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Abstract 
This thesis presents management models applicable for uneven-aged forest structures in 

Norway. The framework is a matrix model consisting of several sub-models estimated from 

National Forest Inventory (NFI). The matrix model operates on diameter classes, projecting 

future outcomes by means of transition probabilities. Within the thesis, models for diameter 

distributions, recruitment, diameter growth, mortality, and tree height were developed. These 

four latter models were implemented in a computer tool and organized as a matrix model.  

 

Diameter distributions are not registered in ordinary forest inventories. Such distributions are 

necessary as input data for diameter class models such as the one presented in Paper IV of the 

current thesis. A model for retrieving diameter distributions from laser scanner data was 

developed in Paper I. The model was adapted to uneven-aged forest structures and was 

performing well within the range of the model development data. Even if the diameter 

distribution of other forest structures were not as well predicted, estimated stand volumes 

derived from the predicted diameter distribution were quite accurate irrespective of forest 

structure. 

 

Usually, diameter distributions are limited to a lower diameter limit of for example 3 cm. 

However, information of the magnitude of the trees smaller than this limit may be useful for 

predictions of future states because the initial state is described in more detail. Paper II deals 

with identifying variables derived from laser scanner data suitable for explaining the variation 

in quantity and vitality of young seedlings in a size divers spruce forest. The results indicated 

that the relationships were strong enough so that prediction models can be developed. 

 

Volumes of single trees are usually determined by means of volume equations that depend on 

diameter and height. To be able to compute volume of single trees described in a diameter 

distribution, tree heights have to be modeled. Paper III presents non-linear models that predict 

the height from diameter and stand variables and enabled prediction of tree heights in the 

study presented in Paper IV. The models were developed from National Forest Inventory 

(NFI) data and are therefore valid for all parts of Norway. 

 

Paper IV presents a matrix model for forest management. The matrix model was tested by 

performing both a short term and a long term validation. The short term validation comprised 
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tests that compared actual stand growth and model predictions on independent data. The 

results showed that the model were able to produce unbiased estimates of the number of 

stems. The long term model validation consisted in simulating stand growth without harvest 

for 1,000 years to see if the model predicted logical values with respect to steady state stand 

basal areas and species composition. The results indicated that the model produced estimates 

that reached steady states according to the hypothesis. The steady state was irrespective of the 

initial state of the stand being projected, as expected. The species composition was also logic 

producing large spruce volumes on the good sites and more pine on the poor sites. 
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Norsk sammendrag 
Denne avhandlingen presenterer en forvaltningsmodell for fleraldret skog i Norge. Rammen 

er en matrisemodell og denne består av flere delmodeller estimert på data fra 

landsskogtakseringen i Norge. Matrisemodellen predikerer utviklingen i skog på 

diameterklassenivå ved hjelp av overgangssannynligheter. I avhandlingen er det utviklet 

delmodeller for diameterfordelinger, rekruttering, diametertilvekst og mortalitet samt 

modeller for prediksjon av trehøyde. 

 

Diameterfordelinger blir vanligvis ikke registrert i ordinære skogtakster. Slike fordelinger er 

nødvendige datagrunnlag for diameterklassevise modeller slik som den presentert i Artikkel 

IV i denne avhandlingen. En modell for estimering av diameterfordelinger basert på laserdata 

presenteres i artikkel I. Modellen ble kalibrert for uensaldret skog og resultatene viste at den 

fungerte godt på data tilsvarende estimeringsdatene. Selv om andre typer diameterfordelinger 

(andre skogstrukturer) ikke ble predikert like godt, var volum estimert på grunnlag av 

diameterfordelingen uavhengig skogstrukturen. 

 

Diameterfordelinger begrenses vanligvis til en nedre diameter, for eksempel 3 cm. 

Informasjon om mengden trær som er mindre enn dette er likevel interessant fordi denne kan 

brukes til å forbedre prediksjoner av framtidige skogtilstander ved at utgangstilstanden er 

beskrevet i mer detalj. Artikkel II presenterer en studie der det ble fokusert på å finne 

laservariable som var egnet til å inngå i modeller som kan forklare variasjon i antall og 

kvalitet på småplanter i en heterogen granskog. Resultatene indikerer at sammenhengene er 

sterke nok til at prediksjonsmodeller kan estimeres. 

 

Volum på enkelttrær beregnes vanligvis ved hjelp av funksjoner som er avhengige av 

diameter og høyde. For å kunne beregne volumet av trær i en diameterfordeling må vi derfor 

beregne høyden på trærne i en slik fordeling. Artikkel III presenterer ikke-lineære modeller 

som predikerer trehøyde ved hjelp av diameter og bestandsvariable og muliggjorde prediksjon 

av trehøyder i studien presentert i Artikkel IV. Modellene ble estimert på data fra 

landsskogtakseringen i Norge og har derfor hele landet som gyldighetsområde. 

 

Artikkel IV presenterer en matrisemodell for skogforvaltning. Modellen ble testet på kort og 

lang sikt. På kort sikt ble prediksjoner sammenlignet med observerte verdier og resultatene 
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viste at modellen ga forventningsrette estimat. Den langsiktige valideringen bestod i å 

simulere utviklingen i skog uten hogst i en 1000 års perspektiv. Validiteten av denne testen 

ble vurdert ut fra om modellene ga en såkalt ”steady state”, altså om grunnflate og 

treslagsfordeling konvergerte mot en stabil tilstand.  Resultatene viste at modellene ga 

resultater i henhold til denne hypotesen. Den endelige tilstanden som modellen ga, var 

uavhengig av den initiale tilstanden. Resultatene var også logiske i forhold til at de ga store 

andeler gran på gode boniteter og mer furu på dårlige.    



9 

List of papers 
 

 

Paper I 

Bollandsås, O.M. & Næsset, E. 2007. Estimating percentile-based diameter distributions in 

uneven-sized Norway spruce stands using airborne laser scanner data. 

Scandinavian Journal of Forest Research, 22(1), 33-47. http://www.informaworld.com 
 

 

Paper II 

Bollandsås, O.M., Hanssen, K.H., Marthiniussen, S. & Næsset, E. In press. Measures of 

spatial forest structure derived from airborne laser data are associated with natural 

regeneration patterns in an uneven-aged spruce forest. Forest Ecology and Management.  

 

 

Paper III 

Bollandsås, O.M., Næsset, E.  Submitted. Height-diameter models for individual trees in 

Norway. Silva Fennica. 

 

 

Paper IV 

Bollandsås, O.M., Buongiorno, J. & Gobakken, T. Submitted. Predicting the growth of stands 

of trees of mixed species and size: A matrix model for Norway. 

Scandinavian Journal of Forest Research. http://www.informaworld.com 
 



10 

Introduction 
Background 
In the early 20th century, forest management in Norway became so called even-aged. This 

means that the forest area was populated by compartments of trees of approximately the same 

size and mostly one species. Within such silvicultural practices the harvest operations are 

typically based on clear-fellings with a subsequent planting to regenerate the new 

compartment or stand, at least for stands of spruce which is the dominating tree species in 

Norway. Pine stands are often regenerated by means of seed-trees, regularly distributed across 

the area when the stands are harvested. Irrespective of species, the compartments are quite 

even with respect to both tree size and species under this silvicultural regime. 

 Sufficient information for calculating merchandisable volumes and for projecting 

future growth and yield of these kinds of stands can be given by means of a few variables 

because most trees are of approximately the same size. These variables are the stand basal 

area per hectare (BA), dominant height, Lorey’s mean height, mean diameter, number of 

stems per hectare, and stand volume. Dominant height (h0) is computed as the arithmetic 

mean height of the 100 largest trees per hectare according to diameter (Tveite, 1977). Lorey’s 

mean height (hL) is mean height weighted by basal area while mean diameter (dg) is the 

diameter of the tree with mean basal area. Stand volume (V) is computed by means of stand 

volume equations that are functions of BA and hL (Brantseg, 1959; Vestjordet 1959; Næsset, 

1995; Næsset and Tveite, 1999) or by multiplying the volume of an average tree as described 

by hL and dg by the total number of trees (N). Volume of each tree is computed by means of 

volume equations of individual trees (Braastad, 1966; Brantseg, 1967; Vestjordet, 1967).  

 Because biodiversity is recognized as important in order to conduct a sustainable 

forestry, incentives that promote selective cuttings have been put forward. The most 

prominent of these incentives is the establishment of certification systems based on e.g. the 

Programme for the Endorsement of Forest Certification schemes (PEFC) or the Forest 

Stewardship Council (FSC). These are systems that give guidelines for a sustainable forestry. 

If the guidelines are complied with, the timber producers may be given an environmental 

label. Because of these certification systems and also public subsidy regulations that promote 

biological diversity, a larger portion of the forest stands are likely to be of trees of various 

species and size in the future. 
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Forest inventory and modeling approach 
For an even-aged forest structure the above mentioned stand characteristics are sufficient for 

volume calculations and projections of the forest and are therefore targeted in inventories of 

even-aged forest stands. Furthermore, the models used for predicting future growth and yield 

of such forest structures rely on stand characteristics as input variables. If the forest structure 

changes and becomes more size and species divers, the targeted descriptors and modeling 

approach need to be changed accordingly. Even-aged stands comprise trees with similar size 

and competitive status, whereas uneven-aged stands can have a wide size-range. The 

traditional stand characteristics may therefore be less useful because they only are average 

variables for the entire stand as such and do not recognize the growth conditions of the 

individual tree. Thus, in an uneven-aged stand we need higher resolution variables and 

models, either related to each tree or related to classes of size. Such variables and models 

enable prediction of growth for each tree or by size class accounting for differences in 

competitive status and computation of yield distributed on size classes. 

 Single-tree models utilize information on single-tree level. Typical variables may be 

the size of the tree as described by the diameter, basal area, or height; the competitive status 

of the tree described by a competition index, but also stand-variables to describe the general 

growth conditions in the stand. Such variables may be BA, N, or site quality described by a 

site index. Single tree models are adapted to account for different growth conditions between 

trees of different sizes in the same stand. However, because the models are single-tree based, 

they also require input data on the same level. This means that the data collection can be more 

laborious and that calculations and predictions can be more complex. The input data in such 

situations may be data comprising every single tree in the forest, but a more realistic data 

source is a diameter distribution related to an area unit under the assumption that the forest 

structure repeats itself on the scale equal to this area unit.  

 In many applications a sufficient resolution of the modeling is classes of size. In 

principle both the strictly area-based approach and the single tree approach are size class 

approaches (Vanclay, 1994), where the area-based has only one class and the single tree 

approach has number of size classes equal to the number of trees. In Norway where a tree of 

50 cm of diameter is considered to be large, a plausible number of size classes will be 

between five and 25 and the size is most often related to diameter. Predictions of future 

growth and yield in the diameter class approach can be based on single tree models. The 

models are then applied to the average tree in each diameter class and the prediction of each 

class is multiplied to the number of trees of each class, assuming a uniform distribution of 
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diameters within each individual class. Furthermore, by utilizing this approach it is also 

implicitly assumed that little information is lost by using size classes instead of tree level 

data. Thus, the stand states as described by diameter distributions is assumed to be 

sufficiently detailed to exploit the rich source of information in individual tree data to predict 

stand growth. 

Species specific diameter distributions are sufficient input data for modeling using 

either an area-based approach or a diameter class approach. Diameter distributions can be 

obtained from field measurements or remote sensing (Maltamo et al., 2000; Gobakken and 

Næsset, 2004; Gobakken and Næsset, 2005; Maltamo et al., 2005; Bollandsås and Næsset, 

2007), or with models that predict diameter distributions based on stand data (Vestjordet, 

1972; Mønnes, 1982; Holte, 1993). The most prominent remote sensing technique the resent 

years has been airborne laser scanning.  

 

Airborne laser data acquisition  
Airborne laser scanners retrieve 3D information of the vegetation by transmitting geo-

referenced laser pulses. These pulses have certain footprints on the ground. The footprint is 

considered small it the footprint diameter is less that 1 m and large for footprints exceeding 5 

m.  The xyz coordinate of each pulse’s hit on the ground or vegetation is recorded. By 

filtering out the hits considered to be ground hits, a terrain model can be established and 

relative height values for the vegetation hits computed. The accuracy of the height values of 

the terrain model is typically 20 to 30 cm (Kraus and Pfeifer, 1998; Reutebuch et al., 2003; 

Hodgson and Bresnahan, 2004).  

 There are two main types of airborne lasers being used. These are the discrete pulse 

(DP) systems and the continuous waveform (CW) laser systems carried by either a plane or 

heilcopter. The main difference between these two systems is that CW (Harding et al., 1994, 

2001; Blair et al. 1999; Lefsky et al. 1999; Dubayah et al., 2000) registers a complete 

distribution of the energy being returned from where the pulse hit, whereas DP systems 

registers heights of a limited number of return echoes defined by major peaks in the return 

signal (Lefsky et al., 2002). Furthermore, there exist both scanning and profiling lasers. 

Scanners collect data along a “corridor” on the ground because the laser pulses are distributed 

out in a certain width. The width of this corridor is dependent on scan angle and flying 

altitude and is typically from, say, 200 to 1000 meters. Profiling lasers (Nelson et al. 2003, 

2004) collect data from a cross-section of the vegetation having a width equal to the footprint 

of the laser pulse. The profilers have typically been used to cover large areas. 
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Laser scanners have been in operational use for forestry applications since year 2002 

(Næsset et al., 2004; Næsset 2007). The most frequently used sensors in Norway are discrete 

pulse, scanning lasers with a footprint size of about 20 to 30 centimeters which are operated 

with scan angles and flying altitudes that yield from <1 to 5 pulses per square meter (Næsset 

2002, 2004a, c; Bollandsås and Næsset, 2007). The number of pulses per square meter is also 

dependent on the pulse repetition rate which on the newest systems is >150 kHz and the 

speed of the aircraft. From the vegetation heights a number of different variables can be 

computed. These are variables reflecting the height distribution of the vegetation hits. One 

type of variables is heights of different percentiles according to maximum height. 

Furthermore, density variables can be computed by dividing the laser height range in uniform 

fractions and divide the cumulative number of pulses between the lower limit of each fraction 

and the maximum laser height, to the total number of pulses (Næsset 2004c).  

Laser pulses transmitted from an airborne platform have a variable rate of penetration 

through the canopy depending on the canopy structure. In boreal forests, the penetration rate 

can typically be around 40 % (e.g. Næsset, 2004b). Modeling of structural characteristics 

uneven-aged forest stands (Maltamo et al., 2005) and diameter distributions for uneven-aged 

forest structures (Bollandsås and Næsset, 2007 (Paper I)) have therefore been successfully 

carried out in the past. Moreover, laser data (DP and CW) has also been utilized to efficiently 

derive stand-based estimates of biophysical properties like tree heights, mean diameter, stem 

number, basal area, and timber volume (e.g. Maclean and Krabill, 1986; Magnussen and 

Boudewyn, 1998; Nilsson, 1996; Næsset, 1997a, b, 2002, 2004c; Means et al, 2000), leaf area 

index (Lefsky et al., 1999, Riaño et al., 2004; Solberg et al., 2006) and even forest growth 

(St-Onge and Vepakomma, 2004; Yu et al., 2004; Næsset and Gobakken, 2005). Laser data 

has also potential with regard to retrieving structural information of sub-canopy layers (e.g. 

saplings), either by utilizing variables computed from the laser pulses returned from these 

layers, or by exploiting relationships between the canopy and the structure of the sub-canopy 

layers (Bollandsås et al., in press (Paper II)). In the current thesis, laser data is used to model 

both diameter distributions and to explore how laser data can be utilized to model the quantity 

and vitality of saplings in an uneven-aged spruce forest.  

 

Volume computation 
Computations of timber volumes by diameter classes can be carried out by calculating 

volumes of the average sized trees in class by means of single tree volume equations, 
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multiplied by the number of trees in each class. Total volume is found by summing over 

diameter classes. Tree height is a requirement for using the Norwegian single tree volume 

equations (Braastad, 1966; Brantseg, 1967; Vestjordet, 1967). Tree heights can either be 

retrieved by field measurements, utilizing models, or by a combination where heights are 

measured on a sub-sample of trees that enables development of local height-diameter 

relationships. Heights can also be predicted by height-diameter models fitted for larger 

regions so that height measurements can be omitted and hence reduce inventory costs. 

 

Matrix modeling 

An efficient way to develop a diameter class management model applicable to an uneven-

aged forest structure is to express it as a matrix model that project future outcomes by means 

of transition probabilities. The transition probabilities are related to specific diameter classes, 

and are probabilities of a tree in a specific class either stays in the same class within the 

projection period, moves to the next diameter class or dies. These are the only possible 

outcomes, so these probabilities add up to one. The harvest is exogenously determined. This 

is an efficient framework because the model operates on a limited number of size classes and 

because the projections are performed by means of matrix calculations.  

Forest matrix models have been developed by several authors (e.g. Usher, 1966; 

Bosch, 1971; Buongiorno and Michie, 1980; Lu and Buongiorno, 1993; Liang et al., 2005). 

Such models express the stand state as a vector of the number of trees per unit area in 

predefined species and diameter classes. The model can be expressed by the following 

general model form: 

 

( ) RhyGy tt +−=+pt          (1) 

 

where yt = [yijt] is the vector state, in which each entry is the number of live trees per unit area 

of species group (i =1,…,m) and diameter class ( j =1,…,n) at time t, G is a transition 

probability matrix, ht = [hijt], is the harvest vector in which each entry is the number of trees 

cut per unit area, and p is the projection interval. R is the recruitment vector in which each 

entry is the number of recruits per unit area by species and diameter class. The transition 

probability matrix G can have one sub-matrix for each species group with the following 

structure:   
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where aij (i = 1, …,m, j = 1, …, n) is the probability that a tree of species i will remain in 

diameter class j between t and t + p, bij is the probability that a tree in diameter class j grows 

into diameter class j+1 during the time interval p.  

Similarly, the recruitment vector can consist of one sub-vector for each species group, 

indicating the number of recruits of a specific species i that enter the smallest diameter class 

from t to t + p: 
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where di is the number of trees of species i that enter the smallest diameter class between t 

and t + p. 

The transition probability bij can be calculated as the ratio of the rate of diameter 

growth to the width of a diameter class. It can also be modeled directly, but this limits the 

matrix model to only operate with a certain width of the diameter classes. The probability that 

a tree stays in a diameter class, aij, is calculated as ait= 1 – bij– mij, where mij is the probability 

that a tree of species group i and diameter class j dies during the interval t to t+p. Like the 

transition probability, the mortality rate is a function of the diameter class of the tree. 

The recruitment rate, di can be obtained by means of a single tree recruit model. 

Recruitment models are models that predict the number of individual trees that exceed a 

certain threshold-size during a specific period. The recruitment can be modeled in two 

different ways, either by one single equation (e.g. Moser, 1972; Adams and Ek, 1974; 

Vanclay, 1989) or by a two-stage approach (e.g. Vanclay, 1992; Lexerød, 2005). A two-stage 

approach first models the probability for recruitment to occur and then conditionally models 

the number of recruits given the result of the first stage.  
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Objectives 
The current thesis aims at developing management models adapted to an uneven-aged forest 

structure and to test methods for efficient collection of inventory data required by such a 

model framework. The models should be applicable to be implemented in a matrix model for 

uneven-aged forest management. 

 

Data 
Paper I and II are based on data collected in a nature reserve in the southeastern part of 

Norway. No silvicultural intervention has been done on this area for at least 75 years (Økland, 

1994) and was considered to be representative of uneven-aged forest.  

Paper III and IV utilize data from the Norwegian National Forest Inventory (NFI). 

Data between 1994 and 2006 have been used for either estimation of model parameters or for 

validation of models. Please refer to each paper for detailed information of each application. 

 

Major findings 
Paper I. Diameter distributions 
Paper I deals with the modeling of diameter distributions of the kind that are needed as input 

data for the matrix model developed in Paper IV. In this specific application, the diameter 

distribution from a lower threshold of 3 cm was represented by 10 percentiles (Borders et al., 

1987) of the basal area distribution (Kangas & Maltamo, 2000). The diameter distribution was 

obtained by scaling the percentiles with an estimate of stand basal area. Modeling of these 

percentiles was based on airborne laser scanner data and it successfully reproduced diameter 

distributions of the same type as the model calibration data (independent validation on 

uneven-aged forest data). However, the model was not flexible enough to also reproduce 

normal and uniform diameter distributions. Volume estimates derived from predicted 

diameter distributions were generally well determined irrespective of the observed 

distribution in the independent validation. The conclusions of the study were that the model 

could be used for retrieval of diameter distributions form uneven-aged forest, but since the 

models was sensitive to the distribution type a stratification with respect to forest structure is 

needed. This stratification can either be done from existing data or from the laser data itself by 

means of a classification rule or a model that predict objective measures of stand structure. 
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Paper II. Regeneration 
Paper I limits the diameter distribution in the lower end to 3 cm. However, in Paper II we 

explored the possibilities of predicting the number and vitality of even smaller trees. Paper II 

deals with saplings that were between 0.1 and 3 meters of height in the same area as the 

diameter distribution trial was conducted. The modeling was based on variables derived from 

airborne laser scanner data. The study aimed at identifying categories of candidate variables 

for future regeneration prediction models for operational forest management. The conclusions 

of the study were that the relationship between the laser-depicted canopy and the quantity of 

small saplings as described by a regeneration success rate (RSR) was so strong that this kind 

of data can be utilized to develop predictive models. The laser variables that gave best fit a 

model of the RSR were computed from data originating from the last return echoes. The fit 

was also improved by using laser data on larger geographical scales than the field plots where 

the ground truth data was collected. Furthermore, variables affected by variation of the lower 

fractions of the canopy were better than those only affected by variation in the upper parts. 

The results also indicated that the density variables were superior to the height variables. 

 The correlations between laser variables and the variation of sapling vitality as 

described by apical dominance ratio, leader length, and leader length relative to sapling 

height, were not as strong as for the RSR. The conclusion was that the correlations would 

have been stronger if our data set included more variation of forest structure. 

Models that can predict the regeneration success may be useful in uneven-aged 

forestry because information of the whole distribution of size will increase the precision of 

forecasts due to a better description of the initial stand state. However, for this to be true, 

models applicable to forecast these small trees have to be used. Furthermore, information of 

the small sized trees can also be useful when planning harvest operations in uneven-aged 

stands. Harvest can by using this information be allocated to stands where the regeneration 

success rate estimate is high. 

 

Paper III. Height-diameter models 
To be able to compute volume by means of the volume equations available in Norway 

(Braastad, 1966; Brantseg, 1967; Vestjordet, 1967), diameter (Paper I) and tree heights are 

needed as input. Paper III developed non-linear diameter-height models. These are models 

that predict the heights of single trees by utilizing diameter in breast height together with 

stand variables as explanatory variables. The stand variables were included to reflect that the 

height-diameter relationship of a tree is affected with multiple factors. Among others, these 
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factors are site index (Vanclay, 1994), local climate (Mäkinen, 1998), competition (Loetsch et 

al., 1973), and stand density (Fulton, 1999; Sharma and Zhang 2004).  

