset was merged with the original 

662 plot observations, and we called this final dataset AGB-LiDAR-Spectral*.The 

observations from AGB-LiDAR-Spectral* were imputed across the forested area of HC using 

nearest neighbour imputations. In order to do so, a forest mask for HC was created using the 

DTM and land-use maps. The DTM was used for delineating the areas above 1150 m 

altitude, which corresponds roughly to the coniferous tree line in HC (Ørka et al., accepted). 

The land use maps were used for eliminating water and other types of non-forested areas. 

Because we had poor coverage with map data for forest vegetation located in developed areas 

and above 850 m a.s.l., we used a box-classifier and the multispectral information associated 
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with the field plots to separate the image mosaic pixels which might cover forest vegetation 

in this areas. The forest mask obtained represents about 86% of the tessellated HC area. 

The nearest neighbour imputations were based on the Gaussian distances between the 

multispectral features (bands 1-5 and 7) from the copula dataset and the satellite imagery 

mosaic. A summary of the nearest neighbour imputations presented in Table 3 indicated that 

the average AGB in the population (�AGB) was lower compared to both the field sample and 

imputation data. However, the range, variability, skewness and kurtosis in the imputed AGB 

were slightly higher relative to the field data. 

 

Table 3 Descriptive statistics for AGB in field data, copula sample and artificial population 

AGB (Mg ha-1) min max mean SD skewness 
Population 0.121 345.764 48.185 55.338 1.846 
Copula sample 0.121 346.307 53.128 56.743 1.713 
Field sample 0.264 331.511 51.727 53.656 1.716 

 

The preservation of main geographical trends identified in the field sample was 

analyzed by applying a robust surface fit in the form � � yxyxAGB yx ��� ��� 0,  to the 

imputed AGB values (R2= 0.56, RMSE = 36.44 Mg ha-1), obtaining estimated model 

parameters close to the values obtained using the field sample data 

( 331.0,022.0 ���� yx �� ). Hence, we concluded that the main geographical trends present in 

the original data were also reasonably well preserved in the artificial population. 

The artificial population was stored in the form of a look-up table, where each cell is 

linked to a specific set of biomass and ALS metrics from among the AGB-LiDAR-Spectral* 

dataset. This look-up table was considered as a spatial sampling frame congruent to the raster 

representation of the HC area. During sampling, any unit can be identified by its linear in the 

look-up table, and points to an observation in the AGB-LiDAR-Spectral* dataset. The frame 

origin has the index (1, 1) and it was set as the upper-left grid cell. Using this sampling 
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frame, the distances between population elements could be expressed in number of grid cells. 

Hence, the distances (e.g. sampling intervals and strip width) were converted from meters to 

number of pixels by division to 15.81 m (pixel size) and rounding to integer value using the 

ceiling operator. Hereafter, the terms pixel and population elements are used interchangeably. 

 

3.3 Case study 

We conducted a case study involving simulated sampling related to the biomass survey in 

HC. The inputs required for running the sampling simulations can be grouped as: (1) design 

parameters (e.g. the swath, location and orientation or ALS strips, the number and location of 

the field plots), (2) the inferential approach (the estimators of the descriptive population 

parameter (�AGB) and the inferential framework), and (3) the number of sampling simulations.  

Three estimation cum inferential scenarios were considered: design-based inference 

with Horvitz-Thompson (HT) estimator, model-assisted estimation with design-based 

inference and model-based estimation and inference. For the sake of easy reference, these are 

abbreviated as DBHT, DBMA and MB henceforth. 

 The DBHT strategy consists of systematic sampling (SYS) with HT estimator, and 

corresponds roughly to the current Norwegian NFI system. The inference relies upon the 

sampling design and makes no use of auxiliary information. 

Under DBMA, the auxiliary information provided by ALS is incorporated into the 

estimation by the linear regression model developed in section 3.1, but the validity of the 

inference is ensured by the probabilistic design. 

The MB inference for the finite population parameter AGB�̂ relies on a model without 

explicitly requiring probabilistic samples. The model-based inference would usually require 

full coverage with auxiliary data, such that predictions can be made for all the non-sampled 

population elements. For the HC survey, the coverage with ALS data was only partial, thus 
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requiring a probabilistic sample of auxiliary data, while the field plot selection could be either 

probabilistic or not. The model-based estimator proposed by Ståhl et al. (2011) tackled this 

situation by taking into consideration both sampling and model errors. 

The sampling designs and the estimators are described in the reminder of this section, 

following Gregoire et al. (2011) and Ståhl et al. (2011). 

 

3.3.1 One-phase systematic sampling with HT estimator 

Under the one-phase sampling design with restricted selection in two dimensions (SYS1), the 

first sample unit is drawn from the first ax,1 × ay,1 population elements, where ax,1 and ay,1 are 

the sampling intervals (in pixels) along the spatial frame’s axes oriented towards the east and 

north directions. The rest of the sample units are selected systematically using predefined 

sampling intervals ax,1 and ay,1. The total number of possible samples is axy,1 = ax,1 × ay,1, 

each sample being selected with the same probability according to the design 1
1,1
�� xySYS ap . 

The inclusion probability for the kth population element in a sample is �k = axy,1
-1. Under this 

design, the sample size is not fixed due to the irregular borders of HC. The sampling intervals 

along the east and north directions were ax,1 = 3000m (190 pixels) and ay,1 = 6000m (380 

pixels). This design does not fully comply with the Norwegian NFI system because it 

disregards the continuous nature of the inventory, by assuming that all field plots distributed 

across HC are visited during one campaign. Such an intensive survey would also produce 

estimates having higher accuracy than the usual situation, when in fact only 20% of the plots 

are visited during a campaign (one field season). The total number of possible samples 

produced under the SYS1 design was axy,1 = ax,1 × ay,1 = 190 × 380 = 72,200. 

The total AGB is unbiasedly estimated by the Horvitz-Thompson estimator from the 

kth sample as (Gregoire & Valentine, 2008, p. 52): 
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and the unbiased estimate of the average AGB per hectare is obtained as: 

HTHT tNcf ˆˆ 1���                                                    eq(3) 

where N is the number of population elements and cf = 1000 m2/250 m2 = 40 is the 

per-hectare expansion factor. The design-based variance of HT�̂  was approximated using the 

variance estimator for simple random sampling without replacement as: 
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where 2
AGBs  is the sample variance. In equation 4, the finite population correction term 1–n/N 

can be omitted because the samples size (n) is negligible relative to the number of population 

elements. 

 

3.3.2 Two-phase systematic sampling with regression estimator 

The sampling design used for the HC ALS-aided survey involves systematic sampling at both 

selection steps (SYS2). Under this design, the subsampling is invariant since any primary 

sampling unit (PSU) belongs to only one sample but the selection of secondary sampling 

units (SSU) is not independent because it follows the NFI grid. Moreover, the MB framework 

we are considering here allows using two independent sources of auxiliary data (Ståhl et al., 

2011). For this reason, this design can be considered a two-phase element sampling design 

according to Särndal et al. (1992, p. 344-345). 

To perform the two-phase sampling, HC was partitioned into M mutually exclusive 

clusters, each cluster representing a sub region fully covered by an ALS strip, resulting in a 

number of 625 clusters oriented parallel to the east-west direction. The cluster width was set 

to 32 pixels (approximately 500m) to match the average ALS strip width in the HC survey. 
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Because the spatial frame was not an integer multiple of the cluster swath, the width of the 

last cluster was 29 pixels (approximately 485m). The clusters have also varying lengths, 

because the target population is distributed on an irregularly shaped area. The clusters 

contained varying numbers of sample frame units, and consequently different numbers of 

population elements. Using this selection mechanism eliminates the possible misalignments 

between ALS data and field plots which might occur in practical applications. 

Using the 1-in-ay,2 selection (where ay,2 is the sampling interval for ALS strips) 

produces ay,2 possible equal probability first-phase samples, and the n1 PSUs in each sample 

are selected with equal probability �p = ay,2 
-1 among the M clusters. In the actual ALS survey 

of HC, the flight lines were 6 km apart and each swath was parsed to a 500m width, which 

translates into a sampling interval ay,2 = 12 ({ M/n1). Henceforth, the number of pixels in the 

pth PSU is denoted n1,p, and the number of SSUs sampled from the pth PSU was indicated as 

n2,p. The subsampling was carried out as a two-dimensional systematic sampling with 

restricted selection of the first unit among the first ALSw × ax,2
 
elements of the first PSU in the 

first-stage sample, where ALSw represents the width of the ALS strips (32 pixels). The 

sampling intervals along the (x, y)-axis following the HC survey were ax,2 = 3000m (190 

pixels) and ay,2 = 6000m (380 pixels). Thus, the number of all possible second-stage samples 

selected from every first-stage sample became ALSw × ax,2 = 32×190 = 6,080. A graphical 

representation of the sample selection mechanism is presented in Figure 5. 
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Figure 5 The sampling plan for the case study survey. The sampling interval for selecting the PSUs (the ALS 
strips) is ay = 6 km. Within PSUs, the field plots (SSUs) were selected using a sampling interval ax = 3 km. 

 

The inference for �AGB was performed first using the estimator described by Gregoire 

et al. (2011), developed from the type-C regression estimator for two-stage element sampling 

proposed by Särndal et al. (1992, §8.9). The estimator assumes SRSwoR at both selection 

steps, independence and invariance for subsampling, conditions required by the two-stage 

element sampling in Särndal et al. (1992, p. 134-135). 

The total AGB for the pth PSU was estimated using the generalized regression 

estimator (GREG) described by equation 8.9.6 in Särndal et al. (1992, p. 323) and equation 6 

in Gregoire et al. (2011). The AGB for the pixels contained in the first-phase sample were 

predicted using the model from equation 1 fitted to the second-phase samples, ignoring the 

cluster structure: 
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In equation 5, jpBGA ,
ˆ is the predicted AGB value for the jth SSU in the pth PSU. The first term 

is the sum of the predictions for all population elements in a selected PSU, and the second 
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term is a probabilistic bias correction derived from the regression residuals and the inclusion 

probabilities n1,p/n2,p of the population elements in the second-stage sample, conditioned on 

the selection of the pth PSU at the first stage. Thus, the overall AGB total becomes 

�
�

�
1

1
,2, ˆˆ

n

p
pGREGyGREG tat , and the average per hectare AGB is unbiasedly estimated by: 
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An approximated variance estimator of 2,ĜREGt  is given by Gregoire et al. (2011) as:  
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In equation 7, 2
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residual in the pth PSU, and �
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1  is the average residual for the pth PSU. From 

equation 7, the first DBMA estimator of the per-hectare AGB variance becomes: 
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By construction, the 1.2v̂ estimator can produce negative estimates (Gregoire et al., 2011) 

when large intra-cluster variances occur, especially due to a reduced number of field observations 

(Gobakken et al., in submission). For such situations, an alternative would be using the DBMA 

variance estimator for multistage sampling described by Särndal et al. (1992, p. 154) which assumes 

SRSwoR of PSUs: 
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 The *v̂ estimator from equation 9 assumes that the cluster totals �,
ˆ
pt are estimated using the 

Horvitz-Thompson estimator and it ignores subsampling. When used as an approximate variance 

estimator of GREGt̂ , equation 9 can be written as: 
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and the per-hectare variance can be expressed as: 
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Under the MB inference, the AGB total of the pth PSU is predicted using the regression 

estimator (REG) becomes  
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where the predictions were performed using the same model as in the case of GREG. The 

second term in equation 12 is the summation of AGB over the subsample in the pth PSU, and the first 

term is the summed predictions for rest of the population elements within the pth PSU. Under 1-in-

1,ya SYS of PSUs, the the estimate of the population total AGB is expressed as  
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and the average per-pixel AGB becomes: 
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Following Ståhl et al. (2011), the approximated variance estimator of REG�̂ assuming 

SRSwoR and finite population correction for the first phase can be written as: 
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The first term in the brackets estimates the sampling variance due to the first-phase selection, 

where � �� �
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 is the sample variance between the predicted 

PSU totals pREGt ,
ˆ . The second term accounts for the uncertainty of the estimated model parameters, 

and it includes the covariance matrix of the k regression parameters � �ji �� ˆ,ˆvôc  and the average 

values of the first-order derivatives of the inverse g function (the square-root link) form equation 1. 

 

3.3.3 Two-phase SRSwoR sampling with regression estimator 

For this strategy, we assumed that both ALS and field data were collected using a SRSwoR 

design (SRSwoR2). The size of the first-phase samples was set a priori as the expected size of 

the first-phase sample under SYS2 (n1 = M/ay,2=52). The second-phase samples were selected 

randomly and independently within each PSU. In order to fulfil the invariance requirement, 
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the inclusion probabilities of the SSUs were calculated as the ratio of the PSU length (in 

pixels) and the sampling interval along the east-west direction (ax,2 = 190 pixels) used under 

SYS2. Hence, the size of the second-phase sample would equal in the long run the expected 

size of a second-phase sample selected by SYS2. 

The 2SRSwoR  design complies with the theoretical assumptions considered by 

Gregoire et al. (2011) and Ståhl et al. (2011) for building the variance estimators for the total 

AGB. Thus, we could use simulated sampling following the 2SRSwoR design for 

validating 1.2v̂ , 2.2v̂  and 3.2v̂  presented in section 3.3.2. 

 

3.4 Accuracy assessment 

For the accuracy assessment the aim was to evaluate the performance of the variance 

estimators and to assess the relative accuracy of the two-phase strategies compared to pure 

HT estimation under SYS1. The assessment was performed assessing the sampling 

distributions of the estimators derived from repeated sampling from the fixed artificial 

population. However, the sampling distributions of an estimator under design-based and 

genuine model-based inference are not identical (Särndal et al., 1992, p. 534). Under a 

design-based framework, the sampling distribution of an estimator can be approximated using 

simulated sampling from a fixed, finite population. The MB inference treats the population as 

a random sample, thus the population parameters are also random variables. However, in our 

study we can treat the finite population as a realization of the superpopulation model which is 

then considered fixed and the inference regards a descriptive parameter (�AGB) of this 

particular population (case (a) inference in Särndal et al., 1992, p. 514; Kangas, 2006, p. 40), 

rather than the mean of the generating model. Moreover, the MB variance estimator 
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3.2v̂ includes a sampling error term, blurring the distinctions between design-based and 

model-based inference. 

For strategies involving systematic sampling, all possible samples were obtained and 

the complete sampling distributions of the estimators were available, so that we could 

actually assess the variance of the estimators as well as the expected values of the variance 

estimates. For SRSwoR2, we run 1.0e6 simulations (10,000 first-phase samples with 100 

second-phase samples each), ensuring that the errors due to the Monte Carlo simulations were 

very small. 

 

3.4.1 The validity of variance estimation 

The analytical standard errors (SEan) were calculated as the square root of the average 

variance estimates, and observed standard error (SEobs) was obtained as the standard deviation 

of the sampling distribution of the AGB�̂  estimates. In addition, the percentage SE relative to 

population mean was derived. 

It was expected that the SEan produced by the variance estimators would be close to 

the observed standard error SEobs. In order to test whether the differences between SEan and 

SEobs were significantly different at a significance level � = 0.05, we constructed 95% 

percentile-based confidence intervals from the sampling distributions of SEan and tested if 

they covered SEobs.  

 

3.4.2 AGB estimation accuracy 

For assessing if the design-based sampling strategies lead to valid inference for AGB�̂ , we 

examined the coverage rates of 95% z-based confidence intervals (z-CI) built around AGB�̂ . 

The actual coverage rates of the z-CIs was obtained as the percentage of times the z-CIs 
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included the population parameter �AGB during simulated sampling, and it was compared to 

the nominal 95% coverage. Despite the large second-phase samples, the skewness of the 

parent population may induce a positive correlation between AGB�̂ and SEan, which can 

produce the failure of the confidence interval probability statements (Gregoire & 

Schabenberger, 1999). Thus, we also examined the from-above and from-below failure rates 

of the z-CIs, as described by Gregoire & Schabenberger (1999). 

Under the MB framework, the 3.2v̂ variance estimator of Ståhl et al. (2011) targets the 

variance of AGBAGB �� ˆ� , where �AGB is considered a random variable. When the prediction 

model is unbiased, a sample based ��1 prediction interval for �AGB can be written 

as anAGB SEz  ! � )2/1(ˆ �� . Theoretically, a prediction interval under MB inference in not 

equivalent to a design-based z-CI because the former seeks to provide a coverage of 

AGBAGB �� ˆ�  for approximately 100(1-}!� of the realizations of the finite population vector 

for a fixed sample (Särndal et al., 1992, p. 534). In our case, the prediction intervals were 

constructed by using simulated sampling and considering �AGB as fixed. Finally, we compared 

the percentage of variance accounted for by each sampling phase by 1.2v̂ and 3.2v̂ estimators, 

and by the corresponding observed Monte Carlo variances. 

 

3.4.3 The relative efficiency of AGB estimation 

In this study, we aimed to assess the relative efficiency between strategies involving different 

designs, estimators and inferential frameworks. Although it is customary to express the 

accuracy of an estimator as the mean square error (Cochran, 1977, p.15-16; Gregoire & 

Valentine, 2008, p. 28), we used the root means square error (RMSE) because it accounts for 

potential biases as well. The RMSE values were calculated 
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as � � 22ˆ obsAGB SEBiasRMSE �� � , where AGBAGBAGBBias ��� ˆ)ˆ( �� is the bias of the 

estimator calculated as the difference between population mean and the average 

AGB�̂ estimates. Hence, the gain in accuracy (eff) obtained using two-phase systematic 

sampling (SYS2) with regression estimator compared to systematic ground survey (SYS1) can 

be expressed as the proportion between the observed RMSEs obtained under each sampling 

strategy: 

)ˆ(

)ˆ(

1

22
1 AGBSYS

AGBSYSSYS
SYS RMSE

RMSE
eff

�

�
�                                                eq(16) 

The efficiency of the SYS2 design relative to SRSwoR2 was expressed using the design 

effect (Cochran, 1977, p. 85; Särndal et al. 1992, p. 492) calculated as the ratio of the 

observed variances under the two designs: 

� �
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2

2
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,
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SYSdeff

�

�
� �                                     eq(17) 

 

4. Results 

The average sample size under SYS1 was 1309 population elements. The ALS samples under 

SYS2 and SRSwoR2 contained on average 52 PSUs, and the ground samples had on average 

1295 pixels. The sampling distributions of the AGB estimators and of their standard error 

biases are presented in Figure 6 to 11. The Monte Carlo estimates for bias and standard errors 

of AGB�̂ are presented in Table 4. The coverage and failure rates for the z-CIs for �AGB and the 

percentile-based CI derived from the analytical standard error estimates are shown in Table 5. 

Details are presented in the following sections. 
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Table 4 Results obtained running simulated sampling following one- and two phase designs under design 
and model-based inference. The percentages relative to population mean (Mg ha-1) are given in the 
brackets. 

Sampling strategies 
  Inference   

Estimates 
  

Percentage SE by sampling phase 

Design 
Estimators analytical observed SEan SEobs 

mean variance SEan Bias SEobs RMSEobs phase 1 phase 2 phase 1 phase 2 

One 
stage 

SYS1 HT 1.1v̂  DBHT 
1.5296 
(3.17) 

-8.8e-13 

(0.00) 
1.4477 
(3.00) 

1.4477 
(3.00) 

x x x x 
      

Two 
stages 

SRSwoR2 
GREG 

1.2v̂  
 

DBMA 
 

2.8032 
(5.82) -8.5e-3 

(-0.02) 
2.7859 
(5.78) 

2.7859 
(5.78) 

 
80 20 

80 20 
2.2v̂      

2.7925 
(5.80) 

  x x 

REG 3.2v̂    MB   
2.8562 
(5.93) 

-87.6e-3 
(-0.18) 

2.5868 
(5.37) 

2.5883 
 (5.37) 

  66 34 78 22 

SYS2 
GREG 

1.2v̂    
DBMA 

  
2.7986 
(5.81) 6.9e-3 

(0.01) 
0.5989 
(1.24) 

0.5990 
(1.24) 

  80 20 
6 94 

2.2v̂  
  

2.8161 
(5.84)  

x x 

REG 3.2v̂    MB   
2.8754 
(5.97) 

-49.7e-3 
(-0.10) 

0.6395 
(1.32) 

0.6414 
(1.33) 

 67 33 12 88 

 

Table 5 Coverage and failure rates (%) of z-based CI for �AGB following one- and two-phase designs, under 
design and model-based inference. 

Sampling strategy 

 

Coverage and failure rates 
(%) of z-CIs for population 

mean  

Empirical p-CIs for SEobs 
(Mg ha-1) 

sign 
Estimators 

mean variance below cover above p2.5 p97.5 SEobs 

One 
phase 

SYS1 HT 1.1v̂  
 

2.32 96.1 1.58 1.4321 1.6270 1.4477 

Two 
phase 

SRSwoR2 
GREG 

1.2v̂  2.43 94.46 3.11 2.2385 3.3376 
2.7859 

2.2v̂  2.32 94.69 2.99 2.3620 3.1924 

REG 3.2v̂  1.95 95.22 2.83 2.4502 3.2312 2.5868 

SYS2 
GREG 

1.2v̂  0.00 100.00 0.00 2.4100 3.1849 
0.5989 

2.2v̂  0.00 100.00 0.00 2.6336 2.9827 

REG 3.2v̂  0.00 100.00 0.00 2.7396 2.9873 0.6395 

 

 

4.1 Ground survey using systematic sampling with HT estimator 

Under SYS1, the bias of the HT estimator was virtually zero (Table 4). The actual coverage 

rate of the z-CIs for �AGB (Table 5) was 96.1%, and the percentage failures from below 

(2.32%) exceeded the failure rates from above (1.58%) inasmuch as the �AGB and the standard 

error estimates were highly correlated (Pearson’s r = 0.72). The observed and estimated 
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standard errors (Table 5) were close (SEobs = 1.4477 Mg ha-1 and SEan = 1.5296 Mg ha-1), 

differing by approximately 5.7 %. Still, the SEan and SEobs were not significantly different, the 

95% empirical p-CI constructed from the sampling distribution of the SEan (Figure 6) 

covering the SEobs value (Table 5). 

 

 
Figure 6 Sampling distributions for HT estimator for AGB and of its standard errors under SYS1. The dashed 
lines indicate the biases of the estimators. 
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4.2 Two-phase systematic sampling with regression estimators 

The sampling distributions of GREG and REG estimators under SYS2 are presented in Figure 

7. The regression estimators over- and under estimated �AGB with approximately 6.9e-3 Mg ha-

1(0.014%) and -49.7e-3 Mg ha-1(0.101%) for GREG and REG, respectively (Table 4). The 

sampling distribution of the deviation between observed and analytical standard errors (SEobs 

– SEan) under SYS2 is presented in Figure 8. 