Two set of models were developed. Model set 1 included stand density and Model set 

2 did not. The two sets of models were developed because stand density is easily changed by 

silvicultural operations. Thus, height estimates of residual trees will be different just before a 

thinning compared with immediately after the thinning. The model set that included stand 

density (Model set 1) is therefore most applicable in forest management regimes where stand 

density is kept relatively constant. Diameter, stand density, site productivity, altitude, and 

latitude (Model set 1) explained 66 % to 82 % of the variation in tree height for the different 

tree species included in the study. No serious bias was detected. The random errors assessed 

by independent tests were 17.1 %, 19.0 %, 19.7 %, and 23.2 % of the observed mean tree 

height for Norway spruce, Scots pine, birch, and other broadleaves, respectively. The 

corresponding range of model fit for Model set 2 were 63 % to 79 % and the random errors 

were 18.1 %, 20.0 %, 20.3%, and 23.8 %.  

 

Paper IV. Matrix model 
Paper IV can be regarded as the main paper of this thesis. This paper presents that matrix 

model as described in the introduction. The paper presents different sub-models of 

recruitment, diameter growth, and mortality. These sub-models determined the transition 

probabilities of the matrix model. The probabilities of the matrix-model were dependent on 

the stand state and accounted for differences in competitive status of each diameter class. The 

model was tested by comparing actual stand growth and model predictions on 416 randomly 

selected, independent, plots. The matrix model was applied to the plot data at the time of the 

first measurement, and two 5-year iterations of the model were performed. Then, the 

predicted number of trees and basal area by species and diameter class after 10 years was 

compared to the observed. The results showed that the model were able to produce unbiased 

estimates of the number of stems of all diameter classes for all species with only one 

exception. Furthermore, a long term test was also performed. The long term model validation 

consisted in simulating stand growth without harvest for 1,000 years. The hypothesis was that 

the predicted stand would reach a steady state corresponding to the ecological climax 

(Buongiorno et al. 1995). Furthermore, without climate change or other major disturbance 

that give basis for another level of the steady state, the predicted steady state should be 

independent of the initial stand state (Stenberg and Siriwardana, 2006). The results of these 

tests showed that the model produced estimates that reached steady states according to the 
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hypothesis. The steady state was irrespective of the initial state of the stand being projected, 

as expected. The steady state estimates were also logical according to variation in site index, 

producing higher volumes with increasing site index. The species composition was also 

logical producing large spruce volumes on the good sites and more pine on the poor sites. 

 

Discussion and further work 
Paper I showed that the diameter distribution of an uneven-aged spruce forest could be 

retrieved by means of data from airborne laser scanning. The paper only deals with single 

species distributions. Future studies should be focused on discriminating species and 

reproducing species specific distributions. Studies that have focused on tree species 

classification on single tree level previously are presented by, e.g. Brandtberg et al., 2003; 

Holmgren and Persson, 2004; Moffiet et al., 2005; Brandtberg, 2007; Ørka et al., 2007. To 

aid the classification of species with regard to stand variables, different remote sensing 

techniques could be used in combination with laser scanner data, for example aerial 

photography or spectral data. For example, Packalen and Maltamo (2006) predicted species 

specific volumes by combining information form airborne laser scanner data and aerial 

photographs. The same sources of information were used by Packalen and Maltamo (2007) to 

predict species specific volume, stem number, basal area, basal area median diameter, and 

tree height.  

Several authors have observed that utilization of the cumulative basal area 

distributions (Paper I included) scaled by basal area to compute the diameter density 

distribution, yield a decreasing distribution. Kangas et al. (2007) approached this problem by 

including new percentiles in the lower end of the distribution, and the behaviour was 

improved. However, as the percentiles at the lower end get closer, the danger of predicting 

non-monotonistic diameters increases. They also tried to loosen the strict relationship between 

number of stems and the basal area of a certain diameter class by estimating a parameter for 

each diameter class to derive the number of stems from basal area. If such a parameter 

diverges from the theoretical value, the assumption of linear interpolation between percentiles 

to derive the number of stems does not hold.  

Paper II indicates that laser data potentially may be a good source of information 

about small saplings. This paper deals with saplings that are smaller than the 3 centimeter 

diameter threshold used in Paper I. Future work should focus on developing methods for 

implementing this information in ordinary inventories of uneven-aged forests. The best way 
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of acquiring information about the quantity of saplings is to establish local relationships 

between the number of saplings and laser data by means of field plots and corresponding laser 

data. However, if some stratification is made on the basis of forest type, utilization of models 

valid for larger regions could be possible. The NFI of Norway has the last three years 

collected data on trees taller than 0.1 m. This data source could be used for developing 

models for regeneration success if laser data is recorded for these plots. Laser data and precise 

coordinates of the NFI plots already exist for the county of Hedmark, so development of 

regeneration success models for this region is already possible.  

The individual models developed in Paper III and IV utilize the NFI data of Norway, 

both at stand and individual tree level. The data encompasses a wide range of growth 

conditions. However, the data originate from a relatively short period of time and the models 

are dependent on the growth conditions during this specific period. The cross-sectional 

variability, however, compensates to some extent for the short time interval between 

observations, allowing the accurate estimation of parameters without the need of long-term 

experiments that are necessarily costly and limited in scope. Furthermore, if the data from the 

period used for model estimation suffers from a systematic climatic offset, the models need to 

be updated as new data is collected.      

In applications of the matrix model, accurate predictions are not to be expected for 

each and every stand. However, on average for a large number of stands the results indicate 

that predictions will be unbiased. This is general also for each sub-model which is developed 

from NFI data collected over a large geographical region. However, given similar conditions, 

the recruitment, mortality, and growth can vary considerably from stand to stand and tree to 

tree. Little can be done to reduce this uncertainty, although it can be taken into account in 

decision making (Lin and Buongiorno, 1998). 

In Paper IV, the model was applied only to simulate natural stand growth without 

human disturbance, to check its validity as a predictor of expected stand growth. The same 

deterministic model form, or a stochastic extension (e.g. Liang et al. 2006), should also prove 

useful to predict the economic and ecological effects of continuous-cover/uneven-aged forest 

management, by simulation, or optimization.    

The studies conducted within this thesis have shown that unbiased estimates of forest 

development of uneven-aged stands can be produced using a matrix models operating on 

diameter classes. Furthermore, it was also shown that sufficient input data for these models 

could be retrieved from airborne laser scanning. Moreover, from airborne laser scanner data, 

estimates of the quantity and vitality of small saplings that can aid traditional recruitment 
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models was retrieved. Thus, the representation of uneven-aged forest structures by number of 

stems in diameter classes, seem to work well for the tests performed in the current thesis and 

inventory methods based on airborne laser scanning are considered efficient. Furthermore, for 

forestry-applications the laser technology is still “young”, and there exist a large potential for 

refinement of the existing range of applications as well as for extended utilization of laser 

data.  
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ORIGINAL ARTICLE

Estimating percentile-based diameter distributions in uneven-sized
Norway spruce stands using airborne laser scanner data

OLE MARTIN BOLLANDSÅS & ERIK NÆSSET

Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway

Abstract
A model for prediction of stand basal area and diameters at 10 percentiles of a basal area distribution was estimated from
small-footprint laser scanner data from primeval conifer forest using partial least squares regression. The regression
explained 44�80% and 67% of the variability of the 10 percentiles and stand basal area, respectively. The predicted
percentiles, scaled by the predicted stand basal area, were used to compute diameter distributions. A cross-validation
showed that the mean differences between the predicted and observed number of stems by diameter class were non-
significant (p �/0.05) for 22 of 29 diameter classes. Moreover, plot volume was calculated from the predicted diameter
distribution and cross-validation revealed a non-significant deviation between predicted and observed volume of �/3.3% (of
observed volume). An independent validation showed non-significant mean differences for 20 of 21 diameter classes for data
corresponding to the model calibration data. Plot volumes calculated from the predicted diameter distributions deviated
from observed volume by �/4.4%. The model reproduced diameter distributions corresponding to the model calibration
data (uneven-sized forest) well. However, the model is not flexible enough to reproduce normal and uniform diameter
distributions. Volume estimates derived from predicted diameter distributions were generally well determined, irrespective
of the observed distribution.

Keywords: Canopy height, diameter distribution, laser scanning, PLSR, uneven-sized forest.

Introduction

Diameter distributions are seldom registered in

conventional stand-based forest inventories. Still,

the diameter distribution holds significant informa-

tion about the stand properties and provides input in

growth projections and other computations. The

diameter distribution is particularly interesting in

uneven-sized forest. Traditional stand variables

characterizing mean properties of the stand (i.e.

mean height, mean diameter and basal area) give a

good description of even-sized forests, but in un-

even-sized forest some additional information is

needed describing the variability in size. Further-

more, optimal timing of harvests and silviculture

depend strongly on the diameter distribution. Thus,

an observed or predicted diameter distribution is

necessary to optimize management strategies. More-

over, uneven-sized stands and forests contribute

positively to the preservation of biodiversity (Brokaw

& Lent, 1999). On a small spatial scale, the

distribution of biomass between different tree sizes

may be a key variable (Uuttera & Maltamo, 1995).

The diameter distributions may therefore serve as a

valuable assessment of the value of a forest stand or

area in relation to biodiversity.

Different distribution functions have been pro-

posed to model empirical diameter distributions,

where the Weibull is the most frequently used (e.g.

Bailey & Dell, 1973; Kangas & Maltamo, 2000b).

Regardless of the utilized model is used, the dis-

tribution parameters must be predicted from some

stand characteristics. Methods that use diameters at

percentiles of number of stems or basal area to

describe diameter distributions have also been pro-

posed, henceforth referred to as the percentile

method. Borders et al. (1987) characterized an

empirical distribution function with 12 percentiles,

according to number of stems. The diameter dis-

tributions were obtained by linear interpolation
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between predicted diameters. A test on 1009 em-

pirical diameter distributions showed that 96% of

them were reproduced correctly according to the

Kolmogorov-Smirnov two-sample test. They con-

cluded that this was a flexible method to model

diameter distributions compared with relying on

predefined distribution functions. Others (e.g. Kan-

gas & Maltamo, 2000a) have predicted diameters at

percentiles of basal area. Kangas and Maltamo’s

models performed quite well, and the accuracy was

much improved by including number of stems per

hectare as an explanatory variable. Also multimodal

distributions can be reproduced applying the per-

centile method (Borders et al., 1987). In general,

predefined distribution functions do not have this

flexibility (Maltamo et al., 2000). Borders et al.

(1987) compared their results (96% correctly repro-

duced distributions) with Bailey (1974), which

reproduced 65% of the observed distributions cor-

rectly according to the Kolmogorov�Smirnov two-

sample test using the parameter recovery method for

the two-parameter Weibull distribution. Kangas and

Maltamo (2000b) compared the percentile method

with the parameter prediction of the Weibull dis-

tribution on four different data sets and found that

the percentile method using number of stems as an

explanatory variable was superior to the other tested

models. Based on these findings, the percentile

method may be most applicable when applied to

data originating from multicanopy layered forest.

Field-based inventories of entire forest stands are

expensive. However, data from airborne laser scan-

ning have in recent years shown to be efficient in

deriving stand-based estimates of tree heights, mean

diameter, stem number, basal area and timber

volume. Some field data are required to calibrate a

model, but the magnitude is much less than for

traditional inventories. Laser scanning depicts the

canopy surface by measuring, say, from one to 10

vegetation heights per square metre (laser pulse

density). This yields a three-dimensional representa-

tion of the canopy that can be used to model stand

characteristics, exploiting the relationship between

the biophysical properties of a stand and canopy

structure. Næsset (2002, 2004b) concluded that all

the stand parameters mentioned above can be

estimated with higher precision by means of laser

scanner data than by conventional field-based meth-

ods. However, Næsset (2004b) found that a high

proportion of deciduous tree species mixed with

conifer species degraded the accuracy, partly be-

cause the crown shapes of deciduous trees are

different from and more variable than for conifers.

In the current trial, however, where the dominating

tree species have regular conical crown shapes, it is

likely that there exists a strong relationship between

diameter distribution and canopy surface depicted

by laser scanning. Maltamo et al. (2004) proposed a

method to estimate height distributions from laser

data, based on single-tree segmentation. However,

regardless of laser pulse density, some trees in the

lower canopy storeys will be shaded by the overstorey

and hence missed. Maltamo et al. (2004) ap-

proached this problem by identifying the visible

trees, estimating their heights using the laser data

and continuing the height distribution from the

smallest segmented height class by a left-truncated

Weibull distribution. Compared with just computing

timber volume from the laser-observable trees,

estimation of an additional height distribution of

small trees improved the accuracy considerably.

Segmentation of single trees requires high pulse

densities, say more than five pulses per square metre.

Alternatively, variables representing an area can be

derived from laser data. Such variables can typically

be percentiles of the laser measured height distribu-

tion over a given area. Gobakken & Næsset (2005)

used this area-based approach and found that

diameter distributions using both a predefined dis-

tribution function and the percentile method could

be estimated from metrics derived by laser scanning

in a managed even-aged forest. Gobakken & Næsset

(2005) used laser data with a density of approxi-

mately one pulse per square metre. The aims of this

study were to test the accuracy of the percentile

method for estimation of diameter distribution using

area-based metrics derived from laser scanner data

for uneven-sized conifer stands. The estimated

models were based on diameters at 10 percentiles

of the basal area distribution. The accuracy assess-

ment was carried out by cross-validation and pre-

diction on an independent test data set.

Materials and methods

Model calibration data: inventory A

The model calibration data originate from 20

circular sample plots of 0.1 ha in a boreal nature

reserve in south-eastern Norway (59850? N, 11802? E,

190�370 m a.s.l., 1400 ha). Large within-stand var-

iation of ages and sizes of trees characterize the

forest, and Norway spruce [Picea abies (L.) Karst.]

and Scots pine (Pinus sylvestris L.) are the dominat-

ing tree species.

Sample plots in inventory A were subjectively

selected. They were spruce dominated and had

multicanopy layers. The model calibration data

consequently comprised multimodal and reverse-J

diameter distributions. Furthermore, each plot was

situated on sites with gentle terrain slopes because

precise determination of plot perimeters of 0.1 ha

34 O. M. Bollandsås & E. Næsset
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circular plots on steep slopes is labour intensive.

Gentle slopes were also selected because steep slopes

may degrade the precision of the relationship be-

tween laser data and the field variables (Næsset,

2004b). In the current trial, the terrain slope ranged

between 5% and 35%.

Inventory A was carried out during summer 2003.

On each sample plot, diameter at breast height (dbh)

was callipered for all trees with dbh]/3 cm. Tree

heights were measured on subsampled trees selected

with probability proportional to stem basal area

(relascope factor 2) by means of a Vertex III

hypsometer. The number of sample trees on each

plot ranged from 23 to 42 (not counting plot 1,

where all tree heights were measured). A summary of

the ground reference data is shown in Table I.

Mean diameter (dBA) was defined as the diameter

corresponding to mean stem basal area for trees with

dbh]/3 cm. Mean height (hL) was defined as the

mean height according to basal area. Dominant

height (hdom) was defined as the arithmetic mean

height of the 100 largest trees per hectare according

to diameter (Tveite, 1977). The plot (0.1 ha) hdom is

consequently estimated as the arithmetic mean of

the 10 trees with largest diameter within each plot.

Stem number (N) was defined as number of trees

(dbh]/3 cm) per hectare. Plot basal area (BA) was

computed as basal area per hectare from the stem

breast height diameter measurements. As a measure

of stand structure, the Gini coefficient (Gini, 1912;

Weiner & Solbrig, 1984) was computed for each

plot. The Gini coefficient (GC) is an objective

measure of the size distribution in a stand and is

given by eq. (1):

GC�

XN

j�1

(2j � N � 1)baj

XN

j�1

baj(N � 1)

(1)

where j is the rank of a tree according to diameter,

baj is the basal area of a tree with rank j , and N

denotes the total number of trees. GC is 0 when

there is no variation in tree size and approaches 1 as

the variation in tree size increases. Stem volume of

each tree was estimated using volume models for

individual trees (Braastad, 1966; Brantseg, 1967;

Vestjordet, 1967) with dbh and tree height as input

variables. Total volume (V) was estimated as the

sum of individual tree volumes. Missing heights were

predicted using multiplicative diameter�height mod-

els (Table II) estimated from the subsampled height-

measured trees. Models for spruce were estimated

separately for each plot. Owing to a low number of

deciduous sample trees, only one diameter�height

model for deciduous trees was estimated for all plots.

The heights of pine trees were estimated using the

models developed for spruce, owing to an insuffi-

cient number of sampled pines.

Planimetric coordinates (Euref89) were measured

in the centre of each plot by means of differential

Global Navigation Satellite Systems (dGNSS). A

Topcon Legacy 20-channel dual-frequency receiver,

observing the pseudorange and carrier phase of the

Global Positioning System (GPS) and Global Navi-

gation Satellite System (GLONASS), was used as

rover equipment. The receiver set-up had a 2 s

logging rate, and all satellites below a 158 angle

from the antenna (cut-off angle) were disregarded.

Logging periods ranged between 0.5 and 1.5 h, with

an average antenna height of 4 m.

An identical Topcon Legacy GPS�/GLONASS

receiver was established as a base station within a

distance of B/2.5 km from the sample plots. Næsset

(2001) found that the accuracy of coordinates

measured by means of dGNSS could be expressed

by two times the standard deviation of the corrected

single coordinate observations reported by the ap-

plied Pinnacle version 1.0 software package (Anon.,

1999) used for postprocessing. According to this,

planimetric coordinates of the base station had an

accuracy of 0.4 cm. Records from the base station

were used as reference during postprocessing of the

rover coordinates. To ensure that the base station

received signals from the same satellites as the rover,

the cut-off angle was set to 128. The postprocessing

of all rover records was also undertaken using

Pinnacle software (Anon., 1999). Following the

same accuracy interpretation as for the base station

Table I. Summary of model calibration data (n�/20).

Characteristic Range Mean

dmin (cm) 3.0�4.0 3.2

dmax (cm) 33.3�60.6 47.0

dmax�dmin (cm) 30.3�57.1 43.8

dBA (cm) 14.60�30.32 21.11

hL (m) 15.20�28.90 21.65

hdom (m) 18.27�32.45 25.11

N (ha�1) 630�1780 1033

BA (m2 ha�1) 21.6�45.5 34.2

V (m3 ha�1) 171.9�634.8 360.7

GC (index value) 0.47�0.69 0.58

Tree species distribution (%)

Spruce 71�100 90

Pine 0�2 0

Deciduous 0�28 10

Note: dmin�/minimum diameter; dmax�/maximum diameter;

dBA�/basal area mean diameter; hL�/basal area weighted mean

height; hdom�/dominant height; N�/stem number; BA�/basal

area; V�/volume; GC�/Gini coefficient.
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coordinates, the average accuracy of the plot co-

ordinates was 10 cm.

Validation data: inventory B

Validation data (Table III) were collected during

summer 2003 in the municipality of Nordre Land in

south-eastern Norway (60850? N, 10805? E, 140�
900 m a.s.l.). The data originate from 0.1 ha circular

sample plots, which correspond to the model cali-

bration data, and the plots were systematically

distributed throughout a forest area of 25,000 ha.

In inventory B, all trees (dbh]/4 cm) were callipered

on a plot inner circle defined by a radius of 8.92 m

from the plot centre (250 m2). Between this circum-

ference and the radius defining the 0.1 ha plot, only

trees with dbh]/10 cm were callipered. Conse-

quently, the number of trees 45/dbhB/10 cm for

the entire 0.1 ha plot had to be extrapolated from the

inner circle under the assumption that the trees with

45/dbhB/10 cm were evenly spatially distributed.

Calculations of plot data are in correspondence

with inventory A.

The validation data comprised a wider range of

size distributions. Both normal and uniform distri-

butions were included in the material, as well as

multimodal and reverse-J, because the area partly is

influenced by traditional clear-cuttings. The model

adequacy checking hence also included effects of

forest structure. To separate these effects, the

validation data were stratified (three strata) accord-

ing to their GC value. Lexerød & Eid (2006)

calculated GC for 16 simulated diameter distribu-

tions and found realistic ranges of different diameter

diversity indices for normal, uniform and reverse-J

diameter distribution. Based on these findings,

stratum 1 was limited to GC values up to 0.30

(normal distributions). Stratum 2 included plots

with GC values in the range between 0.31 and

0.46 (approximately uniform distributions). Finally,

stratum 3 included plots in the same GC range as the

model calibration data (GC�/0.47).

Laser scanner data

For inventory A, an ALTM 1233 laser scanning

system produced by Optech, Canada, was used. The

laser scanner data for inventory A were acquired

using a Hughes 500 helicopter on 9 October 2003.

The deciduous trees were still foliferous, but had a

beginning xanthophyll colouring. The average flying

altitude was approximately 600 m above the ground

with an average speed of 35 ms�1. Twenty-one

flightlines were flown, with an overlap between

adjacent stripes of about 20%. The pulse repetition

frequency was 33 kHz and the scan frequency was

50 Hz. Maximum scan angle was 118, which corre-

sponded to an average swath width of about 230 m.

Table II. Plotwise diameter-height modelsa for conifer species and the diameter-height model for deciduous species: degrees of freedom

(df), intercept estimate (b0), parameter estimate of diameter (b1), coefficient of determination (R2) and root mean square error (RMSE).

Regression coefficientsc

Plot no.b df b0 b1 R2 RMSE p (model)

1 105 1.297ns 0.9450*** 0.91 0.30 B/0.0001

2 27 2.311ns 0.7804*** 0.79 0.27 B/0.0001

3 27 2.913* 0.7611*** 0.81 0.32 B/0.0001

4 38 23.28*** 0.4296*** 0.53 0.22 B/0.0001

5 33 5.418*** 0.6623*** 0.74 0.29 B/0.0001

6 20 5.114* 0.6677*** 0.68 0.28 B/0.0001

7 24 12.41*** 0.5084*** 0.60 0.26 B/0.0001

8 19 3.629** 0.7129*** 0.85 0.15 B/0.0001

9 27 7.258*** 0.5928*** 0.82 0.18 B/0.0001

10 22 2.073ns 0.8012*** 0.86 0.18 B/0.0001

11 27 2.129ns 0.8098*** 0.78 0.19 B/0.0001

12 25 3.858** 0.7065*** 0.80 0.15 B/0.0001

13 28 6.300*** 0.6166*** 0.87 0.17 B/0.0001

14 25 5.289*** 0.6376*** 0.84 0.17 B/0.0001

15 32 7.886*** 0.5796*** 0.74 0.18 B/0.0001

16 19 3.066*** 0.7585*** 0.92 0.20 B/0.0001

17 28 1.334ns 0.9153*** 0.91 0.22 B/0.0001

18 25 2.324** 0.8063*** 0.94 0.18 B/0.0001

19 25 5.371*** 0.6735*** 0.78 0.27 B/0.0001

20 25 1.647ns 0.8679*** 0.90 0.24 B/0.0001

All 73 7.473*** 0.5938*** 0.79 0.35 B/0.0001

Note: a h�b0d
b1
bh ; b models for conifer species are estimated plotwise and denoted by plot number; model for deciduous species is estimated

from all deciduous sample trees and denoted ‘‘All’’; c significance level: ***p B/0.001, **p B/0.01, *p B/0.05, ns�/not significant (p �/0.05).
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Pulses transmitted at scan angles that exceeded

10.58 were excluded from the final data set. The

average footprint diameter for individual plots was

approximately 18 cm. The mean number of pulses

transmitted was 5.0 m�2. First and last returns were

recorded.

The laser scanner data for inventory B were

acquired during summer 2003. The same laser

scanner system as for inventory A was used. The

laser was carried by a Piper PA31-310 aircraft. The

average flying altitude was approximately 800 m

above ground, and the sampling density was about

0.7 pulses m�2. First and last pulse data were

supplied.

The initial processing of the laser data was carried

out by the contractor (Blom Geomatics, Norway).

This processing includes computation of planimetric

coordinates and ellipsoidal height values for all first

and last returns. Furthermore, a matching between

swaths was performed to remove orientation errors.

The last return data were used to model the terrain

surface. In a filtering operation undertaken by the

contractor using the Terrascan software package

(Anon., 2005), local maxima assumed to represent

vegetation hits were discarded. A triangulated irre-

gular network (TIN) was generated from the plani-

metric coordinates and corresponding height values

of the individual terrain ground points retained in

the last pulse data. The ellipsoidal height accuracy

of the TIN model was expected to be around 20�
30 cm (Kraus & Pfeifer, 1998; Reutebuch et al.,

2003; Hodgson & Bresnahan, 2004).

All transmitted pulses that were classified as first

or last returns from the vegetation were geographi-

cally registered. The first step in this process was to

spatially register all first and last return observations

(points) to the TIN according to their coordinates.

Secondly, terrain surface height values were com-

puted for each point by bilinear interpolation from

the TIN. The height above ground of each point was

computed as the difference between the height of the

first or last return and the terrain surface height.

Furthermore, observations with a height value less

than 2 m were excluded from the two first data sets

to eliminate the effect of stones, shrubs, etc., from

the tree canopy data sets (Nilsson, 1996). Thus, the

data retained for analysis were geographically regis-

tered data on canopy heights derived from the first

and last returns. The data were spatially registered

to the field plots. Pulses that hit outside the plots

were excluded from further analysis.

Data preparation

First and last pulse height distributions were created

from the laser height values (�/2 m, see above) of

each 0.1 ha sample plot. From these distributions a

total of 46 variables was derived. Ten percentiles

(0%, 10%, . . . , 90%) characterized both first and

last pulse laser heights. Accordingly, canopy density

was expressed by cumulative proportions of laser

hits, in 10 uniform fractions across the range of the

laser heights (�/2 m), of the total number of pulses.

Moreover, for the first and last pulse laser height

values (�/2 m), means, standard deviations and

coefficients of variation were derived. Further details

are provided by Næsset (2004b).

Table III. Summary of validation data (n�/18).

Characteristica Range Mean

Stratum 1 (n�/3)

dmin (cm) 10.0�10.0 10.0

dmax (cm) 30.0�40.0 33.3

dmax�dmin (cm) 20.0�30.0 23.3

dBA (cm) 18.7�25.7 21.4

hL (m) 16.5�25.7 19.8

hdom (m) 20.4�26.9 22.9

N (ha�1) 590�1060 843

BA (m2 ha�1) 27.3�30.7 29.0

V (m3 ha�1) 217.0�386.6 281.0

GC (index value) 0.27�0.30 0.28

Tree species distribution (%)

Spruce 96�100 99

Pine 0�0 0

Deciduous 0�4 1

Stratum 2 (n�/9)

dmin (cm) 4.0�10.0 5.3

dmax (cm) 30.0�50.0 39.1

dmax�dmin (cm) 26.0�46.0 34.9

dBA (cm) 16.5�24.0 21.2

hL (m) 18.9�24.0 21.6

hdom (m) 21.0�26.9 23.9

N (ha�1) 760�2020 1172

BA (m2 ha�1) 32.4�46.3 39.2

V (m3 ha�1) 303.0�519.4 397.1

GC (index value) 0.36�0.46 0.42

Tree species distribution (%)

Spruce 93�100 99

Pine 0�0 0

Deciduous 0�7 1

Stratum 3 (n�/6)

dmin (cm) 4.0�4.0 4.0

dmax (cm) 28.0�44.0 36.3

dmax�dmin (cm) 24.0�40.0 32.3

dBA (cm) 13.5�22.0 17.8

hL (m) 14.5�24.0 21.4

hdom (m) 15.0�27.2 23.7

N (ha�1) 790�2270 1333

BA (m2 ha�1) 11.3�40.6 32.7

V (m3 ha�1) 72.1�441.9 338.9

GC (index value) 0.51�0.64 0.55

Tree species distribution (%)

Spruce 67�100 89

Pine 0�33 8

Deciduous 0�11 3

Note: a for description, see Table I.
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Empirical diameter distributions of each plot were

derived as the number of callipered trees in pre-

defined 2 cm diameter classes, where the specific

value of each class corresponds to class centre. The

diameter measurements were used to compute stand

BA. Diameters at 10 percentiles of BA defined an

empirical cumulative probability density function of

each plot. A model for the 10 percentiles (d10, d20,

. . . , d100) and BA was estimated with the 46 laser

variables as potential regressors. Numerous applica-

tions (e.g. Nelson et al., 1988, 1997; Næsset, 1997,

2002, 2004b ; Nelson, 1997; Lefsky et al., 1999;

Magnussen et al., 1999; Means et al., 1999, 2000;

Lim et al., 2003) have successfully used such laser

variables for modelling biophysical forest properties.

The present choice of variables was based on these

empirical findings.

Statistical methods

When modelling diameter distributions using the

percentile method, previous authors have most

frequently used seemingly unrelated regression

(SUR) (Zellner, 1962) to estimate model para-

meters (Kangas & Maltamo, 2000a , b ; Maltamo et

al., 2000; Gobakken & Næsset, 2005). Since the 46

laser variables are derived from the same height

distributions, there is a high level of collinearity

among them. Because of the collinearity, only a few

variables can be selected for the final model and

variables that hold significant information may be

excluded. In the current trial partial least squares

regression (PLSR) (Wold et al., 1983; Martens,

2001) was used to estimate the relationships

between the 10 percentiles, basal area and the laser

data. Another study that used PLSR to predict

biophysical properties of forest stands using laser

data was presented by Næsset et al. (2005). This

study compared PLSR, SUR and ordinary least

squares (OLS) for modelling hL, hdom, dBA, N , BA,

and V. PLSR is an alternative to SUR, as it is based

on extracting linear combinations from the expla-

natory variables, compressed into a few orthogonal

principal components or latent variables. These

latent variables represent the main variance struc-

tures among the explanatory variables that max-

imize the correlation to the variance structures of

the response variables. The emphasis of this

method is prediction, rather than understanding

the causal relationships between predictors and

responses. PLSR is related to principal component

regression (PCR). The main difference is that

PCR does not extract latent variables that are

dependent on the variance structure of the depen-

dent variables. Like SUR, the PLSR procedure

also allows for many responses to be modelled

simultaneously. Another important rationale for

using PLSR in the current trial was that the data

at hand contained fewer observations than expla-

natory variables. The resulting negative degrees of

freedom make the fitting of an OLS model im-

possible, or at least makes the variable selection

process difficult.

Model calibration and validation

For all data analyses, the PLS procedure of SAS

(Tobias, 1995) including additional macros (Anon.,

1997) was used. Initially, the best number of latent

variables (Aopt) was estimated by leave-one-out

cross-validation of a preliminary estimation. A com-

mon way of using cross-validation for determining

Aopt, is to select the number of components that

minimizes RMSE. It is, however, indicated that this

approach has a tendency to overfit the model

(Nørgaard et al., 2000). In the present work, Aopt

was found by adding a punishing factor of 3% to the

lowest root mean square error (RMSEmin), as

suggested by Westad (1999). Thus, the lowest

number of components with RMSEB/1.03�/

RMSEmin was selected. Outliers and variables re-

presenting merely statistical noise were detected in

this step. Outlying observations were considered in

terms of their Euclidian distance to the model. The

variable importance for the projection (VIP) criter-

ion was considered when deciding on elimination of

variables. Variables that were of little importance

for explaining the variation in the response values,

i.e. having a VIP value B/0.8 (Wold, 1995), were

excluded from the model. Finally, a re-estimation

without outliers and insignificant variables was

carried out.

When applying the model for prediction, the

cumulative percentage of BA in each diameter class

was found by linear interpolation between percen-

tiles, therefore assuming a uniform distribution

between neighbouring percentiles. The 0% percen-

tile was truncated to 3 cm (lower limit of the smallest

diameter class). To avoid negative frequencies, the

values of following predicted percentiles have to

increase (d0B/d10B/ . . . B/d100). In the current trial,

the range of diameters was sufficiently wide and

evenly distributed so that decreasing values were

avoided. If decreasing values occur, the decreasing

interval can be set to zero by adjusting the larger

percentile to the level of the adjacent lower percen-

tile. Furthermore, the number of trees in each

diameter class was found by scaling the relative basal

area to the predicted stand basal area.

For descriptive inventory purposes, an accurately

predicted stand volume is per se independent of the

predicted diameter distribution. If underpredicted
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diameter classes are compensated by an overpredic-

tion in other diameter classes, the result will still be

adequate. However, if the predicted diameter dis-

tribution is to be used as input in a forecast and the

different diameter classes are to be projected for a

given period, accurate prediction of stem number in

each diameter class becomes important. If the

number of stems is poorly determined, the planning

of harvests and silvicultural treatments will have a

poor basis, as the projection forecasts harvestable

volumes and need for treatments at incorrect points

in time. Thus, the current trial appraised the accu-

racy of the diameter distribution model by focusing

on both the number of stems and the volume.

The derived model was both cross-validated and

validated on an independent data set. Since the

validation data included a wide range of diameter

distribution types, this data set was stratified to

separate the effect of stand structures. Mean differ-

ences between observed and predicted number of

stems per hectare were calculated for each diameter

class. The statistical significance of the mean differ-

ences was assessed by two-tailed t-tests. Other

authors (e.g. Gobakken & Næsset, 2005) have

evaluated their model by means of an error index

(2) proposed by Reynolds et al. (1988). To compare

the present work with Gobakken and Næsset (2005)

the same index was computed. The error index e was

computed as the sum of the absolute deviations of

the predicted minus the observed number of trees in

each diameter class relative to the total number of

observed trees, i.e.

e�

Xk

j�1

jnpj � noj j

N
100 (2)

where npj and noj are the predicted and observed

number of trees, respectively, in diameter class j , j�/

1, 2, . . . , k , and N is the total number of trees

according to the field inventory. As used here, the

error index gives an overall description of the

absolute deviations between the predicted and ob-

served number of trees in all diameter classes.

Finally, the difference between observed volume

per hectare and the predicted volume per hectare

was assessed. Plot volume was derived from the

resulting diameter distribution by using single-tree

volume models to compute the volume of the centre

tree in each diameter class, multiplied by the number

of trees in each diameter class. Tree height in each

diameter class was computed by the same diameter-

height models used to derive the ground-truth

volume. Moreover, the species distribution observed

in the field was used to discriminate between conifer

and deciduous tree volume. The statistical signifi-

cance of the mean differences was assessed by two-

tailed t-tests.

Results

Initially, the percentiles (d10, d20, . . . , d100), were

derived from the empirical distributions of each

plot’s field values, and BA was computed from

individual tree diameters. The percentiles and BA

were then modelled simultaneously from the laser

variables by means of PLSR.

The derived model included three latent variables

(Table IV), derived as linear combinations of 43 of

the 46 potential laser variables. Hence, three laser

variables were excluded from the model on the basis

of the VIP criterion. These variables were the 0%

percentile of the height distribution for the first pulse

data and the proportion of laser hits in the upper-

most fraction of the laser heights, for both the first

and last pulse data. The R2 ranged between 0.44 and

0.80 for the percentiles and was 0.67 for BA. For the

percentiles the RMSE ranged between 2.34 cm (d60)

and 6.01 cm (d100) and was 3.09 m2 ha�1 for BA.

The cross-validation revealed a non-significant

(p �/0.05) difference between the predicted and

observed number of stems for 22 of 29 diameter

classes (Table V). The number of stems of the two

smaller diameter classes was greatly overpredicted,

but for the rest of the diameter classes the differences

were relatively small. The signs of the differences

were positive for all diameter classes up to 30 cm,

and negative for the rest. The mean difference

between observed and predicted volume was

�/3.3% (p �/0.05). The standard deviation of

the differences was 11% of observed volume (see

Table X). The mean value of the error index was

78.1.

Table IV. Estimation results from the partial least squares model-

ling: R2 and root mean square error (RMSE) for the 10 percentiles

of the basal area distribution and basal area (BA).

Dependent variablea R2 RMSE (cm)

d10 0.57 2.39

d20 0.69 2.58

d30 0.62 2.90

d40 0.70 2.82

d50 0.73 2.71

d60 0.80 2.34

d70 0.67 3.20

d80 0.75 3.20

d90 0.75 3.21

d100 0.44 6.01

BA 0.67 3.09

Note: a di�/Xbi ; X�/laser data matrix; bi �/PLS regression

coefficient vector. The model includes three latent variables that

are linear combinations of 43 derived laser variables.
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Independent validation on the full range of the

validation data (Table VI) revealed that the model

performed quite well. However, significant over-

prediction of the number of stems for the smallest

diameter classes was found. Non-significant differ-

ences between the predicted and observed number

of stems were found for 20 of 24 diameter classes.

The mean difference between the predicted and

observed volume for all validation plots was �/8.3%

(p B/0.05) of mean observed volume, with a corre-

sponding standard deviation for the differences of

14.2%. The error index indicates similar absolute

difference between predicted and observed number

of stems as for the cross-validation.

The validation data were stratified according to

the GC value of each plot. Stratum 1 included data

from the plots with GC value B/0.30, indicating

normal distributions. Table VII shows that the

differences between predicted and observed num-

ber of stems were non-significant for 17 of 20

diameter classes. The table also shows that the

number of stems of small diameter classes was

significantly overpredicted. The mean difference

between predicted and observed volume was non-

significant (see Table X). Moreover, validation on

this part of the data set revealed the largest error

index value.

Plots where the GC value were between 0.31 and

0.46 constituted stratum 2. This range of the GC is

assumed to indicate uniform distributions. Table

VIII shows that 20 of 24 diameter classes had non-

significant differences between predicted and ob-

served number of stems. Similar to the results in

Tables V�VII, small diameter classes were over-

predicted with respect to number of stems. The

mean of the volume differences (see Table X)

indicates a significant underprediction of volume.

Finally, stratum 3 contained plots where the GC

values were in the same range as the model calibra-

tion data (GC�/0.47). Table IX shows that the

difference between predicted and observed number

of stems was significant for only one diameter class.

Contrary to the validation on the other strata, there

seems to be no significant overprediction for the

small diameter classes. The mean difference between

predicted and observed volume was non-significant

(Table X). The error index for this subset was lower

than for all other subsets.

Table V. Differences between predicted and observed mean number of trees for 2 cm diameter classes based on cross-validation.

Diameter

class

Observed mean

no. of trees

Mean

differencea

Min.

difference

Max.

difference SD

4 131.5 289.5*** 127.1 433.6 82.3

6 102.0 85.1*** �/1.3 159.4 48.4

8 90.5 15.8ns �/127.4 79.7 51.6

10 78.0 0.7ns �/97.9 83.3 41.5

12 68.5 8.9ns �/74.5 89.6 40.7

14 59.5 8.5ns �/71.1 72.1 37.1

16 54.5 5.9ns �/65.7 40.0 25.6

18 55.5 1.4ns �/97.0 43.6 29.5

20 49.0 15.9* �/23.8 100.7 29.8

22 37.5 16.0* �/33.0 68.5 26.8

24 42.0 13.7* �/14.6 66.2 22.4

26 42.0 6.4ns �/52.7 46.7 25.5

28 38.5 1.0ns �/90.2 41.3 27.7

30 35.0 1.2ns �/51.0 33.3 22.6

32 32.0 �/2.4ns �/31.5 34.0 15.6

34 31.0 �/8.5* �/31.8 13.2 13.8

36 19.0 �/1.2ns �/28.2 19.5 12.3

38 22.0 �/6.3ns �/44.0 9.8 14.0

40 14.0 �/4.2* �/18.0 13.3 9.0

42 8.0 �/0.8ns �/18.9 11.9 8.8

44 5.5 0.2ns �/11.9 9.2 5.7

46 6.0 �/2.8ns �/22.7 7.2 6.9

48 5.0 �/2.6ns �/20.0 6.3 6.4

50 2.0 �/1.2ns �/18.2 10.0 5.7

52 1.0 �/0.6ns �/10.0 8.4 3.7

54 0.5 �/0.1ns �/10.0 7.1 2.8

56 1.5 �/1.2ns �/10.0 0.0 3.1

58 0.5 �/0.5ns �/10.0 0.0 2.2

60 0.5 �/0.5ns �/10.0 0.0 2.2

Note: a significance level: ***p B/0.001, *p B/0.05, ns�/not significant (p �/0.05).
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Discussion

The current trial predicted diameters at 10 percen-

tiles of BA, scaled to the predicted BA to estimate

diameter distributions. Results from the cross-vali-

dation (Table V) showed that the predicted number

of stems was insignificantly different from the

observed for most diameter classes, but that the

number of small trees was poorly predicted. This can

Table VI. Differences between predicted and observed mean number of trees for 2 cm diameter classes based on full range of validation

data (n�/18).

Diameter

class

Observed mean

no. of trees

Mean

differencea

Min.

difference

Max.

difference SD

5 133.3 154.5*** �/247.0 309.8 155.7

7 88.9 62.6* �/173.2 158.1 91.7

9 62.2 30.5ns �/136.5 155.9 71.8

11 97.8 �/8.6ns �/107.1 100.1 54.3

13 76.1 �/8.4ns �/124.0 47.3 41.2

15 82.8 2.4ns �/129.3 172.9 61.9

17 95.0 �/18.2ns �/132.5 131.5 62.1

19 80.0 �/7.9ns �/115.6 99.2 54.7

21 87.2 �/34.1ns �/164.0 48.4 48.6

23 82.8 �/16.9ns �/142.0 94.7 51.7

25 68.9 �/5.4ns �/66.3 87.1 42.8

27 55.0 6.0ns �/63.1 112.1 47.0

29 55.0 �/15.9* �/65.5 70.4 30.9

31 37.8 �/10.2ns �/78.5 28.5 23.7

33 26.7 �/6.5ns �/84.1 23.0 29.4

35 15.0 1.0ns �/50.0 39.8 20.4

37 7.2 4.2ns �/40.0 23.7 15.8

39 10.0 �/1.1ns �/21.4 14.6 11.1

41 6.1 0.4ns �/16.2 10.8 7.7

43 1.7 3.6** �/1.4 11.0 4.7

45 1.1 1.9* �/2.6 8.7 3.2

47 0.0 0.2ns 0.0 4.0 0.9

49 0.0 0.0ns 0.0 0.0 0.0

51 0.6 �/0.6ns �/10.0 0.0 2.4

Note: a significance level: ***p B/0.001, **p B/0.01, *p B/0.05, ns�/not significant (p �/0.05).

Table VII. Differences between predicted and observed mean number of trees for 2 cm diameter classes based on validation data (stratum

1, n�/3).

Diameter

class

Observed mean

no. of trees

Mean

differencea

Min.

difference

Max.

difference SD

5 0.0 272.4** 246.7 309.8 33.2

7 0.0 139.0** 125.8 158.1 16.9

9 0.0 84.1** 76.1 95.6 10.2

11 66.7 16.4ns 3.4 41.0 21.3

13 56.7 11.9ns �/5.8 36.5 22.0

15 100.0 �/35.0ns �/129.3 24.6 82.6

17 113.3 �/45.5ns �/118.9 22.7 70.9

19 133.3 �/78.8ns �/115.6 �/29.8 44.2

21 103.3 �/41.6ns �/73.4 6.5 42.4

23 73.3 �/21.1ns �/39.6 0.0 19.9

25 50.0 12.7ns 6.8 23.0 9.0

27 56.7 6.4ns �/18.8 25.5 22.8

29 36.7 21.1ns �/27.5 70.4 48.9

31 30.0 �/6.9ns �/19.0 5.0 12.0

33 3.3 13.7ns 10.4 19.6 5.1

35 10.0 3.7ns �/13.2 13.5 14.7

37 3.3 4.3ns �/5.5 12.1 9.0

39 3.3 0.0ns �/10.0 9.9 10.0

41 3.3 �/0.3ns �/10.0 9.0 9.5

43 0.0 1.7ns 0.0 5.1 2.9

Note: a significance level: **p B/0.01, ns�/not significant (p �/0.05).
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be explained by the use of basal area distributions.

Since the cumulative basal area increases at a slow

rate for the small diameters, the interval between the

smallest diameter and the 10th percentile will tend to

be wide. Interpolation between these points of the

basal area distribution will consequently yield less

Table VIII. Differences between predicted and observed mean number of trees for 2 cm diameter classes based on validation data (stratum

2, n�/9).

Diameter

class

Observed mean

no. of trees

Mean

differencea

Min.

difference

Max.

difference SD

5 66.7 231.8*** 135.3 305.2 54.6

7 62.2 90.0*** 16.1 155.7 49.8

9 62.2 29.9ns �/136.5 94.2 71.9

11 118.9 �/13.7ns �/82.7 92.7 50.5

13 80.0 �/7.1ns �/50.5 47.3 31.0

15 86.7 9.9ns �/42.7 172.9 63.6

17 102.2 �/11.5ns �/132.5 131.5 74.7

19 77.8 3.4ns �/51.0 49.1 33.2

21 98.9 �/45.2* �/164.0 21.7 57.1

23 92.2 �/28.4ns �/142.0 94.7 66.0

25 84.4 �/19.9ns �/66.3 87.1 45.2

27 57.8 �/6.8ns �/63.1 88.6 44.7

29 53.3 �/16.9ns �/65.5 5.1 22.1

31 48.9 �/18.5ns �/78.5 5.9 26.7

33 32.2 �/11.5ns �/84.1 23.0 34.7

35 15.6 2.9ns �/30.0 39.8 20.9

37 8.9 4.4ns �/20.0 22.0 12.1

39 12.2 �/0.9ns �/21.4 11.3 11.4

41 5.6 2.4ns �/10.0 10.8 6.8

43 3.3 3.2ns �/1.4 9.8 4.8

45 1.1 2.7* �/0.6 7.8 3.1

47 0.0 0.4ns 0.0 4.0 1.3

49 0.0 0.0ns 0.0 0.0 0.0

51 1.1 �/1.1ns �/10.0 0.0 3.3

Note: a significance level: ***p B/0.001, *p B/0.05, ns�/not significant (p �/0.05).

Table IX. Differences between predicted and observed mean number of trees for 2 cm diameter classes based on validation data (stratum 3,

n�/6).