 

 
Figure 7 Sampling distributions for GREG and REG estimators for AGB under SYS2. The vertical solid lines 
represent the reference values of zero bias, and the dashed lines indicate the biases of the estimators. 
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Figure 8 Sampling distributions for the estimated SE of GREG and REG estimators for AGB under SYS2. The 
vertical solid lines represent the reference values of zero bias, and the dashed lines indicate the biases of the 
estimators. 

 

The analytical SE estimates (SEan) were approximately 4.7 times larger than SEobs 

(Table 4). For GREG, the SEan obtained using the 1.2v̂ estimator attained a value of 2.7986 

Mg ha-1(5.81%), while SEobs was 0.5989 Mg ha-1(1.24%). The 2.2v̂ estimator produced a 

slightly higher SEan (2.8161 Mg ha-1) comparing to 1.2v̂ . Compared to GREG, the analytical 

standard error of REG (the 3.2v̂ estimator) was slightly higher (2.8754 Mg ha-1), but the 
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GREG and REG estimators performed close in terms of RMSE (1.24% and 1.33%, 

respectively). However, the standard error estimates produced by 1.2v̂ , 2.2v̂ and 3.2v̂  were 

significantly different from the SEobs, the empirical p-CIs failing to cover the SEobs for any of 

the variance estimators (Table 5).  

For GREG and REG estimators, the error component due to the first-phase sample 

represented approximately 6% of the total SEobs, while the second-phase sample accounted 

for 94% (Table 4). The largest components of SEan for 1.2v̂ and 3.2v̂  were due to the first-

phase samples (80 % and 67%, respectively), while the second-phase sampling error ( 1.2v̂ ) 

and the model-error component ( 3.2v̂ ) accounted for 20% and 33%. The coverage of the z-

based CIs for �AGB was 100% (Table 5), and a positive linear correlations were observed 

between SEan and AGB�̂ (r = 0.22 for 1.2v̂ , 0.52 for 2.2v̂ and 0.72 for 3.2v̂ ). 

 

4.3 Two-phase SRSwoR with regression estimator 

Both REG and GREG estimators slightly overestimated �AGB (Table 4). Although small, the 

bias of REG under SRSwoR2 was approximately ten times higher than the bias under GREG 

(-8.5e-3 Mg ha-1 and 88.6e-3 Mg ha-1, respectively). The sampling distribution of GREG and 

REG estimators under SRSwoR2 are presented in Figure 9. 
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Figure 9 Sampling distributions for GREG and REG estimators for AGB under SRSworR2. The vertical solid 
lines represent the reference values of zero bias, and the dashed lines indicate the biases of the estimators. 

 

The SEan for GREG under SRSwoR2 obtained using 1.2v̂  and 2.2v̂ estimators (2.8032 

Mg ha-1 and 2.7925 Mg ha-1) were close to the SEobs (2.7859 Mg ha-1), the differences 

between the analytical and observed estimates being below 1.0% (Table 4). The analytical 

standard error estimate produced by the 3.2v̂ estimator (2.8562 Mg ha-1) overestimated SEobs 

(2.5868 Mg ha-1) by nearly 10% (Table 4). However, the empirical 95% p-CIs obtained from 

the sampling distribution of 1.2v̂ , 2.2v̂  and 3.2v̂ estimators under SRSwoR2 covered the 

Monte Carlo estimate for SEobs, indicating that the differences were not significant. The 

RMSE of GREG was approximately 8% than for REG (2.7859 Mg ha-1 and 2.5883 Mg ha-1). 

The sampling distribution of the SEobs – SEan (Mg ha-1) under SRSwoR2 is presented in Figure 

10. 
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Figure 10 Sampling distributions for the estimated SE of GREG and REG estimators for AGB under SRSworR2. 
The vertical solid lines represent the reference values of zero bias, and the dashed lines indicate the biases 
of the estimators. 

 

For both GREG and REG estimators, the largest proportion of the observed 

sampling error (SEobs) came from the first-phase sample (80% and 78%, respectively) while 

the contributions of the second- phase samples and model-error component were around 20% 
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and 22% (Table 4). The analytical results obtained using the 1.2v̂ and 3.2v̂ estimators 

indicated that the first-phase sampling error accounted for 80% and 66% of SEan, 

respectively, while the second-phase samples and the model-error component contributed 

with 20% and 34%, respectively (Table 4). 

The coverage rates of the z-CIs for �AGB obtained using 1.2v̂ and 2.2v̂ estimators 

(94.46% and 94.69%, respectively) were slightly below the nominal rate of 95% (Table 5), 

while the coverage rate provided by the 3.2v̂ estimator (95.22%) matched well with the 95% 

nominal rate. The failure rates were asymmetric having an opposite behaviour comparing to 

the ground-sample case, the from-above failure rate being higher. However, the z-CIs for 

GREG were slightly more balanced. A weak but significant negative linear correlation was 

observed between SEan and AGB�̂  (r = -0.07 for 1.2v̂ , -0.10 for 2.2v̂ and 0.24 for 3.2v̂ ). 

 

4.4 Estimation accuracy and the design effect 

The accuracy (in terms of RMSE) of ALS-based systematic sampling was 59% higher 

compared to the field-based systematic survey (equation 16). The design effect of SYS2 

relative to SRSwoR2 (equation 17) was approximately 0.046 for both GREG and REG 

estimators, which corresponds to nearly five times smaller observed standard errors when 

using systematic sampling.  

 

5. Discussion 

This study described a simulation approach for assessing the performance of various 

estimators and to compare the accuracy of complex designs. Using an empirical dataset 

containing field observations, ALS measurements, satellite imagery and cartographic 
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products, an artificial population was created and served as ‘ground truth’ for performing 

simulated sampling. 

The empirical validation of the variance estimators for GREG and REG indicated that 

all the three estimators we investigated performed well when their underlying assumptions 

were fulfilled. Indeed, under SRSwoR2 the analytical and observed standard errors for GREG 

and for REG were not significantly different. Violating these assumptions however (as in the 

case of SYS2), still allows valid inference for both GREG and REG estimators, but the 

analytic variance estimates were inflated almost five times (e.g., 2.7986/0.5989 from Table 

4). The reason for obtaining better observed precision under SYS2 is that the systematic 

design produced more balanced samples compared to SRSwoR2, thus the variability between 

different samples was much reduced. Compared to the field-based survey, the RMSE of the 

ALS-aided inventories was improved by approximately 59% (e.g., 1-1.4477/0.5990 from 

Table 4), while the analytical results indicated that the accuracy of the ALS-based SE 

estimates was deteriorating approximately 1.8 times (e.g., 2.7986/1.5296 from Table 4). 

Under SRSwoR2, the SEan and SEobs produced consistent results in the sense that both 

accounted the first-phase sample as the largest source of error. This can also explains the 

good performance of the 2.2v̂ estimator in our study. Under SYS2, the opposite situation was 

observed, namely the 1.2v̂ and 3.2v̂ estimators continuing to assign much higher proportion of 

the standard error to first-phase sample, while in reality the highest amount of uncertainty 

was related to the second-phase sample. 

Gregoire et al. (2011) reported a higher precision of the ground-based survey 

compared to DBMA estimation, while Ståhl et al. (2011) found the model-based standard 

errors for ALS-based surveys slightly superior to the traditional field survey. For equal 

number of sample plots, Gobakken et al. (in submission) obtained comparable estimated 

accuracies of the ground-based and ALS-based surveys, and a better accuracy of the ground-
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based inventory when increasing the field sample size. Their results were obtained using a 

post-stratified estimation by cover-classes, different prediction models and different second-

phase sample sizes. Thus, a direct comparison with the results reported in the current study is 

difficult. Still, in the light of their results, it would have been difficult to favour the ALS-

based inventories because the variance overestimation couldn’t be detected. Using our 

simulation approach can reveal such problems and may eventually offer the tools for testing 

alternative solutions. 

The failure rates of the z-CIs were asymmetric for all cases, as it would be expected 

when sampling from a skewed population (Gregoire & Schabenberger, 1999). However, the 

asymmetry might become important especially for ground-based inventory if one-sided CIs 

are required. A possible solution for correcting the asymmetric failure rate might be, in this 

case, constructing asymmetric CIs (Gregoire & Schabenberger, 1999). While the AGB 

estimates were positively correlated to their estimated standard errors under systematic 

sampling, this correlation was negative under SRSwoR2 for reasons still unclear. 

Under SYS2, the estimated standard errors due to the first-phase sample dominated the 

total sampling error- for all estimators. This suggests accommodating the variance estimators 

to systematic sampling by applying alternative methods like successive differencing 

(Cochran, 1997) between PSUs, as suggested by Ståhl et al. (2011) and Gregoire et al. 

(2011). 

We did not find any significant differences between the performance of DBMA and 

MB estimators in terms of bias. Using large second-phase samples for model building, 

avoiding the retransformation bias and automatic variable screening methods can explain the 

small bias of the MB estimator (REG). It might be reasonable thus to use the sampling 

simulator also for evaluating model building strategies, especially under the MB framework 
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which depend on the quality of the prediction models, although full protection against model 

biases cannot be obtained. 

The systematic sampling with restricted selection for clusters with unequal sizes 

might not be the optimal choice in terms of precision (Valentine et al., 2009), but allowed to 

derive the full sampling distribution of our estimators. Using unrestricted systematic 

sampling with selection proportional with the number of NFI plots within each ALS strips 

might be a more efficient design and it merits further investigation. 

Using copulae makes possible creating a large artificial population even when the 

empirical dataset is relatively limited with respect to number of observations. However, the 

copula-based approach requires an empirical sample which describes well the underlying 

multivariate population distribution. Our copula modelling approach can be affected by the 

relatively high dimensionality of the dataset, especially when the sample size is small. On the 

other hand, dimensionality reduction would reduce the complexity of the interactions existing 

in the empirical data. As long as the simulation results are not directly inferred to the real 

population, we consider that the differences between the real and the artificial population can 

be neglected. Recently, hierarchical copulae modelling approaches more suitable for high-

dimensional data (Aas et al., 2009) were made available for users by the ‘CDVine’ package 

(Schepsmeier & Brechmann, 2011) of the open-source statistical environment R (R 

Development Core Team, 2011). This new methods will be further investigated for 

improving the quality of the artificial population. 

Another possible drawback of the methodology used for creating the population is that 

the nearest neighbour imputations alter the short-range autocorrelation (Barth et al., 2009; 

McRoberts, 2009). This may affect the assessment of multistage cluster sampling strategies 

and also analyses involving assessment of various field plot configurations (e.g. shape, size, 

orientation). This issue might be alleviated to some extent by employing computationally 
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intensive methods to obtain spatially consistent nearest neighbor imputations (Barth et al., 

2009). However, we do not believe that such effects influenced our results since the SSUs 

were displaced in a rather coarse grid (6x3km). 

Moreover, when performing simulation studies, the flight parameters and ALS 

settings cannot vary, since the population is based on an empirical dataset with fixed settings. 

Still, it still should be possible to thin the original LiDAR data and then to build a new 

artificial populations for simulating the effect of using a higher flight height or a lower pulse 

density. 

Another shortcoming of our approach is that the artificial population depends on the 

empirical observations gathered using some sampling design, which means that the results 

pertain only to the sampled population and should only be generalized with caution. 

It is too soon to assert that the strip sampling approach using ALS is a feasible 

solution for seasonal or annual large area timber resource, biomass, and carbon inventories. 

We did not include the inventory costs in our analysis and we did not have a well defined 

precision target for the survey. However, the simulation approach can be used to solve 

allocation problems specific to complex surveys and the technique might be employed as a 

decision-support tool for planning large-area surveys. 
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Abstract 
Auxiliary information provided by airborne laser scanners (ALS) is expected to increase the 

accuracy of biomass estimation in large-scale surveys. Because acquisition of “wall-to-wall” 

ALS data over large areas is not economically feasible, a systematic sampling approach using 

ALS as a strip sampling tool was used to supplement a conventional field-based inventory in 

a large-scale biomass survey in Hedmark County (HC), Norway. For the type of complex 

designs that had to be applied in this case, properties of estimators (e.g. bias and variance) 

cannot be determined analytically. In such cases, an alternative is to analyze the statistical 

properties of the estimators using simulated sampling from an artificial population. Through 

this approach, estimators with desirable properties can be identified and used for inference in 

real applications. By combining biomass estimates from Norwegian National Forest 

Inventory plots in HC, ALS measurements and Landsat 5 TM imagery, an artificial 

population at the scale of HC was created. Using this artificial population as “ground-truth”, 

we demonstrate how simulated sampling can be used for assessing the statistical properties of 

regression estimators and of their variance estimators under two-phase post-stratified 

systematic sampling (SYS) and simple random sampling without replacement (SRSwoR) 

designs, considering design- and model-based inferential frameworks. The results were 

assessed using a purely ground-based systematic design with a Horvitz-Thompson (HT) 

estimator as benchmark. The real overall precision of the ALS-aided systematic survey was 

nearly five times overestimated when using the design-based variance estimators developed 

for SRSwoR, while under model-based inference the overestimation of the real standard 

errors was around 40%. Compared to ground-based inventory, the estimated standard errors 

of the systematic ALS survey doubled while in reality the standard errors were 55% lower. 

Using successive differences variance estimators greatly improved the precision of the 
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systematic ALS-aided survey and produced valid 95% confidence intervals under the design-

based inference. The most satisfactory results for the ALS-aided survey terms of analytical 

variances occurred under design-based inference with successive difference variance 

estimator, closely followed by the model-based estimators. Using simulations, the cost 

efficiency of the ground based and ALS-aided surveys was assessed by evaluating accuracy 

against inventory cost for various sampling intensities. The results indicated that the ALS-

aided surveys can be a cost-efficient alternative to traditional field inventories. 
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1. Introduction 

With increasing concerns regarding global climate change, accurate estimation of forest 

carbon pools using remotely sensed auxiliary information has become a very active research 

field. Forest ecosystems are known to store large amounts of carbon (IPCC, 2000); one of the 

most dynamic and largest carbon pools is the aboveground biomass (AGB) pool of living 

trees (Fahey et al., 2010). In Norway, reporting of carbon stock changes from the Land Use, 

Land Use Change and Forestry (LULUCF) sector (IPCC, 2006) required by the Kyoto 

Protocol has been undertaken by the Norwegian National Forest Inventory (NFI) (Tomter et 

al., 2010). In tropical countries, an emerging interest for large-scale carbon inventories is 

driven by the initiatives to reduce emissions from deforestation and degradation (REDD) 

(Gibbs et al., 2007; Asner, 2009). 

However, terrestrial carbon inventory systems may not be economically feasible for 

large area surveys, and may not provide reliable local estimates, for instance at sub-regional 

and administrative unit level or by land-use or cover classes (Fahey et al., 2010; Gonzales et 

al., 2010). Combining auxiliary information provided by remote sensing systems with 

terrestrial surveys has the potential to enhance the precision of forest carbon estimation 

(Gonzales et al., 2010; Næsset et al., 2011). Having the ability to describe the three-

dimensional canopy structure, Airborne Light Detection and Ranging (LiDAR) is a promising 

remote sensing tool for enhancing biomass inventories in various forest types (Lefsky et al., 

2002; Drake et al., 2003; Nelson et al., 2004, 2007; Boudreau et al., 2008; Næsset & 

Gobakken, 2008; Asner et al., 2009; Næsset, 2011; Næsset et al. 2011). However, “wall-to-

wall” LiDAR surveys are still expensive for large areas, and economically feasible emerging 

technologies like the Interferometric Synthetic Aperture Radar (InSAR) (Gama et al., 2010; 
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Solberg et al., 2010a,b; Næsset et al., 2011) or fusion of LiDAR and InSAR (Sun et al., 2011) 

have been tested as an alternative for LiDAR-based AGB estimation. 

An alternative to the expensive “wall-to-wall” surveys is the use of LiDAR 

measurements within a sampling framework. For instance, double-sampling applications 

using airborne laser scanning (ALS) measurements on sub-sampled field plots were discussed 

by Parker & Evans (2004), Andersen & Breidenbach (2007), Corona & Fattorini (2008), and 

Stephens et al. (2012). Line-intersect sampling for AGB and forest volume estimation using 

profiling airborne lasers such the Portable Airborne Laser System (PALS; Nelson et al., 

2003) was tested in areas up to 5000 km2 in size (Nelson et al., 2004, 2008). Three-phase 

surveys using spaceborne laser, PALS and field plots as the first, second, and third phase 

samples, respectively, were described by Boudreau et al. (2008) and Nelson et al. (2009).  

An alternative design was suggested by Næsset (2005) and Gobakken et al. (2006), 

considering ALS as a strip sampling tool, where the LiDAR measurements are collected 

along corridors of several hundred meters wide aligned with the ground plot network. Under 

this design, the LiDAR data becomes itself a sample, introducing additional uncertainty while 

reducing the data acquisition costs. Andersen et al. (2009) applied this design in a two-stage 

survey for biomass estimation in Kenai Peninsula of Alaska, USA. In Norway, this design 

was tested in a large-scale biomass survey covering nearly 30,000 km2 in Hedmark County 

(HC), in the period 2005-2010, using ALS, PALS, Norwegian NFI data and supplementary 

ground plots (Næsset et al., 2009). 

The estimation in the HC survey was performed using regression estimators under 

two inferential frameworks: (1) two-stage, design-based model-assisted (DBMA) by Gregoire 

et al. (2011), and (2) two-phase, model-based (MB) by Ståhl et al. (2011). Gregoire (1998), 

Schreuder et al. (2001), and Kangas (2006) present more details regarding the design- and 

model-based inferential frameworks.  
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The estimation results obtained in the HC project (Gregoire et al., 2011; Gobakken et 

al., in press; Ståhl et al., 2011) asserted that LiDAR-based estimates attained a precision level 

close to the pure ground-based sampling. However, for complex surveys like the HC project 

where systematic sampling is used for collecting both the LiDAR and the field 

measurements, there is not an unbiased estimator that can be used to estimate uncertainty. To 

overcome this problem, Ene at al. (in submission) introduced a Monte-Carlo sampling 

simulation approach for assessing the statistical properties of the DBMA and MB estimators 

used in HC survey. Using simulated sampling from an artificial population allows describing 

the sampling distribution of complex estimators when analytical solutions do not apply, thus 

facilitating better efficiency assessments. Moreover, the behaviour of several estimators 

under complex designs can be assessed simultaneously, and the results can help identify 

which estimator has the most desirable properties under a given design. 

 The results presented by Ene at al. (in submission) indicated that violating the 

assumptions the variance estimators were built upon (e.g., using systematic sampling (SYS) 

instead of simple random sampling without replacement (SRSwoR)) greatly overestimated the 

uncertainty of the AGB estimates. Compared to the field-based survey, the simulation results 

indicated that the precision (in terms of standard error) of the ALS-based estimation 

improved by 59%, while the estimated standard errors indicated the opposite, i.e. that the 

standard errors were 1.8 times higher. Moreover, the estimated standard errors due to the 

first-phase sampling dominated the total estimated sampling error. This suggests adopting 

variance estimators to systematic sampling that apply alternative methods like successive 

differences (Cochran, 1997; Wolter, 2007), as proposed by Gregoire et al. (2011) and Ståhl et 

al. (2011). 

In the current study, the simulation methodology introduced by Ene et al. (in 

submission) where unstratified designs were assumed, is taken several steps further by 
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considering post-stratified designs and by testing variance estimators better suited for 

systematic sampling. The objectives of the study were: 

1. to assess the bias of the variance estimators proposed by Gregoire et al. (2011) and 

Ståhl et al. (2011) for post-stratified AGB estimation under SRSwoR and SYS designs; 

2. to assess the performance of successive differences estimators under two-phase 

systematic sampling designs; 

3. to assess the efficiency of ALS-aided and pure ground-based AGB surveys;  

4. to assess the design effects of the two-phase systematic and simple random 

sampling designs, and 

 5. to evaluate the relative costs of the ALS aided survey and field inventory under 

systematic sampling. 

The analyses are exemplified through a case study involving post-stratified AGB 

estimation, where the four administrative units represented the post-strata. 

 

2. Material 

The study area was Hedmark County located in southeastern Norway (Figure 1). The county 

has a land area of 27 399.72 km2 and contains four main administrative units (AU). HC is 

rather heterogeneous with regard to forest types and geomorphology. The dominant tree 

species present in HC are Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus 

sylvestris L.). 

The material comprises three datasets: (1) field inventory data, (2) remote sensing 

data (ALS and satellite imagery), and (3) cartographical products in the form of a digital 

terrain model (DTM) as raster data and land-use maps. For a more detailed presentation of 

the datasets, see Ene et al. (in submission) and Gobakken et al. (in press). 
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Figure 1 Spatial location of field plots and laser scanning strips across the administrative units in Hedmark 
County. 
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2.1 Satellite imagery and map data 

An image mosaic providing full coverage of HC was build using the bands 1 to 5 and 7 of 

three nearly cloud-free Landsat 5 TM images. The spatial resolution of the mosaic was 

15.81m such that the area covered by a pixel was 250 m2. 

The map data consisted in a 25 m spatial resolution DTM produced by the Norwegian 

Mapping Authority from the official topographic map series, and AR5 land use maps (Bjørdal 

& Bjørkelo 2006). Using the DTM and the land-use map, a forest mask for the entire HC was 

created. The DTM was used for delineating the coniferous tree line in HC (Ørka et al., 2012), 

and the land-use maps were used for eliminating water and other types of non-forested areas. 

A forest vegetation mask representing about 86% of the tessellated area of HC was created 

for the developed areas and for the regions between 850 and 1150 m a.s.l. 

 

2.3 Field data 

The field observations were acquired from the permanent plots of the Norwegian National 

Forest Inventory. The Norwegian NFI is a continuous forest inventory system having the 

sampling units represented by fixed-area circular plots of 250m2 displaced in 3x3 km grid 

covering the entire country except the areas above the coniferous tree line where the grid 

spacing is 3x9 km. The grid axes are oriented to the north-south and east-west directions. Due 

to the Latin square design used for deciding the revisiting order of the field plots across the 

country (Tomter et al., 2010), approximately 20% of the 2309 NFI plots located in HC are 

measured every year. Totally, 1483 plots (including NFI plots and additional plots 

subjectively located in developed and mountain areas) were measured during three field 

campaigns in the period 2005-2007. Among the 1483 plots, this study is using a subset of 662 

plots (Table 1) located on every second east-west oriented NFI grid line, because they were 
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aligned with the corridors selected for ALS data acquisition. Although the field plots were 

not uniformly distributed over HC, they covered the main vegetation gradients in HC (Ene et 

al., in submission). More details regarding the field plot selection can be found in Gobakken 

et al. (in press).  

On each plot, all trees having a breast height diameter (dbh) �������
�
��
����
�
���

and approximately ten sample trees were selected proportional to stem basal area for height 

measurements (h). A detailed description regarding the NFI estimation methods is given by 

Tomter et al. (2010) and Gobakken et al. (in press). The total aboveground dry biomass of 

each living tree having h ���������
����
����
����������

-species specific allometric models 

(Marklund, 1988), and tree level AGB estimates were summed up to obtain plot estimates 

which then were considered to be equivalent to actual AGB of live trees on the plot. 