Diameter

class

Observed mean

no. of trees

Mean

differencea

Min.

difference

Max.

difference SD

5 300.0 �/20.2ns �/247.0 173.4 146.7

7 173.3 �/16.6ns �/173.2 145.6 110.0

9 93.3 4.7ns �/91.1 155.9 81.8

11 81.7 �/13.4ns �/107.1 100.1 72.9

13 80.0 �/20.6ns �/124.0 25.3 60.0

15 68.3 9.8ns �/58.1 65.6 53.2

17 75.0 �/14.7ns �/74.9 50.6 40.3

19 56.7 10.5ns �/92.6 99.2 62.9

21 61.7 �/13.6ns �/43.0 48.4 36.6

23 73.3 2.3ns �/31.2 64.7 35.5

25 55.0 7.3ns �/44.8 70.1 46.5

27 50.0 25.1ns �/47.5 112.1 58.1

29 66.7 �/32.7** �/49.2 �/2.4 18.8

31 25.0 0.5ns �/26.1 28.5 20.8

33 30.0 �/9.2ns �/59.2 19.7 26.4

35 16.7 �/3.3ns �/50.0 20.8 24.3

37 6.7 4.0ns �/40.0 23.7 24.0

39 10.0 �/1.8ns �/20.0 14.6 13.0

41 8.3 �/2.3ns �/16.2 10.0 8.8

43 0.0 5.0ns 0.0 11.0 5.5

45 1.7 1.5ns �/2.6 8.7 3.9

Note: a significance level: **p B/0.01, ns�/not significant (p �/0.05).
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accurate estimates for number of stems compared

with the larger diameters where the intervals be-

tween percentiles are narrower. Thus, the basal area

distribution is giving more weight to the larger stems.

This can explain the insignificant difference (�/3.3%

of observed volume) between V estimated from the

predicted diameter distribution and observed V

(Table X). Since the number of stems of the

diameter classes that hold the large volumes is

accurately determined, total volume will also tend

to be more accurately estimated than number of

stems. Error index values of the cross-validation

ranged between 41.5 and 126.8, with a mean value

of 78.1. This result is similar to the findings in

Gobakken & Næsset (2005) for even-aged, managed

forest. Maltamo et al. (2004) reported a bias of �/

6.3% of observed volume, while Gobakken &

Næsset (2005) reported a bias of �/0.3%. However,

differences in methodology and forest structure of

the test areas must be taken into account when

comparing these results. Although the forest struc-

tures in the trial area studied by Maltamo et al.

(2004) and the current experiment are similar,

Maltamo et al. (2004) focused on segmentation of

large individual trees and determining the small trees

by fitting either a complete Weibull distribution or a

left-truncated Weibull distribution. Still, the results

presented in the current study imply that using laser

data on a plot level, and statistically computing

variables that represent the stand structure, may

give predictions of comparable accuracy to utiliza-

tion of single-tree segmentation combined with

theoretical probability density functions. In both

approaches it is the small trees that are the main

challenge because they are shaded by the dominant

canopy layer. However, by including laser-derived

variables from the last pulse data, some variation in

the biological matter of the sublayers is likely to be

accounted for (Næsset, 2004a ; Maltamo et al.,

2005). Næsset (2004a) found that the penetration

rate of the last pulse was about 40% in spruce-

dominated mature forest on good sites, whereas the

first pulse penetration in the same forest was only

15%. Furthermore, Maltamo et al. (2005) were able

to classify 24 out of 28 plots correctly with respect to

forest structure classes using the HistMod algorithm

(Lloyd, 1982; Maltamo et al., 2005) in a hetero-

geneous forest.

Results from the validation showed that the

predicted number of stems was fairly accurate for

stratum 3 (Table IX). An example from one of the

sample plots of stratum 3 is displayed in Figure 1.

Because the model was calibrated to reproduce

multimodal distributions with a large proportion

of small trees, this result should not be surprising.

However, the model also predicted distributions of

similar shapes even if the observed diameters in fact

were normally or uniformly distributed. Figure 2

shows the observed and predicted number of stems

of a stratum 1 sample plot. Because of the some-

what rigid shapes of the predicted distributions, the

small trees were overpredicted for strata 1 and 2

(Tables VII and VIII, respectively). Furthermore,

the predicted number of small trees had a somewhat

narrow range. This implies that the variation in the

lower canopy storeys has too little impact on the

laser variables, yielding little variation in the pre-

dicted number of small trees. Moreover, most of the

timber volume is associated with the dominating

canopy layer in boreal forest (Maltamo et al., 2004).

This was reflected by the fairly small differences

between predicted and observed volume (Table X)

and the fact that there seemed to be no trend

between the error index and volume differences.

The only significant volume difference was found

for stratum 2. However, the table should be read

with caution because of the limited number of

observations in each stratum. With the exception

of stratum 1, all volume estimates were slightly

negatively biased, and it can be read from Table X

that the bias increased with increasing observed

volume. This increasing bias was probably due to

the fact that the relative above-ground biomass

distributed among leaves, needles, branches and

Table X. Mean difference /(D) between predicted volume according to the predicted distributions and observed plot volume (V ), and

standard deviation for the differences (SD); from cross-validation (CV) and independent validation (IV).

No. of

observations

Observed

mean V

/

(D)
a

(%)

SD

(%)

Error index

Validation method Range Mean

CV 20 360.7 �/3.3ns 11.0 41.5�126.8 78.1

IVStratum 1 3 281.0 0.6ns 13.4 95.9�131.8 111.3

IVStratum 2 9 397.1 �/12.6* 13.7 49.4�106.2 77.0

IVStratum 3 6 338.9 �/4.4ns 13.1 26.5�97.6 59.7

IVFull range 18 358.3 �/8.3* 14.2 26.5�131.8 77.0

Note: a significance level: *p B/0.05, ns�/not significant (p �/0.05).
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stems will be variable owing to stand vigour

(Solberg, 1999) for forest that reaches a relatively

old age and large timber volumes. Since laser

variables are affected by the penetration rate of

the laser pulses into the canopy, loss of needles and

leaves will yield lower volume estimates based on

laser data if the model is calibrated on more

vigorous forest. In addition, the proportion of large

dead standing trees is likely to vary relative to total

stand volume. Thus, the bias and random errors of

predictions will tend to be larger for this type of

forest because the laser-depicted canopy surface

may vary considerably.

The validation was affected by different flying

altitudes and laser pulse sampling densities between

inventories A and B. These effects were, however,

likely to be small. Næsset (2004a) compared small-

footprint data collected from flying altitudes of 540

and 850 m, and found that both the laser variables

and volume estimates were robust with respect to

alterations in flying altitude. The differences in flying

altitude in the present study were even smaller than

in the trial by Næsset (2004a). Furthermore,

Holmgren (2003) reported only minor differences

in volume estimated from low-density laser data (0.1

pulse m�2) and high-density laser data (4.3 pulses

m�2). However, the results in Holmgren (2003)

were obtained by using a medium-footprint (3.68 m)

laser scanner, and the footprints of the high-density

data were thus overlapping. The effect of higher

density on the precision of the volume estimates will

thus be reduced, and it is likely that the effect will be

more pronounced for small-footprint data with a

footprint diameter of, say, 10�30 cm.

As indicated previously, an accurately predicted

diameter distribution is important when the pre-

dicted distribution is to be the basis of a forecast,

projecting each diameter class for a given period.

Because this trial has demonstrated that the model is

rigid in relation to reproducing diameter distribu-

tions other than multimodal, reverse-J, there is a

need for some a priori information about the forest

structure before the model can be used. In most

cases, such information can be acquired from

current forest management plans. Furthermore, the

method proposed here requires that some field

sample plots are established to be able to calibrate

the model, and the required forest structure infor-

mation can thus be derived directly from the model

calibration data. However, to be independent of
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Figure 1. Predicted diameter distribution (line) and observed diameter distribution (bars) for stratum 3 of the validation data. The value of

each diameter class refers to class centre.
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such data sources, a strategy where the structure

information is extracted directly from laser data can

be developed. This can be done either by developing

a classification rule that discriminates forest of

different distribution types, or by estimating a model

that predicts the GC value, which in turn can be

used as a basis for stratification.

This trial has demonstrated that multimodal

diameter distributions of fixed sample plots can be

reproduced using the proposed method. Future

work should focus on procedures to implement this

method in operational forest inventories where entire

forest stands are the target units.
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Abstract

The relationships between measures of forest structure as derived from airborne laser scanner data and the variation in quantity (Q) and vitality

(V) of young trees in a size-diverse spruce forest were analyzed. A regeneration success rate (Q), leader length (V), relative leader length (V), and

apical dominance ratio (V) were regressed against 27 different laser-derived explanatory variables representing three different spatial scales. The

resulting 81 different models for each response variable were ranked according to their Akaike information criterion score and significance level.

Each laser variable was then associated with four categories. These were scale, return, fraction, and type. Within the scale category, laser variables

were grouped according to the spatial scale from which they originated. Similarly, within the return, fraction, and type categories, the variables

were grouped according to if they originated from first or last return echoes; if they originated from lower, middle, or upper fraction of the range of

laser heights or values derived from the full range of laser pulses, and if they were canopy height or canopy density metrics. The results show that

the laser variables were strongest correlated with the quantity of small trees and that these variables could be attributed to large-scale, last return,

lower fraction, and density metrics. The correlations with the vitality responses were weaker, but the results indicate that variables derived from a

smaller scale than for the quantity were better in order to explain variation in leader length, relative leader length, and apical dominance ratio.

# 2007 Elsevier B.V. All rights reserved.

Keywords: Regeneration; Uneven-aged forest; Laser scanner data; Canopy structure

1. Introduction

Recent years increasing focus on environmental issues

related to commercial utilization of forest resources has

resulted in various certification systems whose goal is to

conserve biodiversity. One of the most focused issues in this

respect has been the negative effects on habitat and species

diversity caused by clearfellings and the establishment of

monocultures. Thus, various incentives and regulations are

introduced to favor uneven-aged, multi-species forests, and the

forest area comprising even-aged structures is consequently

most likely to decrease. Continuous cover forestry (CCF) is a

silvicultural system designed to maintain an uneven-aged forest

structure. The main idea of CCF is to maintain a continuous

canopy cover so that the forest floor is not exposed and so that

the disturbance of natural forest dynamics is kept at a

minimum. Furthermore, CCF produces a wide range of tree

sizes and a structurally diverse forest. This diversity is a result

of harvesting schemes restricted to removal of single trees or

small groups of trees. Whereas the regeneration after a

clearfelling is based on planting, CCF usually relies on natural

regeneration. In a well functioning uneven-aged forest, there is

a continuous process of establishment and ingrowth. Thus, the

future timber stock is already established under the dominating

canopy at the time the cutting is performed.

From a forest planning point of view, heterogeneous forest

structures are more challenging with respect to both the

inventory and the projections of growth and yield. The basic

unit needs to be at single-tree or diameter class level because

mean forest characteristics at stand level do not give a sufficient

description of an uneven-aged forest, nor sufficient input for

projections. Computer simulators based on single-tree models

are now being developed in many countries. In the US, the first

single-tree model was developed as early as 1964 (Newham,
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1964) followed by others (e.g., Mitchell, 1969, 1975) through

the 1960s and 1970s and have been in operational use since the

1980s (Pretzsch et al., 2002). In the recent years there has been

focus on the single-tree approach also in Europe, and single-

tree models and simulators are being developed (e.g., Pretzsch

et al., 2002; Gobakken et al., 2005). Generally, such simulators

rely on both single-tree and site information as input data, and

utilizes single-tree models for growth, mortality (e.g.,

Monserud and Sterba, 1999; Eid and Tuhus, 2001), and

recruitment. Recruitment models are models that predict the

number of individual trees that exceed a certain threshold-size

during a specific period. Furthermore, recruitment can be

modeled in two different ways, either by one single equation

(e.g., Moser, 1972; Adams and Ek, 1974; Vanclay, 1989) or by a

two-stage approach (e.g., Vanclay, 1992; Lexerød, 2005). The

concept of the two-stage approach is to first model the

probability for recruitment to occur and then conditionally

model the number of recruits given the result of the first stage.

All other models implemented in a simulator are fitted for tree

sizes exceeding this threshold and the recruitment models

predict the trees added to the system during each projection

period.

The quantity and vitality of the young growth in uneven-

aged forest types is influenced by several factors. The first

essential requirement for regeneration is a source of seeds.

Second, the establishment of a seedling from a seed is

dependent on the properties of the humus layer, competition

from other plants, nutrient availability, and microclimate

(moisture and light/heat) at the specific site. When establish-

ment has been successful, growth depends largely on the

availability of light and soil resources. Many of the factors

important for both establishment and growth are influenced by

stand structure. For instance, stand structure will affect below

canopy light levels, which not only determine energy input but

also influence temperature, the composition of the bottom and

field layer species, humus layer processes and so on. Thus,

under varying forest structure, the quantity and vitality of the

young growth will be expected to vary accordingly.

Small footprint airborne laser scanning has shown to

produce good data for reproducing forest structures. The laser

depicts the canopy by transmissions of geo-referenced laser

pulses, recording vegetation heights at the hit point of each

pulse. Typical densities of these laser hits on the ground are

between 1 and 5 pulses per square meter. Structural

characteristics have been modeled from discrete laser returns

by several authors (e.g., Maltamo et al., 2004; Parker and Russ,

2004; Tickle et al., 2006). One specific application in this

respect is the retrieval of size (tree height and diameter)

distributions of forest stands. For inventory purposes, these

distributions are particularly interesting for uneven-aged forests

because of the description aspect and that it is necessary as

input in a single-tree simulator. Examples of such applications

are presented by Maltamo et al. (2005) and Bollandsås and

Næsset (2007). In addition to retrieval of size distributions the

laser scanner is also utilized to efficiently derive stand-based

estimates of leaf area index, tree heights, mean diameter, stem

number, basal area, and timber volume (e.g., Næsset, 2002,

2004b; Solberg et al., 2006). Laser pulses can penetrate at least

40% of maximum canopy height (Næsset, 2004a) and account

for much of the variation in canopy structure. However, the

retrieval of small trees (say diameter less than 5 cm in breast

height) under a dominating canopy by means of laser scanning

is still challenging because laser data reflected from deep down

in the vertical canopy structure both can be scarce and noisy.

The data may be scarce because most laser pulses are reflected

from the dominating canopy, and noisy because laser echoes

from the lowest layer also are influenced by shrubs and stones

(Nilsson, 1996). In this study we, therefore, wanted to use data

from the dominating canopy layers in order to explain

variations in the quantity and vitality of seedlings. Even

though there are several factors that influence establishment

and growth that are not, or only partly, affected by the stand

structure, it is likely that there exist some relationship between

the laser-depicted canopy and the variation in young growth.

We believe that utilization of laser data describing canopy

structure to detect young growth could be a valuable

contribution for improving existing recruitment models or

constructing new ones based solely on laser variables.

The objective of the present study was to analyze the

relationship between measures of forest structure as derived

from airborne laser scanner data and variation in the quantity

and vitality of young trees in the height range of 0.1–3 m in a

size-diverse spruce-dominated forest. The focus was on

exploration and identification of laser-derived variables that

have a potential for development of future prediction models

that might be used in operational forest management.

Furthermore, the study investigated potential scale effects on

the relationship between the laser-derived variables and the

quantity of young trees.

2. Materials and methods

2.1. Study area

The data originate from a boreal nature reserve in

southeastern Norway (598500N, 118020E, 190–370 m a.s.l).

The size of the reserve is approximately 1400 ha, and is

comprised mainly by Norway spruce (Picea abies (L.) Karst.)

and Scots pine (Pinus sylvestris L.). Within the reserve, no

clear-cuttings have been executed, but some selective cuttings

have been carried out before 1940 (Økland, 1994). However,

the area in question is considered as primeval forest.

2.2. Field inventory

The data were collected on 72 circular field plots of 25 m2

each. The plots were located in 18 clusters of four plots each.

Stand characteristics are displayed in Table 1. The location of

each cluster was subjectively determined in the field according

to dominant tree species and age distribution. The criteria were

that the plot should be spruce-dominated and have a multi-

layered canopy. A center for each cluster was determined and a

plot of 25 m2 was located 12 m from this center in each cardinal

direction using a tripod-mounted compass and a measuring tape
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to determine the location. Each plot was split into four by two

perpendicular lines through the plot center in a north/south and

east/west direction. In each of these resulting 6.25 m2

quadrants, the number of seedlings between 0.1 and 3 m were

recorded. Apical dominance ratio (ADR), total height (TH),

and absolute and relative leader length (LL and RLL) were

recorded for the tallest seedling in each quadrant. LL was

computed as the average of the leader lengths in the two last

years, RLL as LL relative to TH, while ADR was computed as

LL relative to the length of the longest lateral branch on the first

node. Mean values of ADR, TH, and LL were computed for

each plot to depress micro-scale variation in the occurrence and

vitality of the seedlings. Furthermore, a regeneration success

rate (RSR) was computed. First, the number of seedlings in

each quadrant (ni) less or equal to a sufficient number of each

quadrant (nsuf), was registered. The sufficient number of

seedlings on an area of 6.25 m2 was defined to be three, which

corresponds to 4800 seedlings ha�1. The RSR was then

computed as the sum of the registrations on each quadrant

relative to the sufficient number of the entire plot (4nsuf) as

displayed in Eq. (1).

RSR ¼
�P4

i¼1 ni
4nsuf

�
� 100 (1)

where nsuf = 3, ni � nsuf, i = quadrant.

A summary of the data on plot level is displayed in Table 2.

2.3. Response variables

This study aims at explaining variation in both the quantity

and vitality of seedling establishment in an uneven-aged spruce

forest by means of laser scanner data. The quantity is in the

current study represented by RSR, rather than the actual

number. The reasons for this are that above a certain number,

the establishment is most likely dependent on growth factor

variations on a very small spatial scale, for instance the

occurrence of partly decomposed downed logs or bare mineral

soil, but also that RSR will be more representative of the

number of seedlings needed for the regeneration to be

successful. The vitality of the regeneration is represented by

ADR, RLL, and LL. All these variables are in fact related to the

leader length. The leader length is influenced by both light

conditions and edaphic factors, and its derived variables may

thus be seen as vitality indicators. Total height is strongly

dependent on seedling age and was, therefore, not used as a

vitality indicator.

2.4. Determination of plot coordinates

To ensure that the field data and the laser data were

geographically co-registered, precise field coordinates were

determined in the center of each cluster by means of differential

Global Navigation Satellite Systems (dGNSS). A Topcon

Legacy 20-channel dual-frequency receiver, observing pseu-

dorange and carrier phase of Global Positioning System (GPS)

and Global Navigation Satellite System (GLONASS) was used

as rover equipment. The receiver setup had a 2-s logging rate,

and all satellites below a 158 angle (cutoff angle) from the

antenna were disregarded. The logging period for each cluster

ranged between 0.5 and 1.5 h and the average antenna height

was 4 m.

On the roof of a building within a distance of <2.5 km from

the sample plots, an identical Topcon Legacy GPS + GLO-

NASS receiver was established as base station. Næsset (2001)

found that the accuracy of coordinates measured by means of

dGNSS could be expressed by two times the standard deviation

of the corrected single coordinate observations reported by the

applied Pinnacle version 1.0 software package (Anon, 1999a)

used for post-processing. According to this, planimetric

coordinates of the base station had an accuracy of 0.4 cm.

Records from the base station were used as reference during

post-processing of the rover coordinates. To ensure that the base

station received signals from the same satellites as the rover, the

cutoff angle was set to 128. The post-processing of all rover

records was also undertaken by means of the Pinnacle software

(Anon, 1999a). Following the same accuracy interpretation as

for the base station coordinates, average accuracy of the cluster

coordinates was 10 cm.

The field plot locations were determined relative to the

cluster center by means of a compass attached to a tripod for

angle and measuring tape for distance. However, determination

Table 1

Forest data by clusters

Characteristica n Mean S.T.D. Range

dmin (cm) 18 3.2 0.3 3.0–4.0

dmax (cm) 18 47.0 7.3 33.3–60.6

dmax–dmin (cm) 18 43.8 7.3 30.3–57.1

dg (cm) 18 21.11 3.8 14.60–30.32

hL (m) 18 21.65 3.7 15.20–28.90

hdom (m) 18 26.27 3.3 19.80–32.00

N (ha�1) 18 1033 308 630–1780

G (m2 ha�1) 18 34.2 5.7 21.6–45.5

V (m3 ha�1) 18 360.7 110.4 171.9–634.8

Tree species distribution (%)

Spruce 18 90 71–100

Pine 18 0 0–2

Deciduous 18 10 0–28

a dmin: minimum diameter, dmax: maximum diameter, dg: mean diameter by

basal area, hL: Lorey’s mean height, N: stem number, G: basal area, V: volume.

Table 2

Summary of data on plot level

Variablea nb Mean S.T.D. Range

N 72 2.4 4.0 0–19

RSR (%) 72 14.6 19.4 0–83.3

LL (cm) 37 6.3 2.8 2.5–17.0

ADR 37 0.6 0.3 0.2–1.5

TH (dm) 37 12.4 8.0 1.8–30.0

a N: number of seedlings per plot, RSR: regeneration success rate, LL: mean

leader length of the tallest seedlings by quadrants, ADR: mean apical dom-

inance ratio by quadrants, TH: mean total height of the tallest seedlings by

quadrants.
b For 35 plots there where no saplings to observe.
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of directions relative to grid-north is dependent on the regional

time-specific difference between absolute north and compass

measured north. During the time of data collection, this

regional difference was 0.28 for the study area. To also correct

for local magnetic disturbance, a correction factor (k) was

calculated for the study area based on 14 control measurements

of the compass between 14 dGNSS-determined pairs of points

spread throughout the study area. The correction factor k

(Eq. (2)) was calculated as the mean difference between the 14

point-pairs, weighted by the point-pairs’ inter-distance relative

to the precision of the point-pairs.

k ¼
P14

i¼1 ODiðDi=SDDiÞP14
i¼1 Di=SDDi

(2)

where ODi is the observed difference between the compass-

measured angle and the computed angle on the basis of the

dGNSS measurements for point-pair i, Di is the distance

between point-pair i, and SDDi is the mean standard deviation

of the coordinates of point-pair i as reported by the post-

processing reports. The calculated k was used to correct the

measured angles and the field plot coordinates could then be

calculated relative to the corresponding dGNSS determined

cluster coordinate.

2.5. Laser scanner data

A Hughes 500 helicopter carried the ALTM 1233 laser

scanning system produced by Optech, Canada. The laser

scanner data were acquired in October 2003. The leaves were

then still retained on the deciduous trees, but had a beginning

xanthophyll coloring. The average flying altitude was

approximately 600 m above the ground with an average speed

of 35 ms�1. Twenty-one flight lines were flown with an overlap

between adjacent stripes of about 20%. The pulse repetition

frequency was 33 kHz and the scan frequency was 50 Hz.

Maximum scan angle was 118, which corresponded to an

average swath width of about 230 m. Pulses transmitted at scan

angles that exceeded 10.58were excluded from the final dataset.

The average footprint diameter for individual plots was

approximately 18 cm. The mean number of pulses transmitted

was 5.0 m�2. First and last returns echoes were recorded.