 

Table 1. AGB distribution (Mg ha-1) by field plots and administrative units (AU) 

AU 
 

NFI plots by AU AGB distribution by plots 

no. % mean std.dev range 

AU1 178 26.9 33.0 32.7 0.47 - 141.98 

AU2 261 39.4 49.2 51.5 0.26 - 294.83 

AU3 54 8.2 61.4 62.4 0.58 - 290.85 

AU4 169 25.5 72.2 63.6 0.65 - 331.51 

Total 662 100 51.7 53.7 0.26 - 331.51 
 

The field plot positions were determined using differential post-processing of dual-

frequency Global Positioning System (GPS) and Global Navigation Satellite System 

(GLONASS) measurements acquired using Topcon LegacyE receivers. The observation time 

was at least 15 minutes on each plot, at a 2 seconds logging rate. Six base stations were 

established at different locations across HC, such that the vector ranges between base stations 

and plots were less than 50 km. Vector differential corrections were calculated for each plot 

using the nearest base station as reference. The precision of plot centre positioning reported 
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by the Pinnacle 1.0 post-processing software (Anon., 1999) varied between 0 and 2 m, with 

an average of 0.05 m. 

 

2.4 ALS data 

The ALS data acquisition was performed during the period July-September 2006 along fifty-

three parallel flight lines, using two Optech ALTM 3100 laser-scanning systems (Optech, 

Canada) mounted on two PA31 Piper Navajo aircrafts. The ALS strips were equally spaced at 

a distance of 6 km in the north-south direction, covering approximately 8.4 % of the land area 

in HC. The ALS acquisition parameters (average flying height approximately 800 m above 

ground, average speed 75 ms-1, 100 kHz pulse repetition frequency, 55 Hz scan frequency, 

maximum scanning angle of 17°) translated to an average density of 2.8 echoes m-2, and an 

average swath width of approximately 500 m. The digital terrain surface was created using 

the TerraSolid software (TerraSolid Ltd, Finland). The laser echoes recorded as ‘single’ and 

‘first of many’ by the ALTM 3100 sensors were used for further analysis after height 

normalization relative to the digital terrain surface. 

 

3. Methods 

The study was performed using the simulation approach described in Ene et al. (in 

submission). Briefly, this approach requires creating first an artificial population using the 

empirical observations. The creation of the artificial population starts with fitting a Gaussian 

copula (Nelsen, 2006) to the empirical data (field observations and remote sensing 

information). Then, a large sample generated from the copula model is imputed to the image 

mosaic covering the HC area using the nearest neighbor method. Thus, the resulting dataset 

with imputed ALS metrics and AGB values for every image pixel in HC is considered our 

population. Using this artificial population as ground-truth, Monte-Carlo sampling simulation 
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is conducted following the same design used to collect the empirical data. The properties of 

the estimators are assessed from their sampling distributions derived using simulated 

sampling. 

Following the outline of the HC project, three sampling strategies (sensu Särndal et 

al.,1992, p. 30; Gregoire & Valentine, 2008, p. 1) were considered. The first strategy 

corresponds roughly to the current Norwegian NFI system and uses the Horvitz-Thompson 

estimator followed by design-based inference (DBHT). The second strategy considered 

model-assisted estimation with design-based inference (DBMA) and the third consisted of 

model-based estimation and inference (MB). The inference under DBHT relies upon the 

sampling design and makes no use of auxiliary information. The DBMA inference uses the 

auxiliary information provided by ALS for estimation through the linear regression model 

developed in section 3.1, and the validity of the inference is based on the probabilistic design. 

Typically, the model-based inference does not require a probabilistic sample. In our case, this 

applies only to the ground sample which can be probabilistic or not, and it allows using any 

external model considered appropriate for the data. However, the LiDAR data acquisition 

follows the same design as for the DBMA, and the MB approach in fact mixes the design- 

and model-based inference.  

In order to overcome the true standard error overestimation reported by Ene at el. (in 

submission), two variance estimators based on successive differences were tested.  

The sampling designs, the estimators and the assessment procedures are introduced in 

the remainder of this section. The methodology is demonstrated through a case study 

resembling the HC survey, considering a post-stratified estimation by treating the 

administrative units of HC as poststrata. 
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3.1 Predictive ALS-based model for AGB 

A generalized linear model (McCulloch & Nelder, 1989) was used to describe the entire 

population using the combined observations from all groups, the group effects (different 

intercepts) being represented using dummy variables (Särndal et al., 1992, p. 261-262). The 

common-slope group regression model was formulated as:  

 
�
�
�

��
	




��
"�

),0(~

)(

2�



�
��

N

AGB
g t

                                                                   eq(1) 

where the )(�g function is the square-root link, tX� is the linear predictor of the expected AGB 

value � , X is the design matrix and � is the vector of parameters (McCulloch & Nelder, 

1989, p. 26-27). The predictor variables included in the model were the maximum echo 

height (Hmax), a canopy density metric (D10), the interaction term Hmax×D10, and three dummy 

regressors corresponding to AU2-4. For obtaining the canopy density metrics, the ranges of 

the laser echo heights were first defined for each plot as the difference the 95% percentile of 

the echo height distributions and a minimum threshold height of 1.3 m. Then, these ranges 

were partitioned into ten fractions of equal height and the densities of laser echoes above 

each fraction (D0 to D90) were calculated (Næsset 2004; Gobakken and Næsset, 2008). The 

overall RMSE of the model was 16.5 Mg ha-1(32.0%), with r2 = 0.91, where r is the linear 

correlation coefficient between the original and predicted AGB values (Zheng & Agresti, 

2000). The group RMSEs were, in order, 12.3 Mg ha-1 (37.2%), 14.6 Mg ha-1 (29.7%), 27.0 

Mg ha-1 (44.0%) and 19.8 Mg ha-1 (27.4%) for AU 1 to 4. The model parameters ���
�
�

estimated from the second-phase samples selected during simulations. The derivation of the 

ALS metrics used for building the predictive models for AGB is described in Ene et. al (in 

submission) and Gobakken et al. (in press). 
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3.2 Creating the sampling simulator 

The sampling simulator described by Ene et al. (in submission) consists of an artificial 

population and a sample selection mechanism. 

The artificial population serving as ground-truth during simulations was constructed 

as follows: 

- a copula model was fitted to a multivariate empirical dataset containing plot-level 

measurements (field observations, ALS metrics and spectral information); 

- a large multivariate sample was generate from the fitted copula model using uniform 

pseudo-random numbers;  

- the large-sample data was generalized across the study area using satellite imagery data 

and nearest neighbor imputations. 

We emphasize that the aim was not to re-create the true forest of HC, but to produce 

an artificial population retaining the major geographical trends in HC while maintaining a 

realistic overall variability. The AGB statistics for the artificial population are presented in 

Table 2. 

 

Table2. AGB distribution (Mg ha-1) in the artificial population by administrative unit (AU) 

AU 

  AGB distribution by AU 

% area mean std.dev range 

AU1 32.1 29.4 38.7 0.12 - 343.11 

AU2 37.9 45.3 51.9 0.12 - 345.76 

AU3 10.0 63.3 61.4 0.12 - 345.76 

AU4 20.0 76.3 66.6 0.12 - 345.76 

Total   100 48.2 55.3 0.12 - 345.76 
 

The spatial sampling frame used to identify the sample units was in the form of a 

look-up table following the raster representation of the HC area, such that each cell 

corresponds to a sampling unit. The geographical distances were converted from meters to 
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number of pixels through division by the pixel size (15.81 m) and rounding to integer value 

using the ceiling operator. Hereafter, the terms pixel and population elements are used 

interchangeably. 

 

3.4 Sampling designs 

The simulated sampling was performed using designs described in Ene et al. (in submission): 

one-phase systematic sampling (SYS1), two-phase simple random sampling without 

replacement (SRSwoR2) and two-phase systematic sampling (SYS2). The SYS1 design 

resembles the Norwegian NFI system and it was chosen as a benchmark. The SYS2 design 

replicates the one used in the HC survey and it may represent a feasible solution for future 

operational applications. The use of the SRSwoR2 design is justified because it complies with 

the theoretical assumptions required by several variance estimators described in section 3.5.2. 

The ALS-aided survey in HC involves systematic sampling at both selection stages 

(SYS2). Under this design, the subsampling is invariant but the selection of secondary 

sampling units (SSUs) is not independent. On the other hand, the SRSwoR2 design fulfils both 

the invariance and independency requirements. However, the MB framework allows using 

independent sources of auxiliary data (Ståhl et al., 2011). Hence, the SYS2 and the SRSwoR2 

designs were viewed as two-phase element sampling designs according to Särndal et al. 

(1992, p. 344-345). 

To perform the two-phase sampling, HC was partitioned into M=625 mutually 

exclusive clusters following the raster representation spatial frame. The clusters represent the 

ALS corridors and are oriented parallel to the east-west direction. The cluster width was set 

to 32 pixels (approximately 500m) to match the average ALS swath width in the HC survey. 

However, the width of the last cluster in the frame was 29 pixels (approximately 485m), 

because the spatial frame dimension along the y-axis (north-south direction) was not an 
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integer multiple of the cluster swath. Due to the irregularly shaped area of HC (Figure 1), the 

clusters have varying lengths and contain different numbers of sample units. During 

simulated sampling, the clusters represent the primary sampling units (PSU), and the pixels 

subsampled whithin each PSU are the secondary sampling units (SSUs). Henceforth, the 

number of pixels in the pth PSU is denoted n1p, and the number of SSUs sampled from the pth 

PSU was denoted as n2p. 

 

3.4.1 One-phase SYS 

The ground-based inventory (SYS1) was viewed as a one-phase systematic sampling design 

(Köhl et al., 2006, p. 81) with restricted selection in two dimensions, where each sample is 

selected with the same probability (ax1 × ay1)-1. The first sample unit is drawn randomly 

among the first ax1 × ay1 population elements with the inclusion probability �k = (ax1 × ay1)-1 

= axy1
-1, where ax,1 and ay,1 are the sampling intervals (in pixels) along the spatial frame’s 

axes. The remaining sample units are selected systematically at the predefined sampling 

intervals ax1 and ay1, thus the sample size varies due to the irregular borders of HC. Using the 

raster sampling frame of the artificial population, the sampling intervals along the east and 

north directions were ax1 = 190 pixels and ay1 = 380 pixels, corresponding to approximately 

3000 m and 6000m, respectively. The total number of possible samples produced under the 

SYS1 design was axy1 = ax1 × ay1 = 190 × 380 = 72,200. 

However, this design does not fully comply with the Norwegian NFI system because 

it ignores every second east-west grid line and it assumes that all field plots distributed across 

HC are measured during one field campaign rather that over a five-year cycle. 
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3.4.2 Two-phase SYS 

Following the ALS survey of HC, the PSUs were spaced 6 km (380 pixels) apart, and each 

swath was parsed to a 500m width (32 pixels), which translates into a sampling interval of ay2 

= 12 ({�M/n1). Hence, the total number of first-phase samples was ay2 = 12, of which the first 

sample contains n1=53 PSUs and the rest of the 11 samples contain n1=52 PSUs. The 

sampling intervals along the (x, y)-axis for the two-dimensional grid were ax2 = 3000m (190 

pixels) and ay2 = 6000m (380 pixels), the first SSU being selected among the first ALSw × ax2
 

units of the first PSU, where ALSw is the width of the ALS strips (32 pixels). The number of 

all possible second-stage samples selected from every first-stage sample was equal to ALSw × 

ax2 = 32×190 = 6,080. 

 

3.4.3 Two-phase SRSwoR 
Under SRSwoR2, the size of the first-phase samples was set as the expected size of the first-

phase sample under SYS2 (n1=52). The SSUs were selected independently within each PSU. 

The sampling invariance requirement was fulfilled by setting the inclusion probabilities for 

the SSUs in each PSU as the average PSU length (in pixels) divided by the sampling interval 

along the east-west direction (ax2=190 pixels) used under SYS2. This would also allow the 

expected size of the second-phase samples under SRSwoR2 and SYS2 to match each other.  

The SRSwoR2 design complies with the theoretical assumptions considered by 

Gregoire et al. (2011) and Ståhl et al. (2011) for building the variance estimators for the total 

AGB. Thus, we could use simulated sampling following the SRSwoR2 design for validating 

the estimators presented in section 3.5.2. 
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3.5 Post-stratified estimation 

Post-stratification is the process of partitioning the observations into a set of discrete strata 

after the sample has been selected (Gregoire & Valentine, 2008, p. 152). Theoretically, any 

sample can be post-stratified, but the post-stratified estimation becomes meaningful only if 

the strata sizes or the proportion of each stratum relative to the population (the strata weights) 

are known (Zhang, 2000; Gregoire & Valentine, 2008, p. 152). With post-stratification by 

administrative units, i.e., by treating the AUs as our post-strata, the sampling is not performed 

independently within each AU, the sample units being assigned to the AUs after selection. 

Hence, the strata sample sizes are random variables because they are known only after the 

sample selection (Särndal et al., 1992, p. 261; Gregoire & Valentine, 2008, p. 153). 

The systematic sampling designs used for the HC survey introduces dependencies 

between post-strata estimates because the grid lines (for SYS1) and ALS corridors (SYS2) 

often extend over several AUs. 

These dependencies are accounted for under the model-based inference (Ståhl et al., 

2011), while the DBMA estimator does not incorporate a between-stratum covariance term 

(Gregoire at al., 2011; Gobakken et al., in press). 

We used u to index the U administrative units in HC, n for the ground sample size and 

N for the population size. Hence, the size of the uth AU will be denoted as Nu and the number 

of field observations as nu. Considering the post-stratum sizes known without error from the 

GIS system, the post-stratum weights were calculated as Wu = Nu/N. 

 

3.5.1. Post-stratified estimation following SYS1 

Assuming SRSwoR and conditioning on the selected sample size nu, the poststratification 

estimator of total AGB (Mg ha-1) in the uth AU (Gregoire & Valentine, 2008, p. 154-155 and 
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p.162-163) is the Horvitz-Thompson estimator
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the conditional variance estimator for AGB�̂ is given by (Gregoire and Valentine, 2008, p. 

155): 
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                                                      eq(3) 

 

3.5.2. Post-stratified estimation following SRSwoR2 and SYS2 

The DBMA inference for �AGB was performed using to alternative estimators, i.e., (1) the 

two-stage element sampling variance estimator described by Gregoire et al. (2011) which 

requires SRSwoR at both selection stages, and (2) a simplified variance estimator (Särndal et 

al., 1992, p. 154) which assumes SRSwoR of PSUs. In the simulation study presented by Ene 

et al. (in submission), these estimators performed equally well for unstratified estimation 

under SRSwoR2 and SYS2. 
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Using the generalized regression estimator (GREG) from equation 8.9.6 in Särndal et 

al. (1992, p. 323) and equation 6 in Gregoire et al. (2011), the estimated total for the pth PSU 

intersecting the uth AU is ��
��

��
pupu n

j
jpu

p

p
N

k
kpupuGREG e

n
N

BGAt
1

,
1

,,
ˆˆ . The first term is the 

summation over predicted AGB for population elements in a selected PSU, and the second 

term represents the bias correction estimated from the regression residuals epu,j for the SSUs 

within the particular PSU. The AGB total for the uth AU becomes �
�

�
1

1
,2,, ˆˆ

n

p
puGREGyuGREG tat , 

and the average AGB per hectare for the uth AU is estimated as uGREGuuGREG tNcf ,
1

, ˆˆ ��� . 

Following Gregoire et al. (2011), an approximated variance estimator of per-hectare uGREG ,�̂  

is:  
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second-stage sample units within the pth PSU. The second term approximates the variance 

due to subsampling by prorating the cluster residual 
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variances �
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The across-strata estimate of total AGB �
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1
,ˆˆ is obtained by collapsing the 

post-stratum total estimates, and the across-strata per-hectare AGB estimate 

becomes GREGGREG tNcf ˆˆ 1��� . The variance estimator of GREG�̂ is expressed as (Gregoire et 

al., 2011):  
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To avoid obtaining negative variance estimates when using the 1.2v̂ estimator 

(Gregoire et al., 2011; Gobakken et al., in press), Ene et al. (in submission) used the 

simplified estimator described by Särndal et al. (1992, p. 154), which assumes SRSwoR for 

PSU selection: 
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The per-hectare variance estimator is expressed as: 
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Under the MB inference, the AGB total of the pth PSU predicted using the regression 

estimator (REG) becomes �� ��
� pussspuREG AGBBGAt

pupu 221

ˆˆ , . The second term in the equation is 

the summation of the sample AGB over in the pth PSU, and the first term is sum of the 

predictions for the rest of the population elements within the PSU. The estimate of AGB per-
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hectare in the uth AU is expressed as the ratio of the total and average PSU size (Ståhl et al., 

2011, equation 11): 
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The approximated variance estimator of uREG,�̂ assuming SRSwoR and finite 

population correction for the first phase sampling can be written as (Ståhl et al., 2011, 

equation 15): 
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The first term in equation 8 estimates the error due to the first-phase sampling. The 

second term accounts for the uncertainty of the model parameters estimated from the second-

phase sample, and it includes the covariance matrix of the m model parameters )ˆ(�  and the 

average values of the first-order derivatives of the )(1 ��g function from equation 1. The across-

stratum estimates for per-hectare AGB was calculated as (Ståhl et al., 2011, equation 12) 
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eq(9) 

The stratum dependencies are accounted by the cross-stratum covariances denoted by 

the double summations in equation 9. 
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3.5.3. Post-stratified variance estimation under SYS2 using successive 

differences estimators 

When using systematic sampling, there is not an unbiased, design-based estimator variance 

estimator (Cochran 1977, §8.1; Gregoire & Valentine, 2008, §3.2.2). However, Cochran 

(1977, §8) describes how a superpopulation model can be used in order to obtain variance 

estimators approximately unbiased for the model, suggesting that gathering information about 

the population structure is recommended at both planning and estimation phases. For the case 

of equal-probability, one-dimensional systematic sampling, Wolter (2007, §8.3.2) discuss the 

properties of several successive differences variance estimators assuming various types of 

superpopulation models. Historically, successive differences estimators were used with line 

survey sampling in early forest inventories conducted in Nordic countries (Heikkinen, 2006). 

Because the successive differences estimators described in Wolter (2007) assume a 

one-dimensional sampling, the artificial population had to be considered as consisting of M 

non-overlapping clusters, so the contrasts between clusters could be calculated. At this point, 

as underlined by Wolter (2007, p. 323), expert judgment can be applied to investigate if there 

is an underlying model describing the spatial distribution of the AGB in the M clusters, in 

order to select an appropriate variance estimator. More precisely, we tried to detect the 

presence of trends, stratification effects and auto-correlation between cluster AGB totals and 

averages using the artificial population as a proxy for the real forest in HC. The results of this 

exploratory analysis are presented in Figure 2.  

A second-order trend (R2 = 0.76) was found among cluster totals (Figure 2) and a 

linear trend (R2 = 0.94) between the cluster means (Figure 3). Moreover, the Durbin-Watson 

test revealed significant autocorrelation among the residuals obtained after trend removal 

from the cluster totals and means (Figure 2 and Figure 3, respectively). Henceforth, we 

considered the cluster means for calculating the successive differences estimators. 
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Figure 2 The north-south quadratic trend among the cluster totals in the artificial population (Figure 2a), and 
the distribution of the residuals after trend removal (Figure 2b). The values on x-axis indicates the cluster 
ordering from 1 to M, where M = 625. 

 



25 
 

 
Figure 3 The north-south linear trend among the clusters means in the artificial population (Figure 3b), and 
the distribution of the residuals after trend removal (Figure 3b). The values on x-axis indicates the cluster 
ordering from 1 to M, where M = 625. 

 

It is more realistic to assume that the structure of the artificial population is in fact a 

combination of several effects. Beside the trends and auto-correlation, stratification effects 

are also present as indicated by the plateaus observed in the residual distributions (Figure 2b 

and 3b).  

However, analyzing all 12 possible systematic samples of clusters we did not find 

indications of any trend among their means, which may suggest that the trend is not the 

dominating effect in the population of clusters. Hence, we decided to use the v4-estimator 

described in Wolter (2007, §8.3) which was found to provide protection against trend, 

stratification and autocorrelation effects (Wolter 2007, §8.3 p. 331). Although Marcell et al. 

(2009) found this estimator satisfactory, they advice using an estimator which accounts for 
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auto-correlation effects (the v8-estimator in Wolter, 2007, §8.3), even when linear trends are 

present. However, we did not considered the v8-estimator here because it was found too 

optimistic and provided mediocre results in populations exhibiting stratification effects 

(Wolter, 2007, p. 332). 

The v4-estimator described in Wolter (2007) does not consider systematic sampling of 

clusters of unequal sizes, as we are faced with in the HC survey. For this reason, we used the 

weighted equivalent of the v4-estimator described in equation 3 in Nelson et al. (2008), 

formulated as:  
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For the case of MB inference, the successive differences estimator was used for 

estimating the sampling error due the first-phase sample, as: 

� � uREG

n

p
upREGpuREGupREGpuNT

REG
uNT Dw

n
n

M
nv

u

,,2
2

2
,1,,,1,

2
,

1

11
,

ˆˆˆ2ˆ
)2(96

1ˆ
1

���
���

�

�
��
�

�
�� �

�
�� ���          eq(11) 

where uREGD ,,2
ˆ is the model-error term of the uv ,3.2ˆ  estimator in equation 8. 

The across-stratum variance estimator under DBMA was constructed by collapsing 

the strata within the same PSU: 
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For the MB inference, the 3.2v̂ estimator considered the covariances between PSUs, 

since they can extend over several strata. Hence, we proposed a variance estimator which 

includes the covariance of the successive differences between clusters, and the model-error 

term from 3.2v̂ , formulated as:   
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           eq(13) 

The REGD ,2ˆ term in equations 13 represents the model-error estimate used for the 3.2v̂  

estimator (equation 9). 

 

3.6 Accuracy assessment 

The sampling distributions of an estimator under design-based and model-based inference are 

not identical (Särndal et al., 1992, p. 534). However, the inference following the designs 

presented in section 3.4 requires probability sampling, which justifies using simulated 

sampling from the artificial population as described in Ene et al. (in submission) for assessing 

the properties of the estimators introduced in section 3.2.  

The strategies using systematic sampling allowed extracting all possible samples and 

the complete sampling distributions of the estimators could be obtained. Under SRSwoR2, the 
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sampling distributions of the estimators were approximated from 5,000 first-phase samples 

with 100 second-phase samples each. 

 

3.6.1 Assessing the AGB estimation 

The standard error of the sampling distribution of AGB�̂ constituted the observed standard error 

(SEobs). The analytical standard errors (SEan) were calculated as the square root of the average 

variance estimates obtained from each sample during the simulated sampling. In addition, the 

coefficients of variation relative to the group and population means were for also calculated. 

For assessing the agreement between observed and analytical standard errors, we built 

percentile-based confidence intervals using the 2.5 and 97.5 percentiles of the sampling 

distribution of SEan, and checked if they covered SEobs. 

To assess the inference for the estimated AGB, 95% z-based confidence intervals (CI) 

were built around AGB�̂ using SEan estimates, and the coverage rates of the z-CIs obtained from 

simulated sampling were compared to the nominal 95% coverage. Having a skewed parent 

population, the from-above and from-below failure rates of the z-CIs we also examined as 

described by Gregoire & Schabenberger (1999). 

 

3.6.2 Relative efficiency of the AGB estimation 

The relative efficiency between sampling strategies was calculated using the root mean 

square errors 22)ˆ( obsABG SEBiasRMSE �� � of the estimators, where )ˆ( AGBBias � is the estimated bias 

calculated as the difference between the Monte Carlo AGB�̂  estimates and the strata and 

population values.  
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Hence, the accuracy (eff) of SYS2 with regression estimator relative to SYS1 with HT 

estimator was expressed as the proportion between the observed RMSE obtained under each 

sampling strategy: 

)ˆ(

)ˆ(

1

22
1 AGBSYS

AGBSYSSYS
SYS RMSE

RMSE
eff

�

�
�                                            eq(14) 

The relative efficiency of the SYS2 and SRSwoR2 designs was expressed using the 

design effect (Cochran, 1977, p. 85; Särndal et al., 1992, p. 492) as the ratio of the observed 

variances under the two designs: 
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3.7 Cost efficiency analysis 

The sample allocation scheme in the poststratified HC survey resembles the proportional-to-

size scheme, larger strata being sampled more intensively. Considering this type of sample 

allocation, our interest was to perform a cost efficiency analysis of the ALS-aided survey 

relative to the pure ground-based surveys, and to investigate of the survey costs and precision 

for various sampling and subsampling rates. 

In order to perform this analysis, the cost of the ALS data was expressed as a function 

of the field inventory costs. Simplifying, the total cost of the ALS-aided inventory in HC can 

be formulated as: 

FieldALSTotal CCC ��                                                  eq(16) 

 where CALS and CField are the overall costs associated with the ALS acquisition and 

field inventory, respectively. The total cost of the ALS acquisition was expressed 

as 0
1 ALSALS CLnC � , where L is the average length of the ALS corridors (approximately 75 km 
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in the HC survey) and 0
ALSC is an average cost per strip-kilometer. Similarly, the total cost of 

the field survey can be written as 0
FieldField nCC � , where 0

FieldC is an average cost per plot. 

Using the notation 0

0

Field

ALS

C

C
k � , equation 17 becomes: 

)()( 1
000

1 nkLnCnCkCLnC FieldFieldFieldTotal ����                                   eq(17) 

The total cost of the ALS-aided survey formulated in equation (17) is proportional to 

the average cost of a field plot, the term 0
FieldC being a constant which can be neglected in the 

subsequent analysis.  

The relationship between CTotal and SEobs (%) was obtained using simulated sampling 

following one- and two-phase equal probability systematic designs, and considering the three 

sampling intervals of 3, 6 and 9km along the north-south and east-west directions. For each 

of the nine combinations, the observed standard errors of the HT, GREG and REG estimators 

were obtained by performing simulated sampling.  

To illustrate the cost-efficiency improvements of ALS-aided inventories over time, 

the inventory costs were calculated according to equation 17, where k was assigned the 

values of 1/20, 1/10, and 1/5, respectively. The value k=1/10 was obtained from the empirical 

evidence accumulated with commercial ALS-based forest inventories performed in Norway 

during the last years (including the HC project) which suggests that the average cost of a field 

plot is approximately ten times higher than the per-kilometer cost of an ALS strip. The value 

k=1/5 was used to express the situations in the past when the ALS data were highly 

expensive, and k=1/20 is meant to be a rough prediction for the midterm future when the 

price of ALS data are expected to decrease even more relative to the cost of field 

measurements. 

The relationship between SEobs (%) obtained from simulations and the corresponding 

CTotal values were used to analyze the relative cost efficiency of ALS-aided surveys. In order 
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to assess the relationship between survey costs and the various error estimates, the relative 

costs were transformed to the logarithmic scale and the relationship between the standard 

errors (%) and log-transformed costs was investigated using simple linear regression. Hence, 

the slope of the regression line indicates the expected change in precision when the costs 

change by a fixed percentage. Having the costs directly related to the sample size, this allows 

analyzing also the relationship between precision and sample size. 

 

4. Results 

The one-phase samples under SYS1 contained in average 1309 population elements. The 

average sizes of the first- and second phase samples were 52 PSUs and 1295 SSUs, 

respectively. The performance of the estimators in terms of bias and standard errors is 

presented in Table 3. The coverage properties of the confidence intervals are indicated in 

Table 4. Further details are presented in the following sections. 
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Table 3. Results obtained running simulated sampling following one- and two phase designs under design 
and model-based inference. The percentages relative to population mean are given in the brackets. 

Design 
Estimators         Poststrata   

Total  
mean variance         AU1 AU2 AU3 AU4   

SYS1 HT 

observed 

Bias 
Mg ha-1 -0.0024 -0.0008 0.0026 0.0002   0.0008 

% (-8.2e-3) (-1.8e-3) (4.1e-3) (0.3e-3)   (1.7 e-3) 

SEobs 
Mg ha-1 1.7549 2.2082 5.1191 4.0812 1.3942 

%   (5.9) (4.9) (8.1) (5.3) (2.9) 

v1.1 
  

SEan 
Mg ha-1   1.8858 2.3313 5.3684 4.1159   1.4535 

  %   (6.4) (5.1) (8.5) (5.4) (3.0) 

SRSwoR2 

GREG 

observed 

  
Bias 

Mg ha-1 -0.0248 -0.03696 -0.01079 0.0204 -0.019 

% (-84.0e-3) (-8.2e-3) (-1.7e-3) (2.7e-3)   (-3.9e-3) 

SEobs 
Mg ha-1 4.9419 7.7351 15.0539 14.3199 2.8298 

  %   (16.8) (17.1) (23.8) (18.8)   (5.9) 

v2.1 SEan 
Mg ha-1 4.7463 7.5670 14.0849 14.0810 2.8009 

% (16.2) (16.7) (22.3) (18.5) (5.8) 

v2.2 
  

SEan 
Mg ha-1 4.9626 7.7545 15.2155 14.2866 2.7928 

  %   (16.9) (17.1) (24.1) (18.7)   (5.8) 

REG 

observed 

  
Bias 

Mg ha-1 -0.0624 -0.0360 0.0885 0.0072 -0.0234 

% (-0.2) (-0.1) (0.1) (9.4 e-3) (-48.6e-3) 

SEobs 
Mg ha-1 1.3681 2.4754 3.6363 2.2510 1.0047 

  %   (4.7) (5.5) (5.8) (3.0)   (2.1) 

v.2.3 SEan 
Mg ha-1 1.1027 2.3251 2.7691 1.4246 0.9287 

  %   (3.8) (5.1) (4.4) (1.9)   (1.9) 

SYS2 
  

GREG 

observed 

  
Bias 

Mg ha-1   -0.04e-5 4.1 e-3 7.5v 17.1 e-3   5.7e-3 

% (-0.1e-3) (9.0e-3) (11.9e-3) (22.4e-3)   (0.0118) 

SEobs 
Mg ha-1 0.7610 1.0511 2.2587 1.7815 0.6079 

  %   (2.6) (2.3) (3.6) (2.3)   (1.3) 

v2.1 SEan 
Mg ha-1 5.2234 8.0207 15.9841 14.8125 3.0778 

% (17.8) (17.7) (25.3) (19.4)   (6.4) 

v2.2 SEan 
Mg ha-1 4.9950 7.8125 15.3329 14.3956 2.8160 

% (17.0) (17.2) (24.3) (18.9)   (5.8) 

vNT,DBMA SEan 
Mg ha-1 0.9222 1.0558 2.6584 1.8868 0.6641 

  %   (3.1) (2.3) (4.2) (2.5)   (1.4) 

REG 

observed 

Bias Mg ha-1 -0.0474 -0.0663 0.0526 -0.0149 -0.0381 
  % (-0.2) (-0.1) (0.1) (-2.0e-3)   (-7.9e-3) 

SEobs Mg ha-1   1.0008 1.1681 2.5480 1.8677   0.6354 

    %   (3.4) (2.6) (4.0) (2.4)   (1.3) 
v.2.3 SEan Mg ha-1 1.0952 2.2890 2.6738 1.4216 0.9114 

    % (3.7) (5.1) (4.2) (1.9)   (1.9) 

vNT,MB SEan 
Mg ha-1 0.7786 0.7886 1.7889 1.0778 0.6049 

  %   (2.7) (1.7) (2.8) (1.4)   (1.3) 

 



33 
 

 
Table 4. Coverage and failure rates (%) of z-�������	�
���
����
������������- and two-phase designs, under 
design and model-based inference. 

Confidence intervals 

  Variance estimators 

  SRSwoR   SYS 

  v2.1 v2.2 v2.3   v1.1 v2.1 v2.2 v2.3 vNT,DBMA vNT,MB 

z-CI               

AU1 

below 5.08 4.17 6.33   2.80 0.00 0.00 1.64 2.30 6.08 

above 2.41 1.70 5.38   1.15 0.00 0.00 1.62 1.86 6.60 

coverage   92.51 94.13 88.29   96.05 100.00 100.00 96.75 95.85 87.32 

AU2 

below   4.92 4.31 4.27   2.59 0.00 0.00 0.03 3.57 8.42 

above 1.96 1.70 2.99   1.39 0.00 0.00 0.00 3.26 10.34 

coverage   93.12 93.99 92.74 96.02 100.00 100.00 99.97 93.17 81.23 

AU3 

below 7.13 5.22 7.17   3.38 0.00 0.00 2.48 2.91 9.62 

above 2.45 0.79 7.90   1.20 0.00 0.00 1.48 1.88 7.63 

coverage 93.42 93.99 84.93 95.42 100.00 100.00 96.04 95.21 82.76 

AU4 

below   4.72 4.35 11.10   3.22 0.00 0.00 7.18 3.55 13.54 

above 2.13 1.94 10.65   1.86 0.00 0.00 6.72 3.27 13.52 

coverage   93.15 93.71 78.25 94.92 100.00 100.00 86.10 93.18 72.94 

Total 

below 2.74 2.65 4.34   2.46 0.00 0.00 0.42 2.24 3.46 

above 3.93 3.21 3.04   1.71 0.00 0.00 0.12 1.96 2.96 

coverage   93.33 94.14 92.62 95.84 100.00 100.00 99.46 95.8 93.59 

p-CI               

AU1 
2.5   3.5550 4.1027 0.8549 1.6140 4.5276 4.7102 1.0139 0.5622 0.7051 

97.5   5.8611 5.7195 1.4214 2.1664 5.9426 5.2841 1.1802 1.2632 0.8606 

AU2 
2.5   5.6046 6.1154 1.7211   2.0781 7.0187 7.3558 2.0805 0.669 0.6967 

97.5   9.2443 9.0785 3.0553   2.5852 9.0281 8.2972 2.5417 1.4803 0.8781 

AU3 
2.5 8.4679 11.3577 1.7358 4.4156 13.1642 14.1785 2.4576 1.4696 1.502 

97.5   18.9280 18.2651 4.1505 6.3045 18.8933 16.4977 2.9394 3.9883 2.0769 

AU4 
2.5 10.8278 11.5955 1.1104   3.6526 13.0145 13.676 1.2002 1.0892 0.8795 

97.5 16.8371 16.3899 1.8550   4.5731 16.5894 15.1159 1.6107 2.7593 1.4044 

Total 
2.5   2.2301 2.3590 0.7528   1.3603 2.7017 2.6332 0.8434 0.3184 0.5251 

97.5   3.3356 3.1932 1.1529   1.5460 3.4582 2.9837 0.972 0.6398 0.6778 
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4.1 One-phase systematic survey with HT  

The bias of the HT estimator was negligible (less than 0.01%) at both stratum and across-

stratum level (Table 3). The observed standard error for AU3 was noticeable larger (8.1%) 

comparing to the other AUs, which varied between 4.9 to 6.0% of the stratum average. The 

SEan were 1-6% higher than 

SEobs, with the highest SEan (8.5%) occurring in AU3.The across-stratum SEan (1.4535 

Mg ha-1) represented 3.0% of the population mean, and it slightly overestimated SEobs 

(1.3942 Mg ha-1) by 4%. 

The SEan and SEobs at stratum and across-stratum level were not significantly different, 

the p-CIs covering SEobs (Table 4). The actual coverage rate of the z-CIs for the stratum AGB 

estimates was between 95.42% and 96.06% for all strata but AU4, where the coverage was 

94.9%. The actual coverage of the z-CI for the across-strata AGB estimate was 95.84%. 

The percentage failures from below systematically exceeded the failure rates from-

above for all strata by 1.7 to 2.8 times, the largest difference occurring in AU3. The symmetry 

z-CI improved slightly for the across strata AGB estimate, the from-below failure rates 

exceeding the from-above failure rates by 44%. 

 

4.2 Two-phase SRSwoR survey with regression estimator 

The GREG and REG estimators attained comparable results in terms of bias (Table 3), which 

varied between -0.02% and 0.21% of the stratum means. Both estimators slightly 

underestimated the across-stratum �AGB by 0.04% and 0.05%, respectively. 

The observed and analytical standard errors for stratum estimates produced by GREG 

matched nicely, varying by approximately 2-6%. The largest standard errors (SEobs = 15.0539 

Mg ha-1, SEan = 14.0849 Mg ha-1 for 1.2v̂  and SEan = 15.2155 Mg ha-1 for 2.2v̂ ) were observed 

in AU3 where they represented 23.8%, 22.3% and 24.1% of the stratum means, respectively, 
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while for the other strata the standard errors were approximately 16-18% from the 

corresponding stratum means. The stratum-wise SEan produced by the 1.2v̂ and 2.2v̂ estimators 

(Table 3) were also very close, the largest difference of approximately 8% occurring in AU3. 

Comparing to GREG, the SEobs obtained for REG were 65% to 75% smaller, for both 

stratum and across-strata level. At stratum level, the largest observed standard error (3.6363 

Mg ha-1) occurred in AU3 and represented 5.7% of the stratum mean. The SEan estimates 

produced by the 3.2v̂  estimator underestimated SEobs by 6% to 36%, the largest difference 

occurring in AU4. The across strata SEan (0.9287 Mg ha-1) underestimated SEobs (1.0047 Mg 

ha-1) by approximately 8%. 

For GREG, the differences between observed and analytical estimates were not found 

to be significant, the empirical 95% p-CIs obtained from the sampling distribution of 1.2v̂ and 

2.2v̂ estimators covered the Monte Carlo estimate for SEobs at both strata and across-strata 

levels. The p-CIs constructed using the 3.2v̂ estimator covered SEobs except for AU4, where the 

SEobs was significantly underestimated. 

The coverage rates of the z-CIs (Table 4) obtained using the 1.2v̂  estimator varied 

between 92.51% (AU1) and 93.42% (AU3) for strata, being 93.33% for across-strata level. 

Using 2.2v̂ produced slightly wider intervals, between 93.99% (AU2 and AU3) and 94.14% for 

the across-strata estimate. The actual coverage rates constructed using REG and 3.2v̂ varied 

between 78.25% and 92.74% at stratum level, the narrowest interval occurring for AU4. The 

coverage rate attained at across-strata level was 92.62%.  

The failure rates for the stratum-wise z-CI under DBMA inference were highly 

asymmetrical, the from-below failure rate being 2.2 to 6.6 times higher than from-below. 

However, at the across-stratum level the situation revered, the from-above failure rate being 

20% higher than the from-below rate. For the MB inference, the failure rates were more 
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balanced, yet the from-below rates being slightly higher at both the stratum and across-strata 

levels. 

 

4.3 Two-phase SYS survey with regression estimator 

At stratum level, the biases of the AGB estimates varied between 0.0001% and 0.16%, and 

the population parameter �AGB was underestimated by the GREG estimator with 0.01%, while 

being overestimated by the REG with 0.08%. The observed standard errors of GREG and 

REG were matching well although the MB estimates were systematically higher with 4% to 

24% at stratum level and with 4% at across-strata level (Table 3).  

The standard errors for GREG produced by the 1.2v̂  and 2.2v̂ estimators were 

approximately 6 to 8 times higher comparing to the observed estimates at stratum level, and 

approximately 5 times higher at the across strata level. However, the estimates produced by 

1.2v̂ and 2.2v̂  were very close, differing by approximately 2% to 5% at stratum level and by 9% 

at across-strata level. The successive differencing estimates deviated by 0.5% to 21% from 

SEobs at stratum level, the largest difference occurring in AU1. The across-

strata GREGNTv ,ˆ estimate was approximately 9% higher than the SEobs (Table 3). 

Compared to the 1.2v̂ and 2.2v̂  estimators, the standard errors produced by the 

3.2v̂ estimator were approximately 3.4 to 10.4 times smaller. The model-based SEobs in AU1, 

AU2 and AU3 were overestimated with 10%, 96%, and 4% respectively, while in AU4 the 

SEobs was underestimated by approximately 24%. At across-strata level, the 3.2v̂ estimator 

gave a SEan overestimated SEobs by 40%. The SEan produced at stratum level by the 

successive differencing estimator NTREGv ,ˆ  underestimated the SEobs values of REG with 22% 

to 42% (the largest difference occurring in AU4), and with approximately 5% at across-strata 

level (Table 3). 
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The standard errors produced by the design-based variance estimators 1.2v̂ and 2.2v̂ were 

significantly different from the observed standard errors, the p-CIs constructed from the SEan 

distributions missing the SEobs estimates at both stratum and across-strata level. No 

significant differences occurred between SEobs for GREG and SEan estimates produced by the 

NTGREGv ,ˆ estimator. For REG, the empirical p-CIs obtained from the sampling distribution of 

3.2v̂ indicated that the differences between SEobs and SEan were significant in all situations 

except for AU3. However, the p-CI constructed using the REGNTv ,ˆ covered the across-strata 

SEobs (Table 4). 

The coverage rates of the z-CIs constructed for GREG using 1.2v̂ and 2.2v̂ estimators 

were 100%. When using the GREGNTv ,ˆ estimator, the confidence interval statements matched 

better the nominal coverage of 95%, varying between 93.17% (AU2) and 95.85% (AU1).  

The confidence interval for REG built with 3.2v̂ came close the 95% nominal rate for 

AU1 (96.75%) and AU3 (96.04%), while for AU2 and AU4 the coverage rates were 99.97% 

and 86.10%, respectively. Using the REGNTv ,ˆ estimator produced z-CIs having the actual 

coverage varying between 72.94% (AU4) and 87.32% (AU1), and the coverage for the across-

strata AGB�̂ was 93.59% (Table 4). 

The failure rates of the z-CIs built using GREGNTvv ,,3.2 ˆˆ and REGNTv ,ˆ were slightly 

asymmetrical, the from-below failures occurring more frequently.  

 

4.4 Accuracy assessment for sampling strategies 

From equation 14, the relative accuracy (eff) of DBMA and DBHT strategies varied between 

0.43 (AU1) and 0.48 (AU2) at stratum level, and at the across-strata eff was 0.44. Using the 

MB strategy was slightly less efficient, the eff-values varying from 0.46 (AU4) to 0.57 (AU1), 

with an overall eff=0.46. In other words, the accuracy of the DBMA strategy was 
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approximately 52-57% better compared to the DBHT strategy, while using the MB strategy 

improved the accuracy with 43-54%.  

The relative efficiency of the SYS2 and SRSwoR2 designs (deff) from equation 15 was 

approximately 0.02 at stratum level, with an overall design effect deff = 0.05. This translates 

into a reduction of the observed standard errors by approximately 6.6 times at stratum level, 

and by 4.8 times at the across-strata level. 

 

4.5 Cost-efficiency assessment 

The results of the cost-efficiency assessment are presented in Figure 4 and Figure 5. The dot 

labels in the plots specify the sampling intervals (km), and the curves indicate the 

relationships between the across-strata standard errors (% of the population mean) and the 

inventory costs expressed in equation 17, where 0
FieldC was assigned the value 1. The curves 

were generated using the one-term power function b
Totalobs aCSE � , the parameters estimation 

being done using nonlinear least-squares fitting. 



39 
 

 
Figure 4 The relationship between observed standard errors (SEan %) and inventory costs under systematic 
sampling. The labelled dots indicate the sampling intervals (e.g., 6x3 km), and the values on x-axes are the 
inventory costs relative to the average cost of a field plot, as given by the term inside parentheses in 
equation 17. 
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Figure 5 The relationship between analytical standard errors (SEobs %) and inventory costs under systematic 
sampling. The sampling intervals are indicated by the labelled dots (e.g., 6x3 km). To obtain the total survey 
costs, the relative costs on the x-axis should be multiplied by the average cost of a field plot from equation 
17. 

 

Analyzing the regression line slopes ( �̂ ) between estimated precision and log-

transformed relative costs indicated that the most sensitive estimator to cost changes and 

implicitly to sample size variation was the 1.1v̂  estimator ( 870.1ˆ ��� ), followed by the 1.2v̂  and 

2.2v̂ estimators ( 4282.1ˆ ��� and 0225.0ˆ ��� , respectively), while GREGNTvv ,3.2 ˆ,ˆ and REGNTv ,ˆ estimators 
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were less affected ( 009.0ˆ �'� ). The observed precision of the GREG was slightly more 

influenced by varying the sampling size ( 0620.1ˆ ��� ) compared to REG ( 9679.0ˆ ��� ).  

The ALS-aided systematic surveys were in general more precise than the ground-

based inventory except when using wide sampling intervals of 6x9, 9x6 and 9x9 km, when 

the precision of the ground-based survey approximately was 5% to 35% higher (Figure 3). 

The numerical gradients of the curves presented in Figures 4 and 5 indicated that the 

strongest change in precision, given a change in cost, occurred at the 6x9 km interval for 

2.21.2 ˆ,ˆ vv and 3.2v̂ estimators, and at the 9x9 km intervals in the rest of the cases. 

 

5. Discussion 

In this study we performed an empirical validation of the variance estimators proposed by 

Gregoire et al. (2011) and Ståhl et al. (2011) for post-stratified AGB estimation, following 

the simulation approach described by Ene et al. (in submission). In order to cope with the 

variance overestimation described in Ene et al. (in submission), successive differences 

variance estimators were also tested under two-phase systematic sampling designs. Using 

simulated sampling, the efficiency of the one- and two-phase systematic designs were 

compared, and the effect of using a systematic design instead of SRSwoR was assessed. 

Finally, we performed an empirical cost efficiency analysis of the ALS- and field based 

surveys considering systematic sampling designs with various sampling intervals. 