The initial processing of the laser data was accomplished by

the contractor (Blom Geomatics, Norway). This processing

includes computation of planimetric coordinates and ellipsoidal

height values for all first and last returns. Furthermore, a

matching between swaths was performed in order to remove

orientation errors. The last return data were used to model the

terrain surface. In a filtering operation undertaken by the

contractor using the Terrascan software package (Anon, 2004),

local maxima assumed to represent vegetation hits were

discarded. A triangulated irregular network (TIN) was

generated from the planimetric coordinates and corresponding

height values of the individual terrain ground points retained in

the last pulse data. The ellipsoidal height accuracy of the TIN

model was expected to be around 20–30 cm (Kraus and Pfeifer,

1998; Reutebuch et al., 2003; Hodgson and Bresnahan, 2004).

Two different datasets were derived from the first and last

pulse data for further analysis. All first and last return

observations (points) were spatially registered to the TIN

according to their coordinates. Terrain surface height values

were computed for each point by linear interpolation from the

TIN. The relative height of each point was computed as the

difference between the height of the first or last return and the

terrain surface height. Thus, the two datasets retained for

analysis were geographically registered data for all transmitted

pulses that were classified as first and last returns, respectively.

These datasets were spatially registered to three separate

concentric circles around the field plots. The radii of these three

circles were 2.82, 5.64, and 8.46 m, respectively, which

correspond to (1) the area of the field plot itself (25 m2), (2)

100 m2, and (3) the maximum possible area (225 m2) around

each plot center without overlap between adjacent plots within

cluster. Pulses that hit outside the radius of 8.46 m were

excluded from further analysis.

2.6. Computations

First and last pulse height distributions were created for each

circle (r = 2.82, 5.64, 8.46 m) around each sample plot center

from the laser echoes considered to be reflected from the tree

canopy, i.e., echoes with height values of >3 m. The tree

canopy threshold value of 3 m was set to correspond to the

maximum height of trees belonging to the understorey. From

these distributions a total of 27 variables were derived. Three

percentiles of 10, 50, and 90% of maximum height

characterized both first and last return laser heights. Accord-

ingly, measures of canopy density were derived by dividing the

range between the lowest laser canopy height (>3 m) and the

maximum canopy height into four uniform fractions. Cumu-

lative canopy densities, henceforth called density variables,

were then computed as the proportions of first and last pulse

laser hits between the lower limit of each fraction and

maximum laser height to total number of pulses. The canopy

density for the lower fraction is, therefore, computed as the

number of laser hits having a height value larger than 3 m,

proportional to the total number of pulses. Canopy density for

the second fraction is computed as the number of pulses above

the lower limit of the second fraction proportional to total

number of pulses, and so on (Fig. 1). Moreover, maximum and

mean height values, standard deviations and coefficients of

variation, including the standard deviation for the density

variable for the lower fraction between quadrants, were derived.

Slope and aspect (topographic variables) were computed from

the terrain surface height values. Further details are provided by

Næsset (2004b).

2.7. Data analysis

Because the data originate from clustered plots, there exists

spatial dependency between plots within clusters. Thus, data

analysis was carried out by means of the PROC MIXED

procedure of the SAS statistical software package (Anon,

1999b), estimating random coefficient models. Each variable
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extracted from the laser data were regressed against each of the

response variables. Subsequently, each of the models was

ranked by their Akaike information criterion (AIC) (Akaike,

1974) score, separately for each response variable. This yielded

a rank of each laser variable according to the goodness of fit of

the model for each response variable. Similarly, each model

was also ranked according to the significance level of the

explanatory variable. The two different rankings were carried

out to see if the top ranked variables were robust when the

ranking criterion changed. Furthermore, each laser variable was

attributed to four categories. These were scale, return, fraction,

and type. Within the scale category, laser variables were

grouped according to if the variables were extracted from the

25 m2 circles (small), 100 m2 circles (medium), or 225 m2

circles (large). Similarly, within the return, fraction, and type

categories, the variables were grouped according to if they

originated from first or last return echoes; if they originated

from lower, middle, or upper fraction of the range of laser

heights or values derived from the full range of laser pulses, and

if they were height or density metrics. Density variables from

the lowest fraction (from 3 m to max canopy height) and the

10th percentile height variables constitute the lower fraction

category. The middle fraction category includes the density

variables from fraction number two and three, and the 50th

percentile height variables. Finally, the upper fraction category

then comprises the upper fraction density metrics and the 90th

percentile height variables. Means and variation metrics for the

height variables cannot be attributed to any of these fractions

and are thus assigned to a full range category.

3. Results

Tables 3 and 5 display the results from the ranking of the

laser variables with AIC and p-values, respectively. The tables

show the modus group (most frequent group of variables within

Fig. 1. Principle sketch for computation of the canopy density and percentile

height variables. Dots represent laser hits. Ellipsoids (dotted lines) discriminate

fractions. Vertical lines on the left indicate the height of the height variables.

Vertical lines on the right indicate the range of laser hits from which the density

variables are computed. The canopy density for each fraction was computed as

the proportions of first and last pulse laser hits between the lower limit of each

fraction and maximum laser height, to total number of pulses.

Table 3

The most frequent group of variables (modus group) of the best 5, 10, and 15 category (superscript ‘a–d’) assigned, AIC-ranked, laser variables after modeling

regeneration success rate (RSR), apical dominance ratio (ADR), relative leader length (RLL), and leader length (LL)

Response n Scalea Returnb Fractionc Typed

Modus group Freq. (%) Modus group Freq. (%) Modus group Freq. (%) Modus group Freq. (%)

RSR 5 Large 80 Last 80 Lower 80 Density 100

RSR 10 Large 50 Last 70 Middle 60 Density 100

RSR 15 Large 53 Last 60 Lower 40 Density 100

ADR 5 Small 40 Last 80 Middle 60 Density 100

ADR 10 Large 40 Last 50 Lower 50 Density 90

ADR 15 Medium 40 Last 53 Middle 53 Density 93

RLL 5 Small 80 Last 60 Middle 60 Density 100

RLL 10 Small 60 Last 60 Middle 70 Density 100

RLL 15 Small 47 Last 67 Middle 60 Density 100

LL 5 Medium 80 Last 80 Upper 40 Density 100

LL 10 Medium 70 Last 80 Middle 50 Density 100

LL 15 Medium 60 Last 60 Middle 47 Density 100

a Area from which laser variables originate. Small: 25 m2, medium: 100 m2, large: 225 m2.
b First or last laser echo.
c Fraction (upper, middle, lower or full range) of the range of laser heights from which laser variables originate.
d Type of laser variable (height, density, or topographic variable).
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the category) with the corresponding frequency for all variable

categories and responses. The best explanatory variables for

RSR according to these rankings are attributed to large-scale,

last return echo, lower fraction, and density metrics. Of the five

highest AIC-ranked variables 80% is attributed to large-scale,

80% to last return echo, 80% to lower fraction, and 100% to

density metrics for RSR. The modus groups are the same for the

p-value ranking. For the other responses the table shows similar

results except for that small or medium scale variables seem

better for the responses representing vitality, ADR, RLL, and

LL. Furthermore, the results for the vitality responses are not as

unambiguous as for RSR. The frequencies are generally lower

for these three responses.

Tables 4 and 6 show the five highest AIC and p-value ranked

laser variables and their relationship to each response (positive

or negative) and the corresponding significance level and also if

Table 4

The 5 highest ranked laser variables according to AIC value after modeling regeneration success rate (RSR), apical dominance ratio (ADR), relative leader length

(RLL), and leader length (LL)

Response AIC rank Laser variablea Relationship Scaleb Effect of clusterc p-value

RSR 1 STDd02 Positive Large Yes 0.011

RSR 2 d02 Negative Large Yes 0.001

RSR 3 d02 Negative Medium Yes 0.004

RSR 4 CVd02 Positive Large Yes 0.007

RSR 5 STDd01 Positive Large Yes 0.167

ADR 1 STDd02 Negative Small Yes 0.020

ADR 2 d02 Negative Large Yes 0.191

ADR 3 d02 Negative Medium Yes 0.218

ADR 4 d12 Negative Large Yes 0.255

ADR 5 d11 Positive Small Yes 0.302

RLL 1 d32 Positive Small Yes 0.011

RLL 2 d31 Positive Small Yes 0.070

RLL 3 d22 Positive Small Yes 0.064

RLL 4 STDd01 Negative Large No 0.359

RLL 5 STDd02 Negative Small No 0.348

LL 1 d32 Negative Medium Yes 0.685

LL 2 d02 Positive Medium Yes 0.456

LL 3 d31 Negative Medium Yes 0.768

LL 4 d02 Positive Large Yes 0.484

LL 5 d22 Negative Medium Yes 0.743

a Variable name convention: S.T.D.: standard deviation; CV: coefficient of variation; lower case d: density metrics; first number: fraction number across the range of

laser heights (0: lower, 1and 2: middle, 3: upper, 4: full range); last number: first (1) or last (2) laser return echo.
b Area from which laser variables originate. Small = 25 m2, medium = 100 m2, large = 225 m2.
c Indicates if the variable is correlated within clusters.

Table 5

The most frequent group of variables (modus group) of the best 5, 10, and 15 category (superscript ‘a–d’) assigned, significance-ranked, laser variables after modeling

regeneration success rate (RSR), apical dominance ratio (ADR), relative leader length (RLL), and leader length (LL)

Response n Scalea Return b Fractionc Typed

Modus group Freq. (%) Modus group Freq. (%) Modus group Freq. (%) Modus group Freq. (%)

RSR 5 Large 80 Last 80 Lower 60 Density 60

RSR 10 Large 70 Last 70 Upper 60 Height 60

RSR 15 Large 73 Last 67 Upper 40 Height 60

ADR 5 Small 80 First 80 Middle 40 Density 60

ADR 10 Small 50 Last 50 Middle 30 Density 60

ADR 15 Small 40 Last 60 Middle 40 Density 67

RLL 5 Small 100 Last 80 Upper 40 Density 80

RLL 10 Small 90 Last 80 Middle 30 Density 70

RLL 15 Small 87 Last 67 Lower 33 Density 60

LL 5 Medium 60 Last 60 Middle 80 Density 80

LL 10 Small 60 First 60 Middle 60 Density 90

LL 15 Small 47 First 60 Middle 40 Density 80

a Area from which laser variables originate. Small = 25 m2, medium = 100 m2, large = 225 m2.
b First or last laser echo.
c Fraction (upper, middle, lower or full range) of the range of laser heights from which laser variables originate.
d Type of laser variable (height, density, or topographic variable).
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there was correlation within the cluster (effect of cluster). The

most important result displayed in this table is the difference in

significance level of the laser variables between response

variables. All of the five highest ranking laser variables

significantly explain some of the variation of the quantity

response (RSR), whereas ADR and RLL have only one

significant laser variable. No significant laser variable was

found for LL (Table 6).

4. Discussion

4.1. Regeneration success rate

Establishment – measured as regeneration success rate – was

positively correlated with large variation in density between

quadrants, but negatively correlated with average density for

the large and medium circles as a whole. This seems logical, as

a lot of variation in density implies that there are dense spots,

which may be created by tall trees which can be seed sources,

mixed with open areas where a seedling would get enough light

and lower competition for soil resources. In this natural forest,

canopy openings are usually created by treefall gaps, which are

good sites for regeneration (Kuuluvainen and Juntunen, 1998;

Kuuluvainen and Kalmari, 2003). Lower density as an average

for the whole plot also implies lower competition and an

increased proportion of gaps. The best correspondence was

found with density metrics and variation in density for the lower

fraction, which value is affected by canopy variation from 3 m

and up to the top of the canopy. Also some height variables gave

significant p-values (Table 6), and the positive relationship

between seedling number and height of the upper fraction (h31

and h32) suggests that tall trees are beneficial for regeneration.

Tall trees indicate a possibility for high seed production, and

also a mature stand where treefall gaps may occur.

Broadly speaking, the significant variables originated from

the last return data. While the first return data describes the

surface of the canopy, the last returns penetrate deeper into the

canopy and thus account for more vertical canopy variation.

Last return data are, therefore, a better representation of light

conditions on the ground.

Establishment was linked to large-scale rather than

small. Our ‘‘small-scale’’ (r = 2.82 m) seemed to be too small

to give a meaningful description of forest structure in this

context. For germination and early establishment of spruce

seedlings, soil temperature and humidity are the most

important factors (Mork, 1938; Bjor, 1971). Light levels

affect both temperature and the distribution of bottom and field

layer vegetation, which can be important for water availability.

Even though the nearest neighbor trees may have a large

influence on light conditions, light levels below the canopy will

be affected by trees on a larger scale than 2.82 m radius in this

mature forest. In fact, our ‘‘large-scale’’ with a radius of

8.46 m was not really very large, as light levels below the

canopy are affected by trees or gaps up to at least twice the

dominant stand height at northern latitudes (Flemming, 1962;

Golser and Hasenauer, 1997). Our maximum radius was set to

avoid overlap between adjacent plots, but in further studies the

range of radii should be increased.

Table 6

The 5 highest ranked laser variables according to p-value value after modeling regeneration success rate (RSR), apical dominance ratio (ADR), relative leader length

(RLL), and leader length (LL)

Response p-value rank Laser variablea Relationship Scaleb Effect of clusterc p-value

RSR 1 d02 Negative Large Yes 0.001

RSR 2 d02 Negative Medium Yes 0.004

RSR 3 h32 Positive Large Yes 0.004

RSR 4 h31 Positive Large Yes 0.006

RSR 5 CVd02 Positive Large Yes 0.007

ADR 1 STDd02 Negative Small Yes 0.020

ADR 2 d31 Positive Small No 0.045

ADR 3 CVh41 Negative Small Yes 0.082

ADR 4 STDd01 Negative Small Yes 0.124

ADR 5 CVh41 Negative Medium Yes 0.148

RLL 1 d32 Positive Small Yes 0.011

RLL 2 CVh42 Negative Small No 0.034

RLL 3 d22 Positive Small Yes 0.064

RLL 4 d31 Positive Small Yes 0.070

RLL 5 d12 Positive Small Yes 0.082

LL 1 STDd02 Negative Medium No 0.174

LL 2 CVd01 Negative Small No 0.196

LL 3 STDd01 Negative Small Yes 0.237

LL 4 CVh42 Positive Medium Yes 0.306

LL 5 CVd02 Positive Medium No 0.317

a Variable name convention: S.T.D.: standard deviation; CV: coefficient of variation; lower case d: density metrics; lower case h: height metrics; first number:

fraction number across the range of laser heights (0: lower, 1and 2: middle, 3: upper, 4: full range); last number: first (1) or last (2) laser return echo.
b Area from which laser variables originate. Small: 25 m2, medium: 100 m2, large: 225 m2.
c Indicates if the variable is correlated within clusters.
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4.2. Seedling vitality

For seedling growth or vitality, measured as absolute or

relative leader length as well as apical dominance, only a few

laser data variables were significant. However, there were

trends in the material. Growth was best correlated on a small to

medium scale, density variables were higher ranked than height

variables (as with establishment), and last return data were

again better related than first return. After the germination and

early establishment phase, growth is dependent on both light

and soil resources. Competition for resources is affected by

distance from and size of neighboring trees (i.e., Hegyi, 1974;

Elliott and Vose, 1995). Near neighbors have greater effect than

more distant ones. Small and medium scale variables will thus

better account for competition than large-scale variables.

ADR is previously found to be a useful indicator of seedling

vigor for Norway spruce and other shade tolerant species (Ruel

et al., 2000; Duchesneau et al., 2001; Grassi and Giannini,

2005). Large ADR values indicate that seedlings experience

good light conditions. With strong competition for light, the

seedlings turn into an ‘‘umbrella-shape’’ with longer lateral

branches and corresponding low apical dominance. ADR was

negatively correlated to the canopy density variables as

expected, but also negatively correlated to large density

variation between quadrants at the smallest scale. Little is

known about how the light values below the canopy are affected

by such small-scale variation. Thus, it is difficult to have a

strong prior expectation of this relationship.

Absolute leader length (LL) did not display any significant

correlations with the laser variables. As LL is dependent on the

size of the seedling or sapling, the explanation is probably that

LL, like total height, is more dependent on seedling age than on

stand structure as such. Thus, we expected RLL to be a better

vitality indicator than LL. RLLwas positively related to density

in the upper canopy. This result is conflicting with our

expectations, and must be attributed to the fact that our data

contains a fairly narrow-ranged structure variation.

It was surprising that the relationship between forest structure

represented by the laser variables and seedling quantity was

stronger than between structure and seedling growth and vitality.

Many studies have shown that spruce seedling growth is

positively affected by decreased stand density (Nilson and

Lundqvist, 2001; Nilsson et al., 2002; Hanssen et al., 2003)

because this leads to increased light levels and reduced

competition from the overstorey. Establishment, on the other

hand, may be influenced by many stochastic factors, of which

weather conditions are the most important, having a strong

influence on seed production, germination, and seedling

mortality. Also non-stochastic factors like soil conditions,

ground vegetation or micro-topographymay influence establish-

ment, regardless of stand structure. Thus, we had expected to find

better correlations between structure and seedling growth than

with seedling quantity. However, our material concerning

seedling vitality is rather small, as half of the plots did not

have any seedlings or saplings at all. In addition, all plots are

located in spruce forests with a fairly similar structure. For

instance, basal area ranges from 22 to 46 m2 ha�1, while the

dominant height varies from 20 to 32 m, which indicates fully

stocked and relatively mature forests in all plots. Thus, the plots

may not contain enough variation in structure and density to find

any significant effect on seedling growth. We need a larger

material with more varied structure to draw conclusions on the

relationship between structure and vitality.

The study was conducted in a multi-storeyed, natural spruce

forest. In a managed spruce forest, the relationship between

structure and regeneration may not be completely the same.

One obvious difference may be the type and frequency of

treefall gaps, which enhances regeneration by soil disturbance

and woody debris and are important regeneration niches in a

natural spruce forest (Kuuluvainen, 1994). Those elements are

created mostly by the downfall of (over) mature trees and

related to stand structure. In the managed forest trees are

removed at an economic maturity age, and the presence of

treefall gaps and downed logs are lower and not related to stand

structure in a similar way as in natural forests. Thus, a separate

study should be conducted for managed forests.

5. Conclusion

Our study is a screening which aims at identifying laser

variables that explains regeneration success and seedling growth

best, and at which scale the laser data should be retrieved. A full

correlation between laser data variables derived from the canopy

and regeneration will never be found, as factors not affected by

canopy structure also strongly influence regeneration success.

However, the study has shown that already existing data derived

from laser scanning, for instance during a regular forest

inventory, may give us surplus information on regeneration.

Our data show that there is a relationship between canopy

structure and seedling number, possibly strong enough for

prediction of regeneration success in future prediction models.

We may conclude from our results that the best condition for

establishment of regeneration is a stand with a lot of variation in

density, and with an overall sparse canopy. The laser data

variables associated with the large-scale, last return, and lower

fraction density data were the most significant ones. The

correlations between regeneration growth/vitality and laser data

variables were weaker than for seedling quantity, but on a modus

group level the last return density variables on a small tomedium

scale were best correlated to seedling vitality. To draw

conclusions here, we need a larger dataset from more varied

forest than what we have been assessing.
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Abstract 

Non-linear models for predicting tree height for most tree species in Norway were 

developed from national forest inventory data. Diameter, stand density, site productivity, 

altitude, and latitude explained 66% to 82% of the variation in tree height for the different 

tree species. No serious bias was detected. The random errors assessed by independent 

tests were 17.1 %, 19.0 %, 19.7 %, and 23.2 % of the observed mean tree height for 

Norway spruce, Scots pine, birch, and other broadleaves, respectively. A second set of 

models without stand density as an explanatory variable was also estimated because it can 

be inconvenient that tree heights are differently estimated just before and just after 

silvicultural operations that significantly affect density. The first set of models will 

therefore be best adapted to uneven-aged forestry with little variations in stand density. 

Diameter, site productivity, altitude, and latitude explained 63% to 79% of the variation 

in tree height for the different tree species for the second set of models. The random 

errors were approximately one percentage point larger than models that included stand 

density. The models provide an alternative to constructing height curves specific for 

stands or forests that might be resource demanding. 

 

Keywords: Tree height; non-linear model; uneven-aged forest 
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Introduction 

Forest inventories in Norway have traditionally been stand oriented and computations of 

growth and yield based on mean characteristics such as mean height, mean diameter, 

stand basal area, stand age, number of stems, and site quality. This approach has been 

expedient since the majority of the economically important stands in Norway are even-

aged and consequently well described by mean characteristics. However, uneven-aged, 

multi-species forests are recognized as important for preservation of biodiversity, and 

efforts are therefore made to change the forestry-practice towards selective cuttings. 

Consequently, the area covered by even-aged forest is most likely to decrease.  

Mean characteristics are less relevant for uneven-aged stands, both for description 

and computations. Accurate computations of growth and yield of these forest types 

require information on tree- or diameter class level so that total stand volume can be 

calculated as the sum of individual tree volumes. Individual tree volumes are computed 

by means of equations (Braastad, 1966; Brantseg, 1967; Vestjordet, 1967) where 

diameter and height are required as input variables. While diameter measurements can be 

obtained accurately at low cost, measurement of tree heights are both more resource 

demanding and less accurate. The advantage of being able to predict tree heights from 

diameter is then obvious.  The most common practice of obtaining tree heights is to make 

stand-wise height-diameter equations from a sub-sample of height-measured trees. 

However, an accurate pre-estimated model valid for large areas would be preferable when 

the number of available sample trees is small, or conversely, if we want to reduce or omit 

height measurements and hence reduce cost.  
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Projections of future growth and yield by means of most single-tree based 

computer simulators require height-diameter models. The only height-diameter models 

developed on data from all of Norway until now were presented by Øyen and Andreassen 

(2002). However, these models are based on linear regressions that fail to account for the 

changing height-diameter relationship throughout the lifetime of a tree. Furthermore, the 

documentation of the validity of their models is only limited. 

Construction of height-diameter models valid for large geographical areas is not 

straightforward. Within a stand, the relationship between diameter and height is 

sufficiently stable to allow diameter as the sole predictor. A height-diameter model for a 

large region or country will, however, require that conditions influencing the relationship 

between diameter and height be taken into account. This relationship depends on site 

index (Vanclay, 1994), local climate (Mäkinen, 1998), competition (Loetsch et al., 1973), 

and stand density (Fulton, 1999; Sharma and Zhang 2004).  

Several authors have developed height-diameter models for large areas. Many of 

these models, however, include diameter as the only explanatory variable (Wykoff et al., 

1982; Zhang, 1997; Lappi, 1997; Fang and Bailey, 1998; Peng, 1999), consequently 

assuming that the height-diameter relationship only depends on diameter. Others have 

included stand variables. Sharma and Zhang (2004) included stand basal area, number of 

stems, and site index. Larsen and Hann (1987) and Parresol (1992) included basal area. 

The model form varies, but mostly a non-linear function is fitted to represent the 

relationship between tree height and the explanatory variables. 