The good performance of the 2.21.2 ˆ,ˆ vv and 3.2v̂  estimators under SRSwoR2 reported by 

Ene et al. (in submission) was also noticed in this study. All estimators slightly 

underestimated the observed standard errors, but the differences were not found to be 

significant using the percentile-based confidence intervals. However, the z-CIs constructed 

for the stratum and the population means using the design-based estimators matched more 

closely the 95% nominal coverage. 
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Under SYS2, the observed standard errors of GREG and REG were greatly reduced as 

a result of having little variability among systematic samples. The gain in observed precision 

was not noticed for the 1.2v̂ and 2.2v̂ estimators which significantly overestimate the observed 

standard errors by a factor of 5 to 8. This resulted into much wider confidence intervals, 

making difficult, for instance, to detect significant changes in biomass under shorter time 

intervals, which constitutes an impediment for e.g. REDD applications. Using the successive 

differences variance estimators improved noticeably the precision, however, only 

GREGNTv ,ˆ provided valid inference at both stratum and across-strata level.  

Due to the proportional-to-size type of sample allocation scheme, the stratum size 

(and implicitly the sample sizes) influenced the precision of GREG and its variance 

estimators 1.2v̂ and 2.2v̂ , the estimation being more precise in larger strata (AU1 and AU2) and 

less precise in the smaller ones (AU3 and AU4). Under MB inference, the strata sizes did not 

influence the performance of the 3.2v̂ . There was no obvious dependency between the 

performances of GREGNTv ,ˆ and sample size. However, the results obtained with REGNTv ,ˆ were 

apparently better in the larger AUs. This result also shows that another advantage of having a 

sampling simulator is the possibility to assess various allocation schemes in the planning 

phase for design-based sampling strategies. 

The poststratification was used as a tool for providing uncertainty estimates at 

administrative unit level. The across-stratum analytical standard errors provided by 1.2v̂ and 

2.2v̂ were close to the ones reported by Ene et al.(in submission), suggesting that 

poststratification by administrative units does not contributed to improving the overall 

precision. The same is evident for the one-phase sampling, where the poststratified estimation 

produced only marginal gains in precision. However, poststratified estimation improved 

greatly the performance of the model-based estimator calculated as the ratio-of the average 

cluster total and average cluster size, which are positively correlated random variables. 
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Despite of a negligible bias, the ratio estimator is known to be more precise than the Horvitz-

Thompson estimator used to estimate the total AGB under DBMA. 

According to our results, the best simulation results were obtained using the GREG 

estimator with its variance estimated by the successive differences estimator GREGNTv ,ˆ under 

DBMA inference. The second choice would be using a model-based strategy including REG 

and the 3.2v̂  variance estimator. Unfortunately, both choices come with certain risks due to 

using biased estimators ( GREGNTv ,ˆ and REG) in a real applications. The simulation results 

cannot be use to correct for biases associated with the artificial population, but they can be 

used to minimize the risks of choosing an inappropriate estimator.  

In order to reduce the inventory costs, our analysis indicated that it is more 

advantageous (in terms of standard error) to lower the subsampling intensity. However, 

reducing the size of the field sample should be done with precaution in the case of design-

based inference because this can seriously affect the inference if the number of SSUs 

becomes too small (Särndal et al., 1992, p. 398; Gregoire et al., 2011). 

In figures 4 and 5 it was exemplified how an appropriate sampling strategy can be 

found empirically using simulated sampling, considering either budgetary constraints (fixing 

an x-axis value) or precision requirements (using a fixed y-axis value). However, the results 

of such an exercise are valid only for the artificial population we have studied and 

generalization of these results to populations having different characteristics (e.g. different 

trends) or to different sampling strategies would not be advisable. Nevertheless, considerable 

empirical knowledge can be gained by performing this type of studies for various 

populations. According to our knowledge, the ALS-related costs are almost independent of 

the strip width. This suggests that the ALS sampling intensity (and thus precision) can be 

increased by using wider strips (e.g., flying at higher altitudes) without increasing the survey 

costs. The current trend in sensor development indicates that future instruments might be 
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operated from higher altitudes and with higher pulse repetition frequencies. Thus, it is 

expected that the swath width may increase significantly without increasing flight times. As 

an example, the HC study was conducted in 2006 with state-of-the-art instruments and had a 

swath width of approximately 500 m (see details in Gobakken et al. in press). A similar ALS-

aided survey conducted in Tanzania in 2012 will have swaths with a width of more than 1000 

m (E. Næsset, pers. comm.). Thus, a gain in sampling intensity by a factor of 2 has been 

achieved over a six year period mainly due to technological advances. 

The systematic design boosted the efficiency of the regression estimators, but without 

information regarding the real precision level provided by the simulated sampling it could be 

wrongly concluded that the estimated precision of the ALS-aided survey would be at most 

comparable with the ground-based inventory, and thus not cost-efficient. For instance, 

Stephens et al. (2012) claimed that the maximum improvement in precision of a double-

sampling ALS-aided survey relative to ground-based inventory is limited by the amount of 

variation explained by the regression model. This assertion is only partially true, because the 

variance estimation used by Stephens et al. (2012) holds for SRSwoR and does not account 

for eventual improvements due to using a systematic probability sample. 

To conclude, uncertainty estimation following two-phase ALS-aided systematic AGB 

surveys can lead to wrong conclusions when using variance estimations tailored for SRSwoR. 

This translates into overestimated errors which would require higher sampling intensity (thus 

higher costs) than necessary for attaining a specific level of precision. Finding a suitable 

sampling strategy at the planning phase or a ‘good’ estimator for inference in a complex 

survey by the means of simulated sampling can provide the means for more efficient resource 

allocation in large area forest inventories. 
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Abstract 22 

The k-nearest neighbor imputation (k-NN) methods combine ground sample data provided by 23 

traditional forest inventories and auxiliary information for non-parametric forest resource 24 

estimation at various geographical scales. Using similarity measures calculated in the 25 

auxiliary variable space, the inventory data can be imputed to locations where only the 26 

auxiliary data is available. In this study, auxiliary data consisting in Landsat 5 TM satellite 27 

imagery and a digital terrain model were used to perform nearest neighbor imputations of 28 

plot-level above ground biomass. The study introduces a model-based inference approach 29 

where a superpopulation model in the form of a canonical vine copula function is first 30 

constructed from the empirical data, and then new samples are independently generated from 31 

the copula model and used to perform the k-NN predictions. The method allows constructing 32 

the sampling distribution for the k-NN prediction errors for assessing the statistical properties 33 

of the k-NN estimator. Using a data-splitting procedure, the performance of the copula-based 34 

approach was assessed against pair-bootstrap resampling. The imputations were performed 35 

using k (the number of neighbours) =1 and by using optimal k-values selected according to a 36 

bias-minimizing criterion in the k-NN predictions. The results indicated that the copula-based 37 

approach produced confidence intervals with better coverage properties compared to pair-38 

bootstrap resampling, and it significantly reduced the root mean squared error. The 39 

improvements of the copula-based approach were due to significant bias reduction, while the 40 

standard errors were higher compared to the bootstrap. The best results in terms of coverage 41 

properties of the confidence intervals were obtained combining the copula approach and 42 

nearest-neighbor imputations with k=1. Using k-values produced by the bias-minimizing 43 

criterion increased the accuracy of both methods, especially due to the bias reduction in the 44 

case of bootstrap and by reducing the standard errors of the copula approach. 45 
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1. Introduction 46 

To meet the demand for timely and accurate information about the forest ecosystems, forest 47 

management and planning activities must cover a broad range of objectives which require 48 

various types of information at different geographical levels (Temesgen et al., 2007). 49 

Combining auxiliary information (e.g. remote sensing data, land-use and vegetation digital 50 

maps, digital terrain models, etc.) with ground observations allows monitoring and 51 

assessment of forest resources at different geographical scales (McRoberts & Tomppo, 2007; 52 

McRoberts, 2008; Tomppo et al., 2008ab; Corona, 2010; McRoberts et al., 2010ab). 53 

Allowing for univariate and multivariate predictions of continuous and categorical 54 

variables, nearest neighbor methods have been deemed useful and cost-efficient solutions for 55 

supporting the national forest inventory programs (Tomppo, 1991; Tomppo et al., 2008; 56 

McRoberts, 2008), as well as for mapping forest attributes and for providing local estimates 57 

of forest resources (LeMay & Temesgen, 2005; Chirici et al., 2008; Hudak et al., 2008; 58 

Koistinen et al., 2008; LeMay et al., 2008; McRoberts, 2008; Maltamo et al., 2009; 59 

McRoberts, 2011).   60 

Denoting the field survey data as response variables (Y) and the auxiliary information 61 

as feature data (X), the set of observations containing both X and Y variables is characterized 62 

as the reference data set, and the set of observations having X variables but missing the Y will 63 

be referred to as the target data set. With k near-neighbour (k-NN) imputations, the missing 64 

attributes in a target data set are predicted as linear combinations of the attributes from the k-65 

nearest reference observations found in a reference data set, the distances between the target 66 

and reference observations being calculated in the feature space. A thorough review of the 67 

nearest neighbor methods with practical applications is given by Tomppo et al. (2008ab), 68 

Eskelson et al. (2009) and McRoberts et al. (2010a). 69 
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The statistical properties of the nearest neighbor estimators have been addressed under 70 

the design-based inferential framework (Shao, J., 2009; Baffetta et al., 2009,2011), as well as 71 

under the model-based framework (Kim & Tomppo, 2006; McRoberts, 2006; McRoberts et 72 

al., 2007; Koistinen et al., 2008; Magnussen et al., 2009,2010a; McRoberts, 2011; McRoberts 73 

et al., 2011; Räty & Kangas, 2012). Under the design-based inference, population elements 74 

and population parameters are fixed quantities, the estimates of the population parameters 75 

being functions of the sample selection probability (Gregoire & Valentine, 2008, §2). Under 76 

the model-based framework, a finite population is seen as a random draw from a 77 

superpopulation model (sensu Särndal et al., 1992, §14.5), thus the population elements and 78 

population parameters are random variables. The sampling distribution of the model-based 79 

estimator is defined by the estimates obtained from a long series of drawings from the 80 

superpopulation model, and the inference relies on the underlying superpopulation model, not 81 

on the design used for collecting the sample. Hence, large biases can be introduced if the 82 

model is poorly specified, but significant gains in precision can be obtained in the presence of 83 

small sample sizes compared to the design-based inference. Further insights into design- and 84 

model-based inference can be found in Särndal et al. (1992), Gregoire (1998), Kangas (2006) 85 

and McRoberts (2010). 86 

The accuracy of k-NN imputations is influenced by factors such as gaps in the 87 

reference feature space, absence of neighbours outside of reference feature space, and the 88 

number of neighbours the feature used for imputations (Stage & Crookston, 2007; 89 

McRoberts, 2009; Magnussen et al., 2010b). Although approximations of the prediction 90 

errors have been worked out, the extrapolation bias of the k-NN predictions is difficult to 91 

assess because the nearest neighbor imputations are inherently biased due to their non-92 

parametric nature (Korhonen & Kangas, 1997; Magnussen et al., 2010b). However, when a 93 

strong linear relationship exists between X and Y, the bias of the k-NN imputations is 94 
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expected to be small (Rancourt et al., 1994), however, assumptions about the relationships in 95 

the data should not be made a priori when using non-parametrical methods. Reducing the 96 

bias has been addressed by using a small k-value or selecting variables with good coverage of 97 

the feature space (Stage & Crookston, 2007), applying various weighting schemes 98 

(McRoberts, 2009; Tomppo & Halme, 2004) or using model-based calibration (Magnussen et 99 

al., 2010b). 100 

The inference in survey sampling is required not only at the level of the entire 101 

population, but also at the level of sub-population (or domains) of various sizes (e.g. regions, 102 

sub-regions, counties, municipalities, individual properties or forest stands). For small-103 

domain estimation (or also small-area estimation when the domains have a geographical 104 

extent (Särndal et al., 1992, p. 386-387)), the number of sample observations is likely to be 105 

low or even to lack entirely, which justifies using the model-based estimators (McRoberts, 106 

2011; McRoberts et al., 2011).  107 

Resampling methods like bootstrap (Efron, 1979) and jackknifing (Quenouille, 1949) 108 

have been considered as non-parametric alternatives to the model-based estimators for 109 

assessing the prediction errors of the nearest neighbor estimates (Chen & Shao, 2001; 110 

McRoberts et al., 2011). Due to the good performance and ease of implementation, pair-111 

bootstrap resampling (Freedman, 1981) has been favoured to jackknifing and has been a 112 

feasible substitute for more complex parametric estimators (McRoberts, 2011; McRoberts et 113 

al., 2011). However, the bootstrap approach has certain limitations due to the requirements of 114 

preserving the sampling design when selecting bootstrap samples, and of having independent 115 

and identically distributed (iid) observations (Lahiri, 2003; McRoberts et al., 2011).  116 

In this study we propose a model-based approach for assessing the uncertainty of the 117 

k-NN predictions for small-domains, where the model-based sampling distribution of the k-118 

NN prediction errors is derived using simulated sampling from a superpopulation model 119 
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represented by a copula function. Copulas are popular modelling tools in actuarial sciences, 120 

and recently they were introduced in forestry applications. Among the applications of copulas 121 

in forestry can be mentioned modelling of tree diameters, heights and volumes (Wang et al., 122 

2008; 2010), stochastic modelling of regeneration (Miina & Heinonen, 2008), simulation of 123 

forest stand structures (Kershaw et al., 2010), or for estimating shrub cover in riparian forests 124 

(Eskelson et al., 2011). Recently, Ene et al. (in submission) used Gaussian copulas for 125 

generating ground-truth populations for simulation studies related to large-area LiDAR-based 126 

biomass surveys. For an in-depth treatment of copulas see Embrechts et al. (2002), Nelsen 127 

(2006), Genest & Favre (2007), Kojadinovic & Yan (2010) and Schepsmeier & Brechmann 128 

(2011). 129 

Copulas are mathematical functions which allow constructing multivariate 130 

distributions by modelling the dependencies between univariate marginals. Although a 131 

plethora of bivariate copula functions have been documented, only a few can cope with high 132 

dimensional datasets (Genest et al., 2009). Recently, new approaches for building 133 

multivariate copulae have been developed (Aas et al., 2009) and made available to 134 

practitioners through specialized software (Schepsmeier & Brechmann, 2011). This opens the 135 

possibility for constructing multivariate copula models for high-dimensional empirical data 136 

sets containing forest inventory data and auxiliary information.  137 

The objective of this study was to assess the validity of model-based inference 138 

following nearest-neighbor predictions for small domains (sensu Särndal et al., 1992, p. 386-139 

387). The uncertainty estimation was performed using two methods: (1) pair-bootstrap 140 

resampling (McRoberts et al., 2011; McRoberts, 2011) , and (2) a copula-based approach, 141 

where a canonical vine copula (Aas et al., 2009) played the role of a superpopulation model 142 

generating iid observations used to perform the imputations. For both methods, the k-NN 143 

imputations were performed using (1) k=1 and (2) by applying a bias-minimizing criterion for 144 
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selecting the k-value. The domains defined in our study do not have a geographical extent. 145 

They were created by splitting the empirical observations into reference and target datasets. 146 

Also, it was assumed that the sample data set does not contain units from the respective 147 

domains. The assessment was performed by comparing (1) the estimation precision and 148 

accuracy (in terms of bias, standard errors and root mean squared errors), and (2) the 149 

coverage rates of the confidence intervals produced using bootstrap replicates and copula 150 

samples. 151 

 152 

2. Material 153 

The material was acquired across the Hedmark County (HC) located in south-eastern Norway 154 

(Figure 1). The county has a land area of 27 399.72 km2 and it comprises a large variety of 155 

forest types and geomorphologic conditions (Gobakken et al., in press). The dominant tree 156 

species in the study area are Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus 157 

sylvestris L.). 158 

In this study we used three data sets representing field inventory data, satellite 159 

imagery, and a digital terrain model (DTM). A more detailed presentation of the datasets is 160 

given in Ene et al. (in submission) and Gobakken et al. (in press). 161 



8 
 

 162 
Figure 1 Geographical location of the field data 163 
 164 

2.1 Auxiliary data 165 

The auxiliary dataset contains satellite imagery and terrain elevation. The satellite data 166 

consists of three nearly cloud-free Landsat 5 TM images acquired in June 2007 (Table 1). 167 

The georeferencing errors of the radiometrically corrected images were less than 15m for 168 

95% of the pixels. The images were converted to at-satellite reflectance and atmospherically 169 

corrected using the COST model (Chavez, 1996). 170 

171 
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Table 1. Acquisition parameters for Landsat 5 TM imagery 172 

Satellite 
image 

Date Path/row 
Sun 

elevation (deg) 
Sun 

azimuth (deg) 
Spatial 

resolution (m) 

1 03-June-2007 197/16 49.6 162.2 25.0 
2 03-June-2007 197/17 50.0 162.0 30.0 
3 10-June-2007 198/16 50.1 161.9 25.0 

 173 

The elevation data consisted of a raster DTM produced by the Norwegian Mapping 174 

Authority at a 25 m spatial resolution, providing full coverage of the HC area. The altitudinal 175 

range of HC spans from 102 m a.s.l. to 2177 m a. s. l, the elevations being higher in the 176 

northern region which is a mountain area. 177 

 178 

2.2 Field data 179 

The field observations were acquired by the Norwegian National Forest Inventory (NFI) 180 

program from fixed-area circular plots of 250m2 displaced in 3x3 km grid covering the entire 181 

country except the areas above the coniferous tree line where the grid spacing is 3x9 km. The 182 

plot measurements used in this study were collected during the years 2005-2007 and contains 183 

662 plots (Table 2) located on every second NFI grid line. More details regarding the field 184 

plot selection can be found in Gobakken et al. (in press) and Ene et al. (in submission). 185 

On each plot, trees with breast height diameter (dbh) �� cm were callipered, and 186 

approximately ten sample trees were selected proportional to stem basal area for height 187 

measurements (h). A detailed description regarding the NFI estimation methods is given by 188 

Tomter et al. (2010) and Gobakken et al. (in press). The total aboveground dry biomass 189 

(AGB) of living trees with h � 1.3 m was estimated using tree-species specific allometric 190 

equations (Marklund, 1988), and the plot-wise AGB estimates were obtaining by summing up 191 

the tree-level AGB estimates. 192 

193 
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Table 2. Biomass distribution by field plots and forest category 194 

Forest category 
  Plots by category 

  

AGB (Mg ha-1) 

  

Elevation (m a.s.l.) 

  
No. of 
plots 

% mean sd(1) mean sd 

Productive forests 440 66 64.67 58.97 489.4 183.9 
Nonproductive 
forest(2)  

192 29 
 

26.05 25.59 752.6 201.1 

Developed areas 30 5 27.75 34.64 211.5 99.9 

Total    662 100   51.72 53.65   553.1 232.7 
(1) standard deviation (Mg ha-1);  (2) annual growth < 1m3 year-1 ha-1  195 

 196 

The plots were mapped using differential Global Positioning System (GPS) and 197 

Global Navigation Satellite System (GLONASS) measurements acquired with dual-198 

frequency Topcon LegacyE receivers. The locations of the base stations were determined 199 

such that the distances to the field plots were at most 50 km. The positioning error reported 200 

by the Pinnacle 1.0 post-processing software (Anon., 1999) varied between 0 and 2 m, with 201 

an average of 0.05 m. 202 

 203 

3. Methods 204 

The nearest neighbor imputations can benefit from a careful selection of the X variables 205 

(McRoberts 2002, 2008), and several feature selection procedures have been devised 206 

(Tomppo & Halme, 2004; Packalén & Maltamo, 2006; McRoberts 2008; Walter et al., 2008; 207 

Tomppo et al., 2009). For the purpose of this study, the variable selection has less relevance 208 

because the choice of the features would equally affect both inferential approaches. After 209 

preliminary analysis (not presented), the selected X variables consisted of the radiometric 210 

information from the satellite imagery (bands 1 to 5 and 7) and elevation values from the 211 

DTM raster. The Y variable was considered to be the AGB determined for each plot. The 212 

errors related to mismatching of circular NFI plots and auxiliary raster data and the 213 

estimation errors for AGB were ignored. 214 
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3.1 Nearest neighbor imputations 215 

In this study, the similarity between the ith target observation and jth reference observation 216 

was quantified by the means of the Euclidean distance dij calculated in the feature space as: 217 

)()( '
jijiij xxxxd ���                                                                             eq(1) 218 

where xi and xj are the feature vectors. Hence, the similarity between the target and reference 219 

observations will increase as the dij distances decrease, and consequently the nearest neighbor 220 

of the ith target observation is the reference observation located at the shortest Euclidean 221 

distance in the feature space. For other types of similarity measures used with nearest 222 

neighbor imputations see Chirici et al. (2008), Eskelson et al. (2009) and McRoberts (2011). 223 

With the k-nearest neighbor technique (k-NN), the imputed value iŷ is expressed as a 224 

weighted sum of responses taken from the nearest k reference observations: 225 
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In equation 2, the k-weights associated with the reference responses were obtained 227 

as
1

1

�
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j
ijijij ddw .  228 

 229 

3.1.1 Selecting the number of neighbours (k) 230 

Although several criteria for selecting the number of neighbours have been proposed 231 

(Eskelson et al., 2009), it is advisable that the choice of k should rely on careful data analysis 232 

of the available data (McRoberts et al., 2002; Eskelson et al., 2009). Using k=1 is expected to 233 

preserve the covariances in imputed responses (Franco-Lopez et al., 2001), but often using a 234 

small k value may increase the variability of the imputed observations (McRoberts et al., 235 

2002; Eskelson et al. 2009). Using a large k will smooth the predictions by shifting them 236 
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towards the mean response of the reference data (Nilsson, 1997) and potentially bias the 237 

estimates. 238 

The stochastic nature of our simulation study required devising certain criteria for 239 

automatic selection of k. Since the k-NN estimates are often biased (Katila, 2006; Magnussen 240 

et al., 2009; Magnussen et al., 2010b), a natural criterion for choosing the k is reducing the 241 

bias. For optimizing the k-value, leave-one-out cross-validation (LOOC) is usually performed 242 

(Chirici et al., 2008; McRoberts, 2009), and the k-NN predictions can be considered unbiased 243 

when the 1:1 line between the imputed and the original response has intercept 0 and slope 1 244 

(McRoberts, 2009). Using simple linear regression, McRoberts et al. (2011) selected the k-245 

value which minimized simultaneously the slope and intercept to (0, 1). For our data, using 246 

linear regression resulted often into unreasonably large k-values due to the presence of 247 

outliers. Thus, we considered a robust regression fit instead, which showed a more reasonable 248 

behaviour in selecting the optimal k-values (denoted as kopt) during the exploratory data 249 

analysis. Fitting the robust line was performed using the ‘rlm’-package (Venables and Ripley, 250 

2002) of the R Development Core Team (2011). Further in the text, we will call this approach 251 

for selecting kopt as the bias-minimizing criterion. Another common criterion for selecting the 252 

k is minimizing the root mean squared difference RMSD (Stage and Crookston, 2007) from 253 