Dorado et al. (2006) developed height-diameter models for northwestern Spain 

utilizing a mixed modeling approach to account for dependence between multiple 
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measurements of the same plots and dependence between trees on the same plot. In the 

current study the plots are measured only once and the number of trees on each plot is 

generally low (average 2.3). The correlation between trees on the same plot is therefore 

minor and mixed modeling is hence not used. 

The aim of this work was to develop species-specific predictive models of tree 

height valid for Norway by including stand variables in addition to diameter at breast 

height. Two sets of models were developed. One including stand basal area as an 

explanatory variable (Model set 1), and one without stand basal area (Model set 2).   

 

Table 1. Summary of estimation data on stand level 
 
Variable 

# of 
plots Mean SD

 
Range 

Spruce 2,675    
H40 (m) 12.8 4.3 6.0 - 26.0 
BA (m2ha-1) 23.6 12.1 0.3 - 91.6 
N (ha-1) 1,310 722 40 - 5,080 
LATa 61.2 1.9 58.0 - 69.5 
    
Pine 2,358    
H40 (m) 10.5 3.5 6.0 - 23.0 
BA (m2ha-1) 20.1 10.4 0.6 - 73.0 
N (ha-1) 955 609 40 - 4,520 
LATa 60.8 2.0 58.0 - 70.0 
    
Birch 1,824    
H40 (m) 10.7 3.7 6.0 - 23.0 
BA (m2ha-1) 18.3 10.0 0.6 - 73.0 
N (ha-1) 1,362 766 80 - 6,080 
LATa 62.8 3.5 58.0 - 70.5 
    
Other 677    
H40 (m) 13.1 4.2 6.0 - 26.0 
BA (m2ha-1) 24.0 11.9 0.2 - 70.3 
N (ha-1) 1,589 892 40 - 6,520 
LATa 61.5 3.2 58.0 - 69.9 
a Degrees and minutes north according to Euref89. Minutes scaled by 100/60 (60˚ 30’N=60.5˚N). 
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Material and methods 

Estimation data 

Data used for model estimation was supplied by the Norwegian National Forest Inventory 

(NFI). All data originate from permanent 250 m2 circular plots (radius=8.92 m), 

organized in a 3 × 3 km grid, yielding a representative sample of the Norwegian forest 

area. The NFI data in question was collected in the time period between 1999 and 2003. 

The data provide information on both stand- and tree characteristics, and summaries of 

essential variables are displayed in tables 1 and 2.  

 

Table 2. Summary of estimation data on tree level 
 
Variable 

# of 
trees Mean SD

 
Range 

Spruce 7,603    
DBH (mm) 222 97.7 50 - 712 
h (dm) 154 54.3 26 - 329 
    
Pine 5,529    
DBH (mm) 267 99.1 50 - 805 
h (dm) 148 43.9 33 - 312 
    
Birch 3,418    
DBH (mm) 153 77.0 50 - 655 
h (dm) 106 38.1 32 - 288 
    
Other 1,515    
DBH (mm) 181 99.1 50 - 999 
h (dm) 123 46.4 37 - 275 
 

All stand variables are calculated from measurements inside the plot perimeter 

except site index (H40). H40 was registered just outside the plot to avoid destructive 

sampling due to that a coring have to be performed to determine age. The H40 variable is 

defined by average age at breast height and the average height of the 100 largest trees per 

hectare according to diameter at breast height. The specific H40 value relate to the 

dominant height at an index age of 40 years (Tveite, 1977; Braastad, 1980).  
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Tree diameter (DBH) of 5 cm at breast-height (1.3 m) defined the lower limit of 

the sample size-range. Sample trees were selected with a probability proportional to stem 

basal area, and heights of these sample trees were measured by means of either a Suunto 

clinometer or a Vertex hypsometer. According to field instructions, tree height is defined 

from the stump-height to the top.  

Species was registered for all callipered trees. In the present work, separate 

models were developed for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), 

and birch (Betula pubescens and Betula pendula). For the remaining deciduous species 

one model independent of species was developed. These species were in alphabetical 

order: alder (Alnus spp.), ash (Fraxinus excelsior), aspen (Populus tremula), beech 

(Fagus silvatica), Bird cherry (Prunus padus), linden (Tilia cordata), marple (Acer spp.), 

oak (Quercus spp.), rowan (Sorbus aucuparia), sallow (Salix caprea), and Wych elm 

(Ulmus glabra). The main reason for this is that the number of observations for some of 

these species was scarce, so that species-specific models would have a poor basis. 

Furthermore, practical forest planning in Norway makes no distinction between these 

species because they occur relatively seldom. Both reasons also apply for the two birch 

species.  

 

Data reduction 

The initial estimation data comprised near 8,600 plots. Plots intercepted by roads, 

water, agricultural land etc, were excluded to avoid edge effects. Furthermore, plots 

classified as unproductive, i.e. have a volume increment less than 1 m3ha-1yr-1 were 

excluded because the H40 site index system is not defined below this limit. Trees with 
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reduced height as a result of breakage were excluded from further analysis to eliminate a 

source of systematic errors. Trees with dead top were excluded for the same reason. Trees 

where a new top was established after a break were kept. All conifer species not 

identified as Norway spruce or Scots pine, were excluded from further analysis. After 

data reduction 7,299 plots (16,960 trees) remained for further analysis.  

 

Table 3. Summary of test data on stand level  
 
Variable 

# of 
plots Mean SD

 
Range 

Spruce 877    
H40 (m) 12.3 4.2 6.0 - 23.0 
BA (m2ha-1) 18.8 12.9 0.1 - 64.3 
N (ha-1) 1,111 721 40 - 5,080 
LATa 61.2 2.0 58.0 - 69.6 
    
Pine 650    
H40 (m) 10.5 3.5 6.0 - 20.0 
BA (m2ha-1) 17.5 11.0 0.1 - 60.1 
N (ha-1) 924 660 40 - 4,440 
LATa 61.1 2.2 58.0 - 69.9 
    
Birch 862    
H40 (m) 10.4 3.6 6.0 - 23.0 
BA (m2ha-1) 14.7 9.9 0.1 - 61.4 
N (ha-1) 1,059 695 40 - 5,080 
LATa 62.7 3.4 58.0 - 70.5 
    
Other 346    
H40 (m) 12.3 4.2 6.0 - 23.0 
BA (m2ha-1) 18.0 12.4 0.3 - 61.4 
N (ha-1) 1,191 775 40 - 3,920 
LATa 62.2 3.5 58.0 - 70.0 
a Degrees and minutes north according to Euref89. Minutes scaled by 100/60 (60˚ 30’N=60.5˚N). 
 

Test data 

Like the estimation data, the test data originated from the national forest inventory in 

Norway. However, the majority of the test-trees were not included in the estimation data. 

All test-trees were measured for height during 2005 as a part of the first year of an 

extended height measurement campaign where, if possible, ten relascope selected trees 
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per plot are measured for height. This practice of extended height measurements is 

conducted to improve volume and increment estimates from the inventory. Because of 

these additional height measurements, additional plots previously without height 

measurements, and hence not a part of the estimation data, were included in the test data. 

Summaries of the test data on plot and tree level are displayed in tables 3 and 4, 

respectively. Comparing them to tables 1 and 2, they show that the forest conditions do 

not range as wide as the estimation data (Tables 1 and 3), and the trees are on average 

smaller (Tables 2 and 4). The larger number of smaller trees in the test data is a 

consequence of the requirement of ten sample trees per plot which is obtained by 

adapting the relascope factor on each plot. 

 
Table 4. Summary of test data on tree level  
 
Variable 

# of 
trees Mean SD

 
Range 

Spruce 5,040    
DBH (mm) 170 90.0 50 - 632 
h (dm) 120 56.7 23 - 328 
    
Pine 3,117    
DBH (mm) 209 98.6 50 - 612 
h (dm) 123 48.0 15 - 274 
    
Birch 3,845    
DBH (mm) 122 58.4 50 - 565 
h (dm) 88 32.6 26 - 273 
    
Other 1,201    
DBH (mm) 136 83.3 50 - 655 
h (dm) 100 44.6 22 - 297 
 

Model form and statistical methods 

All models are fitted using the NLIN procedure of the statistical software SAS (Anon, 

1999). The iterative method used was the Gauss-Newton. The method iteratively finds 

the parameter estimates that minimize the residual sum of squares (SSR). To ensure that 

the Gauss-Newton method converges at a global SSR-minimum, several starting points 
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for the iterative process were set. Several preliminary model estimations were performed 

to find plausible values and ranges of these starting points.  

The height growth of a tree typically follows an asymptotic pattern in relation to 

diameter (Ryan and Yoder, 1997). More specifically this means that the diameter growth 

is more durable than the height growth as height reaches its near maximum at an earlier 

age relative to diameter. In the present study it was assumed that external factors (stand 

variables) determine this maximum height. Many non-linear mathematical functional 

forms are suitable to describe such asymptotic relationships. Most frequently used are the 

Chapman-Richards function (Richards, 1959; Chapman, 1961), the Weibull (Yang et al., 

1978), and the Korf/Lundqvist function (Stage, 1963; Zeide, 1989). In addition to these, 

different exponential and logistic functions are frequently used. An overview and tests of 

different model forms are presented by Peng et al. (2001). In the present work the model 

form used was a version of the Korf/Lundqvist function, given by: 

 

( ) ( )76432 5exp113 βββββ ××β××××β+= BADBHALTLATSIh           (1) 
          

where the βs are parameters to be estimated, LAT is latitude, ALT is altitude, and BA is 

stand basal area per hectare. In this model form, the first part of the expression represents 

the asymptotic value. 13 (dm) is added to force the tree height trough 13 dm when the 

diameter in breast height (1.3 m) approaches zero. The exponential part of the expression 

approaches 1 as DBH approaches infinity. A second set of models without stand density 

as explanatory variable was also estimated because the inclusion of BA may be 

inconvenient as the height of a tree will be differently estimated just before and just after 
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silvicultural operations that significantly affect density. The model form for the second 

set of models equals the form presented in eq. (1), without BA.  

During the estimation of the models, the residual standard error and the pseudo-

coefficient of multiple determination (pseudo-R2) have been considered to choose 

between candidate models. The pseudo-R2 was computed as 1 minus the ratio between 

sum of residual squares (SSR) and the corrected total sum of squares (CSST) as presented 

in equation 2. 

 

⎟
⎠
⎞

⎜
⎝
⎛−=−

CSST
SSRRPseudo 12         (2) 

 

The models were tested both by self-validation and height prediction on an 

independent data. The self-validation was performed at the same dataset as the model 

estimation, hence self-validation. Bias and random error estimates were calculated as the 

mean differences between predicted and observed values and corresponding standard 

deviations (SD), respectively. The main appraisal of the model adequacy is based on 

thresholds of prediction errors as discussed by Huang et al. (2003). Simply, these 

guidelines say that a mean prediction error of <±10% at 95% confidence level is 

acceptable if the prediction errors do not show adverse patterns. A prediction error 

between ±10% and ±20% indicate a level of uncertainty that calls for additional data and 

testing. Two-tailed t-tests were performed to assess the statistical significance of the 

difference between predicted and observed value. When these tests were performed 

simultaneously for k subgroups according to diameter, site quality, latitude, altitude, and 
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basal area, Bonferroni t-tests (Miller, 1981) were used in order to control the type I error. 

Thus, the level of significance for each of the k test was α/2k.  

 

Variable selection 

The maximum or asymptotic height of a specific tree species depends on many factors. 

Most of these factors are related to stand conditions. The current study has considered 

LAT, ALT, and H40 to account for the variation of maximum tree height based on the 

“hydraulic limitation hypothesis” (Friend, 1993; Ryan and Yoder, 1997; Koch et al., 

2004). In brief, the hydraulic limitation hypothesis argues that trees reach a certain 

maximum height because the increased hydraulic resistance in tall trees causes the 

stomata (pores) of the leaves to close earlier in the day to prevent a collapse in the xylem 

function. Such a collapse occurs as a result of discontinuity in the xylem water-column 

because of high tension (Tyree and Sperry, 1988; Tyree and Zimmermann, 2002). The 

early closing of the stomata reduces evaporation and hence the ability to pull water from 

the soil. The hydraulic resistance is of course directly related to the tree height it self, but 

it is also related to the contents of nutrients and water in the soil. On nutrient-poor sites, 

trees form xylem with narrow tracheids with a consequential low permeability. The H40 

is therefore a logical explanatory variable, explaining that tall trees require increased 

water and nutrient availability to overcome gravity and resistance of the xylem. Both LAT 

and ALT represent climatic factors (temperature) limiting the maximum height of a tree, 

and are considered important to make the model applicable to the whole country. The 

increased viscosity of soil water on cold sites causes the hydraulic resistance to increase 

(Ryan and Yoder, 1997). Consequently, as the values of LAT and ALT increase, the 
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maximum tree height is assumed to decrease, whereas increasing H40 should allow for 

increasing maximum height. Furthermore, the height-diameter relationship and hence the 

shape of the height curve, is dependent on social status and stand density. This means that 

a tree with a given diameter will have a different height depending on the influence of 

neighboring trees. These effects can be accounted for by including stand basal area (BA) 

or a competition index. The competition index BAL (Wycoff, 1990) was considered in the 

present work. The value of BAL for a specific tree is the sum of tree basal areas of larger 

trees pre hectare. BA was also included in the models developed by Sharma and Zhang 

(2004), but contrary to the present work they include BA in the asymptotic part of their 

models.  

 

Results 

The models 

Table 5 shows the estimated model parameters and the corresponding model adequacy 

diagnostics. All models include H40 and LAT in the asymptotic part of the model. ALT 

was, however, only included in the models for Norway spruce and birch. In addition to 

DBH, BA was included in the shape part of Model set 1. BAL was not included because it 

created a strong trend in the prediction error. The pseudo-R2 ≥ 0.63 indicate a good fit for 

all models, and the random error was 23.2, 25.5, 19.0, and 26.7 dm for Norway spruce, 

Scots pine, birch, and other broadleaves, respectively for Model set 1. The random errors 

were approximately one percentage point higher for Model set 2.  
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Table 5. Parameter estimatesa and model adequacy diagnostics for species specific diameter-height models. 
Model 1 includes stand basal area as explanatory variable, Model 2 does not.  
  Species 
Parameter Variable Spruce Pine Birch Other 

Model set 1. Including BA as explanatory variable 
β1  31,569 9,655.0 830.30 101,572 
β2 H40 0.1543 0.3994 0.3854 0.3023 
β3 LAT –1.0825 –1.1371 –0.4165 –1.5432 
β4 ALT –0.0221 - –0.0220 - 
β5  –33.332 –105.50 –14.821 –15.455 
β6 DBH –0.5436 –0.8410 –0.4312 –0.4166 
β7 BA –0.1233 –0.2193 –0.1230 –0.1207 
      
Pseudo-R2   0.82 0.66 0.75 0.67 
SD (dm)  23.2 25.5 19.0 26.7 
BIAS (dm)  –0.08ns –0.12ns –0.08ns –0.10ns 
Observations  7,601 5,519 3,381 1,486 
      

Model set 2. Excluding BA as explanatory variable 
β1  17,142 17,125 1,605.5 131,104 
β2 H40 0.2491 0.4604 0.4606 0.3723 
β3 LAT –1.0428 –1.3280 –0.6737 –1.6993 
β4 ALT –0.0149 - –0.0224 - 
β5  –37.565 –123.60 –16.347 –14.833 
β6 DBH –0.6693 –1.0175 –0.5640 –0.5207 
      
Pseudo-R2   0.79 0.63 0.72 0.65 
SD (dm)  24.9 26.6 20.3 27.7 
BIAS (dm)  0.03ns 0.06 0.05 0.01 
Observations  7,601 5,519 3,381 1,486 
a All parameter estimates are significant (p<0.05). 
 
 

All models show different patterns in terms of shape of the height curve. Figure 1 

displays all models of Model set 1 for average forest conditions i.e. H40=17, LAT=63, 

ALT=50, and BA=25. The figure shows that the models for the deciduous species predict 

higher trees for small diameters but that spruce ultimately will be superior in height. 

Figure 2 shows that the model for Norway spruce (Model set 1) is consistent with prior 

expectations considering the stand variables included in the models. The figure displays 

curves of predicted height values for different values of BA (a), LAT (b), H40 (c), and 

ALT (d). The models for the other species show similar patterns. 
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 Figure 1. Tree height for different values of diameter (DBH) and for average forest conditions (H40=17, 
LAT=63, ALT=50, and BA=25) for all models. 
 

Self-validation 

Tables 6 and 7 display the self-validation results for the conifer and deciduous tree 

species, respectively. All values of bias were inside the range considered as acceptable by 

Huang et al. (2003). The self-validation also shows small random errors (%) for the 

conifer species and that they were smallest for Norway spruce. Some statistically 

significant biases were present for some of the subgroups, as displayed by tables 6 and 7. 

The main difference between the two set of models is observed from the prediction errors 

distributed on the subgroups of BA where it seemed that there was a trend for Model set 

2. 
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Figure 2.  Tree height for different values of diameter and BA (2a), LAT (2b) H40 (2c), and ALT (2d) 
utilizing the model for Norway spruce. 
 

Independent model testing 

Tables 8 and 9 display results from the testing on the independent data for both model 

sets. For Model set 1, all differences between predicted and observed height values were 

smaller that 10%, except for the smallest diameter subgroup for spruce and pine (Table 8) 

and the second largest subgroup of diameter for other broadleaves (Table 9). Tested on 

the full range of the data, the prediction errors were –1.6%, –1.5%, –1.3%, and –3.8% for 

Norway spruce, Scots pine, birch, and other broadleaves, respectively. Distributed on the 

different subgroups of DBH, H40, LAT, ALT and BA, the model testing revealed no 

serious trends for the prediction error. The testing of Model set 2 produced similar results 

as for Model set 1. The main differences between the model sets were that Model set 2 
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seemed to produce larger height values on average. The trend for the BA subgroup for 

Model set 2 was similar to the self-validation. 

 

 Table 6. Results from model cross-validation for Norway spruce and Scots pine distributed on subgroups 
of diameter (DBH), site quality (H40), latitude (LAT), altitude (ALT), and stand basal area (BA) 
 Norway spruce  Scots pine 
Dataset # of 

obs 
Obs. 

mean
Biasa 1 

(%)
Biasa 2 

(%)
# of 
obs

Obs. 
mean 

Biasa 1 
(%) 

Biasa 2 
(%)

All 7,601 154 –0.115.1 0.0 16.2 5,519 148 –0.1 17.2 0.0 18.0

    
5< DBH ≤10 753 69 –1.9 19.6 2.2 20.3 211 69 –8.0 23.3 6.8 27.2

10< DBH ≤15 1,200 107 0.2 17.0 –0.3 19.0 448 101 0.3 19.6 –0.1 21.9

15< DBH ≤20 1,504 138 0.5 15.7 –0.7 17.4 818 126 2.4 17.8 –2.8 19.9

20< DBH ≤25 1,433 164 0.3 14.6 –0.6 16.1 1,024 147 –0.3 16.8 0.3 17.9

25< DBH ≤30 1,138 186 –1.0 13.7 1.2 14.5 1,030 158 –1.4 16.6 1.4 17.4

30< DBH ≤35 780 203 –0.8 13.4 0.8 14.2 919 167 –1.0 16.5 0.9 16.7

35< DBH 793 221 1.1 13.5 –0.8 13.5 1,069 177 1.2 16.3 –1.0 16.3

    
H40≤8 1,550 132 2.0 15.0 –2.1 15.0 2,342 129 –0.3 17.6 –0.1 17.8

8<H40≤14 3,302 151 –1.8 14.8 1.5 16.2 2,586 159 –0.6 16.8 0.7 17.7

14<H40≤20 2,332 166 0.1 15.1 0.1 16.4 571 177 2.4 16.5 –2.2 18.2

20<H40 417 187 5.2 14.3 –4.3 15.0 20 199 5.7 14.6 –4.8 14.3

    
58<LAT≤61 4,605 159 –0.4 15.1 0.4 16.1 3,596 155 –0.4 16.3 0.4 17.1

61<LAT≤64 2,063 148 0.7 15.3 –0.2 16.4 1,701 138 0.5 19.1 –0.4 19.8

64<LAT≤70 933 140 0.2 14.4 –1.4 15.4 222 113 1.1 18.9 –2.8 19.3

    
ALT≤150 1,324 160 1.7 15.4 –1.7 16.2 1,144 145 4.7 17.8 –3.9 18.8

150<ALT≤300 2,100 160 –2.3 15.1 2.2 16.3 1,875 157 –1.8 16.6 2.0 17.4

300<ALT≤450 1,566 153 –0.9 14.4 0.7 15.8 1,125 150 –1.0 16.3 0.7 17.1

450<ALT 2,611 146 1.5 15.0 –1.4 15.9 1,375 138 –0.9 17.5 –0.2 18.2

    
BA ≤ 16 1,261 107 –0.9 16.9 –11.1 18.6 1,434 121 –0.6 20.3 –6.9 20.7

16<BA≤24 1,646 137 1.3 15.9 –3.7 16.4 1,678 144 –0.1 16.9 –0.1 17.3

24<BA≤32 1,827 156 0.2 14.8 0.4 15.1 1,290 156 1.7 16.2 0.5 16.5

32<BA 2,867 182 –0.5 14.2 4.3 14.3 1,117 180 –1.5 15.6 5.7 15.7
a Significance level: bold charcters=not significant (p>0.05). Bias 1: Bias using Model 1. Bias 2: Bias using 
Model 2. Small italic numbers are standard deviations of the respective biases. 
 