LOOC: 254 

�
�

��
n

i
ii yy

n
RMSD

1

2)ˆ(1                                                              eq(3) 255 

When the objective is minimizing RMSD, values of k between 5 and 17 were 256 

commonly used (Tomppo et al., 1999, Trotter et al., 1997, Franco-Lopez et al., 2001; Reese 257 

et al., 2002). The typical behaviour of the RMSD curve (McRoberts et al., 2002; McRoberts 258 

et al., 2011) is to decrease with increasing k-values until it reaches a global minimum (usually 259 

for a large k-value), and then to start increasing. For our data, the RMSD curve did not 260 
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attained a global minimum, probably due to the different set of features we used. Fortunately, 261 

the RMSD decay in vicinity of the k-values produced by the bias criterion is usually 262 

flattening such that increasing further the number of neighbours might not be justified 263 

McRoberts et al. (2011). The use of these bias-and RMSD minimizing criteria for the entire 264 

data set (662 observations) with LOOC is illustrated in Figure 2. 265 

 266 

Figure 2 Selecting the number of nearest-neighbours: using the bias-minimizing criterion produced a 267 

distinctive optimal k-value (kopt=17) (top), while the root means squared difference (RMSD) minimization 268 

criterion did not attain a global minimum, constantly decreasing and flattening while increasing the number 269 

of neighbours (bottom). 270 

 271 
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Beside the bias minimizing criterion for selecting the optimal number of neighbours, 272 

we also performed the nearest neighbor imputations using k=1 for assessing the eventual gain 273 

obtained when using the former procedure. The imputations obtained using LOOC with the k-274 

value produced by the bias minimizing criterion (kopt = 17) and k=1 are illustrated in Figure 3. 275 

 276 

 277 
Figure 3 Original (reference) versus imputed AGB when using an optimal k-value (kopt=17) (top) and k=1 278 
(bottom). The 1:1 line (the dashed line) has the intercept=0 and slope=1, suggesting a perfect 279 
correspondence between reference and imputed observations. The magnitude of the slope and the 280 
intercept of the robust regression line (the solid line) may indicate biased predictions. 281 

282 
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3.2 Inference using copula-based simulations 283 

A copula is a multivariate distribution function with uniform marginals describing the 284 

dependencies among univariate random variables. Considering two random variables X1 and 285 

X2 and their probability distributions F(X1) and F(X2), the Sklar’s theorem (Nelsen 2006, p. 286 

21) demonstrates the existence of a copula function C such that ))(),((),( 22112211 xFxFCxXxXF ��� . 287 

The rank correlations between variables are preserved by their corresponding uniform 288 

margins and captured by the copula model, making possible to capture complex relationships 289 

in the data. Hence, uniform multivariate observations (called copula data) can be randomly 290 

and independently sampled from the copula functions, while preserving the dependency 291 

structure exhibited by the original data. The preservation of the bivariate dependencies 292 

between AGB, the near-infrared band (NIR) and elevation data is illustrated in Figure 4. 293 
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 294 

Figure 4 Bivariate relationships and copula data for selected variables (AGB-NIR and ABG-elevation). The 295 
non-linear dependencies between variables on original scales (up) quantified using Kendal’s tau are 296 
preserved by their uniforms (bottom). 297 
 298 

Although the advantage of using copulas is that modelling the dependencies between 299 

variables does not require distributional assumptions about the variables, the probability 300 

functions of each variable must be known for generating the copula data, and the inverse 301 

probability functions are needed for back-transforming the copula data to the original scale. 302 

Obtaining the probability distribution functions and their inverses is straightforward when 303 

using invertible parametric models for the marginals. However, this approach would assume 304 

iid observations, which is unlikely to be obtaining in forest applications. Alternatively, 305 

instead of using parametric distributions, the empirical cumulative distribution function (ecdf) 306 

of each variable can be easily obtained from each of the (X, Y) variables.  307 
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For coping with high-dimensional datasets, Aas et al. (2009) proposed a hierarchical 308 

pair-copula decomposition of an n-dimensional distribution into n(n-1)/2 pair-copulas which 309 

can be arranged in n-1 tree-like structures. The approach allows building high-dimensional 310 

copula models as products of bivariate copulas and conditional marginal distributions, the 311 

copula-pairs being identified by the means of graphical representation called vines (Bedford 312 

& Cooke, 2001, 2002; Aas et al., 2009). 313 

In this study we refer to the canonical vine (or C-vine), which allows conditioning the 314 

multivariate model on selected key variables (Aas et al., 2009). In a C-vine, each tree has a 315 

unique node of degree n-i connected to n-i edges (Bedford & Cooke, 2001; Aas et al., 2009). 316 

A selected variable is placed in the root node of the first tree, and all pair-wise dependencies 317 

between this variable and the other variables are modelled using bivariate copulas. Next, 318 

another variable is placed in the second root node, and the pair-wise dependencies to the rest 319 

of the variables are modelled conditioned to the variable placed in the first root node. The 320 

process continues until all the n-1 trees are created, the resulting C-vine tree having a star-like 321 

structure (see illustration in Figure 5). 322 

Before constructing the C-vine copula model, the variables were ordered as suggested 323 

by Czado et al. (2011) and Brechmann & Schepsmeier (2011), the resulting order being TM 324 

bands 3-5-2-7-1, AGB, TM band 4 and elevation. That is, band 3 was set at the first root 325 

node, band 5 as the second root node, etc. An overview of the tree structure of the resulted C-326 

vine structure is presented in Figure 5. 327 
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 328 
Figure 5 Graphical representation of the C-vine copula tree. The full structure of each of the seven trees is 329 
given in the left panel, while the graphical representation of selected trees (trees 1, 2 and 7) is presented in 330 
the right panel. 331 
 332 

The copula-based approach starts with building a C-vine copula model for the 333 

reference data set. The copula model is supposed to capture the complex relationships 334 

between X and Y, thus it can be considered a superpopulation model which can generate new 335 

multivariate (X, Y) reference samples (called here copula samples). However, constructing the 336 

copula model exclusively from the (X, Y) reference observations does not take into account 337 

the information provided by the target features. Assuming that the reference and the target 338 

data are generated by the same superpopulation model, the relationships between X and Y can 339 

be considered to be approximately the same in both data sets. Hence, the reference and target 340 



19 
 

features were pooled into one common set of X variables for estimating the ecdfs of the 341 

marginals, while the copula data for the Y variable was obtained exclusively from the 342 

reference observations.  343 

The ecdf is a step function and using it directly for deriving the uniforms will produce 344 

discrete patterns in the generated data (Anon., 2012). To mitigate this effect and to obtain the 345 

uniforms necessary for fitting the copula function, the reference X variables were linearly 346 

interpolated between the smoothed ecdfs. The construction of ecdfs for the NIR and elevation 347 

variables is exemplified in Figure 6. 348 
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 349 
Figure 6 Empirical cdfs for two selected features (NIR (top) and elevation (bottom)) obtained using the 350 
reference observations (dark line) and by combining reference and target observations (gray line). 351 
 352 

In this way, the information existing it the target features could be incorporated in the 353 

C-vine copula model. Further, copula samples of the same size as the original reference 354 

sample were independently generated from the C-vine copula model and used with the 355 

nearest-neighbor imputations for predicting the AGB in the target observations. As showed in 356 
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Figure 7, the relationships between variables generated from the C-vine copula closely 357 

resemble the relationships existing between the empirical variables. 358 

 359 
Figure 7 Scatter plots of copula samples and original observations for selected variables (AGB-NIR (top) and 360 
AGB-elevation (bottom)). 361 
 362 

The copula-based approach was implemented using the ‘CDVine’ package 363 

(Schepsmeier & Brechmann, 2011) of the R Development Core Team (2011). A detailed 364 
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explanation regarding the construction the C-vine copula model is given by Brechmann & 365 

Schepsmeier (2011). 366 

 367 

3.3 Inference using bootstrap resampling 368 

Using the bootstrap resampling for model-based inference about the k-NN prediction is 369 

described in detail by McRoberts et al. (2011) and McRoberts (2011). Considering the case of 370 

a simple random sampling without replacement survey, the bootstrap samples are selected 371 

from the reference data using simple random sampling with replacement and are used to 372 

perform the k-NN predictions for the target observations. The bootstrap samples are selected 373 

such that they will contain the same number of observations as the reference data. Using a 374 

large number of bootstrap samples, the distribution of the k-NN prediction errors can be 375 

approximated which allows estimating the bias and the error variance associated with the k-376 

NN method (Köhl et al., 2006, p. 190; McRoberts et al., 2011; McRoberts, 2011). 377 

With bootstrap resampling, the parent sample is treated as a pseudo-population, and 378 

the bootstrap replicates must be selected from the parent sample following the same sampling 379 

design used for selecting the parent sample. Consequently, the model-based inference 380 

following bootstrap resampling depends on a design component, which may be difficult to 381 

replicate under complex designs. 382 

 383 

3.4 Case study and assessment 384 

In this study, the model-based inference is regarded the parameter of a particular finite 385 

population (descriptive inference, Kangas 2006, p. 40) and not the superpopulation itself 386 

(Särndal et al., 1992, p. 514; Kangas, 2006, p. 40). Nearest neighbor estimates of the finite 387 

population parameter can be derived for every realization of the finite population (that is, for 388 

every random draw from the superpopulation model), and the validity of the inference can be 389 
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assessed using confidence/prediction intervals constructed around the point estimates 390 

(Särndal et al., p. 354). The inference is considered to be valid if the confidence intervals 391 

cover the parameter of the finite population subject to estimation. However, even for 392 

unbiased prediction error estimates, the CI can fail to cover the real parameter if the point 393 

estimators are heavily biased. 394 

The validity of the inference following the bootstrap and copula-based approaches 395 

was assessed through a simulation case study following LeMay & Temesgen (2005). The 396 

empirical data set of 662 observations was iteratively separated into two sets of S=331 397 

observations each using simple random sampling without replacement. One of the datasets 398 

was considered to be the reference data and the other one the target dataset. The data splitting 399 

was repeated M=1000 times, and each time the X variables of the reference and target 400 

datasets were standardized by dividing each feature to its standard deviation. For each of the 401 

mth pair of reference-target datasets, N Monte Carlo sampling experiments were generated 402 

using the bootstrap and the copula approaches explained in sections 3.2 and 3.3. From each 403 

replication, the AGB was imputed to the target observations using nearest-neighbor 404 

imputations with k=1 and k=kopt, as described in section 2.1. Exploratory analysis indicated 405 

that the copula based estimates converged faster compared to the bootstrap resampling, thus 406 

the number of replications N was set to 3000 for the copula approach and to 5000 for the 407 

bootstrap. For each of the nth replication, the average AGB was estimated as: 408 
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where ŷ  are the imputed AGB values and (*) symbolizes either the bootstrap (boot) or the 410 

copula (cop) approach, and S is the number of observations in the target dataset.  411 

After running N replications, the mth Monte Carlo estimate of the average AGB for 412 

the target dataset was obtained as: 413 



24 
 

�
�

�
*

1

*
,

*

* ˆ1ˆ
N

n
nmm N

��                                                  eq(5) 414 

The biases of the AGB predictions were calculated as the difference between the 415 

known AGB average of the target data set ( m� ) and the estimated AGB average *ˆm� as: 416 

** ˆ)ˆ( mmmBias ��� ��                                                 eq(6) 417 

and the absolute biases were obtained as:  418 

** ˆ)ˆ( mmmABias ��� ��                                               eq(7) 419 

The variance estimates for the mth data split were obtained as: 420 
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From equation 8, the estimated standard errors were obtained as: 422 

)ˆr(âv)ˆ(ˆ **
mmES �� �                                                   eq(9) 423 

Finally, from equations 6 and 8, the mth root mean squared error was estimated as:  424 

)ˆr(âv)ˆ(ˆ)ˆ(ˆ 2 ((( �� mmm saBiSEMR ���                                         eq(10) 425 

The estimated absolute biases, SE and RMSE estimates obtained after running the M 426 

data splits were averaged to obtain average absolute biases (AAB*), average standard errors 427 

(ASE*) and average RMSE (ARMSE*). 428 

For each of the mth data split, (1- }!���� confidence intervals for the estimated 429 

means were constructed at the significance levels }������ 0.10, 0.05 and 0.01 using the t-430 

distribution, resulting in confidence intervals with nominal coverages of 80%, 90%, 95% and 431 

99%, respectively. The limits of the confidence intervals for each mth data split were 432 

calculated as:  433 

)ˆ(râvˆ )1,2/1(,1 mNm
m ttCI �� �� (��(� !�                                      eq(11) 434 

After running the M data splits, the coverage rates of the confidence intervals were obtained 435 

as: 436 
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M
T

ACR *100�(                                                       eq(12) 437 

where (T  is the number of times the tCIs covered the true means of the M target datasets. 438 

Finally, we tested whether the results produced by the bootstrap and copula-based 439 

approaches were significantly different �}������! using one-sided paired t-tests for the bias, 440 

SE and RMSE, and one-sided binomial tests for ACR*. 441 

For our study, the sampling design used for selecting the parent sample will not 442 

influence the analysis, because the estimation is focused on the target data sets created by the 443 

randomly splitting the original data, and not on making inference about the parent population. 444 

 445 

4. Results 446 

The number of nearest neighbours found by the bias-minimizing criterion varied between k=7 447 

and k=42, with an average of 17. The simulation results for nearest neighbor imputations with 448 

k=1 and k=kopt are shown in Figure 8. 449 
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 450 
Figure 8 Box and whisker plots of absolute bias (top), standard errors (middle) and root mean squared errors 451 
(RMSE) (bottom) resulted from simulations using k=1 (left) and k=kopt (right). The p-values indicate the 452 
statistical significance of the paired t-tests. 453 
 454 
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For nearest neighbor imputations with k=1, the AABboot (10.73%) was 52% higher 455 

compared with AABcop (7.08%). The ASEboot (5.05%) was 28% lower compared to ASEcop 456 

(7.01%), and the ARMSEcop (10.51%) was 15% lower compared to ARMSEboot (12.36%). 457 

When using k =kopt, AABboot (8.72%) was reduced with 19%, and the AABcop (6.06%) 458 

with 14%, the difference between the AABboot and AABcop decreased from 52% (for k=1) to 459 

44%. Also, both the ASEboot (4.75%) and ASEcop (5.04%) decreased by 6% and 28%, 460 

respectively, the ASEboot being 6% lower than ASEcop. 461 

On average, the root mean square error decreased for both approaches (ARMSEboot 462 

=10.46% and ARMSEcop = 8.40%) by approximately 20 and 15% respectively, the ARMSEcop 463 

being 20% lower than ARMSEboot. 464 

  Compared to using k=1, choosing k=kopt resulted in a statistically significant 465 

reduction (p<0.0001) of the absolute bias, standard error and root mean squared errors for 466 

both approaches. Moreover, the bootstrap and copula results were also significantly different 467 

when using the same k-values (Figure 8). 468 

The confidence intervals estimated using the copula and bootstrap methods for k=1 469 

and k=kopt are presented in Table 3. 470 

 471 

Table 3. Confidence interval coverage (%) obtained using bootstrap and copula methods for k=1 and k=kopt 472 

k-value Method 
  tCI coverage 

80 % 90 % 95 % 99 % 

k=1 
Bootstrap   34.4 45.2 49.8 64.0 

Copula   66.8 82.2 92.0 97.0 

k=kopt 
Bootstrap   40.2 53.0 59.8 72.6 

Copula   60.2 73.6 81.6 91.6 
 473 

For both approaches, the CI coverages improved as the confidence statements were 474 

relaxed. However, the CIs produced by the copula-based approach were systematically closer 475 

to their nominal coverage rates, and the binomial test indicated significant differences 476 
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between the coverage rates produced by copula and bootstrap (p<0.0001). The best overall 477 

coverage rates were obtained by the copula approach for k=1, but the improvement was not 478 

found significant (p>0.05) compared to using the copula approach with k=kopt. Also, when 479 

using k=kopt the bootstrap approach produced better CIs compared with using k=1, although 480 

the differences were found to be significant only for the 90, 95 and 99% CIs.  481 

For the copula-based approach, there was a more pronounced reduction in the 482 

standard error estimates than in the bias when using kopt. Hence, the estimated CIs narrowed, 483 

failing to cover the real AGB mean more frequent compared to using k=1. For the bootstrap 484 

approach, the reduction of standard error when using kopt was minor (although statistically 485 

significant) compared to the bias reduction, and the CI coverage rates increased compared to 486 

using k=1. 487 

 488 

5. Discussion 489 

This study introduced a new model-based inferential approach for nearest-neighbor 490 

predictions, which can be useful especially for small-area estimation, when sampled 491 

observations whithin the area of interest are not available. Combining reference observations 492 

with the features from the target data, a superpopulation model was created using a C-vine 493 

copula function. From this model, simulated samples containing iid observations were 494 

iteratively generated and predictions for the target data were made via nearest-neighbor 495 

imputations. Predictions based on a number of neighbours determined by minimizing the 496 

prediction bias were compared to predictions using the nearest neighbor only.  497 

The inference following the copula approach was found superior to the bootstrap 498 

resampling for all cases. The copula observations are ‘filing’ the gaps among observations in 499 

the reference feature space, reducing the biases but also increasing the variability of the 500 

nearest neighbor estimates. The most conservative results (larger standard errors, but valid 501 
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CIs) were produced by the copula-based approach with k=1. Despite a lower precision, this 502 

might actually be a desirable solution especially when there are chances for severe 503 

extrapolation outside the reference feature space. In turn, the bootstrap approach is prone to 504 

larger biases due to the limited variability of the observations available in the original sample 505 

dataset. Due to the with-replacement resampling, the bootstrap samples will contain common 506 

observations which and can be repeatedly selected as the nearest neighbours to the same 507 

targets, thus reducing the variability of the nearest neighbor estimates. Furthermore, using 508 

larger k-values had a more pronounced effect on reducing the between-sample variability of 509 

the k-NN estimates based on copula data than reducing the bias.  510 

The results suggested that the main source of uncertainty producing the failure of the 511 

CI coverage is the bias of the nearest neighbor estimator. Magnussen et al. (2010ab) and 512 

McRoberts et al. (2011) reported rather negligible biases in small-area estimation studies, 513 

while Katila (2006) noticed the occurrence of important biases at various geographical scales. 514 

However, the material used in the present study spans a large geographical area 515 

(approximately 300 km north-south and 80 km east-west), containing various trends and 516 

representing many forest types (Ene et al., in submission; Gobakken et al., in press), and due 517 

to the data splitting procedure we have used, it is reasonable to assume that extrapolations 518 

occurred frequently. Screening of the reference observations and subsequently imposing 519 

restrictions regarding nearest neighbor selection and thus avoiding reference observations 520 

from being imputed to unreasonable target locations might help reducing the bias (Katila 521 

&Tomppo, 2001; Tomppo & Halme, 2004). However, the criteria for applying such 522 

restrictions in Norwegian conditions require a thorough investigation which was not 523 

considered in this study. Furthermore, there is nothing that would preclude combining the 524 

copula-based approach with existing error reduction strategies developed for k-NN methods 525 

(e.g. Magnussen et al., 2010b; Malinen, 2003; Tomppo & Halme, 2004).  526 
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Usually, a large number of variables are collected during large-area forest inventories, 527 

and it is not clear yet for which of these variables the methods used in our study are 528 

applicable. Our study considers exclusively the case of having continuous variables, but other 529 

field variables might be registered either as nominal data (e.g. vegetation type, site index, tree 530 

species, cluster membership, etc.) or as ordinal data (stem number, abundance of plant 531 

species, etc.). While bootstrap resampling may be applicable in the presence of discrete 532 

variables, it is not yet obvious how the copula approach would accommodate to such data 533 

types. Nevertheless, theoretical aspects regarding the possibilities and the limitations of 534 

modelling copulas with ordinal margins have been investigated (Genest & Nešlehová, 2007; 535 

Nikoloulopoulos & Karlis, 2009) and recent progress in developing discrete vine-copula 536 

constructions (Smith, 2011; Panagiotelis et al., in submission) is reported. Arguably, a naive 537 

approach for dealing with the presence of ordinal variables would be to use classification 538 

schemes derived from the reference data for labeling the target and the copula observations 539 

prior to k-NN imputations. However, there is a question whether the prediction of all 540 

variables acquired during large-area inventories is actually needed when focusing on small-541 

domain estimation. Very detailed information might not be required for very small forest 542 

areas, thus the copula-based approach might be applied only for a subset of the forest 543 

variables.  544 

To conclude, our approach is distribution-free and can provide uncertainty estimates 545 

at different level of spatial aggregation. Moreover, using copulas to join the ecdfs of the 546 

marginals relaxes the iid assumptions required by the bootstrap. This may constitute an 547 

advantage in forestry applications where data collection schemes and population 548 

characteristics may induce various types of dependencies among observations. Still, using the 549 

copula-approach with data collected using cluster and/or multi-phase sampling requires 550 

further investigations. 551 
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Adaptive single tree detection methods using airborne laser scanning (ALS) data
were investigated and validated on 40 large plots sampled from a structurally het-
erogeneous boreal forest dominated by Norway spruce and Scots pine. Under
the working assumption of having uniformly distributed tree locations, area-based
stem number estimates were used to guide tree crown delineation from rasterized
laser data in two ways: (1) by controlling the amount of smoothing of the canopy
height model and (2) by obtaining an appropriate spatial resolution for represent-
ing the forest canopy. Single tree crowns were delineated from the canopy height
models (CHMs) using a marker-based watershed algorithm, and the delineation
results were assessed using a simple tree crown delineation algorithm as a reference
method (‘RefMeth’). Using the proposed methods, approximately 46–50% of the
total number of trees were detected, while approximately 5–6% false positives were
found. The detection rate was, in general, higher for Scots pine than for Norway
spruce. The accuracy of individual tree variables (total height and crown width)
extracted from the laser data was compared with field-measured data. The indi-
vidual tree heights were better estimated for deciduous tree species than for the
coniferous species Norway spruce and Scots pine. The estimation of crown diam-
eters for Scots pine and deciduous species achieved comparable accuracy, being
better than for Norway spruce. The proposed methodology has the potential for
easy integration with operational laser scanner-based stand inventories.

1. Introduction

Small footprint airborne laser scanning (ALS) has become one of the most common
remotely sensed data sources for analysing the tree canopy structure at the scale of
operational forest management. Area-based ALS forest inventory is nowadays used
commercially in the Nordic countries (Næsset 2004a,b, 2007), relying on sound sta-
tistical principles and commonly accepted field inventory practices (Hyyppä et al.
2008). However, area-based ALS forest inventory is probably not suitable for the entire
Nordic forest area. Especially for heterogeneous forests, the stand-wise inventories do
not provide the detailed information required by the sustainable forest management
and planning programmes. For harvesting operations, biomass and carbon stock esti-
mation, forest damage assessment and forest monitoring single tree data might be
required, and it has been shown that small footprint ALS can provide such detailed
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5172 L. Ene et al.

information (Yu et al. 2003, Chen et al. 2006, Koch et al. 2006, Solberg et al. 2006,
Hyyppä et al. 2008).