Discussion 

Non-linear height-diameter models were estimated from NFI-data. For Model set 1, LAT, 

ALT, and H40 determined an asymptotic height and DBH and BA the slope of the height 

curve. Model set 2 excluded BA. All signs were logic in relation to the effect on height-
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diameter relationship. The shapes of the height curves according to diameter using Model 

set 1 are displayed in Figure 1. As the figure shows, all species specific models produce  

 

Table 7. Results from model cross-validation for birch and other broadleaves distributed on subgroups of 
diameter (DBH), site quality (H40), latitude (LAT), and altitude (ALT) 
 Birch  Other broadleaves 
Dataset # of 

obs 
Obs. 

mean
Biasa 1 

(%)
Biasa 2 

(%)
# of 
obs

Obs. 
mean 

Biasa 1 
(%) 

Biasa 2 
(%)

All 3,381 106 –0.1 17.8 0.0 19.0 1,486 124 –0.1 21.5 0.0 22.3

      
5< DBH ≤10 894 74 –0.4 18.9 0.3 20.8 300 79 –2.2 20.0 1.5 20.8

10< DBH ≤15 1,067 98 0.4 17.8 –0.3 19.2 369 105 0.9 20.6 –0.9 22.0

15< DBH ≤20 682 118 –1.6 16.5 1.0 17.7 323 127 1.3 21.5 –1.3 22.7

20< DBH ≤25 397 135 0.5 16.2 –0.4 17.3 189 143 1.1 20.1 –1.5 21.2

25< DBH ≤30 166 151 2.1 17.6 –1.8 18.5 122 162 –1.0 20.3 1.7 20.4

30< DBH ≤35 100 164 –0.1 16.2 0.5 17.1 81 181 –6.7 16.4 6.7 16.9

35< DBH 75 187 0.1 17.9 0.6 17.1 102 187 1.9 23.5 –2.0 23.7

    
H40≤8 1,455 89 –1.3 17.6 1.0 18.7 255 97 0.3 23.6 –0.8 23.4

8<H40≤14 1,561 114 1.1 17.6 –1.0 18.4 740 119 0.4 21.6 –0.6 22.4

14<H40≤20 332 147 –1.5 17.0 1.2 19.6 417 143 –1.6 19.7 1.5 20.9

20<H40 33 159 1.0 17.9 1.1 18.3 74 154 3.7 23.6 –1.5 24.8

    
58<LAT≤61 1,413 119 –1.1 18.2 1.3 19.6 880 134 –0.7 20.9 0.9 21.7

61<LAT≤64 844 100 3.8 17.9 –3.8 18.5 392 117 3.8 23.0 –3.4 23.8

64<LAT≤70 1,124 96 –1.5 16.2 1.1 17.4 214 93 –5.0 19.5 2.7 20.2

    
ALT≤150 790 108 0.8 17.7 –1.0 19.1 749 124 –1.1 20.0 1.5 20.8

150<ALT≤300 994 115 –1.2 18.1 1.6 19.3 464 125 1.5 23.4 –2.1 23.7

300<ALT≤450 635 109 –3.0 17.0 2.8 18.5 167 124 –0.8 23.2 0.4 24.6

450<ALT 962 96 2.7 17.4 –3.0 18.0 106 116 2.0 20.4 –2.3 22.5

     
BA ≤ 16 1,490 89 –0.9 17.5 –5.1 18.8 283 92 –0.4 21.8  –10.6 22.8

16<BA≤24 1,030 107 1.8 17.7 0.1 18.1 352 117 –0.8 22.1 –1.6 22.4

24<BA≤32 512 127 –0.3 17.9 4.5 18.2 431 124 2.0 20.9 –0.4 21.0

32<BA 349 149 –1.6 17.0 7.5 16.7 420 151 –1.2 20.9 5.8 21.0
a Significance level: bold charcters=not significant (p>0.05). Bias 1: Bias using Model 1. Bias 2: Bias using 
Model 2. Small italic numbers are standard deviations of the respective biases. 
 

different maximum heights and different slopes under otherwise equal conditions. The 

slopes as displayed in Figure 1 are in correspondence to prior expectations in relation to 

pioneer (pine, birch) and climax species (spruce). The shapes of the height curves are 

similar using Model set 2. Both pine and birch allocate more resources to height growth 

compared to spruce for small diameters, and the models reproduces this behavior. As a 
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climax species, spruce attains greater maximum heights than the other tree species in 

Norway which also is reproduced by this specific model. The model for other 

broadleaves behaves almost similar to the model for birch. This model is, however, not as  

 

Table 8. Results from independent model test for Norway spruce and Scots pine distributed on subgroups 
of diameter (DBH), site quality (H40), latitude (LAT), and altitude (ALT) 
 Norway spruce  Scots pine 
Dataset # of 

obs 
Obs. 

mean
Biasa 1 

(%)
Biasa 2 

(%)
# of 
obs

Obs. 
mean 

Biasa 1 
(%) 

Biasa 2 
(%)

All 5,040 120 –1.6 17.1 3.1 18.1 3,117 123 –1.5 19.0 1.2 20.0

    
5< DBH ≤10 1,368 59 –11.4 20.2 4.5 19.3 508 61 –13.9 21.8 –5.2 28.2

10< DBH ≤15 1,074 96 –0.1 18.1 7.8 19.7 462 90 0.1 21.7 8.2 24.8

15< DBH ≤20 945 133 –0.5 16.5 2.8 18.6 548 119 0.5 19.1 4.1 20.0

20< DBH ≤25 720 160 –0.5 14.6 1.3 15.6 580 141 –1.5 17.5 –0.1 18.0

25< DBH ≤30 484 179 0.1 14.2 1.4 15.3 455 155 –1.6 16.8 –0.8 17.3

30< DBH ≤35 242 200 0.6 14.2 1.1 15.2 285 164 –0.5 17.5 –0.3 17.4

35< DBH 207 224 0.8 13.6 0.6 13.9 279 170 1.9 16.8 1.9 16.7

    
H40≤8 1,280 104 0.5 17.5 5.3 16.9 1,479 110 –3.7 19.6 –0.1 19.6

8<H40≤14 2,322 115 –3.8 16.8 1.8 18.0 1,417 131 –0.1 18.4 2.2 19.9

14<H40≤20 1,321 136 0.3 16.7 4.1 18.4 221 163 1.6 17.3 1.9 19.8

20<H40 117 200 –3.5 15.4 –2.7 16.4 - - - -
    
58<LAT≤61 2,959 128 –2.5 16.2 1.4 17.5 1,839 131 –1.8 17.7 –0.1 19.2

61<LAT≤64 1,415 107 0.6 19.3 7.0 19.6 1,085 112 –0.1 21.7 4.5 20.8

64<LAT≤70 666 111 –1.6 16.7 3.7 16.7 193 97 –6.8 19.6 –3.1 20.7

     
ALT≤150 863 131 –2.5 17.0 1.2 18.3 550 122 3.8 19.6 4.6 20.6

150<ALT≤300 1,166 130 –3.2 16.1 0.0 17.4 1,168 129 –3.1 18.4 –1.7 20.0

300<ALT≤450 1,192 123 –2.6 16.5 2.4 17.5 559 127 –1.0 16.7 2.7 18.3

450<ALT 1,819 106 0.9 19.1 7.0 18.4 840 114 –2.9 20.4 2.3 20.0

    
BA ≤ 16 2189 82 –6.2 18.7 11.6 20.2 1,389 98 –3.9 21.4 7.2 22.0

16<BA≤24 1093 126 1.4 16.5 3.6 17.1 907 127 0.7 18.7 0.2 19.6

24<BA≤32 873 150 0.4 16.2 –0.3 16.3 513 156 –0.5 16.3 –3.0 16.6

32<BA 885 178 –0.6 14.2 –4.3 14.1 308 175 –1.2 15.8 –5.6 15.9
a Significance level: bold charcters=not significant (p>0.05). Bias 1: Bias using Model 1. Bias 2: Bias using 
Model 2. Small italic numbers are standard deviations of the respective biases. 
 

easily interpreted because it ranges over a large number of species. However, most of 

these species can be defined as pioneers, which support the model behavior. Species 

specific models were not estimated since all species included in the other broadleaves 

model are of little economic importance and that no distinctions are made between these 
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species in practical inventories. Species specific predictive models of height of such 

species should not be developed from NFI data, but from data collected specially for this 

purpose. A model for all these species was nevertheless developed here until sufficient 

data exist. 

Table 9. Results from independent model test for birch and other broadleaves distributed on subgroups of 
diameter (DBH), site quality (H40), latitude (LAT), and altitude (ALT) 
 Birch  Other broadleaves 
Dataset # of 

obs 
Obs. 

mean
Biasa 1 

(%)
Biasa 2 

(%)
# of 
obs

Obs. 
mean 

Biasa 1 
(%) 

Biasa 2 
(%)

All 3,845 88 –1.3 19.7 3.8 20.3 1,201 100 –3.8 23.2 2.5 23.8

    
5< DBH ≤10 1,699 66 –2.6 20.9 6.9 21.0 531 70 –8.0 23.6 5.7 23.7

10< DBH ≤15 1,176 91 –0.4 19.5 3.5 19.9 273 97 –0.8 23.6 5.5 24.9

15< DBH ≤20 583 112 –1.3 17.5 1.5 18.6 190 126 –3.1 22.0 0.3 22.2

20< DBH ≤25 263 128 0.3 17.0 2.1 17.5 103 141 –0.5 19.0 0.1 19.6

25< DBH ≤30 70 148 –1.9 18.8 –1.9 20.0 51 158 –2.4 20.6 –2.7 21.3

30< DBH ≤35 36 162 0.7 17.2 0.2 18.5 16 195 –11.8 16.3 –13.1 17.4

35< DBH 18 182 –1.7 20.6 –2.6 19.5 37 192 –0.6 21.2 –0.9 20.9

    
H40≤8 2,168 79 –3.1 18.7 1.5 19.8 253 83 –6.0 24.1 0.9 22.7

8<H40≤14 1,434 96 0.7 19.9 6.0 20.1 584 95 –3.4 24.4 3.7 25.2

14<H40≤20 203 118 2.1 21.4 8.7 20.8 341 118 –3.1 20.5 2.4 21.5

20<H40 40 131 –8.1 12.0 0.0 13.4 23 152 –5.3 24.8 –7.2 25.6

    
58<LAT≤61 1,272 98 –2.8 20.6 2.7 21.0 645 111 –4.9 22.7 1.1 23.5

61<LAT≤64 1,020 82 2.6 20.6 7.9 19.9 294 96 1.4 23.0 6.9 23.5

64<LAT≤70 1,553 83 –2.3 18.6 2.2 19.2 262 79 –7.1 23.5 1.2 23.7

    
ALT≤150 922 89 –1.3 20.1 4.3 20.9 521 99 –5.3 22.6 1.4 23.1

150<ALT≤300 1,078 95 –3.7 19.1 0.9 20.4 376 106 –4.4 22.5 0.6 23.8

300<ALT≤450 679 91 –1.5 19.3 2.7 19.0 202 97 –0.6 25.3 5.7 24.9

450<ALT 1,166 78 1.7 19.9 7.4 19.8 102 89 0.3 23.8 9.5 23.2

    
BA ≤ 16 2,723 79 –3.4 19.2 6.6 19.6 596 79 –8.2 24.2 9.1 24.4

16<BA≤24 750 100 2.6 18.7 0.3 19.0 310 105 –0.8 21.7 1.3 21.7

24<BA≤32 257 117 4.8 19.1 0.2 19.4 139 126 2.0 18.0 0.9 18.0

32<BA 115 145 –2.7 21.5 –9.4 21.0 156 151 –3.4 22.8 –8.0 22.9
a Significance level: bold charcters=not significant (p>0.05). Bias 1: Bias using Model 1. Bias 2: Bias using 
Model 2. Small italic numbers are standard deviations of the respective biases. 
 

Table 5 displays the parameter estimates and fit. The pseudo-R2 in the range of 0.63 to 

0.82 is somewhat lower than for example Sharma and Zhang (2004). It is, however, 

difficult directly to compare the findings in the present work to other models because of 

differences in methodology, geographical scale, and tree species modeled. 
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 The random error was somewhat smaller for spruce compared to all other species 

(tables 6, 7, 8, and 9). The reason for this is probably that spruce has a more regular 

conical crown shape with a clearly defined top. This yields less measurement errors 

compared to the other species where the top can be difficult to delimit exactly, especially 

when height measurements are executed from a steep angles. 

The self-validation (tables 6 and 7) revealed no serious anomaly. However, Table 

6 shows that the height of pine is more under-predicted for small diameters using Model 

set 1 than the other species. This may be related to the fact that pine is a pioneer species, 

allocating a large proportion of its available resources to height growth in early age, and 

that the model is not sufficiently flexible to account for this. However, comparing the 

tests of the two model sets it can also be observed that BA probably contributes 

significantly to the under-prediction of tree heights for small diameter trees. The 

flexibility of the model form is thus probably sufficient.  

Similar to the self-validation, the independent test results (tables 8 and 9) indicate 

that BA yield under-predictions of the height of small trees. The reason may be related to 

collinearity between DBH and BA.  

 

Conclusions 

The non-linear height-diameter models presented here are developed for Norway spruce, 

Scots pine, birch and other broadleaves in Norway. The test results distributed on 

different subgroups of DBH and stand variables show no serious trends in the prediction 

error. However, Model set 1 that includes BA as an explanatory variable under-predicts 

the height of small trees. The variables required as input for the models are available in 



 22

almost all practical inventories and the models can be utilized on the whole geographical 

range of the forested part of Norway. The models therefore provide a good alternative to 

constructing height curves specifically for individual stands or forests. Stand specific 

height curves will still be superior with respect to accuracy and the tradeoff between less 

accurate models and less inventory costs must be considered in each case. The models are 

considered to be robust and suitable for implementation in a single-tree based computer 

simulator. The model set that do not include BA (Model set 2) is considered to be best 

suitable for inclusion in a simulator because BA can be changed by silvicultural 

operations. This will affect the height estimate of the residual trees. Model set 1 is most 

suitable for uneven-aged forestry where the changes in stand density due to human 

intervention are low.  
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Abstract 

The objective of this study was to predict the growth of forest stands of mixed tree species and 

size with natural recruitment. The stand state was defined by the number of spruce, pine, birch, 

and other broadleaf trees by ha in fifteen diameter classes from 50 to 750 mm. The change in 

stand state over 5 years was predicted with state-dependent matrices based on equations for 

recruitment, growth, and mortality. The data came from 7,241 plots of the national forest 

inventory of Norway, measured from 1994 to 2005. A short term validation was carried out by 

comparing predicted and actual growth over 10 years on 416 plots not used in model estimation.  

The model was also used to predict the long-term growth of stands with different initial species 

composition and diameter distribution. Irrespective of the initial condition the same steady state 

resulted, with characteristics similar to those observed in stands that had been undisturbed for 75 

years.  

Keywords: Biometrics, forest growth, matrix model, simulation. 
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Introduction 

Norway has a long north to south coast and large differences in elevation. Thus, the forest 

conditions vary along gradients of altitude, latitude, soil type, and humidity. Together with 

different management practices this has produced a wide range of forest types with different 

levels of recruitment, growth, and mortality.  

Most existing Norwegian growth models are monospecific and predict only mean stand 

characteristics. This was expedient for commercial even-aged silviculture. However, because of 

certification systems and subsidy regulations that promote biological diversity, a larger part of 

the forest stands are likely to be of trees of various species and size in the future. 

Correspondingly, growth models to guide the management of such forests will need to predict 

the species composition of forest stands and their structure (diameter distribution).  

 Although stand level models are suitable to deal with even-aged forestry, uneven-aged 

management requires that the models distinguish individual trees or size and species classes to 

account for varying growth conditions due to stand structure and species mix within each stand. 

Models of tree growth (Andreassen and Tomter, 2003), recruitment (Lexerød, 2005), and 

mortality (Eid and Tuhus, 2001) have been estimated for Norwegian conditions previously. 

However, the model of Andreassen and Tomter (2003) includes a subjective field-assessed 

indicator variable to distinguish multi canopy layered stands from one layered stands that is not 

easily quantified and integrated in simulation models.  

 For long-term projections, the tree growth and related models must be implemented in 

computer tools. The tools that are available in Norway today, BESTPROG (Blingsmo and 

Veidahl, 1993), AVVIRK 2000 (Eid and Hobbelstad, 2000), and GAYA (Hoen and Eid, 1990) 

are for even-aged stands. Single tree simulators such as the SILVA simulator (Pretzsch et al., 

2002) are able to handle uneven-aged forest management and a single tree simulator for 

Norwegian conditions is also under development (Gobakken et al. 2005). However, the 
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complexity of single-tree simulators, the large amount of information they require, and the long 

processing time, still make them difficult to use for management which demands the study of 

many different policies over long periods of time. Simpler and more compact models dealing 

with species and size classes are more efficient and practical for that purpose.  

   The objective of this study was to develop a matrix model that would predict accurately 

the growth of forest stands of mixed tree species and size in Norway, over long periods of time. 

While dealing with species and size classes only, its parameters would rely on the same detailed 

data as an individual tree model.  A main requirement was that the model be useful to deal with 

“uneven-aged”, or “continuous-cover” forestry regimes, i.e. “silvicultural systems which involve 

continuous and uninterrupted maintenance of forests cover and which avoid clear cutting” 

(Pommering and Murphy, 2004).   

The remainder of the paper presents the matrix model structure, its calibration with the 

extensive individual tree and stand data of the National Forest Inventory (NFI) of Norway, the 

short-term validation of the model with post-sample data, and its long term prediction of forest 

stand growth for various initial conditions.   

 

Materials and methods  

While conceptually simple, matrix models are very general, and able to represent tree 

competition based on a wide variety of stand or individual tree data. Matrix models define the 

stand state by the numbers of trees in different size and species classes, and project this stand 

state by means of transition probabilities. Linear (i.e. state independent) and non-linear (state 

dependent) matrix models have been developed by several authors (e.g. Usher, 1966; Bosch, 

1971; Buongiorno and Michie, 1980; Lu and Buongiorno, 1993; Liang et al., 2005).  
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The parameters of the matrix model proposed here account for a wide range of growth 

conditions by using national forest inventory (NFI) data, for applicability of the model to the 

whole productive forest area of Norway.  

We defined a stand state by the number of trees per ha in four species groups and fifteen 

size classes. This species-size class definition is simply understood, and the measurements can 

be readily obtained from field measurements or remote sensing (Maltamo et al., 2000; Maltamo 

et al., 2005; Bollandsås and Næsset, 2007a), or with models that predict diameter distributions 

based on stand data (Vestjordet, 1972; Mønnes, 1982; Holte, 1993). At the same time, the 

species-size definition of stand states is sufficiently detailed to exploit the rich source of 

information in individual tree data to predict stand growth. 

 

Model structure 

Matrix models predict future stand states by means of transition matrices that operate on the 

previous stand state. The stand state is a vector of the number of trees per unit area in predefined 

species and diameter classes. The transition matrices used here are state dependent and also 

depend on site characteristics. The model general form is: 

 

( ) RhyGy tt +−=+pt          (1) 

 

where yt = [yijt] is the vector state, in which each entry is the number of live trees per unit area of 

species group (i =1,…,m) and diameter class ( j =1,…,n) at time t, G is a state-dependent 

transition probability matrix, ht = [hijt], is the harvest vector in which each entry is the number of 

trees cut per unit area, and p is the projection interval. R is the recruitment vector, also state 

dependent, in which each entry is the number of recruits per unit area by species and diameter 
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class. The transition probability matrix G has one sub-matrix for each species group with the 

following structure:   
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where aij (i = 1, …,m, j = 1, …, n) is the probability that a tree of species i will remain in 

diameter class j between t and t + p, bij is the probability that a tree in diameter class j grows into 

diameter class j+1 during the time interval p.  

Similarly the recruitment vector consists of one sub-vector for each species group, 

indicating the number of recruits of a specific species i that enter the smallest diameter class 

from t to t + p: 
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where di is the number of trees of species i that enter the smallest diameter class between t and t 

+ p. 

The transition probability bij was calculated here as the ratio of the rate of diameter 

growth to the width of a diameter class. The tree growth rate depended on the diameter class, on 

the stand state, and on site characteristics. The probability that a tree stayed in a diameter class, 

aij, was calculated as ait= 1 – bij– mij, where mij was the probability that a tree of species group i 
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and diameter class j died during the interval t to t+p. Like the transition probability, the mortality 

rate was a function of the diameter class of the tree, and of the stand and site characteristics. 

The recruitment rate, di was obtained as the product of the probability of positive 

recruitment and of the expected recruitment conditional on positive recruitment, which both 

depended on the stand state and the site characteristics.  

 

Data 

The data used to estimate the model parameters came from 250 m2 permanent field plots of the 

Norwegian national forest inventory, measured between 1994 and 2005. All plots are re-

measured every five years, so that there were at least two measurements per plot and for 2/5 of 

the plots, there were three. The sample design is a 3 × 3 km grid which yields a representative 

sample of the Norwegian forest area. The northernmost county (Finnmark, above 70ºN latitude) 

was sampled differently because it has few forests, and was therefore excluded from the study.  

Plots intercepted by roads, water, agricultural land etc, were also excluded to avoid edge 

effects. Plots classified as unproductive, i.e. with a volume increment of less than 1 m3ha-1yr-1 

were excluded because the site index (SI) is not registered below this level. The SI is defined by 

the height of the dominant trees at 40 years of age at breast height (Tveite, 1977; Braastad, 

1980). Plots were also excluded when tree species could not be identified unambiguously, as was 

the case on some of the youngest stands. Furthermore, among the plots that had been measured 

three times, 416 plots (20%) were selected at random and put aside for validation. This left 7,241 

plots with the characteristics summarized in Table 1. The youngest stands at the time of the first 

measurement were 20 years old, and the average age of all the stands was 87 years. Hence, the 

recruitment that occurred between measurements was assumed to be mostly due to natural 

regeneration. 
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Table 1. Summary of data for the 7,241 plots used for model calibration. 
 
Variable 

 
Mean 

 
Range 

 
SD 

Site index, SI (m) 11.0 6.0 - 26.0 4.0 
Stand age (yr) 86.7 20.0 - 344 35.6 
Basal area, BA (m2ha-1) 18.4 0.1 - 79.5 10.3 
Growth seasons (yr) 5.0 4.0 - 6.0 0.5 
Latitude, LATa 61.9 58.0 - 70.0 3.0 
Recruitment rate (ha-1 yr-5) 62.6 0.0 - 1520 104 
Mortality rate (ha-1 yr-5) 51.7 0 - 1560 98.5 
a Degrees and minutes north according to Euref89. Minutes scaled by 100/60 (60˚ 30’N=60.5˚N). 

 

The species had been recorded for all callipered trees on the plots. For this study, the trees were 

sorted in four species groups: Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch 

(Betula pubescens and Betula pendula), and other broadleaved species which consisted of, in 

alphabetical order: alder (Alnus spp.), ash (Fraxinus excelsior), aspen (Populus tremula), beech 

(Fagus silvatica), Bird cherry (Prunus padus), linden (Tilia cordata), marple (Acer spp.), oak 

(Quercus spp.), rowan (Sorbus aucuparia), sallow (Salix caprea), and Wych elm (Ulmus 

glabra).  

 

Table 2. Number of plots with recruitment, and number of recruit trees on the 7,241 calibration plots. 
Species Plots with recruitment  5 yr recruitment (ha-1) 
 
 

 
Number 

% of total 
plots 

 On plots with 
recruitment 

 
On all plots 

Spruce 1841 25.4  86.1 21.9 
Pine 383 5.3  57.0 3.0 
Birch 1879 25.9  89.6 23.2 
Other broadleaves 932 12.9  111.8 14.4 
 

Recruitment model 

Recruits were trees that reached or exceeded a diameter of 50 mm between two inventories.  

Table 2 shows that the average recruitment rates were highest, and similar, for birch and spruce, 

while they were lowest for pines. 

The logistic model (Agresti, 1996) appearing in equation (4) was used to predict the 

probability, πi, of positive recruitment in p=5 years, for each species i, on a plot of given initial 

characteristics: 
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( )( ) 1
i

3i2i1i0ie1
−α+α+α+α−+=π PBASIBA           (4) 

 

where BA is the stand basal area, SI is the site index, PBA is the percentage of basal area for the 

subject species. The parameters α were estimated with data from the 7,241 plots with the PROC 

LOGISTIC program of SAS (Anon, 1999). Model (4) is a simplified version of Lexerød (2005) 

with fewer explanatory variables.  

The expected number of recruits conditional on positive recruitment, CRi, was predicted 

with the following model: 

 

3i2i1i
0ii

ββββ= PBASIBACR          (5) 

 

The β parameters were estimated from the plots where recruitment did occur, by linear 

regression after logarithmic transformation of the variables. To predict the expected number of 

recruits, the intercept was adjusted for logarithmic bias (Flewelling and Pienaar, 1981; Miller, 

1984).  

The product of the probability of positive recruitment from (4) and the conditional 

expected recruitment (5) gave the expected number of recruits, di, given a stand state and site 

characteristics.   

 

Tree growth model 

Diameters of trees ≥50 mm at breast-height were recorded to the nearest millimeter. The 

diameter increment was defined as the difference between two measurements at an interval of 

five years. However, as the actual number of growth seasons ranged from 4 to 6, all diameter 

growth measurements were adjusted to correspond to 5 growth seasons. Furthermore, increments 
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smaller than –10 mm or larger than 70 mm, of which there were 809, were assumed to have large 

errors and were discarded. Table 3 summarizes the observations for a total of 178,472 trees. The 

pines were the largest trees on average, but they grew slightly slower than the spruces. The 

birches were the smallest trees and grew at half the rate of the spruces.    

The diameter growth of a tree of species i over 5 years was represented by the equation: 

 

 LATBASIBALDBHDBHI 6i5i4i3i
2

2i1i0ii θ+θ+θ+θ+θ+θ+θ=     (6) 

 

where DBH is the tree diameter at breast height, BAL is the basal area per ha of the trees larger 

than the tree of interest in the stand in which the tree is growing, and LAT is the latitude were 

minutes are scaled by 100/60 to obtain a continuous value. The θ parameters were estimated by 

ordinary least squares from the individual tree and corresponding plot data.  

 

Table 3. Diameter at the time of the first measurement (DBH), and five-year diameter increment (I5yr) of trees that 
survived between measurements. 
Species Number of DBH (mm)  I5yr (mm) 
  trees Mean Range SD Mean Range SD
Spruce 68,584 136.4 50.0 - 700.0 74.0 10.6 –10.0 - 69.8 9.7
Pine 29,447 183.0 50.0 - 800.0 89.3 9.6 –9.97 - 68.6 7.7
Birch 60,229 99.9 50.0 - 586.0 46.5 5.3 –10.0 - 69.0 6.3
Other 
broadleaves 20,212 105.9 50.0 - 647.0 57.9 8.5 –10.0 - 69.4 8.5
DBH =  diameter at breast height at time of first measurement. I5yr = five year diameter increment. 

 

The probability that a tree grew from diameter class j to j + 1 between t and t + 5 years given a 

particular stand state and site characteristics was then estimated as: 

 

w
I

b ij
ij =            (7) 
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where Iij is was the diameter increment predicted with equation (6) for the average tree in 

diameter class j, and w is the width (mm) of the diameter classes. Here, w was set at 50mm, to 

ensure that no tree could grow more than one diameter class in one period, while keeping the 

distribution of trees within a diameter class nearly uniform.  

 

Mortality model 

A summary of the mortality data appears in Table 4. Spruces and pines had the lowest and nearly 

equal mortality rate of 3 percent, birches and other broadleaves had the highest mortality rates.  

 

Table 4. Tree mortality data. 
Species Total number 

of trees at 
first 

measurementa 

  
Trees that died 

between 
measurements 

   Trees  % 
Spruce 71,805  2,212 3.08 
Pine 30,645  891 2.91 
Birch 66,156  3,595 5.43 
Other broadleaves 23,944  2,606 10.9 
a The difference between total number of trees and trees that  
died between measurements, do not equal number of live trees  
used for modeling increment because 809 trees with abnormal  
increment were excluded from the increment data. Furthermore,  
there were missing data for one or more of the explanatory  
variables for 3965 observations. 
 

The mortality models developed here are modifications of Eid and Tuhus (2001). The most 

important change is the inclusion of stand basal area as an explanatory variable. Otherwise, they 

use fewer explanatory variables: the probability of death of a tree in 5 years was a species-

specific logistic function of tree size and stand basal area only: 

 

( )( ) 1

i
3i

2
2i1i0ie1

−δ+δ+δ+δ−+= BADBHDBHm         (8)  
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The δ parameters were estimated with the individual tree data by logistic regression. The 

equation (8) was then used to predict the expected mortality, mij, for trees in each size class j, 

based on the mean diameter of that size class, and the stand basal area.  

 

Tree volume and tree height models 

The expected volume of trees by diameter class was estimated with species-specific volume 

equations for individual trees, based on DBH and height (h) (Braastad, 1966; Brantseg, 1967; 

Vestjordet, 1967). The expected tree height needed in the volume equations is described in 

Bollandsås and Næsset (2007b).  

 

Short-term validation 

The simulations for short-term and long-term validation were carried out with Visual Basic of 

Microsoft Excel. Short-term validation was done by comparing actual stand growth and model 

predictions on 416 randomly selected, independent, plots. On all validation plots growth was 

observed over 10 years (three measurements).   

After estimating the parameters, the matrix model was applied to the plot data at the time 

of the first measurement, and two 5-year iterations of the model were performed. If harvests 

were recorded in the data, they were allocated in equal halves to the beginning and the end of the 

period during which they occurred, because their precise date was unknown. 

Then, the predicted number of trees and basal area by species and diameter class after 10 

years was compared to the observed, over all the post-sample plots (Lu and Buongiorno, 1993). 

Plots defined as “young forest”, which had not been used in developing the model, were not used 

in this validation.  
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Long-term validation 

The long term model validation consisted in simulating stand growth without harvest for 1,000 

years. The hypothesis was that the predicted stand would reach a steady state corresponding to 

the ecological climax (Buongiorno et al. 1995). Furthermore, without climate change or other 

major disturbance, the predicted steady state should be independent of the initial stand state 

(Stenberg and Siriwardana, 2006).  

Four simulations assumed a pure initial stand of either spruce, pine, birch, or other 

broadleaves. The stands had 100 trees of diameter class 175 and 275 mm, and 400 trees in 

diameter class 225 mm, for a total of 600 trees per ha. For each of these simulations we 

monitored the evolution of total basal area and basal area by species. Moreover, stand volume, 

number of stems, mean height, and mean diameter at the end of the 1,000 year period were 

evaluated.  

 

Table 5. Model parameters for the probability of recruitment on a particular plot. 
 Parameter a (Standard error) 
Variableb Spruce Pine Birch Other 

broadleaves 
Intercept –2.291 (0.087) –3.552(0.163) –0.904 (0.075) –3.438 (0.124) 
BA (m2ha-1) –0.018 (0.003) –0.062 (0.007) –0.037 (0.003) –0.029 (0.005) 
SI (m) 0.066 (0.008)   0.123 (0.011) 
PBA (%) 0.019 (0.001) 0.031 (0.002) 0.016 (0.001) 0.048 (0.002) 
     
Observations 7,241 7,241 7,241 7,241 
Misclassified plots (%)c 8.4 0.8 3.5 2.3 
a p<0.001 for all parameters. 
b BA=Stand basal area, SI=site index value, PBA=percentage of basal area of the subject species 
c Misclassified plots according to the Hosmer and Lemeshow test. 

 

Four other simulations were carried out for initial stands of mixed species on different sites 

(SI=6, 11, 17, and 23). The total number of trees and basal area were the same as for the single-

species simulations, and the number of trees and basal area were uniformly distributed over the 

four species groups.  
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Table 6. Model parameters for number of recruits per ha conditional on positive recruitment.  
 Parameter a (Standard error) 
Variableb Spruce Pine Birch Other broadleaves 
Intercept 43.142 (1.130) 67.152 (1.094) 64.943 (1.140) 31.438 (1.202) 
BA (m2ha-1) –0.157 (0.028) –0.076 (0.035) –0.161 (0.027) –0.1695 (0.042) 
SI (m) 0.368 (0.047)  0.143 (0.050) 0.442 (0.075) 
PBAc (%) 0.051 (0.013)  0.104 (0.013) 0.193 (0.016) 
     
Observations 1,841 382 1,879 932 
R2 0.05 0.01 0.07 0.18 
a p<0.05 for all parameters. 
b BA=stand basal area, SI=site index value, PBA=percentage of basal area of the subject species. 
c 1 was added to the actual value of PBA to enable log transformation when PBA was 0. 

 

We also did simulations for four mixed spruce/birch stands of very different initial basal area to 

verify that over time the stands converged to steady states of similar basal area.  

As part of the long term validation, the simulated steady state for the pure spruce initial 

stand was compared with data from an old spruce-dominated forest (Solberg et al., 2006; 

Bollandsås and Næsset, 2007a). According to Økland (1994), no cutting had been carried out on 

this forest since 1940, and no even-aged forestry had been carried out in this forest before that 

time.  

 

Table 7. Model parameters for individual tree diameter increment (mm/5yr). 
Parametera (Standard error)  

Variableb Norway spruce Scots pine Birch Other broadleaves
Intercept 17.839 (1.087) 25.543 (1.310) 11.808 (0.485) 2.204 (0.289)
DBH (mm) 0.0476 (0.002) 0.0251 (0.002)  0.063 (0.003)
DBH2 (mm2) (×10-5) –11.585 (0.376) –5.660 (0.363) 9.616 (0.481) – 8.320 (0.882)
DBH3 (mm3) (×10-8) – 9.585 (1.499)  
BAL (m2ha-1) –0.3412 (0.007) –0.216 (0.009)  
SI (m) 0.906 (0.008) 0.698 (0.013) 0.519 (0.008) 0.359 (0.015)
BA (m2ha-1) –0.024 (0.007) –0.123 (0.008) – 0.152 (0.003) –0.177 (0.006)
LAT (°. m×100/60) –0.268 (0.018) –0.336 (0.022) –0.161 (0.007) 
  
Observations 68,584 29,447 60,229 20,212
R2 0.28 0.19 0.10 0.09
RMSE (mm) 8.3 6.9 6.0 8.2
a p<0.01 for all parameters  
b DBH=diameter at breast height, BAL=basal area of larger trees, SI=site index value, BA=stand basal area, 
LAT=latitude 
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Results 

Model parameters 

Table 5 shows the parameters of the models that predicted the probability of recruitment on a 

particular plot. For all species we obtained a significant negative sign for BA, so that the 

probability of recruitment would decrease with increasing stand density, as expected. The 

positive sign of PBA reflected greater probability of recruitment for a particular species when 

that species occupied an important part of the stand basal area. For the pioneer species (pine and 

birch) SI were not statistically significant. The model goodness of fit is indicated by the expected 

number of misclassified plots (Hosmer and Lemeshow, 2000), which ranged between 0.8 and 8.4 

percent of the total number of plots. 

The parameters of the models for the number of recruited trees per ha, conditional on 

positive recruitment are in Table 6. For all species, the number of recruits was negatively and 

significantly related to stand basal area, as expected. SI and PBA affected positively and 

significantly the number of recruits of spruce, birch, and other broadleaves. However, the low 

R2’s, especially for pine, show that the models explained only a small part of the variation in 

number of recruits on plots that had recruitment.    

The parameters of the diameter increment models for individual trees are in Table 7. For 

all species, as tree DBH increased, the corresponding diameter increment increased initially, 

reached a maximum, and then decreased. The total basal area per ha, BA, had a statistically 

significant, and as expected negative, effect diameter increment. However, the basal area of trees 

larger than the tree under consideration, BAL, had a significant and negative effect on the 

diameter growth of spruces and pines only.   
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Table 8. Parameters of individual tree mortality models (probability of dying in five years). 
 Parameter a (Standard error) 
Variableb Spruce Pine Birch Other 

broadleaves 
Intercept –2.492 (0.083) –1.808 (0.125) –2.188 (0.074) –1.551 (0.083) 
DBH –0.020 (0.001) –0.027 (0.001) –0.016 (0.001) –0.011 (0.001) 
DBH2 (mm2) (×10-5)   3.200 (0.241)   3.300 (0.305)   2.700 (0.350)   1.400 (0.342) 
BA (m2ha-1)   0.031 (0.002)   0.055 (0.004)   0.030 (0.002)   0.016 (0.002) 
     
Observations 71,805 30,645 66,156 23,944 
Misclassified trees (%) <1 <1 <1 <1 
a p<0.001 for all parameters  
b DBH=diameter at breast height, BA=stand basal area. 

 

As expected, site index, SI, had a statistically significant and positive effect on the diameter 

increment of all species. The other site indicator, latitude (LAT), had a negative effect on 

individual tree growth, except for the other broadleaves.  This was most likely due to the fact that 

most of the “other broadleaf” are in southern Norway. 

Table 8 shows the estimates of the parameters of the mortality models. As expected, the 

probability that a tree would die was highest for the trees of smallest DBH, it decreased as DBH 

increased, reached a minimum, and then increased with DBH. 

Also as expected, other things being equal, the mortality rate was significantly higher in 

stands of higher basal area, BA. Overall, the models misclassified less than one percent of the 

trees.  

 

Short-term validation 

The comparisons of observed and predicted number of trees per ha, for the 416 plots not used in 

parameter estimation, are summarized in Figure 1. The model was applied to each plot, after 

subtracting the harvest, to predict the plot state after 10 years. Figure 1 shows the predicted 

average number of trees, over the 416 plots, after 10 years, by size class and species groups, and 

the 95 percent confidence interval around the mean observed number of trees.  
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Figure 1. Average predicted number of trees (solid line) over 10 years on 416 post-sample plots. Dotted lines are the 
upper and lower bound of the 95% confidence interval of the mean number of observed number of trees. 
 

Long-term validation 

The results of the long-term simulations of stand growth with initial pure stands of spruce, pine, 

birch, or other broadleaves are in Figure 2. The stands had the same initial number of trees by 

size class, and thus the same initial basal area. Also, the same site index, SI=14 m, was assumed.    

Figure 3 illustrates the effect of site index on stand growth. The initial state was a mixed 

stand with 25 trees in diameter class 175 mm 100 trees in class 225 mm for all species. As the SI 

increased from 6 m to 23 m the initial growth rate and the steady-state basal area increased, as 

expected. In all four simulations the proportion of spruce increased over time, most rapidly for 

high SI, to ultimately crowd out the other species. For the lowest value of SI, pine still made up 

an important part of the basal area at the end of the simulation period.  
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Figure 2. Predicted basal area of an initial stand of pure spruce, pine, birch, or other broadleaves. 
 

Table 9 allows a comparison of the steady states obtained in the different simulations with 

observed old stands. The “average” refers to the average plot in a boreal nature forest that had 

not been disturbed for at least 75 years (Bollandsås and Næsset 2007a). The forest covers 

different sites and stands of varying composition. The “Best stand” refers to the plot with the 

highest basal area per ha and the highest site index in the same forest.    

 

Discussion 

The model parameters in Tables 5, 6, 7, and 8 all had signs in accord with prior expectations. 

The Hosmer and Lemeshow (2000) tests show that the recruitment models (Table 5) 

misclassified only a few plots and the mortality models (Table 8) misclassified only a few trees, 

although this measure of fit is imperfect it does not suggest a flaw in the model (Greene 1993, p. 
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652). The model for spruce recruitment seems to be the least accurate. This is probably due to 

the fact that spruce is the species that is most often planted and thus will have least variability of 

recruitment explained by stand conditions. The R2 of the models of the number of recruits 

conditional on positive recruitment (Table 6) ranged between 0.01 and 0.18. Thus, it appears that 

most of the variation in recruitment was dealt with the probability of recruitment models (Table 

5). Nevertheless, because the effect of stand basal area on conditional recruitment was systematic 

across species and significant, the conditional models of the number of recruits were maintained.  
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Figure 3. Predicted basal area of an initial mixed stand on four different sites.   
 

The R2 of the diameter increment models were low, as observed by other authors (e.g. Lin et al., 

1996; Lin and Buongiorno, 1998; Ralston et al., 2003). This suggests that diameter increment 

could be modelled as a constant, at least for short-term projections, but for long forecasts the 
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statistically significant effects of tree size and stand basal area on diameter growth could be 

biologically significant and were therefore kept in the model. This principle was applied to the 

other equations as well, where variables were maintained only if they were statistically 

significant and had plausible signs according to prior biological knowledge.   

Growth and mortality data from trees on the same sample plot could be correlated. 

Hence, a mixed modelling approach with random plot effect would seem preferable. However, in 

this case, mixed models gave biased predictions of changes on independent plots. In contrast, the 

ordinary least squares method gave unbiased predictions, and was therefore preferred. This 

principle of choosing estimation methods according to the performance of the entire system of 

equations (1) was also applied in choosing the functional form and the variables of individual 

equations.  

It can be noted that in their final version, the mortality models in Table 8 do not link 

mortality to the tree status in the stand canopy or with the site productivity as might be expected. 

Early versions of the model did include such variables, but they either had parameter signs 

inconsistent with prior knowledge, or were statistically insignificant. 

Because from boundary plots were discarded, the models represent the growth of stands 

growing inside a forest. Boundary plots are affected by manure from agricultural fields, salt from 

roads, draught because of ditching, etc. Thus, their deletion should avoid bias due to human 

activities outside the forested area. 

 Figure 1 summarizes the short-term validation tests of the model. In predictions of the 

number of trees by species and size over all the post-sample plots, the average predicted number 

of trees stayed within the 95 percent confidence interval around the mean observed number of 

trees. The single exception was the low number of spruce trees in the smallest diameter class, .  

But this could well reflect the power of the test, which leaves a positive probability of rejecting 

the null hypothesis when it is true. A longer time interval would clearly have been better for such 
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a test, but this was not feasible with the available data. Regardless, the wide variety of plots to 

which the model was applied served as a substitute, albeit imperfect, for the relatively short time 

span.  

In all four cases of the long term validation appearing in Figure 2, the peak of basal area 

after one century could be attributed to the death of large trees after an aging phase of the stand 

(Stöcker, 2002). Afterwards, the stands converged to a steady state in the long run. As shown by 

Figure 2 and Table 9, this steady state was nearly the same regardless of the initial condition, in 

terms of total basal area, volume, number of trees, mean diameter and height, and species 

composition. In the long run, the stands were dominated by spruce, independently of the initial 

state. Figure 3 shows that the distribution of species depends on site index. This is in accord with 

prior expectation as low productivity sites can support mostly pioneer species like pine growing 

in low density stands with much light. As the site improved, spruce became the dominant 

species. The other broadleaves also became relatively more abundant, as expected. 

Table 9 shows that the steady states predicted by the model were close to the values 

observed in a forest that has been little disturbed by silviculture. However, because of the 

relatively short time (75 years) since the last human intervention (Økland, 1994), the observed 

forest has most likely not reached a steady state, and the basal area will probably still increase, at 

least on the poorer sites where the evolution is slower. On the richer sites the basal area is more 

likely to be close to a steady state. The steady-states characteristics predicted by the simulations 

were in general agreement with those observed on the forest.  In particular, there was relatively 

more spruce in the observed forest on the better sites, in accord with the model predictions. 
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Table 9. Predicted stand characteristics after 1,000 years for different initial conditions, compared to the observed 
characteristics of old stands. 
 BA 

(m2ha-1) 
V  

(m3ha-1) 
N 

(ha-1) 
dg 

(mm) 
hL  

(dm) 
BAs  
(%) 

BAp  
(%) 

BAb  
(%) 

BAo 
(%) 

 Observed old stands 
 
Averagea 

 
34.2 

 
361 

 
1033 

 
211 

 
216 

 
90.0 

 
0.1 

 
9.9e 

 
Best standb 

 
45.5 

 
635 

 
630 

 
303 

 
289 

 
100.0 

 
0.0 

 
0.0e 

 Predicted stand state 
 
Sprucec 

 
42.5 

 
381 

 
826 

 
257 

 
216 

 
93.7 

 
0.7 

 
3.0 

 
2.6 

 
Pinec 

 
42.5 

 
381 

 
815 

 
259 

 
216 

 
93.1 

 
1.1 

 
3.1 

 
2.7 

 
Birchc  

 
42.6 

 
381 

 
825 

 
257 

 
216 

 
93.7 

 
0.7 

 
3.0 

 
2.6 

Other 
broadleavesc 

 
42.6 

 
381 

 
820 

 
258 
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BA=stand basal area, V=total volume, N=number of stems, dg=mean basal area diameter, hL=basal area weighted 
mean height, BAs, BAp, BAb, BAo=basal area of spruce, pine, birch, and other broadleaves, SI= site index. 
a mean of plots in boreal nature reserve (Bollandsås and Næsset, 2007a).   
b “extreme” plot (highest observed basal area and site index) in boreal nature reserve.  
c Initial pure stands of Spruce, Pine, Birch, and Other hardwoods, with 100 trees in diameter class 175 and 275 mm, 
and 400 trees in class 225 mm.  
d Mixed initial stand with 25 trees in class 175 and 275 mm and 100 trees in class 225 mm for all species. 
e Data for all deciduous trees. 

 

Summary and Conclusion 

The description of forest stands by the number of trees per unit area in the main species groups 

and fifteen size classes is simple, but with enough detail for applications concerned with 

continuous-cover/uneven-aged forestry, where considerations of the species composition and 

forest stand structure are important.   

The methods to estimate the parameters of the matrix growth model take advantage of the 

rich data set of the national forest inventory of Norway, both at stand and individual tree level.  

The data encompass a wide range of growth conditions. This cross-sectional variability 

compensates for the short time interval between observations, allowing the accurate estimation 

of parameters without the need of long-term experiments that are necessarily costly and limited 
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in scope. Furthermore, the model predictions depend on the climate during the observation 

period. Thus, if the Norwegian climate were to change significantly, the recruitment, growth, and 

mortality equations would need to be updated when new data reflecting the climate change 

became available.      

The results of the short-term validation showed that the model was sufficiently accurate 

for predictions of stand growth over at least a decade. However, the exclusion from the data of 

young forests, which was necessary to avoid bias in the recruitment rates due to artificial 

regeneration, means that the model is most suitable for well established stands that will continue 

to be managed with natural regeneration.   

In applications of the model, accurate predictions are not to be expected on each and 

every stand, but only on average, on a large number of stands. As indicated by the statistics of 

the sub-models, given similar conditions the recruitment, mortality, and growth can vary 

considerably from stand to stand and tree to tree. Little can be done to reduce this uncertainty, 

although it can be taken into account in decision making (Lin and Buongiorno, 1998). 

The prediction error can be expected to increase substantially with the length of the 

projection. Nevertheless, the long-term stand growth predicted deterministically with the present 

model was found to have desirable properties. In particular, it led to a unique steady state for 

each site level, independent of the initial tree distribution by size class and species group. The 

species composition of the predicted steady state was in agreement with ecological knowledge, 

such as the persistence of pines on the poorer sites and of spruces on the best sites. It was also in 

agreement with the available (though admittedly limited) observations on undisturbed forests, in 

terms of total basal area and volume, number of trees, average diameter, and species 

composition.      

In this paper, the model was applied only to simulate natural stand growth without human 

disturbance, to check its validity as a predictor of expected stand growth. The same deterministic 
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model form, or a stochastic extension (Liang et al. 2006), should in future applications prove 

useful to predict the economic and ecological effects of continuous-cover/uneven-aged forest 

management, by simulation, or optimization.    
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