Since the pioneering work of Hyyppä and Inkinen (1999) and Hyyppä et al.
(2001a,b), various algorithms for the extraction of single tree information using ALS
data have been developed and reported as being appropriate for various forest con-
ditions. Methods for single tree delineation based on ALS data have traditionally
employed tree height–crown diameter relationships (Pitkänen et al. 2004, Popescu and
Wyne 2004, Chen et al. 2006, Koch et al. 2006), multiscale techniques (Persson et al.
2002, Brandtberg et al. 2003, Pitkänen et al. 2004, Falkowski et al. 2006, Zhao and
Popescu 2007) or information extracted from the full three-dimensional structure of
the laser cloud (Wang et al. 2008, Rahman and Gorte 2009).

In Norway, there is lack of research regarding the development of single tree
detection methods adapted to the particularities of the Norwegian forest conditions,
although ALS data are widely used for area-based forest inventories (Næsset 2007).
A singular but interesting contribution is the algorithm for tree crown delineation
with enhanced control of the crown segment proposed by Solberg et al. (2006), which
requires mapped stems for fine-tuning.

The accuracy of ALS-based single tree detection algorithms is mainly influenced
by forest conditions (Falkowski et al. 2008, Kaartinen et al. 2008) and the spatial
resolution of the remote-sensing data (Wulder et al. 2000, 2002, Tesfamichael et al.
2009). Most of the applications that are focused on single tree delineation are based
on a rasterized representation of the canopy surface in the form of a canopy height
model (CHM), which is a very convenient framework for integrating common image-
processing methods. The CHM is obtained by interpolating the laser data into a grid
with a predefined spatial resolution – i.e. the size of the grid cell or pixel. Using fine
spatial resolutions can produce unnecessary details (or noise) at the scale of single
crowns, while at coarse resolutions the tree crowns are merged. Appropriate low-pass
filtering strategies can eliminate a large amount of noise, but little can be done to
improve the single tree detection if the CHM’s spatial resolution is too coarse. The
rule of thumb recommended by Hyyppä et al. (2001a,b) is to use a grid size of 0.5 m to
represent the tree crowns in boreal forests, while Heinzel et al. (2008) suggested using
lower-resolution CHMs for delineating tall trees and finer resolutions for smaller trees.
In some studies the pixel size was directly related to laser echo density (Persson et al.
2002, Chen et al. 2006) or indirectly to laser echo spacing (Leckie et al. 2003), but
these criteria can lead to unreasonable spatial resolutions when the echo density is
either too high or too low.

Accurate estimates of single tree characteristics obtained using ALS data can poten-
tially increase the value of area-based inventories, providing a detailed description of
dominant and co-dominant trees that can be transformed into merchantable assort-
ments of wood products or can be used for the retrieval of various silvicultural and
ecological indicators. Performing area-based forest inventories and single tree delin-
eation simultaneously would be feasible and useful if some of the stand-wise estimates
provided by the former method could be used to improve the latter, such that the sin-
gle tree information is obtained without extra costs (except for the acquisition costs
for higher-density ALS data). One of the stand characteristics that is relatively easy to
measure during the field inventory is the stem number, and this biophysical attribute
might be useful for single tree delineation – e.g. by providing prior information for the
choice of an appropriate spatial resolution of the CHM and the amount of smooth-
ing to be applied. However, guiding the tree delineation process using this particular
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Single tree detection in heterogeneous boreal forests 5173

variable may pose a challenge because the expected accuracy of the stem number pre-
diction in area-based ALS forest inventory for typical Norwegian conditions is rather
low, varying between 10% and 50% (Næsset 2007).

The two main objectives of this study are

1. to assess whether the area-based stem number estimates resulting from opera-
tional ALS-based forest inventories can guide the CHM creation and single tree
delineation process;

2. to assess the accuracy of the single tree variables obtained from ALS data by
applying the methodology developed in (1).

2. Material

2.1 Study area and field data

The study area of 960 km2 is located in the municipality of Aurskog-Høland, situated
in south-eastern Norway (59◦ 80′ N, 11◦ 55′ E, 172–388 m a.s.l.). A sample of 40 cir-
cular plots was established and field data were collected between October 2007 and
April 2008. The plot locations were distributed along five systematically located and
separate strips of ALS data. The locations were selected to cover a broad range of for-
est conditions with respect to tree species composition, site quality and stage of stand
development. Hence 10 plots were established in young forests, 13 plots in mature
forests with poor site quality and 17 plots in mature forests with good site quality. Four
plots located in dense young forests were established with an area of 500 m2 (12.62 m
radius) and the remaining 36 plots had an area of 1000 m2 (17.84 m radius). In terms of
basal area (BA) per hectare, 17 plots were dominated by Norway spruce and 23 plots
by Scots pine. The terrain conditions across the study area can be considered gentle
compared to average terrain conditions in the productive forests in Norway, but the
local topography still varies significantly among plots.

The plot centre coordinates (x, y) were determined using dual-frequency Global
Positioning System (GPS) and Global Navigation Satellite System (GLONASS) mea-
surements, acquired by two Topcon dual-frequency receivers (Topcon Positioning
Systems Inc., Livermore, CA, USA). Differential post-processing was performed using
Pinnacle 1.00 software (Anon 1999), using the corrections provided by temporary
base stations installed on National Geodetic Grid (‘Stamnett’) points. The average a

priori planimetric accuracy of the plot centre position after post-processing was about
0.12 m. According to Næsset (2001), the real positional error can be considered twice
as large as the standard error resulting from the differential post-processing.

On each plot, tree species and diameter at breast height (dbh) were recorded for all
trees with dbh ≥ 5 cm, and their stem centre locations were mapped using a Sokkia
SET5F total station (Sokkia B.V., LJ Capelle a/d IJssel, The Netherlands). In total,
4299 trees were recorded (52% spruce, 34% pine and 14% deciduous species). The
dbh range for the trees of dominant species was divided into five diameter classes,
and two trees were selected as sample trees for height and crown measurements in
each class. Where applicable, up to five trees from each of the secondary species were
also sampled proportionally with the tree’s basal area using a relascope with a BA
factor of 1 (Gregoire and Valentine 2008). For all sample trees, the heights (h) were
measured using a Vertex hypsometer (Haglöf Sweden AB, Långsele, Sweden), and the
crown projections along the eight cardinal directions (N, NE, E, SE, S, SW, W and
NW) from the stems were determined using a metallic tape. Crown diameter (cd) was
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Table 1. Field data summary: field plots.

Characteristics Range Mean

No. of sample trees 11−20 17
hL (m) 10.3−25.4 16.27
dg (m) 0.10−0.26 0.171
N (ha−1) 460−2440 1171
BA (m2 ha−1) 13.6−42.0 25.19

Tree species distribution by percentage of basal area (%)
Spruce 0−98 42
Pine 0−100 49
Birch 0−34 8

Note: hL, Lorey’s height; dg, mean basal area diameter; N, stem number; BA, plot
basal area.

Table 2. Field data summary: single tree variables.

Single tree Spruce Pine Birch

Variable∗ Range Mean St. dev. Range Mean St. dev. Range Mean St. dev.

dbh (cm) 5.0−49.5 14.4 7.56 5.0−48.0 16.7 8.04 5.0−64.0 11.6 6.96
h (m) 3.5−29.4 14.6 6.12 5.1−27.1 14.6 4.39 3.7−25.9 13.8 5.23
cd (m) 1.2−7.9 3.2 1.05 0.9−6.8 3.3 1.26 1.3−8.5 3.4 1.31

Notes: ∗only for sample trees; dbh, breast height diameter; h, total tree height; cd, crown
diameter; st. dev., standard deviation.

calculated as the diameter of a circle with the same area as the crown projection. In
total, 669 sample trees (273 Norway spruce, 266 Scots pine and 130 deciduous trees)
were selected across the plots, with an average of 17 trees per plot (1171 stems/ha).
The most represented deciduous tree species in the data set was birch. Tree-specific
(Norway spruce, Scots pine and birch) height–diameter regression models were devel-
oped using the sample trees as training data (Magnussen et al. 2010). These models
were used to predict the heights of the trees not included in the sample. Mean height
(hm) and Lorey’s mean height (hL) were calculated for each plot using field-measured
and predicted tree heights, and plot BA was computed from the dbh measurements.
A summary of the field data is presented in tables 1 and 2.

2.2 Laser scanner data

ALS data were acquired at a mean flying altitude above ground of 800 m. Data were
collected under leaf-on canopy conditions on 6 June 2006 using a PA31 Piper Navajo
fixed-wing airplane. The strips were E–W oriented, with an N–S spacing of approxi-
mately 8.7 km. Data were acquired with an Optech ALTM 3100 system (Optech Inc.,
Vaughan, ON, Canada) operating with a pulse repetition frequency of 100 kHz, a
scan frequency of 70 Hz and a half-angle of 5◦. Up to four echoes per pulse were
recorded (approximately 1.4 echoes per emitted pulse), resulting in an echo density
of 10.4 echoes m–2. Laser data processing was accomplished by the contractor (Blom
Geomatics AS, Oslo, Norway). The GPS/INS (Inertial Navigation System) process-
ing was performed using Applanix POSPac software (Applanix Corp., Richmond
Hill, ON, Canada), and then planimetric coordinates (x and y) and ellipsoidic heights
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Single tree detection in heterogeneous boreal forests 5175

were obtained by processing the navigation and laser data using the Optech REALM
tools (Optech Inc.). The three-dimensional adjustment and classification (canopy and
ground) was performed using TerraScan and TerraModel software from TerraSolid
Ltd, Helsinki, Finland. A triangulated irregular network (TIN) model representing
the terrain surface was built using the TerraScan software, and the heights of all
laser returns relative to the interpolated ground surface were obtained by subtracting
the TIN heights from the laser echo heights. According to the contractor’s technical
report, the expected accuracy of the relative heights was ±10 cm. Finally, the ‘first’ and
‘single’ echoes were extracted within buffers of 10 m extending around the plot borders
and retained for further analysis, resulting in a density of approximately 7.4 echoes
m–2, which is considered to be relatively high (Hyyppä and Inkinen 1999, Persson
et al. 2002).

3. Methods

The main steps of the standard workflow for single tree crown delineation and single
tree variable extraction from CHMs can be summarized as follows (Hyyppä et al.
2001a, 2008): (1) creation of a CHM, (2) smoothing the CHM using a low-pass spatial
filter for removing spurious details, (3) regional maxima detection and segmentation
of the CHM for delineating single tree crowns and (4) extraction of single tree variables
using various metrics derived from the CHM regions or laser echoes contained in each
segment.

In this study, two adaptive approaches for guiding the tree crown delineation are
proposed: Poisson 1 and Poisson 2. The crown delineation method described by
Hyyppä and Inkinen (1999) and Hyyppä et al. (2001a) was used as a reference method
(labelled ‘RefMeth’) for assessing the performance of the Poisson methods. In the
Poisson 1 method, adaptive low-pass filtering was applied to CHMs created at pre-
defined spatial resolutions. This approach considers that the CHMs for all 40 plots
are created at the same spatial resolution, while the size of the low-pass filter varies for
each plot. The Poisson 2 method allows for the CHM spatial resolution and the size
of the low-pass filter to vary by plot.

Both Poisson methods rely on a mild assumption about the process describing the
spatial stem distribution at the plot level. More exactly, it was assumed that tree loca-
tions are generated by a homogeneous spatial Poisson process, thus making possible
the calculation of the expected nearest neighbour distance (DNN) between the closest
pairs of trees, as follows:

DNN = 0.5

√
A

N
, (1)

where A is the plot area (m2) and N is the number of stems on the plot (Clark and
Evans 1954).

Exploratory analysis was performed to assess the spatial distribution of trees on the
plots, following the procedure described in detail by Salas et al. (2006). The analy-
sis was conducted using the ‘spatstat’ package (Baddeley and Turner 2005), version
1.17–5, of the open-source statistical environment R (R Development Core Team
2009). The null hypothesis of a random process describing the tree spatial distribution
at the plot level was tested using 95% confidence envelopes of the Ripley’s L̂(t)-
estimator obtained through Monte Carlo simulations, using isotropic edge correction
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5176 L. Ene et al.

(Ripley 1988). The hypothesis of a random spatial process held for 24 plots (9 domi-
nated by 6 spruce and 15 by pine), clustering was identified on 12 plots (6 dominated
by spruce and 6 by pine) and regularity was fond on 4 plots (2 dominated by spruce
and 2 by pine). However, the spatial distribution is also influenced by the silvicul-
tural treatments applied within each stand. Since the stand history was not available
for most of the stands, the results of the spatial analysis had to be interpreted with
caution.

In practise, using equation (1) requires that the stem number (N) and the forest
areas (A) are known. While the forest areas are usually available, the stem numbers
can be estimated from the ALS data using a predictive regression model, following the
standard area-based approach used in operational forest inventories (Næsset 2002).
With plots of various sizes (500 and 1000 m2), the regression equation (root mean
squared error (RMSE) = 24.5%) fitted for stem number prediction was

ln
(

N

A

)
= 0.03091 − 0.0809h̄ − 2.3133(CV), (2)

where h̄ is the mean echo height (m) and CV is the coefficient of variation of echo
heights. In a practical application, the regression equation would be used to predict
the stem number for forest areas not included in the training data set. Thus to mimic
the stem number prediction on new plots, a leave-one-out data-splitting procedure
was employed. Each plot was therefore in turn withheld from the training data set,
and equation (2) was re-fitted for the remaining 39 plots. The RMSE increased to
28.9%, and the new estimates of stem number obtained by applying the leave-one-
out procedure (labelled N̂Loo) were plugged into equation (1) to calculate the mean
nearest neighbour distances. The resulting mean nearest neighbour distances varied
between 1.0 and 2.4 m, with an average of 1.5 m and a standard deviation of 0.3 m.
Because spruce-dominated plots tend to have higher stem densities compared with
pine-dominated plots, the average DNN was slightly smaller in the former (1.35 and
1.67 m, respectively).

An overview of the methodology is presented in figure 1. The applied methods are
detailed in the following sections.

3.1 CHM processing

The CHMs were obtained using the natural neighbour interpolation algorithm known
to perform very well in interpolating dense, irregularly spaced data (Falkowski et al.
2008, Bater and Coops 2009). Before applying low-pass filtering, a thresholding pro-
cedure was applied to the CHM of each of the 40 plots to separate the canopy regions
from the background. Visual assessment of the vertical distribution of laser echo
heights corroborated by field observations did not indicate a clear presence of mul-
tilayer canopies for our data set; thus the three-dimensional laser echo clouds were
split into two groups – canopy and background – using the minimum error histogram
thresholding method (Kittler and Illingworth 1986). The method sets the threshold by
minimizing the classification error between background and canopy echoes assuming
that the echoes in the two groups are normally distributed. The CHM heights below
the threshold value were considered to represent the forest floor and understory veg-
etation and were set to 0. The laser echo height threshold varied from 1.00 to 3.25 m,
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Figure 1. Methodological flow chart.

with an average of 1.2 m. On all plots, the threshold values were consistently smaller
than the heights of the smallest sample trees, and it was considered that the chances
of identifying small tress were not affected by removing height information from the
CHM.

Visual inspection of the CHMs of the plots did not reveal any speckle noise, which
eventually would have required non-linear filters (e.g. a median filter) for noise reduc-
tion. Low-pass filtering was applied in the spatial domain using binomial filters. The
binomial coefficients representing the filter weights were obtained from Pascal’s trian-
gle. Following Popescu and Wyne (2004), circular kernels were used to mimic circular
tree crown shapes.

3.2 Adaptive tree crown delineation methods

The CHMs created at fine spatial resolutions depict the canopy surface in greater
detail, and in such situations larger spatial filters (larger fsize) are required to remove
spurious local maxima to keep the number of false positives low. At coarse resolutions
the small-scale spatial variation in the CHMs is reduced, and using large spatial filters
will lower the detection rates owing to regional maxima attenuation. The challenge is
then twofold: (1) to represent the tree crowns using an appropriate CHM resolution
and (2) to use a filter size such that a reasonable number of trees are detected while the
proportion of false detected trees is kept low.
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5178 L. Ene et al.

3.2.1 The Poisson 1 method. Here, it was assumed that the tree stems are randomly
located at the plot level and that the stem number on each plot is obtained using a
regression model (equation (2)).

Assuming randomly located tree stems at the plot level and having the stem number
estimated by a regression model (equation (2)), the mean nearest neighbour distance
can be predicted for each plot by substituting the real stem number, N, in equation
(1) with the estimated stem number, N̂Loo. For each plot the filter size (fsize) was then
set equal to the predicted mean nearest neighbour distance (DNN, p):

fsize = DNN, p = 0.5

√
A

N̂Loo

. (3)

The choice of grid resolution for analysing the spatial data has been much debated and
it is accepted that an ideal grid resolution generally does not exist (Hengl 2006). When
the stem positions are available from field measurements, an optimal CHM resolution
can be obtained by applying a trial-and-error procedure, where the performance of the
method is assessed using several CHM resolutions and the resolution giving the best
results is selected. Feasible candidates for the CHM resolution can be selected consid-
ering that objects smaller than the low-pass filter will be affected more than the larger
objects (Gonzales and Woods 2002). On the assumption of having randomly located
trees, a lower bound of the CHM resolution can be determined considering that a filter
having the minimum meaningful size of 3 pixels × 3 pixels should not simultaneously
cover the tops of two neighbouring trees situated at the mean neighbour distance from
each other (figure 2).

Following this reasoning, the maximum allowable pixel size, ps,max, can be calculated
for each plot as

ps,max = fsize

3
, (4)

ps

fsize = DNN, p

Figure 2. Calculation of pixel size (ps): the maximum pixel size is chosen such that a 3 pixel × 3
pixel filter does not cover the tree tops of two neighbouring trees situated at DNN, p from each
other. The solid line circles illustrate the outline of the crowns of two neighbouring trees found
within the range of DNN, p and the dotted line circle outlines the 3 × 3 circular low-pass filter
shown in grey. The two black dots indicate the tree tops.
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Single tree detection in heterogeneous boreal forests 5179

ps

fsize = DNN, p

Figure 3. Representation of a circular spatial filter of size fsize, given the pixel size (ps) and the
expected nearest neighbour distance between trees.

resulting in ps,max values varying between approximately 0.3 and 0.8 m, with an average
of 0.5 m and a standard deviation of 0.10 m. The minimum pixel size was subjectively
set to 0.1 m, and a series of CHMs were created at resolutions from 0.1 to 0.8 m in
steps of 0.1 m. The fsize values obtained in metres were then scaled to pixels based
on the CHM resolution, while constraining the fsize to be an odd number (figure 3).
The performance of the Poisson 1 method was judged using the fsize values (in pixels)
obtained for each series of the CHM resolutions.

3.2.2 The Poisson 2 method. The main difference between the Poisson 1 and Poisson
2 methods is that the latter allows one to obtain the CHM resolution for each plot.
As in the case of the Poisson 1 method, the filter size was obtained from equation
(3). Since stem positioning is usually not performed during operational forest inven-
tories, we developed a strategy for obtaining reasonable CHM resolutions at the plot
level, using the number of local maxima obtained from the unsmoothed CHM and the
predicted stem number per plot, (N̂Loo).

The number of local maxima found after running low-pass filtering was previously
used to optimize the smoothing (Culvenor 2000, Pouliot and King 2005, Pouliot et al.
2005). In our study, we used the number of local maxima found in the unsmoothed
CHM to obtain a reasonable CHM resolution. Given that the low-pass filtering can
drastically reduce the number of local maxima and assuming an ideal situation when
all tree tops are ‘visible’ in the CHM, the number of local maxima found before apply-
ing the low-pass filtering should be at least equal to the number of trees. The approach
is illustrated in figure 4, where the number of local maxima (values on the y-axis) is
represented as a function of several candidate pixel size (ps) values (on the x-axis)
obtained using equation (4). The optimal ps value, at which the number of local
maxima equals the predicted stem number (N̂Loo), is then selected for CHM creation.
It was considered that using finer resolutions (that is, resolutions producing more local
maxima than the number of trees) is not necessary because, in reality, many of the
smaller trees would be fully covered by the dominant ones, and the stem numbers used
by the method usually deviate from the real values, being predicted by a regression
model.

Our exploratory results indicated that 90% of the ps values (for 36 plots) obtained
using N and N̂Loo differed by less than 0.1 m, and in only 10% of the cases (four plots)
was the difference as high as 0.2 m.

D
ow

nl
oa

de
d 

by
 [N

or
ge

s L
an

db
ru

ks
ho

eg
sk

ol
e]

, [
Li

vi
u 

En
e]

 a
t 1

9:
00

 0
1 

M
ar

ch
 2

01
2 



5180 L. Ene et al.

450

400

350

300

250

N
o.

 o
f 

lo
ca

l m
ax

im
a

200

150

N = 244, ps = 0.2 m

100

50

0
0.1 0.2 0.3 0.4 0.5

Pixel size (m)
0.6 0.7 0.8

NLoo = 179, ps = 0.3 mˆ

Figure 4. Determining the CHM resolution using the number of local maxima extracted from
the unsmoothed CHM and the predicted number of stems per plot (N̂Loo = 179). The opti-
mal pixel size (0.3 m) is the ps value at which the number of local maxima (the values on the
y-axis) equals N̂Loo. When the field-measured stem number (N = 244) is used instead of N̂Loo,
the optimal ps value is 0.2 m. By convention, the pixel size was allowed to vary in steps of 0.1 m.

Given the higher stem density in spruce-dominated forests, the average CHM
resolution for plots dominated by spruce was also higher (0.3 m) than that for
pine-dominated plots (0.4 m).

3.3 CHM segmentation

Various segmentation approaches have been explored across different forest condi-
tions – e.g. watershed algorithms (Chen et al. 2006, Kwak et al. 2007, Zhao and
Popescu 2007, Heurich 2008), region growing (Solberg et al. 2006), pouring algorithm
(Koch et al. 2006) and slope-based segmentation (Hyyppä et al. 2001a, Persson et al.
2002). In the present study, we used the marker-based watershed algorithm (Soille
2003) for CHM segmentation because it is less prone to produce over-segmentation
than the typical watershed segmentation algorithm. The segmentation algorithm
ensures a 1:1 relationship between object markers and delineated CHM segments, so
the segmentation success depends on how accurately the object markers represent the
objects. Having already established the approaches for controlling the filter settings to
be used with the Poisson methods, we decided to use the extended maxima transform
to detect CHM regional maxima after performing the adaptive low-pass filtering.

The extended maxima transform (Soille 2003) is a morphological operation that
allows for regional maxima detection in two steps: (1) regional maxima are found
from the intensity image by morphological operations and (2) all regional maxima
with values below a certain threshold, hmax, from the background are removed. The
scalar value, hmax, can be considered as the average intensity value separating regional
maxima across the image or, in our case, the average height difference between the tree
tops and their surroundings. The number of regional maxima produced by this method
is inversely proportional to the value of hmax. Marker-based watershed segmentation
using an extended maxima transform for marker selection has been previously used
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Single tree detection in heterogeneous boreal forests 5181

by Chen et al. (2006) and Kwak et al. (2007). In their approach, the optimal thresh-
old, hmax, was obtained empirically using training data, but we aimed to obtain the
hmax value directly from the CHM. Hence, the local means were obtained from the
smoothed CHM using averaging moving windows of size fsize, and local residuals were
calculated by subtracting the local means from the smoothed CHM. The threshold
value hmax was then set to a percentile obtained from the distribution of the resid-
uals. During the calculations, the CHM regions containing background pixels were
discarded. Choosing a low percentile will increase the detection rate, while a higher
percentile will decrease the number of regional maxima detected. For our data, little
change occurred when the hmax value varied between the first quartile and the median
due to the CHM smoothness obtained after low-pass filtering. For this reason the hmax

value was set as the 25th percentile of the absolute local residuals estimated at the plot
level.

The result of the marker-based watershed segmentation consists of a labelled matrix
in which positive elements correspond to the watershed regions (delineated segments).
The zero labels (also called watershed pixels) are areas that do not belong to a unique
watershed, and they create contiguous separation lines (watershed ridge lines) between
watershed regions (Anon 2010). The laser echoes and tree stem positions were linked
to the watershed regions using their coordinates, so we could identify the laser echoes
and the trees located inside each of the segments. Morphological cleaning was per-
formed to eliminate spurious pixels produced after height thresholding, and dilation
using a disc-shaped structural element of one-pixel radius was applied to each segment
before linking it to the trees and laser echoes in order to extend the segment borders
into the watershed ridges.

3.4 The reference method

The method described by Hyyppä and Inkinen (1999) and Hyyppä et al. (2001a) was
used as a ‘RefMeth’ to assess the results obtained with the Poisson methods. The algo-
rithm runs a CHM low-pass filter using a 3 pixel × 3 pixel discrete kernel with the
weights obtained from the binomial approximation of the Gaussian function, and the
regional maxima are found at the locations where the values in the smoothed CHMs
are larger than their eight neighbours. For assessment, the Poisson 1 and ‘RefMeth’
methods were run on identical CHMs. The ‘RefMeth’ and ‘Poisson 2’ methods were
assessed on CHMs created at resolutions related to the number of local maxima found
by each method.

3.5 Extraction of single tree variables

The single tree variables estimated in this study – i.e. tree height and crown diameter –
were obtained from the three-dimensional coordinates of laser echoes located inside
the CHM segments resulting from the segmentation process.

The (x, y, z) coordinates of the highest laser echo within each segment were con-
sidered to represent the tree top position and were assigned to the highest tree located
inside the same segment.

Crown diameters were estimated in two steps. First, the laser echoes in each seg-
ment were separated into two groups – background and canopy. Preliminary results
indicated that the minimum error histogram thresholding did not perform well at the
single tree level, when the number of echoes varies substantially among segments.
Instead we used the Otsu histogram thresholding method (Otsu 1979), which sets
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5182 L. Ene et al.

the threshold by minimizing the intra-class variance of the background and canopy
echo heights. After thresholding, crown areas were derived by dividing the number of
echoes above the thresholds obtained for each of the segments by the average echo
density of the plot (Morsdorf et al. 2004). The crown diameters were subsequently
derived, considering that the tree crown projections are circular.

3.6 Accuracy assessment

One problem that affects the accuracy assessment is that some of the segmented
regions cross the plot boundaries, covering areas where field measurements are miss-
ing. To avoid such problems, the results were assessed using only a subset of the
trees initially mapped on each plot, which consisted of trees from the segments
entirely located inside the plots. The trees located inside the segments crossing the
plot boundaries were then discarded, and the initial stem numbers obtained from the
field inventory were modified accordingly, obtaining plot-wise adjusted stem numbers,
which were further considered to represent the ground truth.

3.6.1 Delineation errors. Following Pouliot et al. (2005) and Pouliot and King (2005),
an accuracy index (AI; a percentage) quantifying the trade-off between omission and
commission errors can be defined as

AI(%) = 100
(

1 − NOM + NCOM

Nadj

)
, (5)

where Nadj is the adjusted stem number, and NOM and NCOM represent the omission
and commission errors, respectively. By omission errors (NOM), we mean the num-
ber of undetected trees, while commission errors (NCOM) refer to the number of local
maxima that do not correspond to the tree tops. If the omission errors (OM) and
commission errors (COM) are expressed as percentages, then

OM = 100
NOM

Nadj
(6)

and

COM = 100
NCOM

Nadj
. (7)

The AI can then be written as

AI = 100 − ((OM) + (COM)) . (8)

It should be noticed that equations (5) and (8) allow for negative AI values in the case
of very poor performance, when the sum of delineation errors is larger than the actual
number of trees. Given the omission errors, the detection rate can subsequently be
calculated as 100 – (OM). Finally, the Poisson and RefMeth methods were ranked in
order of increasing AI.
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Single tree detection in heterogeneous boreal forests 5183

3.6.2 Single tree variables. The delineation results produced by the method with
the highest AI were further used to assess the accuracy of the estimated single tree
variables.

In a practical application, each delineated segment would be treated as representing
a single tree, regardless of the number of trees it actually contains. Thus, the effect
of tree grouping (more than one tree located inside the same segment) would affect
the estimation of single tree variables compared with the situation where the segments
contain only one tree. For this analysis, we used only those segments where the laser
tops were linked to sample trees. Further, the effect of the tree species on the height
and crown width estimation was also assessed, and in this case we used only identified
reference trees standing alone inside their corresponding segments.

At the plot level, the mean height and mean crown diameter obtained from single
tree estimates obtained from ALS data were compared with the mean height, Lorey’s
height and mean crown diameter derived from field data. For this analysis, the ALS-
based single tree estimates for height and crown diameter also included the values
corresponding to false positives (commission errors), which in a practical application
would be taken into account as real trees.

The strength of the relationship between the single tree variables estimated from
the ALS data and their field-based counterparts was assessed using the Pearson linear
correlation coefficient, r. The estimation accuracy was assessed by using the errors
ei calculated as the differences between field- and ALS-based single tree estimates.
The mean errors and the root mean squared deviations (RMSD) calculated for the n

identified trees as

RMSD =

√√√√√
n∑

i=1
e2

i

n
(9)

were also reported.
The null hypothesis of having the group mean errors greater or less than zero was

assessed using paired one-tailed t-tests (significance level α = 0.025), and one-way
ANOVA (α = 0.05) was used to test for significant differences between group means.
Where significant differences were found, multiple comparison tests based on Tukey’s
least significant difference procedure were used for assessing pairs of group mean
errors that were significantly different.

4. Results

4.1 Delineation accuracy

The overall delineation accuracy results are presented in table 3. The highest accu-
racy (43.6%) was obtained by the Poisson 1 method for a CHM resolution of 0.2 m.
The worst results (–95.4%) were obtained when using the RefMeth for a 0.1 m CHM
resolution.

The performance of the Poisson 1 method increased from 41.2% to a maximum of
43.6% when the CHM resolution decreased from 0.1 to 0.2 m, and it decreased steadily
as the CHM resolution became coarser, attaining the minimum (31.8%) for a pixel size
of 0.8 m. The AI of the RefMeth also increased with finer pixel size having a peak of
41.8% at 0.3 m, and then steadily decreasing to 32.7% at 0.8 m resolution.
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5184 L. Ene et al.

Table 3. Overall delineation accuracy.

CHM No. of ∗OM (%)
resolution trees †COM

Method (m) (adjusted) Spruce Pine Birch Total (%) ‡AI (%)

Poisson 1 0.1 4126 51.8 32.4 54.1 45.5 13.3 41.2
RefMeth 4161 35.2 20.1 34.8 30.5 164.8 −95.4
Poisson 1 0.2 4105 55.8 36.5 59.2 50.2 6.2 43.6
RefMeth 4137 47.6 27.6 47.7 41.6 33.8 24.6
Poisson 1 0.3 4113 57.1 39.3 60.3 52.3 5.3 42.4
RefMeth 4125 52.8 32.6 52.5 47.2 11.1 41.8
Poisson 1 0.4 4091 59.9 42.8 63.4 55.5 3.7 40.8
RefMeth 4103 57.4 38.6 59.5 52.4 5.9 41.7
Poisson 1 0.5 4084 63.4 47.7 66.4 59.2 3.2 37.6
RefMeth 4088 61.5 44.4 63.7 57.0 3.9 39.0
Poisson 1 0.6 4066 67.1 50.7 69.5 62.8 2.2 35.0
RefMeth 4076 66.2 49.5 67.6 61.8 2.6 35.6
Poisson 1 0.7 4074 66.3 48.9 69.1 62.0 2.4 35.6
RefMeth 4076 65.6 48.1 68.6 61.4 2.7 35.9
Poisson 1 0.8 4037 70.1 54.1 74.3 66.5 1.7 31.8
RefMeth 4045 68.7 52.8 73.5 65.3 2.0 32.7
Poisson 2 0.2–0.5 4104 57.6 42.2 62.5 53.7 4.3 42.0
RefMeth 0.2–0.6 4113 52.3 36.1 54.5 48.3 9.8 41.8

Note: ∗omission error, †commission error (%), ‡accuracy index.

The largest number of commission errors was produced by the RefMeth at 0.1 m
resolution (164.8%), while the Poisson 1 method produced only 13.3% false positives
for the same pixel size. At CHM resolutions of 0.3 and 0.4 m, the Poisson 1 and
benchmark methods performed nearly identically, achieving an AI of approximately
41–42%.

The Poisson 2 and the RefMeth achieved nearly equal AIs (42.0% and 41.8%,
respectively) when a variable CHM resolution was used, the RefMeth having a higher
detection rate (51.7% against 43.3%) at the expense of a larger number of false
positives (9.8% against 4.3%).

All methods produced a higher percentage of omission errors for spruce (approx-
imately. 35–70%) and deciduous trees (approximately 35–74%) compared with pine
(approximately 20–54%).

Because the Poisson 1 method reached the highest overall AI, the results of this
method were further analysed per plot (table 4). The Poisson 1 method could delin-
eate an average 51.8% of the adjusted number of trees on each plot, producing 6.6%
false positives. The method could delineate 54.6% of the trees on pine-dominated plots
(which is about 7% more than that for spruce-dominated plots), but the average com-
mission error level was not affected much by the species composition, being around
6–7%.

The delineation accuracy (AI) was not found to be significantly influenced by the
number of trees (figure 5) and by their spatial distribution (figure 6), either for the
spruce-dominated or for the pine-dominated plots.
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Table 4. Plot-wise average delineation errors and accuracy indices for the dominant tree species.

Spruce Pine Total

OM COM AI OM COM AI OM COM AI
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Min 13.5 2.4 29.0 15.9 2.0 30.0 13.5 2.0 29.0
Max 66.2 19.3 80.2 60.4 15.5 81.0 66.2 19.3 81.0
Mean 52.0 7.0 41.0 45.4 6.3 48.4 48.2 6.6 45.2
Std. dev. 12.79 4.56 13.30 11.50 3.39 12.78 12.36 3.89 13.35

90

80

70

60

A
l (

%
)

50

40

30

500 1000 1500 2000

Stem number/ha

2500

 

Spruce: nobs = 17

Pine: nobs = 23

FitOLS spruce: R2
 = 0.00

FitOLS pine: R2
 = 0.02

Figure 5. Relationship between the delineation accuracy (AI) and the stem number, by tree
species.
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Figure 6. Relationship between the delineation accuracy (AI) and the stem number, by spatial
distribution of the stems.
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5186 L. Ene et al.

4.2 Single tree variable extraction

4.2.1 Accuracy of single tree variables. The Poisson 1 method identified 423 sam-
ple trees from a total of 669, and these trees were further used to compare the
field-measured attributes with the corresponding laser-based estimates.

The influence of the number of trees located inside the watershed segments (1, 2 and
>2 trees) on the ALS-based single tree estimates is shown in table 5.

Tree heights were systematically underestimated (table 5), and the ANOVA test
(p > 0.5) indicated that the magnitude of the bias was not dependent on the num-
ber of trees per segment. Although the estimation slightly improved with an increase
in the number of trees in a segment (table 5), the underestimation was found to be sta-
tistically significant by the paired t-tests (p < 0.001). Paired t-tests indicated that crown
diameters were unbiasedly estimated for segments containing only one tree (p > 0.1),
but significant overestimations occurred when at least two trees were contained in the
segments (p < 0.001 and p < 0.0001, respectively). Moreover, multiple comparison
tests indicated that the biases for segments containing two and more than two trees
were also significantly different, the bias increasing with the number of trees in the
segments.

From the initially matched trees, 189 sample trees (78, 87 and 24 Norway spruce,
Scots pine and deciduous trees, respectively) were found standing alone inside their
corresponding segments. The differences between the laser- and the field-based single
tree estimates for sample trees grouped by tree species are presented in table 6.

For all species the single tree heights were systematically underestimated (paired
t-test: p < 0.001), but the ANOVA tests (p > 0.5) did not indicate significant differences
between tree species. The t-tests showed that the estimation of crown diameters was
unbiased for birch (p > 0.5), underestimated for spruce (p < 0.001) and overestimated
for pine (p < 0.0001).

Table 5. Accuracy of ALS-based single tree estimates grouped by the number of trees located in
each segment.

Height Crown diameter

No. of trees in each segment 1 2 >2 1 2 >2

No. of observations 189 104 130 189 104 130
Pearson’s correlation coefficient, r 0.96 0.96 0.97 0.85 0.75 0.73
Mean error (m) 0.59 0.52 0.46 0.03 −0.28 −0.63
RMSD (m) 1.35 1.22 1.05 0.59 0.91 0.81

Table 6. Accuracy of ALS-based single tree estimates for sample trees grouped by tree species.

Height Crown diameter

Species Spruce Pine Birch Spruce Pine Birch

No. of observations 78 87 24 78 87 24
Pearson’s correlation coefficient, r 0.97 0.95 0.99 0.76 0.92 0.90
Mean error (m) 0.60 0.52 0.79 0.26 −0.18 0.02
RMSD (m) 1.58 1.24 0.89 0.67 0.46 0.49
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Table 7. Accuracy of ALS-based plot estimates.

Mean height Lorey’s height Crown diameter

Species Spruce Pine Spruce Pine Spruce Pine

No. of observations 17 23 17 23 17 23
Pearson’s correlation

coefficient, r
0.93 0.89 0.91 0.82 0.89 0.87

Mean error (m) 0.50 0.96 2.98 2.67 −0.43 −0.56
RMSD (m) 1.69 1.03 1.88 1.24 0.34 0.25

4.2.2 Accuracy of plot-level estimates. Single tree heights and crown diameters
derived using all the segments delineated from the ALS data at the plot level (includ-
ing commission errors) were aggregated to obtain plot averages. The accuracy of the
plot-level estimates is presented in table 7.

The mean plot height was underestimated for both of the main species, the under-
estimation being greater in pine-dominated plots (0.96 m) compared with spruce-
dominated plots (0.50 m), but paired t-tests indicated that the underestimation was
significant only in the former case (p < 0.0001). A strong linear correlation was
found between the ALS- and the field-based mean plot heights (r = 0.93 for spruce-
dominated plots and r = 0.89 for pine-dominated plots). The ALS-derived mean
plot height significantly underestimated the Lorey’s height (p < 0.0001), the under-
estimation being slightly higher in spruce-dominated plots (2.98 m) compared with
pine-dominated plots (2.67 m). ANOVA tests (p > 0.5) indicated that the underesti-
mation of Lorey’s height was not significantly influenced by the main tree species. The
mean crown diameters were significantly overestimated (paired t-tests: p < 0.0001)
but the overestimations did not significantly differ between the two main tree species
(ANOVA tests: p > 0.1). A strong linear correlation between the ALS- and field-based
mean crown diameters was also found (r = 0.89 for spruce-dominated plots and r =
0.87 for pine-dominated plots).

5. Discussion and conclusions

In this study, two adaptive approaches for tree crown delineation – Poisson 1 and
Poisson 2 – were developed and assessed. The adaptive behaviour of these methods is
guided using stem number estimates to obtain the spatial resolution and the amount
of smoothing of the CHMs. Although these approaches consider the trees being ran-
domly positioned across the study area, departure from this hypothesis did not seem
to affect the delineation results, at least not for our data set.

In general, the adaptive approaches seemed to be quite versatile, and they suit best
in cases where they can be used in addition to area-based ALS forest inventories, where
stem number estimates at the stand or stratum level are available. In situations lacking
reference data, stem number estimates can possibly be roughly approximated using
data provided by previous inventories, forest operations logs (e.g. harvesting intensity,
planting distance) and national forest inventory statistics.

Although the Poisson 1 method achieved the highest accuracy according to the AI
criterion, the Poisson 2 came very close and it has the advantage of not requiring
trial-and-error attempts for fine-tuning. The Poisson 2 method uses only area-based
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estimates as input and it does not require tree-level data for training (e.g. stem posi-
tions and crown measurements), which may be an asset in a practical application. The
slightly poorer performance of the Poisson 2 method can also be seen as a consequence
of using less information compared with the Poisson 1 method.

The non-adaptive RefMeth was the most sensitive to changes in CHM resolution,
the number of false positives being reduced to a fifth (from 164.8% to 33.8%) by
increasing the pixel size from 0.1 to 0.2 m and approximately a third by decreasing
the resolution to 0.3 m (from 33.8% to 11.1%). For CHMs with 0.3–0.4 m spatial res-
olution, the performances of the adaptive and non-adaptive approaches were nearly
equal.

The delineation results seem to be less influenced by the choice of the regional
maxima detection method than by the spatial size of the low-pass filter and CHM
resolution. The non-adaptive method had a slightly higher detection rate at coarser
resolutions also because the regional maxima detection method was more sensitive,
searching for maxima in a 3 pixel × 3 pixel window, but reducing the threshold of
the extended maxima transform would also increase the detection rate. However, the
extended maxima transform with the CHM-based calibration procedure described in
this article is recommended because it is more flexible and offers the possibility of
refining the results independently of other processing steps.

Overall, the accuracy of our approaches is comparable to that of other published
results obtained for similar forest conditions, but a direct comparison might not be
appropriate because different data sets were used. Another obstacle to comparing our
results with other findings is that we did not classify the trees according to their social
status (e.g. following Kraft’s social tree classes, Pretzsch (2010), while many previ-
ous studies have reported results following that classification, which might be relevant
to forest managers. Moreover, the assessment methods vary among studies and the
reported accuracy results are thus inconsistent. For boreal forest conditions, Persson
et al. (2002) reported a 71% detection rate and very low commission errors, but the
methodology used to link the field-measured trees with the crown segments served
analytical purposes and it is unlikely to be used in a practical application. Using a
subjective assignment of trees in social classes, Solberg et al. (2006) reported a 93%
detection rate for dominant trees and 19% for suppressed trees, but the number of
false positives was not reported. Morsdorf et al. (2004) reported a tree detection rate
of approximately 60% in boreal-type coniferous forest conditions, yet the number of
commission errors was not reported. However, it may be worth mentioning that our
results were in agreement with those reported by Hyyppä et al. (2001b), Pitkänen et al.

(2004) and Maltamo et al. (2004) for Nordic forest conditions (40–50% of the trees
identified, ≤10% false positives).

The higher detection rate in pine-dominated plots compared with spruce can be
explained by the forest management practices of introducing Scots pine in low pro-
ductive sites. Thus on such locations the stem number is low and the tree crowns are
well separated from each other, improving the delineation results. The results dete-
riorated in structurally rich forest stands located on high productive sites, which are
typically dominated by Norway spruce, often mixed with deciduous species.

Also, an AI that accounts only for the proportion of omission and commission
errors might be difficult to interpret, and the practical significance of both types of
errors should be quantified using methodologies that target the subsequent use of the
inventory data and the consequences of different types of errors – for example, on
management decisions and their economic implications based on the provided data
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(Wulder et al. 2000, Eid et al. 2004). It should also be mentioned that performing the
assessment using only delineated segments entirely located inside the plots may under-
estimate the omission errors, if the number of trees contained in the segments and the
probability of crossing the plot boundary are correlated with the size of the segments.

The assessment of the accuracy of single tree variable estimation did not account
for the errors introduced by field measurements (Lim et al. 2001, Persson et al. 2002,
Maltamo et al. 2004) and by incorrect linking between sample trees and ALS data.
Also, it is likely that a higher laser pulse density would increase the accuracy of the esti-
mation of single tree variables. For this reason, comparing our results with the findings
of other studies might not be very informative. The one growth season offset between
ALS and field data acquisition is expected to have a low impact on the delineation
results because no harvesting took place and no significant natural damage occurred
within this period. However, we believe that the height increment can influence the
accuracy of height estimates by increasing the bias resulting from the ALS measure-
ments. Hence the reported accuracy of height estimation is rather conservative, but
unfortunately we did not have the possibility of properly correcting our results. Also,
it is not clear how this time offset has influenced the crown width estimation, but we
do not believe that significant changes in the crown structure occurred.

Overlapping tree crowns within segments caused the overestimation of single crown
areas, but the results obtained for the segments containing only one tree seem promis-
ing. Delineating segments containing more than one tree had little influence on the
accuracy of the tree height estimates. The linear relationship between field- and ALS-
based single tree estimates was stronger for height than for crown diameter. Among
species, the height estimates for deciduous trees seemed to be more accurate, and
crown diameter estimation performed better for Scots pine and deciduous trees than
for Norway spruce. The underestimation of tree heights led to underestimated mean
heights at the plot level. As a result of having many segments containing more than
one tree, the average crown width obtained at the plot level was overestimated.

The results of statistical significance testing of the differences found between ALS-
and field-based estimates have to be interpreted with caution. Lacking the evidence
to reject the null hypothesis of non-significant differences between field measurements
and ALS estimates does not mean that the differences are not important in a practical
setting, and does not eliminate the need for calibrating the ALS estimates.

To obtain reasonable delineation results, the ALS sampling density also has to be
suitable for the size of the target objects (e.g. small tree crowns). Nowadays, state-
of-the-art ALS sensors can achieve very high sampling densities, but this does not
constitute a prerequisite for area-based ALS inventories, where very low echo density
(∼0.5 echo m–2) often suffices (Gobakken and Næsset 2008). Using low echo densities
has a cost-saving effect on area-based operational forest inventories, but in turn it
may become prohibitive for single tree detection and single tree variable extraction.
Thus, finding a suitable echo density to simultaneously satisfy the requirements of
area-based forest inventories and of single tree detection requires further investigation.

To conclude, this study has shown that plot-wise stem number estimates obtained
from area-based ALS forest inventories can be used to guide the extraction of single
tree information. The key factors controlled through the estimated stem number are
the spatial resolution of the CHM and the size of the low-pass filter. At least for our
data set, the results obtained at the plot level look promising, and further research
will be aimed at assessing the applicability of our approach at the stand level in an
operational forest inventory framework.
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